
to appear in Artificial Intelligence in Medicine, 2002.

Verification of temporal scheduling

constraints in clinical practice

guidelines

Georg Duftschmid1) , Silvia Miksch2), Walter Gall1)

1) University of Vienna, Department of Medical Computer Sciences

Spitalgasse 23, A-1090 Vienna, Austria

 {georg.duftschmid,walter.gall}@akh-wien.ac.at, www.akh-wien.ac.at/imc/

2) Vienna University of Technology, Institute of Software Technology

Favoritenstraße 9-11/188, A-1040 Vienna, Austria

 silvia@ifs.tuwien.ac.at, www.ifs.tuwien.ac.at/

Address requests for reprints and correspondence to:

Georg Duftschmid

University of Vienna, Department of Medical Computer Sciences,

Spitalgasse 23, A-1090 Vienna, Austria,

Tel.: +43-1-40400 / 6696

Fax.: +43-1-40400 / 6697

Email: georg.duftschmid@akh-wien.ac.at

mailto:georg.duftschmid@akh-wien.ac.at

- 2 -

Verification of temporal scheduling

constraints in clinical practice guidelines

Abstract

The computerization of clinical practice guidelines is a significant scientific challenge for the

medical informatics community. One frequently reported factor hindering this objective is the

existence of deficiencies within guideline knowledge. In this paper, we focus on the detection of

flaws within temporal scheduling constraints. Temporal scheduling constraints are important

elements of therapy management, and are frequently incorporated in clinical practice guidelines. We

present a suitable verification method that is based on calculating the minimal network of temporal

constraints on the execution of guideline activities. Our method serves three purposes: (1) it checks

whether temporal scheduling constraints are consistent with scheduling constraints implied by

control flow operators and the hierarchical structuring of a guideline; (2) it yields suggestions for an

equivalent, yet more explicit representation of non-minimal constraints; (3) it can be used by the

guideline interpreter to assemble feasible time intervals for the execution of each guideline activity.

We evaluate our approach by applying it to a guideline specified in the Asbru language. For this

purpose, we implemented a prototype verifier. Although we concentrate on the guideline

representation language Asbru as the demonstration medium of our method within this paper, our

approach can be reused to verify several alternative guideline-representation formats.

Keywords:

Clinical practice guidelines, medical plan management, verification, temporal constraint satisfaction

to appear in Artificial Intelligence in Medicine, 2002.

- 3 -

1 Introduction

The computerization of clinical practice guidelines and the variety of tasks associated with this

objective have been the subject of numerous research projects performed over the last decade in the

medical informatics community [5, 9, 18, 19, 24, 25]. In comparison with the extensive research

efforts invested in this subject, few guidelines have actually been employed in an automated version

in clinical practice. One frequently reported factor that complicates the implementation of such

applications is the existence of deficiencies within guideline knowledge [12, 17, 32]: As safety and

transparency are critical issues in the medical domain, guidelines that might lead to inappropriate

treatment of the patient as a result of ambiguous or even incorrect instructions are not acceptable for

implementation.

In software engineering in general and in knowledge-based systems in particular, a common strategy

to ensure the correctness of a system is its verification. As clinical guidelines encode a multitude of

different types of knowledge (e.g., goals, conditions, effects), all of which might be used incorrectly,

the application field for verification is broad in this domain. One such type of knowledge is the

concept of temporal scheduling constraints within a guideline. Temporal scheduling constraints are

important elements of therapy management, and are frequently incorporated in clinical practice

guidelines, either explicitly or implicitly [14]. They are especially important when the guidelines are

used in critical contexts, for instance when physicians have to schedule different drugs regimens and

the drugs need to be taken in specific temporal windows. As the correct timing of guideline activities

is a basic necessity for the safe application of a guideline, temporal scheduling constraints constitute

a relevant subject for verification.

This paper will present an approach that permits verification of guidelines during their design phase

by checking whether the following three types of scheduling constraints are consistently applied:

1. Temporal scheduling constraints

2. Scheduling constraints implied by the guideline’s control flow

3. Scheduling constraints implied by a hierarchical structuring of a guideline

As we will show, scheduling constraints of the above mentioned three types have been integrated to a

considerable extent in the majority of current guideline representation formats. We will refer to the

Asbru language as the demonstration medium of our approach, as it provides the most powerful

functionality in temporally constraining guideline execution. However, our work is reusable within

- 4 -

other guideline representations to the degree that they integrate temporal scheduling constraints.

The presented approach is based on calculation of the minimal temporal network and serves three

purposes: (1) it allows identification of inconsistent temporal scheduling constraints; (2) it examines

temporal scheduling constraints for their minimality and yields the most explicit equivalent

representation as a suggestion for the adaptation of non-minimal temporal scheduling constraints;

and (3) it can be used by the guideline interpreter to determine feasible time intervals for the

execution of each guideline activity.

The paper is organized as follows: In section 2 we will discuss existing work in regard of guideline

verification. In section 3 we will examine the extent to which scheduling constraints are integrated in

current guideline representation formats: After providing an overview on their implementation in

several important formats in section 3.1, we will explicitly examine the plan specification language

Asbru in this regard in section 3.2. The verification of scheduling constraints within a clinical

guideline will be handled in section 4: In section 4.1 we will show how our verification task

corresponds to a simple temporal problem. The properties to be checked for a guideline in the course

of our verification process will be described in section 4.2. In sections 4.3 and 4.4 we will examine

the possible origins of inconsistencies and non-minimalities of temporal scheduling constraints. Two

factors that complicate verification will be discussed in sections 4.5 and 4.6, namely Asbru’s

operator for unordered, sequential plan execution and the integration of multiple time lines. The

method we use to verify temporal scheduling constraints will be described in section 5. It detects

inconsistent and non-minimal temporal scheduling constraints and yields a suggestion for the

modification of non-minimal temporal scheduling constraints. After presenting some results on

evaluating our approach in section 6, a conclusion will be presented in section 7.

2 Related work on the verification of guidelines

Compared with the number of presented approaches for the computerization of clinical guidelines

and the different associated tasks that have been tackled, the verification of clinical guidelines is

poorly reported in the literature. Shiffman and Greenes [27] used logical analysis and the application

of decision table techniques to verify and simplify clinical practice guidelines. Guidelines are

regarded as sets of condition-action pairs, and verification consists of proving their completeness and

unambiguousness. A guideline is considered incomplete if it does not provide an action for each

possible value combination of parameters used within conditions. It is considered ambiguous if it

prescribes different actions for identical value combinations of parameters. Shiffman [26] refined the

to appear in Artificial Intelligence in Medicine, 2002.

- 5 -

proposed method by showing how decision tables, representing the guideline’s logic, may be

augmented by additional information such as cost, risk, evidence or literature citations. Miller et al.

[16] further improved Shiffman and Greenes’ approach by considering only those value

combinations that are semantically possible. Quaglini et al. [22] described how a guideline may be

checked for completeness and coherency. Whereas completeness is defined in an equivalent manner

as Shiffman and Greenes have done, checking a guideline for coherency means looking for

conjunctive actions, which exclude each other because of incompatible activation conditions.

Duftschmid and Miksch [4] proposed a three-step method to verify conditions within a clinical

guideline, modeled as a hierarchy of Asbru plans. In that study, a guideline is checked for the

occurrence of anomalies, which represent violations of certain properties postulated from a legal

guideline’s condition set. According to their scope, three types of anomalies are distinguished, which

are anomalies within a single condition, within a single plan, and within a hierarchy of plans.

All the above mentioned approaches concern the verification of condition-based clinical guidelines

only and do not consider temporal information. Guarnero et al. [8] described an approach for the

representation of clinical guidelines, which allows the specification of minimum and maximum

durations for individual guideline actions. They use a temporal reasoning system known as LaTeR

for examining the consistency of these duration intervals with delay intervals, which may be defined

between pairs of actions to be executed in sequence.

Other related work can be found in the domain of temporal constraint propagation, which can be

distinguished according to the type of constraints reasoned about:

• Qualitative constraints: Allen’s interval algebra [2] and Vilain and Kautz’s point algebra [34] are

two fundamental representatives.

• Quantitative constraints: This class of constraints was originally studied by Dechter et al. [3].

• Combination of qualitative and quantitative constraints: Two important approaches that integrate

both types of constraints were presented by Kautz and Ladkin [11], and Meiri [13].

To tackle our problem we concentrated on the work on combined qualitative and quantitative

constraints as well as purely quantitative constraints. We did this for the following reason: In our

guideline representation language both types of constraints are possible. Temporal scheduling

constraints are quantitative. Scheduling constraints induced by control flow and hierarchical

structuring are qualitative. Therefore, work on combined qualitative and quantitative constraints is

relevant for our problem. As we will see in sections 4.3.2 and 4.3.3, the spectrum of qualitative

constraints we may expect is reduced to the relations "=" and "≤" between two time points. These

- 6 -

constraints may easily be translated to quantitative ones using the functions described by Meiri [13].

