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 A B S T R A C T

Uncertainty is common to most types of data, from meteorology to the biomedical sciences. Here, we 
are interested in the visualization of uncertainty within the context of multivariate graphs, specifically the 
visualization of uncertainty attached to node attributes. Many visual channels offer themselves up for the 
visualization of node attributes and their uncertainty. One controversial and relatively under-explored channel, 
however, is animation, despite its conceptual advantages. In this paper, we investigate node ‘‘wiggliness’’, 
i.e. uncertainty-dependent pseudo-random motion of nodes, as a potential new visual channel with which 
to communicate node attribute uncertainty. To study wiggliness’ effectiveness, we compare it against three 
other visual channels identified from a thorough review of uncertainty visualization literature—namely node 
enclosure, node fuzziness, and node color saturation. In a larger-scale, mixed method, Prolific-crowd-sourced, 
online user study of 160 participants, we quantitatively and qualitatively compare these four uncertainty 
encodings across eight low-level graph analysis tasks that probe participants’ abilities to parse the presented 
networks both on an attribute and topological level. We ultimately conclude that all four uncertainty encodings 
appear comparably useful—as opposed to previous findings. Wiggliness may be a suitable and effective visual 
channel with which to communicate node attribute uncertainty, at least for the kinds of data and tasks 
considered in our study.
1. Introduction

Uncertainty is common to most types of data and can affect the 
visualization pipeline at any stage, from data acquisition, through data 
transformation, to rendering [1]. Effective visual communication of 
uncertainty in data is essential for a user’s accurate interpretation and 
informed decision-making [2,3].  While common in some fields, such 
as meteorology [4], climatology [5], and biomedical sciences [6], the 
visualization of uncertainty remains underutilized across many other 
fields [7], such as network visualization.  In this work, we focus on the 
field of network visualization, in which uncertainty is often discussed, 
but rarely visualized [8]. Uncertainty in network visualization can take 
many different forms, such as geometrical (embedding) uncertainty [9], 
topological (edge and node) uncertainty [10], edge attribute [11,12] 
uncertainty, or node attribute uncertainty [13]. We are particularly 
interested in the visualization of node attribute uncertainty, as it re-
mains understudied despite node attributes being (the most) commonly 
included in many multivariate networks [14].

I This article was recommended for publication by C. Turkay.
∗ Corresponding author.
E-mail address: henry.ehlers@tuwien.ac.at (H. Ehlers).

For the visualization of node attributes and their uncertainty, sev-
eral visual channels present themselves, as outlined by Conroy et al. [8] 
and summarized in Fig.  1. The actual effectiveness of these visual chan-
nels’ abilities to draw user attention to areas of uncertainty remains 
unexplored [8].  In this work, we highlight an often-overlooked uncer-
tainty visualization method — animation — which remains uncommon 
even beyond network visualization [8]. We additionally compare it 
against other visual channels in terms of effectiveness. 

We argue that animation holds significant potential for uncertainty 
visualization. While not universally applicable, common guidelines 
suggest emphasizing regions of high uncertainty [8,15]. Movement 
effectively draws attention without increasing cognitive load [16], and 
animation may help explain complex concepts like uncertainty while 
engaging users [17]. It also ‘‘frees up’’ other visual channels, which 
may already be in use for representing different data dimensions. While 
animation has been criticized in dynamic network contexts for being 
too complex for accurate interpretation [18], such concerns may be less 
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Fig. 1. The nine identified visual channels with which to communicate node attributes, and uncertainty more specifically, according to Conroy et al. [8]: node size, node color 
hue, node shape, node color saturation, node sharpness or fuzziness, node texture, node enclosure, node gradient, and node splitting.
relevant for uncertainty visualization, where conveying relative rather 
than exact values is often sufficient [3]. 

We hypothesize that animation, while controversial, could be highly 
effective at visualizing uncertainty in node attributes and warrants fur-
ther investigation. In contexts where uncertainty is critical, animation 
could be a valuable alternative to existing visual channels, as it could 
draw strong attention to regions of high uncertainty. However, whether 
animation can form an effective alternative to commonly employed 
visual encodings, both in terms of user preference and performance, 
remains largely unexplored. Similarly, the relative utility of standard 
uncertainty encodings in network visualization is still not well under-
stood [8]. This work investigates the impact of different visual channels 
for uncertainty visualization on both user experience and performance. 

