Categorizing Uncertainties in the Process of Segmenting and Labeling Time Series Data

Teaser Image
Author
Miscellaneous
Abstract
The segmenting and labeling of multivariate time series data is applied in different domains, e.g. activity recognition or sensor states. This involves several steps of (pre-) processing, segmenting, and labeling of time intervals, and visually exploring the results as well as iteratively refining the parameters for all the processing steps. Within these processes different uncertainties are involved and relevant. In this poster we identify and categorize important uncertainties in this problem domain. We discuss challenges for visually communicating these uncertainties throughout the segmenting and labeling process.
Year of Publication
2018
ISBN Number
978-3-03868-065-9
URL
DOI
10.2312/eurp.20181126
reposiTUm Handle
Funding projects
Paper
Attachments
Download citation