Thus, translating qualitative into quantitative constraints and working only with the latter type was

also a reasonable option for us.

Several authors have focused on the propagation of combined qualitative and quantitative constraints

in temporal networks: Kautz and Ladkin [11] use separate networks for both types of constraints and

solve them independently. In a final step, they circulate information between the two networks using

functions for the translation of qualitative into quantitative constraints and vice versa. Meiri’s

approach [13] equally relies on translation functions between qualitative and quantitative constraints.

It differs from Kautz and Ladkin’s approach in the way the two types of constraints are connected in

the constraint network: Instead of using separate networks, Meiri stores both types of constraints in a

single network and performs constraint propagation therein. Rit’s approach of propagating temporal

constraints in scheduling problems [23] is similar to ours, as it is based on the same structure for

representing quantitative temporal scheduling constraints, which is termed Set of Possible

Occurrences (SOPO). Here the goal is to solve the so-called constrained occurrences problem,

where a network of SOPOs connected by qualitative constraints is compressed to those occurrences

which are compatible with the constraints between them. While inconsistencies are detected, the

approach does not ensure minimality of SOPOs. The paper further suggests a two-dimensional

graphical representation and propagation of constraints. Although this visualization allows an exact

graphical representation of an event with an uncertain start, end, and duration, it suffers from a

paucity of intuitive comprehensibility. Stillman et al. [30] further extend Rit’s work by allowing

parameterized qualitative as well as quantitative constraints to be defined between SOPOs. Vere [33]

describes several constraints that must hold within a quantitatively defined temporal window of an

activity and presents an algorithm for the propagation of qualitative constraints between several

windows of sequential and consecutive activities. However, temporal windows here are simpler than

our temporal scheduling constraints, as a fixed duration is assumed and uncertainty in the finishing

time point is not supported.

Our main point of orientation was the work on the propagation of purely quantitative constraints

presented by Dechter et al. [3]. We relied on their work to keep our approach simple: The extra effort

of using a combined approach did not seem justifiable merely to support the constraints "=" and "≤"

in their original form within our constraint network. Instead, we chose to replace these constraints by

their quantitative counterparts and use a simple and highly efficient approach for the propagation of

purely quantitative constraints. The approach presented by Dechter et al. covers all of our

requirements, except for unordered sequential execution of guideline activities. This type of control

to appear in Artificial Intelligence in Medicine, 2002.

- 7 -

flow cannot be tackled, as Dechter et al. only support binary constraints. If unordered sequential

activities are to be considered, approaches that permit the representation of disjunctive non-binary

temporal constraints such as the frameworks described by Stergiou and Koubarakis [29] or Staab

[28] must be applied. However, the problem of verifying a guideline that includes unordered

sequential activities (and thus disjunctive non-binary temporal constraints) is NP hard, as opposed to

an effort of O(n3) otherwise. As Asbru is currently the only representation format that considers

unordered sequential activities, we chose to integrate this type of control flow in the verification

process only through partial checks. Hereby, the efficiency of our approach is not compromised.

3 Integration of scheduling constraints in guideline representation
formats
In this section, we will first give an overview how scheduling constraints are integrated within six

important current guideline approaches. As it builds the demonstration medium of our verification

method, we will then inspect the guideline specification language Asbru in detail for its integration

of scheduling constraints.

3.1 Overview
In the following, we will examine how the guideline representation formats GLIF, PROforma,

DILEMMA / PRESTIGE, EON, the Arden Syntax, and Asbru implement (1) temporal scheduling

constraints, (2) scheduling constraints implied by the guideline’s control flow, and (3) scheduling

constraints implied by hierarchical structuring of a guideline.

3.1.1 Temporal scheduling constraints

In its original version [19], the GuideLine Interchange Format (GLIF) included temporal constraints

on patient data elements only. Their purpose was to define the required actuality of a data element to

be considered within the guideline. However, the current version 3 includes a structured grammar

based on the Arden Syntax logic grammar [10]. Among other features, it permits the specification of

temporal expressions [21]. This enhancement of its temporal expressiveness is intended to be utilized

in the form of duration constraints on actions and decisions.

PROforma [5] models guidelines as plans, which may consist of one or more tasks. Each plan may

define temporal constraints on the enactment of tasks, which are specified in the form of time

durations between tasks. Further, preconditions may be stated for each task; satisfaction of the

preconditions is a prerequisite for the execution of a task. These preconditions are expressed with the

- 8 -

standard PROforma syntax, which also includes temporal constructs.

The DILEMMA approach [9] and its successor, the PRESTIGE project [7], allow temporal

expressions to be included in conditions, which control the transitions between the different states

their guidelines may adopt. Thus, it should be possible to determine a guideline’s starting time point

by adding temporal constraints to its eligibility criteria.

The EON approach [18] permits the scheduling of guideline steps through its "start_constraint"

attribute, which may be a temporal expression. In addition, activities may have duration constraints.

By incorporating the RÉSUMÉ system, EON further allows the specification of complex, temporal

expressions including temporal abstraction. However, the latter functionality is only used to extend

EON’s expressiveness when referring to patient data.

Sherman et al. [25] describe how guidelines may be implemented within the Arden Syntax. In their

approach, a guideline is represented as a set of Medical Logic Modules (MLMs), which are

synchronized by means of so-called intermediate states: By storing a specific coded value in the

database, an MLM triggers its successor MLMs, which define this particular event in their evoke slot.

The Arden Syntax allows the specification of a time delay within the evoke slot, which builds an

offset from the triggering event and has to be awaited before the MLM is actually started [10]. The

time delay statement may consequently be used to specify minimum duration constraints between

individual MLMs.

An approach that emphasizes efficient handling of temporal expressions within guideline knowledge

is the Asbru language [15], which was created as part of the Asgaard project [24]. Asbru provides the

most powerful functionality in specifying temporal scheduling constraints in comparison with the

above mentioned approaches. As we will demonstrate in greater detail in section 3.2.1, Asbru allows

uncertain specification of a guideline activity’s duration and its starting and finishing time points.

Furthermore, each temporal scheduling constraint may be based on a local reference time point,

which permits the creation of multiple time lines.

3.1.2 Scheduling constraints implied by the guideline’s control flow

The integration of scheduling constraints based on a guideline’s control flow was already indirectly

postulated by Pattison-Gordon et al. in their paper dealing with the requirements of shareable

guideline representation [20]. Their demand for an explicit representation of temporal sequence

addresses the ability to express different variants of control flow within computerized guidelines,

such as the sequential, parallel and iterative execution of guideline actions. All of the above

mentioned guideline representation techniques have implemented this functionality. We will describe

to appear in Artificial Intelligence in Medicine, 2002.

- 9 -

in section 4.3.2 the kinds of scheduling constraints that may result from a guideline’s control flow.

3.1.3 Scheduling constraints implied by hierarchical structuring of a guideline

Ohno-Machado et al. [19] specified the hierarchical structuring of guidelines, referred to by them as

the decomposability of actions, as a representational requirement of the GLIF model. All other

representation formats, except the approach based on linking MLMs by intermediate states, equally

rely on a hierarchical organization of guidelines. We will describe in section 4.3.3 the kinds of

scheduling constraints that may result from the hierarchical structuring of a guideline.

3.2 The plan representation language Asbru
Within the Asgaard project, a set of tasks and computational models is investigated with the purpose

of supporting the execution of clinical guidelines [24]. As a foundation for the associated task-

specific problem-solving methods, the time-oriented, intention-based language Asbru has been

developed. It uses plans as the basic structure for representing guidelines [15]. Among the full set of

Asbru language elements, containing knowledge classes such as preferences, intentions, conditions

and effects, the time annotation and plan body constructs are of particular interest in our context.

3.2.1 Time annotations

The general purpose of a time annotation is to constrain the temporal occurrence of plan elements

(including plans themselves): The plan element has to start in a certain time interval, which we term

the starting interval (SI). It has to finish in a time interval, which we term the finishing interval (FI).

Finally, its duration has to be within certain limits, which we call the duration interval (DI).

A time annotation is defined by seven parameters, consisting of the endpoints of the above three

intervals and a reference point:

• SI is specified by [earliest starting shift (ESS), latest starting shift (LSS)].

• FI is specified by [earliest finishing shift (EFS), latest finishing shift (LFS)].

• DI is specified by [minimum duration (minDu), maximum duration (maxDu)].

• The upper and lower limits of SI and FI are offsets to the reference point (Ref), whereas DI is

unrelated to Ref.