In this paper, inspired by previous biomedical work [19–21], we 
present a novel approach to visualizing uncertainty in networks’ node 
attributes using node ‘‘wiggliness’’ ( ), i.e. animated pseudo-random 
motion.  To compare this novel network uncertainty visualization 
approach to meaningful alternatives, we perform a thorough survey of 
uncertainty visualization literature. This corpus of literature is then cat-
egorized by application domain and uncertainty visualization approach 
to better understand the current landscape of the field (outside of the 
context of network visualization).  From the identified approaches, we 
select three representative and effective uncertainty visualization tech-
niques that can be applied to network visualization [8]: node saturation 
( ), node enclosure ( ), and node fuzziness ( ). To determine whether 
wiggliness holds value as an uncertainty visualization technique, we 
then conduct a large-scale, online, crowd-sourced user study in which 
we probe user performance and preference both quantitatively and 
qualitatively in a mixed-method setup.

In summary, we introduce animated node ‘‘wiggliness’’, a novel 
technique with which to represent attribute uncertainty in node-link 
visualizations, and compare it to enclosure, fuzziness, and saturation. 
A user study of 160 participants shows that all four methods offer 
comparable performance and perceived learnability, intuitiveness, and 
understandability. 

2. Related work

2.1. Visualizing uncertainty in networks

While uncertainty visualization has received notable attention in 
fields such as biomedical or meteorological visualization, the same 
cannot be said of network visualization [8]. Here, we outline what has 
been done in regard to uncertainty visualization in networks.
Uncertain layouts. Unless nodes have some intrinsic 2D/3D positional 
information, a network’s embedding is merely a function of the selected 
automatic layout algorithm. There is, thus, ambiguity in these layouts, 
depending on which layout algorithm is chosen or what hyperpa-
rameters are chosen for a specific layout algorithm. To address this 
ambiguity, Yan and Cui [9] opted to visualize the resulting embeddings 
side-by-side as an ensemble in order to allow users to investigate differ-
ences in the produced clustering of nodes. Similarly, Wang et al. [22] 
also visualize multiple such produced layouts, but they visualized them 
overlayed atop each other.
2 
Uncertain edges. A graph’s edges may have uncertainty attached to 
them and their weights. For an application-driven example hereof, 
Vehlow et al. [13], within the context of biochemical reaction network 
analysis, visualized the uncertainty in an edge using color saturation, 
i.e. the more certain an edge, the more saturated it is. Within the 
context of flow diagram visualization, Vosough et al. [23,24] inves-
tigated multiple different encodings of edge uncertainty, i.e. color 
saturation, edge gradient (fuzziness), and color hue. With the results 
of their conducted user study in hand, the authors ultimately con-
clude that color saturation works best for their purposes. More ab-
stractly, some have also investigated different approaches to edge 
uncertainty visualization outside of any particular application domain. 
Here, Schwank et al. [11,12] investigated four possible edge encodings, 
namely edge dashes, waves, stripes, and blurring. They ultimately con-
cluded that dashed edges communicated uncertainty most effectively. 
Finally, Guo et al. [25] investigated multiple pairs of visual encodings 
to communicate edge uncertainty.
Uncertain nodes and node attributes. Finally, a network’s nodes and its 
nodes’ attributes may also be uncertain. Cesario et al.’s [26] opted to 
encode the (un)certainty in a network’s node attributes using the nodes’ 
positions in 2D space. Returning to Vehlow et al.’s [13] biochemical 
reaction visualization, uncertainty in nodes’ attribute uncertainty is 
visualized using color saturation; the more saturated, the more certain. 
Lastly, within the context of lattices, Collins et al. [3] visualized node 
uncertainty using transparency, border fuzziness, and position. Anima-
tion has, to the best of our knowledge, never been used to visually 
communicate node or edge attribute uncertainty.

2.2. Animation

Within the context of medical visualization, animation has been 
used for a variety of reasons, such as viewpoint selection, camera path 
planning, and focus+context visualizations [27].  Here, we aim to high-
light the work done using animation for the purposes of uncertainty and 
network visualization. 
Uncertainty visualization using animation. Examples of animation to 
visually communicate uncertainty (relevant to our own proposed ap-
proach) include (i) Blenkinsop et al.’s [28] random animations to com-
municate the results of fuzzy satellite classification data, (ii) Lundstrom 
et al.’s [19] probabilistic animation for medical volume visualization, 
(iii) Brown et al.’s [20] animated oscillation between two states to 
indicate uncertainty between them, (iv) Akiba et al.’s [29] animated 
transfer functions in medical volume visualization, (iv) Kale et al.’s [30] 
animated Hypothetical Outcome Plots, Ma et al.’s [31] dynamic visu-
alization of uncertainty in medical features of interest, or Hermosilla 
et al.’s [32] visualization of uncertainty visualization of brain fibers.
Animation and network visualization. While an example of animation for 
uncertainty visualization in network visualization can be found [33], 
the majority of applications of animation center around dynamic, 
i.e. time-dependent, network visualization [34]. Very simply, such 
approaches map the time dimension of a network to time, i.e. an-
imation frames [35]. Many examples of animated dynamic network 
visualization approaches exist, all of which aim to preserve a user’s 
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mental map between time steps while still highlighting changes be-
tween steps meaningfully, as seen in GraphAEL [36,37] or Visione [38] 
As a complete discussion of such animated dynamic graph visual-
ization approaches is beyond the scope of this paper, we refer the 
interested reader to Beck et al.’s review of the topic [35]. While anima-
tion has found frequent use, empirical comparisons of animated with 
static/non-animated visualizations do not always paint a favorable pic-
ture of animation. For example, Robertson et al. [39] and Archambault 
et al. [40] both found (for certain tasks) small multiples to outperform 
animations in their evaluations. Similarly, Farrugia et al. [41] found 
static visualizations to generally outperform animation. However, these 
evaluations are seldom clear-cut. For example, Saraiya et al. [42] found 
animation to outperform interactive timeline visualizations, at least 
when the number of time points was few. Boyandin et al. [43] showed 
that animation led to more findings on adjacent time steps than small 
multiples. In general, the question of whether animation is beneficial to 
users in dynamic (and subsequently uncertain) network visualizations 
is, in our estimation, still far from settled.

