VAIM: Visual Analytics for Influence Maximization
Conference Paper
|
|
| Teaser Image | |
| Author | |
| Editor | |
| Abstract |
In social networks, individuals' decisions are strongly influenced by recommendations from their friends and acquaintances. The influence maximization (IM) problem asks to select a seed set of users that maximizes the influence spread, i.e., the expected number of users influenced through a stochastic diffusion process triggered by the seeds. In this paper, we present VAIM, a visual analytics system that supports users in analyzing the information diffusion process determined by different IM algorithms. By using VAIM one can: (i) simulate the information spread for a given seed set on a large network, (ii) analyze and compare the effectiveness of different seed sets, and (iii) modify the seed sets to improve the corresponding influence spread.
|
| Year of Publication |
2020
|
| Conference Name |
28th International Symposium on Graph Drawing and Network Visualization
|
| Publisher |
Lecture Notes in Computer Science
|
| ISBN Number |
978-3-030-68766-3
|
| DOI | |
| reposiTUm Handle | |
| Funding projects | |
| Video Link | |
| Paper | |
| Supplementary Material | |
| Download citation |