Consequently, a complete time annotation is specified through the data structure

[[ESS, LSS], [EFS, LFS], [minDu, maxDu], Ref]. For the intervals’ domains, the obvious limits are

used: DI must be a subset of [0, ∞), whereas SI and FI are subsets of (−∞, ∞). A graphical

- 10 -

representation of a time annotation on one- and two-dimensional scales is shown in Figure 1: 1D

visualization has the disadvantage that it does not allow an unambiguous placement of DI, a problem

that can be solved by 2D visualization [23]. Despite this limitation, we will use 1D visualization in

the remaining part of this paper for two reasons: First, we found it to be much more intuitive and

second, an unambiguous placement of DI is not essential for our purpose.

*** Insert Figure 1 here ***

By defining three time intervals from which the time annotation’s starting and ending time points and

duration may originate, Asbru permits representation of temporal uncertainty. As each time

annotation can further define its local reference point, multiple time lines are permitted. To support

incomplete temporal information, parameters may be left unrestricted, denoted by "_". Logically, this

corresponds to setting the parameter to the respective bound of its interval’s domain, i.e. an

unrestricted minDu is set to 0, ESS to −∞, and LFS to ∞.

Note that none of the intervals is redundant. Any change in an interval’s parameters has an influence

on the time annotation’s characteristics, as long as it stays within the bounds ([ESS-, LSS+], [EFS-

, LFS+], [minDu-, maxDu+]) given by ([EFS – maxDu, LFS – minDu], [ESS + minDu, LSS +

maxDu], [MAX(0, EFS – LSS), LFS – ESS]). As we will describe in section 4.1, a time annotation

may be regarded as a temporal constraint network with three variables for Ref, the start and the

finish of an event, and the three intervals building distance constraints between them. In this

interpretation, the above restriction on the intervals’ bounds corresponds to the properties of a

minimal network, which provides the most explicit encoding of the involved constraints [3].

If at least one parameter of SI or FI is defined together with a reference point, we say that a time

annotation of a plan element is linked to the time line. This means that the plan element may not start

or finish before or after a certain point in time. If only DI is defined, however, the time annotation is

completely detached from the time line. The plan element may be executed at any time, as long as its

duration stays within the specified limits.

3.2.2 Plan body

In Asbru, a clinical guideline is modeled as a set of hierarchical plans. As indicated by the term

hierarchical, each plan may contain any number of subplans within its plan body, which may

themselves be decomposed into sub-subplans, and so on. In the remaining part of this paper, such a

tree structure of plans, starting from one root plan down to its leaf plans, will be referred to as a plan

hierarchy; the term will be used as a synonym for a clinical guideline coded in the Asbru language.

Each plan corresponds to a single guideline activity (e.g., the activity weaning is represented as one

to appear in Artificial Intelligence in Medicine, 2002.

- 11 -

of several plans within a plan hierarchy for the artificial ventilation of neonates). Note that the root

plan of a plan hierarchy constitutes the top-level activity and is usually named after the guideline

itself (e.g., plan artificial ventilation of neonates).

The control flow within a plan hierarchy is explicitly specified and allows sequential (with defined or

undefined order), parallel, cyclic, and arbitrary execution of plans. During run-time, a plan is

decomposed into its subplans until a non-decomposable plan – known as action – is found. Actions

are executed by the user or by an external call to a computer program. A set of predefined actions

exists in order to carry out interaction with the user or to retrieve information from the patient’s

medical records.

In order to constrain the possible time intervals of its execution, a plan may be associated with a time

annotation that defines a temporal scheduling constraint for the plan. The resulting data structure

will be termed plan activation (PA) in the remaining part of this paper. The time interval during

which a plan is actually executed will be known as its execution interval (EI). Within a PA, a plan

may only be associated with one time annotation; disjunctions of several time annotations are not

allowed.

As an example, the plan activation (GDM-II [[0 WEEKS, 8 WEEKS], [24 WEEKS, _], [18

WEEKS,_], CONCEPTION]) means: "Plan GDM-II for the treatment of gestational diabetes

mellitus type II should be executed in a time interval, starting between 0 and 8 weeks after the

conception, finishing no earlier than 24 weeks after the conception, and lasting at least 18 weeks."

There are no restrictions on the latest finishing point and the maximum duration.

Example 1. A plan hierarchy consisting of 11 PAs in 4 levels. Control flow is specified by 5 different
operators.

(P1 [[_,_],[_,390],[50,370],Ref]
do-seq-ordered ((P2 [[_,_],[_,_],[70,100],_]),

(P3 [[_,_],[_,_],[120,150],_]),
(P4 [[_,_],[_,_],[130,160],_])))

(P2 do-parallel ((P5 [[_,_],[_,_],[90,_],_]),
(P6 [[40,_],[_,_],[_,_],Ref])))

(P3 do-cyclic ((P7 [[_,_],[_,_],[20,_],_]
retry=[10,_] exec=[5,_])))

(P4 do-arbitrary ((P8 [[_,_],[_,_],[120,160],_]),
(P9 [[_,_],[_,_],[20,_],_])))

(P8 do-seq-unordered ((P10 [[_,_],[_,_],[90,_],_]),
(P11 [[_,_],[_,_],[80,_],_])))

- 12 -

Example 1 shows a plan hierarchy that covers all three kinds of scheduling constraints examined in

this paper, namely (1) temporal scheduling constraints, (2) scheduling constraints implied by the

guideline’s control flow, (3) scheduling constraints implied by a hierarchical structuring of a

guideline: the plan hierarchy consists of eleven plans in four layers, each of which is associated with

a specific time annotation and thus constitutes a PA. The execution of plans within the hierarchy is

further influenced by five different operators for flow control. The semantics of these operators and

the additional parameters of the cyclic operator will be explained in section 4.3.2. The actual

guideline actions (such as recommendations to the user) reside in the plan bodies of the leaf plans.

As they are not essential for our task, they are omitted in Example 1.

4 Verification of scheduling constraints

The PAs within an Asbru plan hierarchy, building a set of temporal scheduling constraints for the

involved plans constitute the target of our verification approach. We will show in section 4.1 how

our task of verifying PAs can be mapped to a simple temporal problem. In section 4.2 we will then

define the properties consistency and minimality, for which PAs are checked in the verification

process. In sections 4.3 and 4.4 we will examine how inconsistencies and non-minimalities may arise

within a single PA or within a network of several PAs. Asbru’s operator for unordered, sequential

execution of plans does not fit into our framework, and will therefore be separately handled in

section 4.5. In section 4.6, we will address the problem of multiple time lines within different PAs,

which complicates verification.

4.1 Analogy to a simple temporal problem
Our verification task can be mapped to a simple temporal problem: according to Dechter et al., a

simple temporal problem (STP) is a temporal constraint satisfaction problem in which all involved

(quantitative) constraints consist of a single interval [3]. This is a special case of the general temporal

constraint satisfaction problem, where constraints are disjunctions of intervals.

The constraint network of an STP can be represented by a directed constraint graph (CG): Nodes

represent variables X1, ..., Xn for the time point of the occurrence of certain events, whereas an edge

i→j indicates that an interval [aij, bij] for the temporal distance between the two corresponding events

is specified, representing the constraint aij ≤ Xj – Xi ≤ bij. Within the constraint network of an STP, no

more than one interval per edge is allowed, which means that disjunctions of constraints are ruled

out.

to appear in Artificial Intelligence in Medicine, 2002.

- 13 -

Each constraint can equally be expressed by a pair of inequalities Xj – Xi ≤ bij and Xi – Xj ≤ –aij. This

constitutes the basis of the directed distance graph (DG), which has the same node set as the CG.

Each edge i→j, however, is labeled by a single weight aij representing the linear inequality Xj – Xi ≤

aij. As an example, on the right side of Figure 2 the weight on the edge from P.S to P.F constrains the

distance P.F – P.S to be lower or equal to maxDu.

A PA with a fully specified time annotation constrains the start, finish and duration of a plan. As it

does not allow disjunctions of time annotations, it satisfies the corresponding demand of an STP. In

order to represent a PA as the constraint network of an STP, we decompose it into the three nodes

Start of Plan (P.S), Finish of Plan (P.F) and Reference Point (Ref). Figure 2 shows the CG and DG

corresponding to a PA.

*** Insert Figure 2 here ***

4.2 Properties to be checked
We verify the PAs within an Asbru plan hierarchy by checking them for the following two

properties:

• Consistency

We examine whether PAs are consistent with those scheduling constraints within a guideline,

which are induced by control flow operators or hierarchical structuring. To cite an example, our

goal is to check whether the PAs within a plan hierarchy, such as the one depicted in Example 1,

are consistent. The concept of consistency we use is based on the absence of negative cycles

within the DG of an STP, as defined by Dechter et al. [3]: We consider a PA to be consistent with

respect to its associated time annotation if and only if its DG representation does not contain

negative cycles. A negative cycle is defined as a cyclic path within the DG, for which the sum of

weights aij (c.f., section 4.1) is negative. In this paper, a PA that is consistent with respect to its

associated time annotation will be referred to by the shorter term, consistent PA only.