3. Study

In this study, we aim to quantitatively and qualitatively evaluate 
the effect of node attributes’ uncertainty representation on user per-
formance and user experience. In order to ensure sufficient statistical 
power and qualitative feedback, we conduct a large-scale, between-
subjects, online, crowd-sourced study. A between-subjects study design 
was chosen to ensure the study would take no longer than 30 min. 
Based on our prior experience with such online studies, this is the upper 
limit for online crowd-sourced studies, as longer studies negatively 
impact participant concentration, user performance, and the quality of 
qualitative comments received. Note that participants were required to 
complete the survey on a desktop or laptop computer with a display 
resolution of at least 1080p.

First, we quantitatively evaluate the impact of four selected node 
attribute uncertainty representations on user performance. Specifically, 
we study the accuracy with which participants are able to answer a 
series of low-level graph analysis tasks and the time necessary to do 
so. Second, we also quantitatively evaluate the impact of these repre-
sentations on user experience. Each participant is required to answer 
five questions regarding their experience on a 7-Point Likert scale at 
the end of the study, probing each participant’s (i) perceived accuracy 
and efficiency, (ii) the ease with which participants used and learned 
the uncertainty representation, and (iii) the aesthetic appeal of the 
visualization. Finally, to go beyond a purely quantitative evaluation, we 
enrich said analysis with an additional qualitative analysis. To do so, 
after each completed task, participants were presented with optional 
feedback regarding the uncertainty visualization, as well as required 
feedback summarily at the end of the study.

In this section, we outline and motivate (i) the selection of uncer-
tainty representations, (ii) the study’s research questions, (iii) the data 
utilized for the study, (iv) the selection of low-level graph analysis tasks 
we investigate, and (v) the mixed-methods analysis of the produced 
data. The implementation, as well as our classification of the collected
papers, has been made available on the Open Science Framework.1

3.1. Uncertainty visualizations

In this section, we describe how we selected and implemented our 
four uncertainty visualization channels, i.e. saturation ( ), fuzziness 
( ), enclosure ( ), and wiggliness ( ).

3.1.1. Design rationale
Limited work has been done on uncertainty visualization in net-

works (Section 2.1). Thus, to select popular, representative, and effec-

1 https://osf.io/e8927/?view_only=6295953d19ef439a8e9c11d5469f9310
3 
tive visual channels for comparison, we first characterize the landscape 
of uncertainty visualization outside of the context of networks.  To 
use as representative a sample of papers as possible, we collected all 
references from Jena et al. [44], who compiled a total of 286 papers 
from two previously published surveys [45,46] and through their own 
systematic search of the literature. We excluded papers that were not 
focused on visualization specifically (e.g. theoretical discussions of 
uncertainty), or not relevant to our survey of literature (e.g. review 
papers), resulting in a total of 191 papers.  These papers were manually 
categorized by their application domain as well as their chosen visual 
encoding of uncertainty. We drew upon Jena et al.’s [44] already 
existing categorization of application domains, supplemented by our 
own categories where needed. For our categorization of chosen visual 
encodings, we drew upon work by Weiskopf [47], as it encapsulates 
many previously published taxonomies [1,2,15,48–51]. Here, Weiskopf 
categorizes visual approaches into three broad categories: Hybrids 
and Systems, Display of Distribution, Summary Statistics. Because 
Weiskopf’s taxonomy is non-exhaustive, we added (where necessary) 
visual encodings from previous work, e.g. Padilla et al. [2], yielding a 
total of 31 unique approaches to uncertainty visualization. Fig.  2 shows 
the results of the categorization, as well as the total number of papers 
that featured each visual encoding. The categorization of these papers
2 has been made available through the Open Science Framework.

