A Multilevel Approach for Event-Based Dynamic Graph Drawing

Teaser Image
Author
Conference Paper
Editor
Abstract
The timeslice is the predominant method for drawing and visualizing dynamic graphs. However, when nodes and edges have real coordinates along the time axis, it becomes difficult to organize them into discrete timeslices, without a loss of temporal information due to projection. Event-based dynamic graph drawing rejects the notion of a timeslice and allows each node and edge to have its own real-valued time coordinate. Nodes are represented as trajectories of adaptive complexity that are drawn directly in the three-dimensional space-time cube (2D + t). Existing work has demonstrated clear advantages for this approach, but these advantages come at a running time cost. In response to this scalability issue, we present MultiDynNoS, the first multilevel approach for event-based dynamic graph drawing. We consider three operators for coarsening and placement, inspired by Walshaw, GRIP, and FM3, which we couple with an event-based graph drawing algorithm. We evaluate our approach on a selection of real graphs, showing that it outperforms timeslice-based and existing event-based techniques.
Year of Publication
2021
Conference Name
EuroVIS 2021 - Short Papers
Publisher
Eurographics Proceedings
Conference Location
Zurich, Switzerland
URL
978-3-03868-143-4
DOI
10.2312/evs.20211063
Video Link
Supplementary Material
Download citation