• Minimality

We examine whether each PA is minimal with respect to its time annotation. Using the

abbreviated version minimal PA in the remaining part of this paper, we consider a PA to be

minimal if and only if the constraint network, given by the three intervals of the associated time

annotation, is minimal. The concept of minimality of a constraint network is defined the same

way as Dechter et al. [3] have done: A constraint network is minimal if it is tighter than any

- 14 -

equivalent constraint network. Two networks are equivalent if they represent the same solution

set, which in our case corresponds to two PAs that allow the same set of EIs for their plans. A

network T is tighter than a network S if all constraints of T are tighter than the corresponding

constraints in S, i.e. constraint Tij is tighter than Sij for all pairs i,j. A constraint Tij, limiting the

distance between two variables is tighter than a constraint Sij, if every pair of values allowed by Tij

is also allowed by Sij. In other words, a PA is minimal if its time annotation represents the most

explicit encoding of the induced constraints.

Inconsistencies are treated as errors that have to be cleared by the user. Non-minimalities, however,

only represent sub-optimal specifications of PAs that commonly occur within guidelines: In fact,

most PAs will be non-minimal when initially defined by the user, as the latter usually does not want

to be concerned with checking each PA for minimality. When derived from real-world constraints,

PAs may even be voluntarily kept non-minimal. Therefore, they are only indicated to the user; their

correction is not enforced.

4.3 Inconsistencies
As the presence of a negative cycle indicates that an STP is inconsistent, we will examine in the

sequel how cycles may arise within one PA or within a network of several PAs. For each identified

type of cycle we will examine how it may become negative and thereby introduce an inconsistency.

We will start by inspecting a single PA for negative cycles in section 4.3.1. In the examination of a

network of PAs, we will distinguish three causes of linking PAs: (1) the specification of control flow

in section 4.3.2; (2) parent–child relations in section 4.3.3; and (3) links to the time line in section

4.3.4.

4.3.1 Single plan activation

If we take a look at the DG of a single fully specified PA (see right side of Figure 2), we find that

cycles are already identifiable here. First we have three cycles, each enclosing two of the three

nodes: ESS and LSS build a cycle between Ref and P.S, EFS and LFS between Ref and P.F, and

finally minDu and maxDu form a cycle between P.S and P.F. A trivial kind of inconsistency will

occur here when at least one of the following inequalities holds:

ESS > LSS, EFS > LFS or minDu > maxDu

Second, we receive two cycles that span all three nodes of a PA: that comprising ESS, LFS, and

minDu, and that comprising LSS, maxDu, and EFS. All other cycles that span all three nodes are

to appear in Artificial Intelligence in Medicine, 2002.

- 15 -

concatenations of two two-node cycles and may be correspondingly decomposed. Inconsistencies

resulting from the latter two cycles will occur if at least one of the following inequalities holds:

minDu > LFS – ESS or EFS – LSS > maxDu

Looking for relative positionings of SI and FI that can be excluded a priori as being inconsistent, the

latter two inequalities give us the following trivial insight: considering that the minimum value for

minDu is 0, the first inequality tells us that an FI, that is in relation before to SI, is always

inconsistent. The second leaves any position of SI relative to FI open, as maxDu is unbound on the

upper end.

4.3.2 Specification of control flow

As mentioned in section 3.2, the Asbru language provides operators that allow the user to explicitly

define the order in which plans are to be executed. We will now examine what kind of constraints

between PAs are imposed by the semantics of these operators for flow control.

*** Insert Figure 3 here ***

Sequential execution of plans with defined order

Asbru provides an operator for sequential, ordered execution of plans with common semantics:

Every plan, activated as the (i+1)th member of a set of sequential plans with defined order, may not

be started before the plan corresponding to the ith member is completed. In other words, a sequential

ordered execution of plans P1 and P2 implies the qualitative constraint P1.F ≤ P2.S between the

finish of P1 and the start of P2. This translates to the quantitative constraint [0, ∞) between time

points P1.F and P2.S [13]. Figure 3 (a) visualizes this circumstance in the CG and DG. The

maximum distance of ∞ is omitted in the DG, as it does not represent a constraint.

Parallel execution of plans

The Asbru operator for parallel execution of plans has the following semantics: Parallel plans have to

start concurrently, whereas no restriction is made for their finishing time point. This entails the

qualitative constraint P1.S = P2.S between the starting time points of parallel plans P1 and P2, which

translates to a maximum (and therefore also minimum) distance of 0 between these points. Figure 3

(b) is a graphical representation of this constraint for two parallel plans. The edges are presented in

diagonal orientation to optically distinguish them from parent-child relationships.

Arbitrary execution of plans

- 16 -

The operator for arbitrary execution of plans does not impose any constraint on the order: Plans may

be executed in parallel, overlapping or sequential fashion. Therefore, the distance between them

cannot be restricted in any way. For reasons of completeness, Figure 3 (c) visualizes the

unconstrained distance between the start and the finish of two arbitrary executed plans.

Cyclic execution of plans

The Asbru language offers several ways to specify a repetitive execution of a single plan. All these

alternatives are extensions of the following scheme: A regular PA is enhanced by a retry-delay and a

lower (minExec) as well as an upper limit (maxExec) for the number of plan executions. The retry-

delay is given by an interval that defines the minimum (minDelay) and maximum waiting period

(maxDelay) between two plan executions. Figure 3 (d) shows the DG of the cyclic execution of a

single plan. The upper graph gives a static view of the cyclic plan, whereas the lower graph shows

one particular instance in detail. As the retry-delay and number of plan executions can be defined by

the user, they are susceptible to inconsistencies. We mentioned in section 4.3 that a PA is

inconsistent if minDu > maxDu. Similarly, a cyclic PA is inconsistent if (minDu ⋅ minExec) +

(minDelay ⋅ (minExec – 1)) > (maxDu ⋅ maxExec) + (maxDelay ⋅ (maxExec – 1)).

4.3.3 Parent–child relations

As stated in section 3.2, Asbru organizes guidelines in a tree structure of plans known as a plan

hierarchy. A plan hierarchy may consist of several levels, and each non-leaf plan has a parent →

child relationship with its subplans on the next lower level. Using the obvious approach of parent–

child synchronization, Asbru does not allow child plans to start before their parent or to finish after

their parent. For a parent plan P and a child plan C, this entails the qualitative constraints P.S ≤ C.S

and C.F ≤ P.F between their starting and finishing time points. This translates to a minimum distance

of 0 between P.S and C.S and a minimum distance of 0 between the C.F and P.F [13].

*** Insert Figure 4 here ***

Figure 4 (a) visualizes this circumstance in the CG and DG. Clearly, the PAs of plans P and C will

be inconsistent if C.minDu > P.maxDu.

If we combine the constraints originating from control flow with those originating from parent–child

relationships, we receive less obvious possibilities for inconsistencies: Figure 4 (b) depicts a scenario

where plan P1 has two child plans P2 and P3, which are executed sequentially in order P2, P3. Plan

P2 itself is parent of the cyclic plan P4. The scenario in Figure 4 (b) contains three different cycles.

Cycle 1 between P2 and P4, shown in dark, may induce an inconsistency between the PAs of P2 and

to appear in Artificial Intelligence in Medicine, 2002.

- 17 -

P4, if P4.[(minDu ⋅ minExec) + (minDelay ⋅ (minExec - 1))] > P2.maxDu. Cycle 2 between P1, P2

and P3, represented in medium gray, may yield an inconsistency if P2.minDu + P3.minDu >

P1.maxDu. Cycle 3 is depicted in light gray and circumvents the minimum duration of P2 by passing

over P4. It will be inconsistent if P3.minDu + P4.[(minDu ⋅ minExec) + (minDelay ⋅ (minExec - 1))]

> P1.maxDu. Note that the third cycle is not rendered obsolete by the other two: The total minimum

duration of all instantiations of P4 can be lower than the maximum duration of P2 (hereby avoiding

an inconsistency in cycle 1), but higher than the minimum duration of P2 at the same time. Together

with the minimum duration of P3, it may then exceed the maximum duration of P1, causing an

inconsistency in cycle three.