Some of these encodings have been argued to map more naturally 
and intuitively to uncertainty than others [2], such as fuzziness/foggi-
ness [52,53], out-of-focus blur [54], transparency [55], location [50], 
color saturation [56], sketchiness [57], and noise textures [58]. Some 
of these visualization approaches (e.g. positional blur [59] or value-
suppressing color-palettes [60]) obfuscate the value in question: the 
more uncertain it is, the harder to read it becomes. In our selection 
of visual encodings, we aim to use those that map the most naturally 
to uncertainty.

However, not all of the identified 31 approaches to uncertainty visu-
alization (Fig.  2) are (straightforwardly) applicable to the visualization 
of node attribute uncertainty. We, therefore, applied our findings to 
the nine methods identified by Conroy et al. [8] (Fig.  1) and settled 
on three intuitive and popular visualization approaches to compare 
to animated wiggliness ( ): (i) saturation ( ), (ii) fuzziness ( ), and 
(iii) enclosure ( ). In summary, these three uncertainty encodings 
were selected as they are (i) applicable to node attribute uncertainty 
visualization [8], (ii) commonly utilized outside of the context of 
network visualization (Fig.  2), and (iii) deemed intuitive or effective 
in the context of uncertainty visualization [2]. Their selection ensures 
a fair and meaningful comparison, focusing on the most compelling 
alternatives currently available.

3.1.2. Selected approaches
In this section, we discuss the four selected approaches to uncer-

tainty visualization that we use in this study. Additional (dis)advan-
tages as discussed in the literature are further elaborated in Section 5.1.
Saturation. With 24 occurrences across 14 different application do-
mains (Fig.  2), such as medical volume visualization [61] and spatial 
data analysis [62], saturation is one of the most commonly utilized 
Summary Statistics  approaches to uncertainty visualization. Relat-
edly, brightness, sometimes called ‘‘lightness’’, is also frequently em-
ployed, with 28 occurrences across 10 application domains. Saturation 
is implemented through either a continuous [6,25,63] or ordinal [23,
64,65] color scale, respectively indicating continuous or discretized lev-
els of (un)certainty. Compared empirically to encodings within and out-
side of the context of uncertainty visualization, saturation (i) shows po-
tential as an effective encoding [25,64,66,67], (ii) is liked by users [68], 
and (iii) deemed easily understandable [57]. We opt for a continuous 
saturation color scale, which denotes entities of low uncertainty with 
low saturation, and entities of high uncertainty with high saturation 
(Fig.  3(a)) [69,70].
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Fig. 2. Categorization of collected uncertainty visualization papers, visualized as a dot plot. The number of papers that mapped to a particular combination of application domain 
and visual encoding is visualized as a dot, whose surface area encodes the number of papers. Our classification of application domains were, where available, based on the work of 
Jena et al. [44]. Our classification of visual encodings is based on the taxonomy of Weiskopf [47]: all possible visual encodings fall within one of three categories, namely Hybrids 
and Systems, Display of Distribution, and Summary Statistics. Each of these categories is further broken down into subcategories, which in turn encapsulate individual visual 
encodings. Rows, i.e. application domains, are sorted in descending order of numbers of papers that mapped to said application domain. Within each subcategory facet, columns, 
i.e. visual encodings, are also sorted in descending order of numbers of papers that mapped to said visual encoding. The total number of papers that mapped to a particular 
visual encoding across application domains is visualized in the corresponding bar in the bar chart atop the dot plot. Papers could map to multiple application domains and visual 
encodings.
Fuzziness. With 25 papers across 13 different application domains 
(Fig.  2), such as volume rendering [71], flow diagrams [23] and 
lattice graphs [3], fuzziness is also a widespread Summary Statistics
approach to uncertainty visualization. In empirical and qualitative 
comparisons of fuzziness against other visual encodings of uncertainty, 
fuzziness is generally recommended [64,65,72], described as intuitive 
and easily associated with uncertainty [57], and explicitly shown to be 
superior to other encodings in certain settings [73,74]. As described by 
Bonneau et al. [15], increased fuzziness intuitively communicates lower 
confidence, i.e. higher uncertainty. Here, we thus map increasing levels 
of uncertainty to increasing levels of fuzziness (Fig.  3(b)).

