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(a) Example of the coarsening process. When two or more nodes are merged
together, their presence intervals are merged as well.

(b) Placement strategies for the three MultiDynNoS variants.

Figure 1: Multilevel strategies have two important stages: coarsening and placement. In this event-based multilevel approach, we coarsen and
place trajectories. An example of the coarsening (a) and placement (b) stages used by the approach.

Abstract
The timeslice is the predominant method for drawing and visualizing dynamic graphs. However, when nodes and edges have
real coordinates along the time axis, it becomes difficult to organize them into discrete timeslices, without a loss of temporal
information due to projection. Event-based dynamic graph drawing rejects the notion of a timeslice and allows each node and
edge to have its own real-valued time coordinate. Nodes are represented as trajectories of adaptive complexity that are drawn
directly in the three-dimensional space-time cube (2D + t). Existing work has demonstrated clear advantages for this approach,
but these advantages come at a running time cost. In response to this scalability issue, we present MultiDynNoS, the first
multilevel approach for event-based dynamic graph drawing. We consider three operators for coarsening and placement, in-
spired by Walshaw, GRIP, and FM3, which we couple with an event-based graph drawing algorithm. We evaluate our approach
on a selection of real graphs, showing that it outperforms timeslice-based and existing event-based techniques.

1. Introduction

Usually, a dynamic graph is defined as a succession of individual
static graphs [BBDW17], each one representing the state of the
graph at a specific time instant (also known as a timeslice). This
definition has two advantages: it works well when the time inter-
val is clearly defined (e.g., yearly, monthly, etc.), and allows for
existing static layout algorithms to be used directly for visualiza-
tion. When nodes and edges present real time coordinates how-
ever, projecting onto the nearest timeslice results in a quantiza-
tion error, potentially producing dynamic drawings of lower qual-
ity (see this video). Event-based networks (also known as tempo-
ral networks [HS12]) do not suffer of quantization problems since

they specify real-valued time coordinates for each node and edge.
Event-based drawing algorithms were introduced to exploit the full
time resolution of the data and proved to outperform, in terms
of drawing quality, timesliced drawing techniques on event-based
graphs [SAK17, SAK20]. However, they have to optimize the tra-
jectory of the nodes in the space-time cube (2D + t), with significant
costs in terms of running time.
The higher complexity limited the use of event-based graph draw-
ing, despite being able to provide more readable visualizations
of event-based graphs than timesliced techniques. In this paper,
we present MultiDynNoS: the first multilevel event-based graph
drawing algorithm, capable of bringing the time to draw event-
based networks comparable to timeslice-based approaches. Similar
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to standard multilevel techniques for static graphs, MultiDynNoS
follows a coarsening-refinement strategy. We adapt the coarsening
and placement strategies of Walshaw [Wal03], GRIP [GK00], and
FM3 [HJ04], designed for static graphs, to operate on node tra-
jectories for drawing temporal graphs in the space-time cube. Our
experiments show that drawing quality, in terms of stress, is compa-
rable event-based approaches [SAK17,SAK20] but with significant
running time improvements, making them comparable to timeslice-
based approaches [BM11] but with improved quality.

2. Related Work

The visualization of dynamic graphs has received a lot of atten-
tion over the years [BBDW17] with animated techniques [APP10,
AP16, FQ11, BPF14] and representing time as a spatial dimen-
sion [APP10, SA06, BVB∗11, LHS∗15, AB20] receiving consider-
able attention. We focus on other related work in this section.

Multilevel Graph Drawing. In the 2000s, multilevel graph
drawing algorithms [Wal03,AMA07,GK00,HJ04,BGKM10] were
devised to scale to larger static graphs. These algorithms con-
struct a hierarchy of coarse graphs and exploit this hierarchy to
accelerate the drawing. Multilevel graph drawing approaches have
been adapted to an online dynamic setting [CCM17,Vel07,Cra16].
Multi-layer networks, where several node and edge layers have dif-
ferent meaning [MGM∗19], have been used for visualization.