4.3.4 Links to the time line

We have seen in sections 4.1 and 4.3.1, how links to the time line can create cycles within a single

PA. Now we will demonstrate that such cycles may also span several PAs. Depending on the

involved control flow operators, different kinds of cycles are possible. Therefore, we will examine in

the following for each control flow operator, how links to the time line within the involved PAs may

induce inconsistencies:

Sequential execution of plans with defined order

We assume a set of sequential plans with defined order, where an early executed plan Pm has a link to

the time line of the "earliest" type (ESS or EFS defined) and a later executed plan Pn has one of the

"latest" type (LSS or LFS defined) with m < n. Then these links form a cycle within the

corresponding DG, which further involves the minimum durations of the intermediate plans, the

minimum durations of 0 between the finish and the start of neighboring plans and potentially the

minimum durations of Pm and Pn.

*** Insert Figure 5 here ***

We omit cycles in the opposite direction, as they involve the unconstrained maximum distances of ∞

between the finish and the start of consecutive plans. Figure 5 shows the possible scenarios with

grayed minimum duration constraints and the conditions for each cycle to become inconsistent.

Parallel execution of plans

We assume a set of parallel plans including plans Pi and Pj, which have links to the time line of the

opposite type, i.e. one of the "earliest" type and the other of the "latest" type. We then distinguish

four types of cycles induced by these links. Figure 6 shows the scenarios with grayed duration

- 18 -

constraints and the conditions for each cycle to become inconsistent.

*** Insert Figure 6 here ***

Arbitrary execution of plans

As the minimum and maximum distances in the DG between two arbitrarily executed PAs are +∞, a

cycle involving two or more such plans (of the same parent) cannot become negative. Inconsistencies

can only originate from cycles that involve the links between a single arbitrarily executed plan and

its parent or children plans.

Cyclic execution of plans

If a cyclic PA defines an SI and/or an FI, these refer to the start of the first execution and/or to the

finish of the last execution of the plan. As already shown, the total minimum and maximum

durations between the start of the first and the finish of the last executions are (minDu ⋅ minExec) +

(minDelay ⋅ (minExec - 1)) and (maxDu ⋅ maxExec) + (maxDelay ⋅ (maxExec - 1)). As we thus treat

all executions of a cyclic PA as a whole and its links to the time line can only refer to the first and

last executions, only a single PA is involved here. Therefore, a cyclic PA linked to the time line can

only be part of a network of PAs through the links to its parent or children plans; it cannot generate a

network of PAs itself. Therefore, when examining a network of PAs for inconsistencies, cyclic plans

only have to be considered as part of those cycles that include the cyclic plan’s links to its parent

and/or children plans. However, each single cyclic plan may itself become inconsistent, as shown in

section 4.3.2.

4.4 Non-minimalities
In this section, we will examine how non-minimalities may arise within one PA or within a network

of several PAs. Although we do not allow inconsistent PAs within a plan hierarchy, we do not force

the user to define minimal PAs during the design of a plan hierarchy. Ensuring manually that each

PA is minimal would be annoying for her. Instead, we point out non-minimal PAs to the user during

plan verification, and give her the option to adapt it. Providing the minimal variant of a PA as a

suggestion on how to modify it does not require extra effort: The algorithm we use for consistency

checking is based on the computation of minimal PAs within a plan hierarchy.

4.4.1 Single plan activation

A single PA that is consistent by not containing a negative cycle as described in section 4.3.1, is not

to appear in Artificial Intelligence in Medicine, 2002.

- 19 -

necessarily minimal. It will be minimal when it satisfies the following additional demands that can

be deduced from the definition of a time annotation’s bounds ([ESS-, LSS+], [EFS-, LFS+], [minDu-

, maxDu+]), as given in section 3.2.

• ESS ≤ EFS and LSS ≤ LFS

• MAXIMUM (0, EFS – LSS) ≤ minDu ≤ MINIMUM (EFS – ESS, LFS – LSS)

• MAXIMUM (EFS – ESS, LFS – LSS) ≤ maxDu ≤ LFS – ESS

The first point allows SI to be in any of the relations {equal, overlaps, meets, before} to FI.

Depending on SI and FI, the second and third points yield the bounds for DI. On the left side of

Figure 7 (a), a PA that does not satisfy the above demands is shown: One objection to minimality

consists in its EFS being smaller than ESS. The PA on the right side of Figure 7 (a) represents an

equivalent minimal version of the same PA that satisfies the above demands. We use the 1D

representation introduced in Figure 1 here, as it allows a graphical visualization of the difference

between non-minimal and minimal PAs.

*** Insert Figure 7 here ***

4.4.2 Network of plan activations

Non-minimality of a PA may also be induced by links to other PAs in a common network. The left

side of Figure 7 (b) shows a plan hierarchy containing PAs that are rendered non-minimal by two

types of scheduling constraints: One is implied by a control flow operator for sequential execution

and the other by a parent−child relation.

4.5 Handling Asbru’s operator for unordered, sequential plan execution
The Asbru language includes an operator for sequential execution of plans, where the order in which

the plans are executed is not specified. Accordingly, an unordered sequential execution of plans P1

and P2 presumes that P1 is executed either before or after P2. In terms of the DG, this means that

there is a minimum distance of 0 either between the finish of P1 and the start of P2, or between the

finish of P2 and the start of P1.

The disjunctions within the last two sentences already indicate that an unordered, sequential

execution of plans exceeds the scope of STPs. It also does not fit into the framework of general

temporal constraint satisfaction problems (TCSPs), as defined by Dechter et al. [3]: Although their

TCSP framework allows disjunctions within constraints, the latter may only be of the binary type.

This means that each disjunct within one disjunction must exclusively refer to the same pair of

- 20 -

variables (e.g., a ≤ Xj – Xi ≤ b ∨ c ≤ Xj – Xi ≤ d). However, the unordered sequential execution of

plans P1 and P2 introduces the 4-ary constraint 0 ≤ P2.S – P1.F ≤ ∞ ∨ 0 ≤ P1.S – P2.F ≤ ∞.

To incorporate the unordered sequential execution of plans, we need an approach that can handle

non-binary constraints, such as the framework proposed by Stergiou and Koubarakis [29]. They

consider temporal constraints of the form X1 – Y1 ≤ r1 ∨ …∨ Xn – Yn ≤ rn , where X1, …, Xn, Y1, …,

Yn are variables and r1, …, rn are constants. This covers the representation of unordered sequential

plans, e.g. for plans P1, P2 and P3 we would define the three constraints (P1.F – P2.S ≤ 0) ∨ (P2.F –

P1.S ≤ 0), (P1.F – P3.S ≤ 0) ∨ (P3.F – P1.S ≤ 0) and (P2.F – P3.S ≤ 0) ∨ (P3.F – P2.S ≤ 0).

However, the problem of determining the consistency of a set of constraints that includes

disjunctions of non-binary constraints is NP hard. Therefore, we choose to apply partial verification

for unordered sequential plans only, by checking whether there are any easily identifiable objections

to their consistency:

• We check whether there is any objection to the assumption that the set of plans can be executed in

sequential order at all. This is the case if two or more of the corresponding PAs are overlapping,

which means that they force the plans to be executed at least partially in parallel.

Whether two PAs are overlapping can be deduced from their parameters LSS and EFS:

Overlapping(PA1, PA2) iff ((LSS(PA1) < EFS(PA2)) ∧ (LSS(PA2) < EFS(PA1)))

If two or more PAs of a set of unordered sequential plans are overlapping, we will receive an

inconsistency (i.e. a negative cycle within their DG), no matter how we arrange them.

• The constraint on the EI of a child plan with respect to its parent’s EI (see section 4.3.3) clearly

also holds for unordered, sequential plans. The corresponding constraints are inserted in the

matrix of weights accordingly (see section 5).

• The total minimum durations of a set of unordered, sequential plans must not exceed their parent’s

maximum duration. To perform the corresponding check, we can execute an additional

verification run, where we treat the set of unordered, sequential plans as ordered, sequential plans,

considering only their DIs but ignoring their SIs and FIs.

4.6 Verification with multiple time lines
As we have seen in section 4.3.4, our verification process involves checking whether particular

constraints among two or more PAs, which are linked to the time line, are consistent. This purpose is

to appear in Artificial Intelligence in Medicine, 2002.

- 21 -

rendered difficult by Asbru’s ability to support multiple time lines within one plan hierarchy:

Asbru allows the reference point of a PA to refer to patient-specific time points (e.g., birth,

conception, ...). The actual calendar date for such a time point can only be determined during the

execution of a plan, after it has been assigned to a patient. Statically, its relation to another PA’s

reference point is a priori unknown, which means that the distance between them is set to (−∞, +∞).

This, in due course, can prevent certain "obvious" inconsistencies from being detected:

Let us assume that we have to check, in the context of a guideline for the treatment of gestational

diabetes, whether plans P1 and P2 can be executed sequentially in order P1, P2, when activated by

(P1 [[_,_],[2,_], [_,_],delivery]) and (P2 [[_,2],[_,_],[_,_],conception])

(see upper diagram in Figure 8REFFORMATVERBINDEN). As the unknown distance between the

two reference points turns the sum of weights of the induced cycle to +∞, a sequential execution of

P1 and P2 is found to be consistent (see lower left diagram in Figure 8).