Enclosure. Node enclosure describes the style of the line border en-
closing the surface of the (circular) node (Fig.  1(g)). Here, we define 
4 
node enclosure as the thickness of this enclosing border. More specif-
ically, akin to various types of generalized box and interval plots (Fig. 
2), we map uncertainty to this thickness: the more uncertain a node’s 
attribute, the thicker its border, in the same way that an interval or 
boxplot becomes wider/larger for less certain data. Such (generalized) 
interval and box plots (Summary Statistics) also form a very popular 
approach to uncertainty visualization outside of the context of networks 
(Fig.  3(c)), with 76 papers across 16 application domains mapping to 
the category as whole, and, more specifically, box plots, interval plots, 
and generalized box plots featured in 13, 33, and 30 papers, respec-
tively. These types of range plots have found application/study across 
domains [75], such as information visualization [76], (non-expert) 
communications [77], and meteorology and climatology [78].
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Wiggliness. Animation, with only 12 occurrences across 7 application 
domains (Fig.  2), remains one of the least popular Display of Distri-
bution  visual encodings for uncertainty visualization. As discussed 
previously (Section 2.2), animation has found some use, particularly 
in the visualization of time-dependent phenomena in medical [27] 
and spatial data [79] visualization. Even in the context of uncertainty 
visualization, animation has found some, if limited, use, both within 
the context of network visualization [80] and outside of it [30]. Here, 
inspired specifically by promising previous works on random [28], 
procedural [19], and looping [20] animation, we propose wiggliness as 
a new channel for uncertainty visualization in networks. Intuitively, 
wiggliness maps uncertainty to animated motion: the less certain the 
attribute of a node, the more that node moves randomly in (2D) space, 
drawing user attention to it (Fig.  3(d)).

Wiggliness visually conveys uncertainty by adding dynamic motion 
to uncertain nodes, conceptually making it easier for users to detect 
regions of high uncertainty at a glance. This approach leverages the 
human ability to notice movement, thereby minimizing cognitive effort 
while maximizing awareness of uncertainty. More specifically, each 
node 𝑣 ∈ 𝑉  is initially located at some layout-algorithm-derived mid-
point 𝑝𝑣 = (𝑥𝑣, 𝑦𝑣). Per frame, this node is allowed to move randomly 
around said mid-point to some new position 𝑝′𝑣 = (𝑥′𝑣, 𝑦

′
𝑣), as a function 

of its uncertainty-defined radius 𝑟; the greater the uncertainty, the 
greater the radius. This then requires the redrawing of both the node 𝑣
as well as all edges connected to it, i.e. {{𝑣,𝑤} ∶ ∀𝑤 ∈ 𝑉 ,𝑤 ≠ 𝑣} ∩ 𝐸. 
Prior testing showed that sampling 𝑥′𝑣 and 𝑦′𝑣 from uniform random 
distributions (independent of previous node locations) resulted in the 
clearest form of wiggliness. In contrast, position-dependent sampling 
(e.g., Gaussian noise or random walks) introduced apparent spatial 
patterns, which misleadingly suggested structure in the uncertainty. 
We also found that animating at 20 frames per second (fps) offered 
a smooth visual experience and consistent performance across systems. 
The combination of a uniform random node movement at 20 fps most 
effectively conveyed random, structureless uncertainty through visual 
jitter. 

3.1.3. Implementation
All four uncertainty representations and network visualizations 

were implemented in D3.js [81]. More specifically, all graphs were 
laid out using D3.js’ particle-based force-directed simulation algorithm, 
as it produced consistently visually appealing results very quickly. All 
four representations were implemented monochromatically. All four 
representations did not feature any interactivity, in order to ensure 
we were only studying the effects of the uncertainty visualization, 
instead of inadvertently their interactions with certain modes of user 
interactivity [19]. Moreover, interaction has been noted to increase the 
cognitive demand on users, especially non-expert ones [82,83]. Again, 
as we wish to avoid such cognitive load differences, or, more precisely, 
avoid their effect on our results, we implement static visualization in 
this study.  Examples of the produced network visualizations, as they 
were presented to user study participants, can be found in Figure 3 of 
the supplement. 

3.2. Research questions

Here, based on both previous research (see Section 2) as well as our 
own expectations, we formulate two research questions to be answered 
both quantitatively and qualitatively.
Q1: Task-based turbulence. Which low-level graph analytical tasks are 
best supported by which uncertainty visualization? As pointed out by 
Conroy et al. [8], little work has been done to compare different 
uncertainty visualization strategies in networks. It is hence difficult 
to a priori hypothesize how the four selected uncertainty visualization 
strategies will fare in terms of user performance. Moreover, studies 
comparing animated solutions to uncertainty visualization to static 
approaches are also rare (Section 2.2). We thus ask ourselves which 
uncertainty visualization approach will prove most effective for certain 
low-level graph analysis tasks.
5 
Fig. 3. Illustrative examples of (a) saturation, (b) fuzziness, (c) enclosure, and (d) 
wiggliness encoding uncertainty in a synthetic network of size |𝑉 | = 9 and |𝐸| = 11. 
Note that, for illustration purposes, all nodes share the same degree of uncertainty for 
their attributes.

Q2: Precarious preferences. Which representation is preferred by users?
It has been argued that certain visual channels, such as fuzziness, 
transparency, or location, map more intuitively to uncertainty than 
others [2,15]. Here, while all four uncertainty visualization approaches 
were selected for their intuitiveness, we ask ourselves which represen-
tation will be preferred by users.