Temporal Networks and Event-Based Visualization. Tem-
poral and event-based networks [HS12, LVM18] have have been
studied extensively for automatic graph analysis. For most of
the past two decades, visualization of temporal networks has fo-
cused on drawing a series of timeslices in a way that encour-
ages a stable drawing [BBDW17] – the position of nodes and
edges should change as little as possible when a change is made
to the graph [CP96] so that nodes and edges can be easily iden-
tified [AP12, AP16]. Algorithms have been explored to optimize
the simultaneous drawing of timeslices in offline [DG02, DGK01,
EHK∗03, BM11] and online [MELS95, GDBG12, FT08] scenar-
ios. Event-based visualization techniques [DSP∗17, MLMdO∗13,
MLL∗13] consider visualizing sequences of events with real time
coordinates for each data point. Event-based dynamic graph draw-
ing algorithms have been recently created to directly draw these
graphs in the space-time cube [SAK17,SAK20]. Other techniques,
such as HOTVis [PS21], exploit the temporal ordering of the edges
(the causal paths) to influence the layout. However, they focus on
2D visualizations and do not optimize the drawing across the space-
time cube.

Contribution. From our survey of the related literature, it clearly
emerges a growing interest in event-based visualizations of net-
works for visual analytics applications. Drawing such graphs at full
temporal resolution can help improve the quality of the represen-
tation. This motivates our research for a more scalable solution for
embedding temporal networks in the space-time cube.

3. MultiDynNoS Pipeline

Consider a temporal network D = (V,E) where each node and edge
possesses attributes which are functions of time. Within this set-
ting, two of them are of particular importance. The appearance of

a node is defined as Av : V × T → [true, f alse] (edge appearance
is defined similarly) which maps to node/edge insertion and dele-
tion in the event-based graphs. Av defines a series of intervals in
T (time) in which the node/edge is present. The position of a node
n ∈ V in the plane over time is defined as Pv : V ×T → R2. Such
function determines its coordinates at every time t ∈ T . When de-
fined in this way, the appearance and position of the nodes are rep-
resented as a series of trajectories through time embedded in the
space-time cube (e.g., Fig. 1a): lines that define node movement in
the two dimensional plane as time passes downwards in the cube.
We also define a flattened graph as the weighted static counterpart
of a temporal graph where node and edge weights represent the cu-
mulative duration of the time intervals in which their appearance
attribute function yields true.

Layout Process. First, a coarsening operator is applied on D
to generate a coarse hierarchy of the graph, i.e. a series of graphs
made up by increasingly simpler and smaller versions of the origi-
nal. Subsequently, starting from the coarsest graph in this hierarchy,
each single level gets refined: its drawing is computed and its co-
ordinates are used to place (i.e. assign the initial coordinates) the
vertices to the level below. This initial placement in turn provides
quicker convergence in the following refinement cycle. Refinement
ends when the final layout for the input graph is computed.

Coarsening. Coarsening yields a hierarchy of coarse node tra-
jectories DH = {Dw,D1, ...,Dk}, with “depth” k, to be used by the
refinement stage. Dw is obtained by flattening D into D f and then
transferring the node and edge weights to D as an attribute constant
function. For each level Dn = (Vn,En), we order the vertices of Vn
by their weight and put them on a stack. We pop the stack and get
the heaviest vertex vn: its copy vn+1 is then assigned to Vn+1. At this
point, we select some or all of the neighbors of vn, depending on the
coarsening strategy, summing their weights and merging their ap-
pearance intervals with vn+1. We refer to vn as the “representative”
in Vn+1 of the vertices merged with it in Vn. We refer to the set of
representatives of level n as V n. Once complete, vn and the vertices
merged with it are removed from the stack. This process is repeated
until the stack is empty. Coarsening stops at the coarsest hierarchy
level Dk when the node count falls below a threshold or it is≥ 95%
the size of level Dk−1. The latter condition is introduced to avoid
a long sequence of levels with very similar sizes, which would
slow down drawing significantly. We implemented three different
coarsening strategies, each one inspired by existing multilevel algo-
rithms. First, we implemented the Maximal Matching, found in the
multilevel approach by Walshaw [Wal03], where pairs of vertices
connected by an edge belonging to the graph maximal matching are
merged together in each level. Second, we implemented the Max-
imal Independent Set coarsening, used by GRIP [GK00]. Once a
vertex is selected to be part of the new level, it is merged together
with all of its neighbors. Finally, we implemented the Solar Merger
algorithm, used by FM3 [HJ04]. Each selected vertex is merged to-
gether with its neighbors up to distance 2, creating a “Solar System
Partitioning” of the graph. Once the vertex set for the new level is
created, we generate En+1: for each edge en = (vn,wn), we create
an edge en+1 = (vn+1,wn+1) such that vn and wn were merged in
vn+1 and wn+1 respectively. If that edge already exists, its presence
is merged with the one of en.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