*** Insert Figure 8 here ***

In such a case, verification can be optimized if additional knowledge on the relation between the

reference points of different PAs is available. Let us assume that we include such knowledge in our

checking process, i.e. for the same pregnancy, the event delivery always happens after the event

conception. This translates to a constraint of [ε, +∞) on the distance between them, where ε

represents the smallest supported time unit. When using this additional knowledge, a sequential

execution of P1 and P2 is found to be inconsistent (see lower right diagram in Figure 8).

No additional knowledge is needed when checking PAs with identical reference points, as they are

trivially related. The same holds for PAs, whose reference points are specified as time points of the

calendar.

5 Verification method
Like Dechter et al., we use Floyd-Warshall’s all-pairs-shortest-paths algorithm to detect

inconsistencies within a network of PAs:

for i,j = 1 to n do dij ← aij;
for i = 1 to n do dii ← 0;
for k = 1 to n do
 for i,j = 1 to n do
 dij ← min(dij, dik + dkj);

- 22 -

Applied to the network’s DG, the algorithm calculates the minimal network represented as a matrix

of minimum distances dij in time O(n3), where n is the number of nodes. Inconsistencies (i.e.

negative cycles) can simply be detected by examining the sign of the diagonal elements dii within the

minimum distance matrix. The matrix of weights aij is set up by inserting the defined constraints

originating from the individual PAs, parent-child relations and control flow operators. Instead of the

value ∞ for unconstrained distances, we use the constant INF = (n ⋅ MAX(aij)) + 1, as no path can

have more than n arcs.

The algorithm further permits the identification of non-minimal PAs and provides their minimal

versions as a suggestion on how to adapt them. We make use of this feature by pointing out non-

minimal PAs to the user during the verification process and leave her the choice of accepting the

minimal version, modifying the PA differently or leaving it as it is. An additional benefit of

calculating the minimal network is the fact that it may be used to assemble solutions, i.e. assignments

to the parameters of all PAs, that are consistent with the network’s constraints in time O(n2). Finding

a solution of the network is an essential task for the guideline interpreter to determine the EIs of all

plans.

*** Insert Table 1 here ***

To demonstrate the set-up process of our method, Table 1 (a) shows the matrix of weights aij, after

inserting the constraints of plan P2 and its subplans of Example 1 (we use here only this part of the

entire plan hierarchy, in order to keep the example simple). The value 701 corresponds to INF.

Figure 9 provides an obvious depiction of the weights corresponding to all other values: The value 0

at cells (P5.S, P2.S), (P2.F, P5.F), (P6.S, P2.S), and (P2.F, P6.F) originates from parent-child

relations. The value 0 at cells (P5.S, P6.S) and (P6.S, P5.S) originates from the parallel execution of

plans P5 and P6. The value –40 at cell (P6.S, Ref) originates from the ESS of P6. All other values

originate from the minimum or maximum durations of plans P2 and P5.

Table 1 (b) shows the matrix of minimum distances dij, which results from applying Floyd-

Warshall’s algorithm to the matrix of weights in Table 1 (a). It demonstrates that the PAs within P2

and its subplans are consistent, as it does not contain a negative diagonal elements dii. It further

shows that none of the three PAs is minimal: For P2 the values of ESS, LSS, EFS and minDu,

corresponding to cells (P2.S, Ref), (Ref, P2.S), (P2.F, Ref), and (P2.F, P2.S) can be tightened. For P5

all values except minDu and LFS can be tightened. For P6 all values except ESS and LFS can be

tightened.

to appear in Artificial Intelligence in Medicine, 2002.

- 23 -

6 Evaluation of the verification method

Four existing clinical guidelines have been represented in the Asbru language so far. These include

the following: a guideline for the observation and treatment of gestational diabetes mellitus used at

the Stanford Medical School, which is based on the California Diabetes and Pregnancy Program

"Sweet Success"; a guideline that supports the artificial ventilation of neonates used at the neonatal

intensive care unit of the University of Vienna Medical School [6]; a guideline for the treatment of

sinusitis used by general practitioners in the Netherlands [31]; and a guideline for the management of

hyperbilirubinemia in newborns, issued by the American Academy of Pediatrics [1]. Although these

four guidelines comprise numerous scheduling constraints implied by control flow and hierarchical

structuring, PAs are barely utilized. Therefore, they do not represent interesting subjects for an

automatic verification of their temporal scheduling constraints. For the demonstration of our

approach, we will thus verify the PAs within the fictive guideline shown in Example 1. This

guideline is an interesting test case, as it covers all three kinds of scheduling constraints examined in

this paper, including several variants thereof, namely (1) temporal scheduling constraints: different

variants of incomplete time annotations are used, some of which are linked to the time line; (2)

scheduling constraints implied by the guideline’s control flow: the full spectrum of Asbru’s control

flow operators is covered; (3) scheduling constraints implied by a hierarchical structuring of a

guideline: the plan hierarchy is arranged in four different levels.

*** Insert Figure 9 here ***

To visualize the different cycles emerging from this guideline, we depict the corresponding DG in

Figure 9. It does not include the two unordered sequential plans P10 and P11, as the corresponding

constraints on their control flow cannot be represented within a DG.

As an XML-DTD (Document Type Definition) exists for the current version of Asbru, in the final

implementation of our verifier we intended to employ XML as the import format of Asbru plans. The

prototype verifier, which we currently use and present in this paper, is confined to a manual

specification of the plan hierarchy within the verifier. Its verification algorithm, however, is based on

the method described in section 5. The application contains two text areas, where the left side shows

the plan hierarchy to be analyzed and the right side depicts the results of the verification process.

*** Insert Figure 10 here ***

Figure 10 shows the result of verifying the guideline of Example 1. It tells us that the PAs within the

plan hierarchy are inconsistent for two reasons: First, an inconsistent path corresponding to a

negative cycle within Figure 9 is present, which involves the minimum durations of plans P4, P7 and

- 24 -

P5, the latest finishing shift of P1, the earliest starting shift of P6, and several links induced by

control flow operators and parent-child relations. Second, the total minimum duration of the

unordered sequential plans P10 and P11 exceeds the maximum duration of their parent plan P8.

*** Insert Figure 11 here ***

Figure 11 shows the result of verifying the guideline after the two inconsistencies were cleared by

setting the latest finishing shift of plan P1 to 420 and the minimum duration of plan P10 to 70. As

described in section 4.4, the verifier provides the minimal version of each PA as a suggestion on how

to adapt it.

7 Conclusion

Scheduling constraints, expressed either explicitly by control flow operators (e.g., for sequential or

parallel execution) or implicitly by a hierarchical modeling, are basic elements of most current

formats for the computerized representation of clinical guidelines. Another type of scheduling

constraint, which is frequently found in conventional guidelines, is given by temporal specifications

(e.g., "determine the newborn’s blood glucose level within 30 minutes after birth", "execute a

controlled ventilation for at least 3 hours"). The importance of the latter kind of constraint is

reflected by a growing number of integrations within current guideline specification formats.

However, like other types of knowledge, temporal scheduling constraints may be used inconsistently

within a guideline and may thus be an obstacle for the guideline’s computerization.

In this paper we have addressed the problem by presenting an approach for the verification of

temporal scheduling constraints within clinical practice guidelines, represented in the Asbru

language. The approach is based on the calculation of the minimal temporal network, and serves

three purposes: (1) it allows the identification of inconsistent temporal scheduling constraints; (2) it

detects non-minimal temporal scheduling constraints and yields suggestions for their representation

in an equivalent, but more explicit form; and (3) it can be used by the guideline interpreter to

determine feasible EIs for each guideline activity.

The computation of the minimal network can be done in O(n3) time for a guideline with n individual

activities and therefore constitutes an efficient method for its verification. Efficiency is an issue for

us insofar as it allows our verification process to be applied interactively during the design phase of a

guideline, e.g. after each definition of a new temporal scheduling constraint, without annoying the

user by long answering times.

to appear in Artificial Intelligence in Medicine, 2002.

- 25 -

A limitation of our approach consists in its inability to fully verify temporal constraints on the

execution of unordered sequential guideline activities. Although we apply several checks that can

detect basic types of inconsistencies in this case, a full verification would require a technique that can

handle disjunctions of non-binary constraints. Even though suitable approaches for this task have

been described in the literature [28, 29], the problem of fully verifying a guideline that includes

unordered sequential activities is NP hard. As Asbru is currently the only representation format that

considers unordered sequential activities, we chose to integrate them in the verification process only

through partial checks. Hereby, the efficiency of our approach is not compromised.