3.3. Data

In the following section, we briefly describe the graph data used 
in our study. Specifically, we discuss the process of generating graph 
topologies, node attributes, and node attribute uncertainties.

3.3.1. Topology
Similar to past comparative graph studies [84], we perform our user 

study using real graph topologies instead of simulated ones to avoid 
the non-representativeness often associated with simulated graphs [85]. 
As we aim to investigate eight topology and attribute-based tasks (see 
Section 3.5.1), a selected graph must have multiple realizations, i.e. one 
per task, to curb any learning effect across tasks. Additionally, to 
investigate the effect of the number of vertices on user performance 
and experience, we aim to investigate two sets of graphs: one small and 
one medium in size [86]. We select two sets of animal social networks 
of (roughly) two different sizes and densities, both collected from the
Network Repository [87] that fulfill the selection criteria stated above.

First, we investigate a set of raccoon proximity networks. Each 
node represents a particular raccoon, and each undirected, weighted 
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edge represents the number of times two raccoons were close to each 
other over the course of a day [88]. This dataset consists originally 
of 52 networks, each representing one day of a 52-day experiment. 
From these 52 graphs, eight were selected for their overall similarity 
(in terms of their number of edges and nodes), i.e. one per graph task. 
The number of vertices of the thus selected eight graphs ranges from 
21 ≤ |𝑉 | ≤ 23 and the number of edges from 50 ≤ |𝐸| ≤ 82, resulting in 
densities [89] ranging from 0.198 ≤ 𝑑 ≤ 0.355 (Fig.  4(a)).

Second, we investigate a set of ant interaction networks. Each 
node represents an ant of a particular colony, and each undirected, 
weighted edge is the number of mandible-to-mandible contacts be-
tween two ants over the course of a day [90]. This dataset consists 
of 8 graphs, each representing one day of an eight-day experiment. 
The number of vertices ranges from 24 ≤ |𝑉 | ≤ 31 and the number 
of edges from 30 ≤ |𝐸| ≤ 52, resulting in densities [89] ranging from 
0.073 ≤ 𝑑 ≤ 0.137 (Fig.  4(a)).

3.3.2. Node attributes
In our study setup, each node is to have one attribute attached to 

it: a single positive, continuous variable. Such a variable could, in a 
real dataset, represent a person’s height in a social network or a gene’s 
expression level in a gene-gene interaction network. In this study, 
however, this quantity is a purely abstract and theoretical one in order 
to avoid familiarizing users with a real dataset. Thus, for each node, 
we draw a single value, 𝑦, from a standard half-normal distribution 
(i.e. 𝑦 ∼ |𝑁(𝜇, 𝜎2)|, where mean 𝜇 = 0 and standard deviation 𝜎2 = 1) 
(Fig.  4(b)). To visually communicate the node attribute’s magnitude to 
the user, it is mapped to each node’s surface area, i.e. the larger the 
node’s attribute’s magnitude, the larger its surface area.

3.3.3. Node attribute uncertainty
For each such drawn attribute magnitude, we must now simulate an 

uncertainty around its value. In a real-world dataset, such uncertainties 
could represent anything from measurement error to inherent variation 
in the data [48]. Here, it, again, is a purely abstract measure to avoid 
confusing users with a real dataset. Thus, for each node, we simulate a 
single positive value, 𝑠, between zero and one using a random uniform 
distribution, i.e. 𝑠 ∼ 𝑈 (𝑎, 𝑏), where bound 𝑎 = 0 and bound 𝑏 =
1 (Fig.  4(c)). While a uniform distribution may not necessarily be 
representative of real-world uncertainties, it does ensure a sufficient 
amount of variation in uncertainty within each dataset to make each 
task sufficiently challenging and sufficiently different.

3.4. Training

To prepare participants for the study, we employ pre-study training. 
Following the terminology laid out by Nobre et al. [91], we make use of
Passive Training, i.e. text-based tutorials. Specifically, in these tutorials, 
we (i) lay out how to read straight-line node-link diagrammatic network 
visualizations, and (ii) define node attributes and their uncertainty, as 
well as (iii) how these attributes and their uncertainties are visually 
represented to the user.

3.5. Study procedure

In this section, we outline the various aspects of user performance 
and experience that were measured.