A. Arleo, S. Miksch, and D. Archambault / A Multilevel Approach for Event-Based Dynamic Graph Drawing

Coarsest Level Placement. Although we have a hierarchy of
trajectories, we now need to embed them into the space-time cube.
Initial placement assigns coordinates of vertices in Dk as follows:
we flatten Dk to obtain D′k, which is drawn using a static force-
directed graph layout algorithm, either single or multilevel. This
initial placement provides a reasonably good initial guess for trajec-
tory locations. The algorithm extrudes these trajectories vertically
downwards across time intially. Subsequent steps with an event-
based dynamic graph drawing algorithm [SAK20] allow these tra-
jectories to bend and change direction accross time. A good ini-
tial placement is expected to yield smoother trajectories with few
bends, which in the end resolves in nodes with reduced movement.

Refinement. During each refinement iteration, Dyn-
NoSlice [SAK20] is run on Dn. One of the key points of
the multilevel strategy is that more quality-oriented layout param-
eters can be used on coarse graphs, since they are smaller in size
and therefore quicker to draw. As the size of the graph to layout
increases, speed can be emphasized. In our approach, we tune two
parameters: the maximum node mobility and the number of layout
algorithm iterations. Coarser levels will benefit from more flexible
trajectories, while finer levels are more conservative with reduced
iterations and movement. The parameters decrease linearly by
7% at each level. This value was obtained empirically when the
considering quality/running time trade off. Time trajectory post-
processing of DynNoSlice [SAK17, SAK20] runs once every
two layout iterations in the coarser levels and the interval grows
by 2 with each new level. Once the layout for Dn is computed
(and Dn 6= Dw), the final coordinates are used to place the node
trajectories in level Dn−1. First, each representative vn−1 ∈ V n−1
is placed at the coordinates of the corresponding vertex in Vn. We
compute the initial coordinates of the remaining vertices based
on the new coordinates of their representative . We implemented
three placement operators (Fig. 1b) inspired by Walshaw [Wal03],
GRIP [GK00], and FM3 [HJ04]. The first strategy is the identity
placer: the nodes are placed in the same position as their repre-
sentative. The second strategy places the trajectories close to the
barycenter of the coordinates of the representative’s neighbors at
level n + 1. The final position of the node is skewed towards its
own representative by a fixed rate. The third strategy is similar to
barycenter but changes the attraction of the representative cluster.
Specifically, given any two neighboring nodes vn+1,wn+1 ∈ Vn+1,
the solar system partitioning guarantees that representatives at
level n, vn and wn, are at most distance 5 from each other. Since
vn and wn neighbors up to distance 2 are merged together in the
FM3 coarsening, with this information it is possible to reconstruct
the relative position of any of the merged trajectories in the paths
between vn and wn, and place them accordingly. When the path
position is not known it uses the barycenter placement strategy.
For all approaches, randomness is added to the final coordinates to
avoid possible accidental coordinate overlaps.

4. Experimental Evaluation

We conduct an evaluation where we repeat the experiment per-
formed in DynNoSlice [SAK20] to compare MultiDynNoS to
state-of-the-art dynamic graph layout algorithms on known metrics.
Differently from the previous experiment, we also include a static

layout strategy as a baseline. Our research question can be formu-
lated as follows: “Is MultiDynNoS faster than DynNoSlice,
while providing layouts with comparable drawing quality?”.