Our approach is reusable in two ways: (1) It is applicable for the verification of several guideline

representation formats other than Asbru, such as GLIF, EON, PROforma, or DILEMMA /

PRESTIGE. This is due to the fact that our approach assumes the existence of certain basic operators

for flow control within a guideline representation format (such as sequential, parallel or cyclic

execution) and its organization in a hierarchical structure. These concepts are realized in most current

approaches [5, 9, 18, 19]. Our considerations on temporal scheduling constraints (originating from

Asbru’s PAs in this paper) have to be adapted when reusing our approach for a different

representation, according to the expressiveness of the respective format in this area. (2) Our approach

can be ported to domains other than guideline-based care for the following reasons: First, the Asbru

language is suitable for several areas of planning [15]. Second, our verification method is a domain-

independent, general approach for processing temporal constraints [3].

Acknowledgments. The authors thank Michael Balser, Frank van Harmelen, Peter Johnson, Robert

Kosara, Wolfgang Reif, Andreas Seyfang, Yuval Shahar, and Annette ten Teije, who contribute to

the execution of the project. The project is supported by the "Fonds zur Förderung der

wissenschaftlichen Forschung" (Austrian Science Fund), P12797-INF.

References
[1] American Academy of Pediatrics, Practice parameter: management of hyperbilirubinemia in

the healthy term newborn., Pediatrics 94 (1994) 558-565.

[2] J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26

(1983) 832-843.

[3] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artificial Intelligence 49

(1991) 61-95.

- 26 -

[4] G. Duftschmid and S. Miksch, Knowledge-based verification of clinical guidelines by

detection of anomalies, Artificial Intelligence in Medicine 22 (2001) 23-41.

[5] J. Fox, N. Johns and A. Rahmanzadeh, Disseminating medical knowledge: the PROforma

approach, Artificial Intelligence in Medicine 14 (1998) 157-181.

[6] JP. Goldsmith and EH. Karotkin, Assisted ventilation of neonates (Saunders, Philadelphia,

1993).

[7] C. Gordon, I. Herbert and P. Johnson, Knowledge representation and clinical practice

guidelines: the DILEMMA and PRESTIGE projects, in: Brender-J, Christensen-J, Scherrer-JR

and McNair-P, eds., Proceedings of Medical Informatics Europe 96; Copenhagen, Denmark

(R. Brompton Hospital London UK. Medical Informatics Europe '96: Human Facets in

Information Technologies. IOS Press Amsterdam Netherlands, 1996).

[8] A. Guarnero, M. Marzuoli, G. Molino, P. Terenziani, M. Torchio and K. Vanni, Contextual

and temporal clinical guidelines, in: Proceedings of the AMIA-98 Annual Symposium (1998)

683-687.

[9] S. Herbert, C. Gordon, A. Jackson-Smale and Salis Renaud, Protocols for clinical care,

Computer Methods and Programs in Biomedicine 48 (1995) 21-26.

[10] G. Hripcsak, Writing Arden Syntax medical logic modules, Computers in Biology and

Medicine 24 (1994) 331-363.

[11] H. A. Kautz and P. B. Ladkin, Integrating metric and qualitative temporal reasoning, in:

Proceedings 9th National Conference on Artificial Intelligence (AAAI-91) (AT&T Bell Labs.

Murray Hill NJ USA. AAAI Press Menlo Park CA USA, 1991).

[12] C. McDonald and J. Overhage, Guidelines you can follow and trust: An ideal and an example,

Journal of the American Medical Association (JAMA) 271 (1994) 872-873.

[13] I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Artificial

Intelligence 87 (1996) 343-385.

[14] S. Miksch, Plan management in the medical domain, AI Communications 12 (1999) 209-235.

[15] S. Miksch, Y. Shahar and P. Johnson, Asbru: A task-specific, intention-based, and time-

oriented language for representing skeletal plans, in: Proceedings of the 7th Workshop on

Knowledge Engineering: Methods & Languages (KEML-97), Milton Keynes, UK (1997).

[16] D.W. Miller, Jr, S.J. Frawley and P.L. Miller, Using semantic constraints to help verify the

to appear in Artificial Intelligence in Medicine, 2002.

- 27 -

completeness of a computer-based clinical guideline for childhood immunization, Computer

Methods and Programs in Biomedicine 58 (1999) 267-280.

[17] M. Musen, J. Rohn, L. Fagan and E. Shortliffe, Knowledge engineering for a clinical trial

advice system: uncovering errors in protocol specification, Bulletin du Cancer 74 (1987) 291-

296.

[18] M. Musen, S. Tu, A. Das and Y. Shahar, EON: A component-based approach to automation of

protocol-directed therapy, Journal of the American Medical Informatics Association (JAMIA)

(1996) 367-388.

[19] L. Ohno-Machado, J. Gennari, S. Murphy, N. Jain, S. Tu, D. Oliver, E. Pattison-Gordon, R.

Greenes, E. Shortliffe and G. Barnett, The GuideLine Interchange Format: A model for

representing guidelines, Journal of the American Medical Association (JAMA) 5 (1998) 357-

372.

[20] E. Pattison-Gordon, J. Cimino, G. Hripcsak, S. Tu, J. Gennari, N. Jain and R. Greenes,

Requirements of a sharable guideline representation for computer applications. Stanford

Technical Report SMI-96-0628, Stanford University, 1996.

[21] M. Peleg, A. A. Boxwala, O. Ogunyemi, Q. Zeng, S. Tu, R. Lacson, E. Bernstam, N. Ash, P.

Mork, L. Ohno-Machado, E. H. Shortliffe and R. A. Greenes, GLIF3: the evolution of a

guideline representation format, in: Proceedings of the AMIA-2000 Annual Symposium; Los

Angeles, CA (2000) 645-649.

[22] S. Quaglini, R. Saracco, M. Stefanelli and C. Fassino, Supporting tools for guideline

development and dissemination, in: Proceedings of the 6th Conference on Artificial

Intelligence in Medicine Europe (AIME) (1997) 39-50.

[23] J.F. Rit, Propagating temporal constraints for scheduling, in: Proceedings of the 5th National

Conference on Artificial Intelligence (AAAI-86); Los Altos, CA (Morgan Kaufmann, 1986)

383-388.

[24] Y. Shahar, S. Miksch and P. Johnson, The Asgaard project: A task-specific framework for the

application and critiquing of time-oriented clinical guidelines, Artificial Intelligence in

Medicine 14 (1998) 29-51.

[25] E. Sherman, G. Hripcsak, J. Starren, R. Jender and P. Clayton, Using intermediate states to

improve the ability of the Arden Syntax to implement care plans and reuse knowledge, in:

Proceedings of the Annual Symposium on Computer Applications in Medical Care (SCAMC-

- 28 -

95) (1995) 238-242.

[26] R. Shiffman, Representation of clinical practice guidelines in conventional and augmented

decision tables, Journal of the American Medical Informatics Association (JAMIA) 4 (1997)

382-393.

[27] R. Shiffman and R. Greenes, Improving clinical guidelines with logic and decision-table

techniques, Medical Decision Making 14 (1994) 245-254.

[28] S. Staab, On non-binary temporal relations, in: Prade-H, ed. Proceedings of the 13th European

Conference on Artificial Intelligence (ECAI 98) (Comput. Linguistics Lab. Freiburg Univ.

Germany. Wiley Chichester UK, 1998).

[29] K. Stergiou and M. Koubarakis, Backtracking algorithms for disjunctions of temporal

constraints, Artificial Intelligence 120 (2000) 81-117.

[30] J. Stillman, R. Arthur and A. Deitsch, Tachyon: A constraint-based temporal model and its

implementation, SIGART Bulletin 4 (1993).

[31] S. Thomas, R.M.M. Geijer, J.R. van der Laan and Tj. Wiersma, NHG-Standaarden voor de

huisarts II (Productie Wetenschappelijke uitgeverij Bunge, Utrecht, 1996).

[32] W. Tierney, J. Overhage, B. Takesue, L. Harris, M. Murray, D. Vargo and C. McDonald,

Computerizing guidelines to improve care and patient outcomes: the example of heart failure,

Journal of the American Medical Informatics Association (JAMIA) 2 (1995) 316-322.

[33] S. Vere, Planning in time: Windows and durations for activities and goals, IEEE Transactions

on PAMI 5 (1983) 246-267.

[34] M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in:

Proceedings AAAI-86: Fifth National Conference on Artificial Intelligence; Univ (BBN Labs.

Cambridge MA USA. American Assoc. Artificial Intelligence Menlo Park CA USA, 1986)

377-382.

to appear in Artificial Intelligence in Medicine, 2002.