3.5.1. User performance and tasks
Following the taxonomy of Lam et al. [92], we aim to evaluate 

user performance, i.e. study the speed and accuracy with which users 
are able to answer a series of low-level graph analysis tasks using a 
particular node attribute uncertainty visualization. Ultimately, we aim 
to quantitatively compare these speeds and accuracies between the 
four previously discussed uncertainty encodings (Section 3.1): the faster 
6 
Fig. 4. Chosen/Simulated graph datasets’ properties, specifically their (a) number of 
nodes and density, (b) half-normally simulated node attribute magnitude, and (c) 
uniform-randomly simulated node attribute uncertainty. Color-coded depending on the 
dataset, i.e. raccoons and ants.

and more accurately participants are able to answer tasks with a par-
ticular visual encoding, the more ‘‘readable’’ that particular encoding 
is [93,94] A key challenge lies in the selection of appropriate tasks 
for participants to complete. We investigate eight tasks in total, four 
attribute tasks relating to attribute magnitude and their uncertainty, 
and four tasks relating to the topology of the provided graphs.

First, we aim to investigate the user’s ability to visually identify 
and locate nodes of extreme uncertainty and attribute magnitude. 
Following the taxonomy of Lee et al. [95], we investigate four ‘‘Attribute 
Tasks’’ ‘‘On the Nodes’’. Following the taxonomy of Amar et al. [96], we 
are particularly interested in tasking users with ‘‘Finding Extrema’’ in 
the data. Specifically, we aim to investigate four key tasks, namely

Amax Locate the node with the largest attribute magnitude.
Amin Locate the node with the smallest attribute magnitude.
Umax Locate the node whose attribute is the most uncertain.
Umin Locate the node whose attribute is the least uncertain.

As we anticipate nodes of greater attribute magnitude to be more 
readable than those of smaller magnitude, owing to their greater sur-
face area, we deliberately control the assignment of attribute mag-
nitude to attribute uncertainty. Additionally, we also anticipate the 
identification of particular nodes with higher attribute uncertainties 
to be more difficult, as these will be blurrier or wigglier. To con-
trol for these anticipated differences, a participant (for a particular 
uncertainty visualization approach) is assigned to either a ‘‘large’’ or 
‘‘small’’ study run. In a ‘‘large’’ study run, the answers to Amax and Amin
are those nodes with the largest attribute uncertainty. Similarly, for 
Umax and Umin, the answers are those nodes with the largest attribute 
magnitude. Conversely, in a ‘‘small’’ run, the answers to Amax/Amin and 
Umax/Umin are the nodes with the smallest attribute uncertainty and 
node attributes, respectively. In this way, all possible combinations of 
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small and large attribute magnitudes and attribute uncertainties are 
controlled for and investigated.

Beyond communicating attribute uncertainty, an effective uncer-
tainty encoding should not interfere with a user’s ability to make sense 
of a graph’s topology. Hence, second, we investigate the user’s ability 
to visually parse the topology of the presented graph for a given 
uncertainty visualization encoding. Specifically, following the topology 
of Lee et al. [95], we investigate two ‘‘Overview’’ and two ‘‘Topology ’’ 
tasks:

Onodes Estimate the number of nodes in the graph.
Oedges Estimate the number of edges in the graph.
Tmax Identify the node with the most neighbors in the graph.
Tmin Identify the node with the fewest neighbors in the graph.

The answers to the previously discussed ‘‘Attribute-based Tasks’’ 
should have no bearing on users’ abilities to make sense of the graph’s 
topology. Thus, for each task Onodes, Oedges, Tmax, and Tmin, users are 
randomly assigned on of the previously discussed ‘‘large’’ or ‘‘small’’ 
study runs.  For the exact phrasing of these questions, i.e. as they were 
presented to users, please refer to Table 4 in the supplement. 

3.5.2. User experience
Following Lam et al.’s [92] seven scenarios, we also aim to investi-

gate user experience, i.e. perceived effectiveness and preferences. Thus, 
at the end of the study, users are presented with five statements to be 
answered on a 7-point Likert Scale:
Slearn The uncertainty visualization was easy to learn.
Suse The uncertainty visualization was easy to use.
Spleas. The uncertainty visualization was aesthetically pleasing.
Squick The uncertainty visualization allowed me to answer questions 

quickly.
Sacc. The uncertainty visualization allowed me to answer questions 

accurately.

Participants were presented with exactly these statements. 

3.5.3. Qualitative feedback
Finally, we investigate user performance and experience qualita-

tively to understand why we observe certain quantitative trends. After 
each task (Section 3.5.1), users were able to optionally explain how the 
assigned uncertainty visualization either assisted or hindered them in 
answering the task. At the end of the study, users provide two points 
of feedback, either in favor or against the uncertainty visualization, 
explaining how it either assisted or hindered them.

3.6. Analysis

3.6.1. Quantitative evaluation
For each task, we record the participant’s answer as well as the time 

taken to submit said answer. Based on the thus collected answers, the 
accuracy can be calculated for each task. For example, for task Amax, the 
accuracy is defined as the submitted answer’s attribute magnitude di-
vided by the actual (ground truth’s) attribute magnitude. Alternatively, 
for task Tmin, the accuracy is defined as the ground truth node’s degree 
divided by the submitted node’s degree.