Metrics and Strategies. We evaluate the layouts using quality
and readability metrics. We include: (i) the time, drawing time in
seconds; (ii) Movement, the average distance travelled by a node
during graph evolution [BM11, SAK20]; (iii) Crowding: the num-
ber of times nodes pass close to each other in the animation of the
dynamic graph [SAK20]; (iv) Depth: coarsening depth (multilevel
strategies only); (v) StressOn and (vi) StressOff , which are the lay-
out stress computed on a per-timesliced or between timeslices, re-
spectively, with optimal scaling [SAK20] applied.
We test three MultiDynNoS variants: MultiDynNoS wi_id
is the Walshaw variant of MultiDynNoS with maximal matching
of trajectories and identity placement; MultiDynNoS is_gr is
the GRIP variant of MultiDynNoS with maximal independent
set coarsening of trajectories and barycenter placement; Multi-
DynNoS sm_sp is the FM3 variant of MultiDynNoS with the
FM3 coarsening and placement strategy. Each variant is tested
alternating the drawing algorithm for the coarsest level place-
ment between sfdp [Hu05] and fdp [FR91]. The variants of
MultiDynNoS are tested against Visone [BW04], a state-of-
the-art timeslice-based dynamic graph drawing algorithm, and
DynNoSlice [SAK17, SAK20]. sfdp flat flattens the en-
tire event-based data and draws it once as a static graph using
sfdp [Hu05], and is our baseline.

Results. Table 1 shows the results of our experiments. In terms
of running time, on all the experiment instances MultiDynNoS is
competitive with Visone and can be an order of magnitude faster
than DynNoSlice. This represents a leap forward than previous
studies [SAK17,SAK20] (whose results have been replicated here),
where Visone always had the best performance when compared
to DynNoSlice on this same set of graphs. In terms of draw-
ing quality, MultiDynNoS approaches have competitive or lower
levels of stress and crowding than DynNoSlice, thus confirm-
ing our research hypothesis, with smaller amounts of movement
due to the initial placement. In timesliced graphs, Visone had
unsurprisingly the least stress, with the notable exception of In-
foVis, where MultiDynNoS and DynNoSlice perform bet-
ter in terms of both types of stress and crowding. As previously
discussed [SAK17], InfoVis is very similar to an event-based
data, since there are drastic changes between timeslices as au-
thor sets rarely remain stable across consecutive years. On the
event-based data, MultiDynNoS and DynNoSlice outperform
or match Visone in terms of stress, movement, and crowding.
Visone cannot optimize for stress between the timeslices imposed
on this naturally expressed event-based data. The video in the sup-
plementary material demonstrates these improvements. The sfdp
flat, our baseline, is not able to perform very well in terms of stress
on these smaller datasets. However, it is a multilevel algorithm and
its strengths are in terms of scalability.

5. Conclusion and Future Work

In this paper, we present MultiDynNoS: a multilevel approach
for event-based dynamic graph drawing. Our experiment shows an
improvement up to a order of magnitude in terms of running time
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Table 1: Results of the experiment. |V | and |E| columns report the number of nodes and edges in the flattened graph. |Ev| reports the number
of events in thousands. The Trend column visualizes the number of events per timeslice on a scale from 0 to 27% of the total events of
the graph. The number of timeslices is reported by the name of the graph in brackets. The Type column reports the tested algorithm. The
MultiDynNoS variant used is presented as the combination of the initial placement layout (fdp or sfdp) and the coarsening/placement
technique used. T column reports the algorithm running time in seconds. Sc.(aling) column reports the scaling value. Columns On and Off
show the StressOn and StressOff values. Columns M and C represent Movement and Crowding respectively; D reports the depth of the
coarsened hierarchy. MultiDynNoS is implemented in Java 14 and the experiments are run on an i7-8750H CPU with 16GB of RAM.