- 29 -

LSSESS LFSEFS

minDu

maxDu

0 1 2 3 4 5 6 7 8 9 10 11 time

Ref

 ESS start

finish

Ref LSS

time

EFS

LFS
maxDu

1

1 1

7

minDu

Figure 1

- 30 -

 Ref

P.S P.F

[ESS,LSS] [EFS,LFS]

[minDu,maxDu]

Ref

P.S P.F

LSS −EFS

maxDu

−ESS LFS

−minDu

Figure 2

to appear in Artificial Intelligence in Medicine, 2002.

- 31 -

P1.F P2.S (−∞,+∞) P1.F P2.S
+∞ ≈
+∞

− (minDu ⋅ minExec) − (minDelay ⋅ (minExec − 1))

...

−minDelay

maxDelay
p1(1).F p1(2).S p1(1).S

−minDelay

maxDelay
p1(n).F p1(n).S

(maxDu ⋅ maxExec) + (maxDelay ⋅ (maxExec − 1))
P1.S P1.F

P1.S

P2.S

[0,0] ≈

P1.S

P2.S

0 0

(a)

(b)

(c)

(d)

P1.F P2.S [0,∞) P1.F P2.S 0 ≈

Figure 3

- 32 -

-minDu

maxDu

-minDu

maxDu

[minDu, maxDu]

[minDu, maxDu]
P.S P.F

[0,∞) ≈

C.S C.F

[0,∞)

P.S P.F

0

C.S C.F

0

Cycle 1 Cycle 3

Cycle 2
0 0

0 0

0

 −(minDu ⋅ minExec) −
 (minDelay ⋅ (minExec − 1))

−minDu

maxDu
P2.S P2.F

P4.S P4.F

maxDu P1.S P1.F

−minDu P3.S P3.F

cyclical

seq-ordered

(b)

(a)

Figure 4

to appear in Artificial Intelligence in Medicine, 2002.

- 33 -

...

−ESS LFS

−minDu 0
Pm.S Pm.F

Ref

0 −minDu
Pn.S Pn.F ...

−EFS LSS

0
Pm.F

Ref

0
Pn.S

...

LFS

0

Ref

0 −minDu
Pn.S Pn.F ...

LSS

0

Ref

0
Pn.S

−EFS

Pm.F

−ESS

−minDu
Pm.S Pm.F

Inconsistent, if:
i = m

n

Pm.ESS+∑ Pi.minDu > Pn.LFS

Inconsistent, if:
i = m + 1

n

Pm.EFS+∑ Pi.minDu > Pn.LFS

Inconsistent, if:
i = m+1

n - 1

Pm.EFS+∑ Pi.minDu > Pn.LSS

Inconsistent, if:
i = m

n - 1

Pm.ESS+∑ Pi.minDu > Pn.LSS

Figure 5

- 34 -

maxDu

LSS
Ref

Pi.S Pi.F

Pj.S

LSS
Ref

Pi.S Pi.F

0 Pj.S Pj.F

maxDu

LFS
Ref

Pi.S Pi.F

−EFS
0 −minDu Pj.S Pj.F

LFS

Pi.S

0 −minDu Pj.S Pj.F

Pi.F

−ESS

Ref

−EFS

Pj.F

−ESS

0

Inconsistent if: Pi.EFS – Pi.maxDu > Pj.LSS Inconsistent if: Pi.EFS – Pi.maxDu > Pj.LFS – Pj.minDu

Inconsistent if: Inconsistent if: Pi.ESS > Pj.LSS Pi.ESS > Pj.LFS – Pj.minDu

Figure 6

to appear in Artificial Intelligence in Medicine, 2002.

- 35 -

 (P [[1,5],[3,7],[2,6],0])

LSS ESS

0 1 2 3 4 5 6 7

LFS EFS

minDu

maxDu

LSS ESS

LFS EFS

minDu

maxDu

0 1 2 3 4 5 6 7

Non-minimal Minimal

(P [[1,6],[0,7],[2,_],0])

LSS3 EFS3 LFS3

(P1 [[1,2],[8,9],[6,7],0]
do-seq-ordered(

(P2 [[1,3],[4,6],[1,4],0]),
(P3 [[4,7],[8,9],[1,5],0])))

(P1 [[1,2],[6,9],[4,7],0]
do-seq-ordered(

(P2 [[0,3],[4,6],[1,4],0]),
(P3 [[3,7],[8,9],[1,6],0])))

EFS3 LFS3

LFS2 EFS2 LSS2 ESS2

0 1 2 3 4 5 6 7 8 9

Non-minimal Minimal

ESS3

ESS1 LSS1 LFS1 EFS1

LFS2 EFS2 ESS2 LSS2

0 1 2 3 4 5 6 7 8 9

ESS3 LSS3

ESS1 LSS1 EFS1 LFS1

(a)

(b)

Figure 7

- 36 -

Additional knowledge:
"conception < delivery"

No additional knowledge

∞

∞

2-2

0
P1.S P1.F

conception

P2.S P2.F

delivery

2-2

0
P1.S P1.F

conception

P2.S P2.F

delivery

2-2

0
P1.S P1.F

conception

P2.S P2.F

delivery
∞

-ε

Figure 8

to appear in Artificial Intelligence in Medicine, 2002.

- 37 -

0

0 0

0 0

0

0
0

390 -40

-90

150

-120

100

-70

370

-50

P1.S P1.F

P2.S P2.F P3.S P3.F

P5.S P5.F

P6.S

Ref

P6.F

-130

P4.S P4.F
160

-140

P7.S P7.F

0 0

160

-120

P8.S P8.F

-20

P9.S P9.F

0 0

Figure 9

- 38 -

Figure 10

to appear in Artificial Intelligence in Medicine, 2002.

- 39 -

Figure 11

- 40 -

 P2.S P2.F P5.S P5.F P6.S P6.F Ref
P2.S 0 100 701 701 701 701 701
P2.F -70 0 701 0 701 0 701
P5.S 0 701 0 701 0 701 701
P5.F 701 701 -90 0 701 701 701
P6.S 0 701 0 701 0 701 -40
P6.F 701 701 701 701 701 0 701
Ref 701 701 701 701 701 701 0
P2.S 0 100 10 100 10 100 -30
P2.F -90 0 -90 0 -90 0 -130
P5.S 0 100 0 100 0 100 -40
P5.F -90 10 -90 0 -90 10 -130
P6.S 0 100 0 100 0 100 -40
P6.F 611 701 611 701 611 0 571
Ref 611 701 611 701 611 701 0

(a)

(b)

Table 1

to appear in Artificial Intelligence in Medicine, 2002.

- 41 -

Figure 1. One-dimensional (left) and two-dimensional (right) graphical representation of time

annotation [[2, 5], [6, 11], [2, 7], 0]. In 1D visualization, the duration bars must be considered to be

"floating" above SI and FI; their position depicted here is only one possible scenario. In 2D

visualization, the time annotation is represented as a shaded polygon, which also allows an

unambiguous depiction of DI.

Figure 2. Constraint graph (left) and distance graph (right) of plan activation (P [[ESS, LSS], [EFS,

LFS], [minDu, maxDu], Ref]).

Figure 3. Constraint implied by (a) sequential, ordered execution of plans P1 and P2; (b) parallel

execution of plans P1 and P2; (c) arbitrary execution of plans P1 and P2. (d) Static view of the cyclic

plan P1 with instance p1 below. Instance p1 is executed n times, where minExec ≤ n ≤ maxExec.

Within p1, minimum and maximum durations are represented as dashed edges.

Figure 4. (a) Constraints between parent plan P and child plan C, shown as vertical edges. The gray

horizontal edges represent the duration constraints. They are charted to make cycles obvious. (b)

Cycles involving parent-child relations and the control flow.

Figure 5. Inconsistent cycles introduced by sequential plans with defined order linked to the time

line.

Figure 6. Inconsistent cycles introduced by parallel plans linked to the time line.

Figure 7. Non-minimal (left side) and minimal (right side) versions of (a) two equivalent single PAs;

(b) two equivalent networks of PAs. DIs are omitted.

Figure 8. Within a guideline for treating gestational diabetes, it is checked whether plans P1 and P2

may be executed sequentially in order P1, P2, when activated by (P1

[[_,_],[2,_],[_,_],delivery]) and (P2 [[_,2],[_,_],[_,_],conception]). Without additional

knowledge, this scenario is found to be consistent. When the additional knowledge "conception <

delivery" is included, the scenario is found to be inconsistent.

Figure 9. DG of the plan hierarchy, shown in Example 1. Unconstrained durations are shown in gray.

Figure 10. Result of verifying the plan hierarchy shown in Example 1.

Figure 11. Result of verifying the corrected plan hierarchy.

Table 1. Matrix of (a) weights aij; (b) minimum distances dij; for plan P2 and subplans of Example 1.

Compare with the corresponding part of DG in Figure 9.