Timesliced Graphs
|V | |E| |Ev| Trend Type T (s) Sc. On Off M C D

V
a
n
D
e
b
u
n
t
(
7
)

39 32 0.1k

Visone 0.12 1 1.14 1.46 3.79 0 -
DynNoSlice 5.04 0.62 1.23 1.21 3.92 0 -
sfdp flat 0.14 1.61 2.77 2.81 - 0 -

f
d
p wi_id 0.48 0.68 1.55 1.62 1.03 0 5

is_gr 0.47 0.75 1.03 1.06 0.99 0 3
sm_sp 0.46 0.75 1.05 1.08 1.00 0 3

s
f
d
p wi_id 0.56 0.68 1.37 1.39 0.98 0 6

is_gr 0.58 0.75 1.09 1.12 0.97 0 3
sm_sp 0.58 0.68 1.42 1.48 0.92 0 3

N
e
w
c
o
m
b
(
1
5
)

17 93 0.6k

Visone 0.10 1 14.04 14.76 16.36 8 -
DynNoSlice 7.58 0.68 16.60 16.57 13.44 1 -
sfdp flat 0.15 1.33 26.54 26.52 - 0 -

f
d
p wi_id 0.32 0.82 28.40 28.48 2.87 2 6

is_gr 0.31 0.82 21.01 20.86 2.95 4 3
sm_sp 0.32 0.82 22.55 22.39 2.87 1 3

s
f
d
p wi_id 0.42 0.82 27.05 26.94 2.89 2 6

is_gr 0.38 0.82 20.89 20.70 2.82 1 3
sm_sp 0.39 0.82 21.79 21.71 2.85 2 3

I
n
f
o
V
i
s
(
2
1
)

1,136 2,506 2.8k

Visone 77.43 0.46 51.66 52.97 2.14 36 -
DynNoSlice 224.93 0.56 30.14 30.19 2.03 2 -
sfdp flat 0.55 1.33 105.29 102.87 - 1,253 -

f
d
p wi_id 143.95 0.51 47.26 47.49 0.78 16 7

is_gr 87.79 0.56 28.08 27.79 1.50 4 4
sm_sp 138.95 0.56 28.88 28.65 1.51 4 3

s
f
d
p wi_id 110.00 0.46 51.03 50.97 0.70 36 7

is_gr 83.00 0.62 28.69 28.59 1.62 2 4
sm_sp 85.00 0.56 27.21 27.02 1.48 1 3

Event-Based Graphs
|V | |E| |Ev| Trend Type T (s) Sc. On Off M C D

R
u
g
b
y
(
2
0
)

12 66 3.1k

Visone 0.07 0.68 3.08 2.70 25.46 6 -
DynNoSlice 2.84 0.51 1.86 1.78 6.64 0 -
sfdp flat 0.18 0.90 2.07 2.02 - 0 -

f
d
p wi_id 0.75 0.56 2.18 2.01 1.74 1 5
is_gr 1.84 0.56 1.76 1.84 1.25 0 2
sm_sp 0.52 0.51 2.10 1.94 1.28 0 2

s
f
d
p wi_id 0.88 0.51 2.19 1.97 1.51 1 5

is_gr 1.04 0.513 1.99 1.87 1.11 0 2
sm_sp 0.77 0.56 2.03 1.95 1.41 0 2

D
i
a
l
o
g
s
(
6
1
)

118 501 4.0k

Visone 3.39 0.17 0.62 0.87 5.44 682 -
DynNoSlice 49.53 0.28 0.75 0.90 1.35 0 -
sfdp flat 0.21 1 0.65 0.69 - 6 -

f
d
p wi_id 1.53 0.42 0.53 0.60 0 711 14

is_gr 5.05 0.35 0.66 0.96 0.76 1 4
sm_sp 5.49 0.35 0.65 0.91 0.73 0 3

s
f
d
p wi_id 1.63 0.42 0.55 0.58 0 441 13

is_gr 5.07 0.35 0.64 0.92 0.71 0 4
sm_sp 5.96 0.31 0.74 0.88 0.64 0 3
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compared to DynNoSlice while retaining its advantages. Future
work includes performing a new evaluation on larger datasets, that
were inaccessible to event-based layout techniques - until now.
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