Here, as assumptions of normality could neither be made nor (as 
will be discussed in Section 4) validated when probed with Shapiro–
Wilk tests, we cannot make use of a conventional ANOVA for our 
statistical analysis. Instead, we turn to Wobbrock et al.’s non-parametric 
aligned rank-transformed ANOVA for our analysis [97]. The overall 
statistical impact of the uncertainty visualization approach on the time 
taken per task, task accuracy, and user experience is then assessed using 
an omnibus 𝐹 -test. If significant, said 𝐹 -test is followed by a series 
of pairwise comparisons of all uncertainty visualizations’ estimated 
marginal means [98]. All tests were performed with a standard a priori
Bonferroni-adjusted family-wise type-I error rate of 𝛼 = 0.05.
7 
3.6.2. Qualitative evaluation
For each participant, we collect up to nine pieces of qualitative 

feedback, i.e. comments. These collected comments are then broken 
up into individual utterances. Note that some comments may also 
consist of only a single utterance. These utterances are then analyzed 
initially individually and then jointly by three coders in iterative coding 
sessions [99]. During the first individual coding session, each coder 
assigns a single code to each utterance as well as a positive or nega-
tive qualifier. These individual utterances and qualifiers are iteratively 
unified across coders until all coders reach 100% consensus.

4. Results

Here, we describe the quantitative and qualitative results obtained 
from the previously described user study.

4.1. Participants

In order to study the quantitative and qualitative effects of uncer-
tainty encoding on user performance and experience, we conducted a 
large-scale, online user study. More specifically, we recruited 160 paid 
participants using the Prolific platform: [100] 20 per representation and 
dataset, i.e. 40 per uncertainty encoding total. Each participant was 
paid 11£ per hour for about 15−−20 min of work. Of the 160 recruited 
participants, 83 self-identified as ‘‘male’’, 77 as ‘‘female’’. The average 
participant’s age was 33. The youngest recruit was 18 years old, and 
the eldest was 72 years old. In terms of highest completed academic 
degree, 38 had completed high school, 76 had obtained a Bachelor’s 
degree, 44 had finished a Master’s program, and 3 had completed a 
PhD. Finally, 29 participants report ‘‘No Experience’’ with networks 
or graphs, 44 ‘‘Little Experience’’, 43 ‘‘Some Experience’’, 37 ‘‘Good 
Experience’’, and 8 ‘‘Extensive Experience’’. When probed statistically, 
no significant association between experience level and task accuracy 
or time could be established.

4.2. User performance

For each of the eight investigated tasks (Section 3.5.1), each par-
ticipant’s time as well as task accuracy were recorded, as visualized 
in Figures Suppl. 1 and 5, respectively.  When statistically probed 
(Section 3.6.1), no statistically significant effects of uncertainty repre-
sentation on either time or task accuracy could be detected.  We direct 
the reader to Tables 1 and 2 in the supplement for a detailed account 
of the statistical results.

4.3. User experience

As discussed previously (Section 3.5.2), participants were required 
to answer five questions regarding their experience on a 7-point Likert 
scale.  When probed statistically (Section 3.6.1), no statistically signif-
icant effect of uncertainty representation on user experience could be 
detected.  Again, the reader is directed to the supplement, specifically 
Table 3 and Figure 2, for more details.

4.4. User feedback

As described previously (Section 3.5.3), we collected qualitative 
user feedback per task (optional) and summarily at the end of the study 
(mandatory). In total, 726 comments were collected from the 160 partic-
ipants throughout the study. These comments were then broken down 
further into 893 utterances. During the first round of inductive coding, 
the three coders individually came up with 35, 99, and 27 different 
codes for the identified 893 utterances. These codes were discussed and 
unified until coders agreed upon 15 unique codes, grouped in 4 broader 
categories, namely layout, effort, engagement, and usability. During said 
discussion, utterances of no or little value were also removed (majority 
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Fig. 5. Participants’ task accuracies visualized per task and per uncertainty encoding, represented as a box-and-whisker plot. The box’s center represents the values’ median and 
its hinges the first and third quartiles. The whiskers represent 1.5 times the interquartile range.
vote), leaving a total of 512 utterances. In the final deductive coding 
step, each coder assigned one of the 15 agreed-upon codes to each 
of the remaining 512 utterances. Moreover, each utterance was also 
labeled as either positive or negative (−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, +𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). During 
a final meeting, the three coders discussed each of their deductively 
coded utterances, until for each of the remaining utterances consensus 
was achieved. The results of this coding are presented in Fig.  6.

Layout . Layout (38 utterances) describes how negatively or positively 
the topological properties were perceived by users. This consists of the
node placement (−11, +1) and edge placement (−25, +1). Examples hereof 
included comments such as ‘‘[The visualization] hindered me just because 
there were a lot [of nodes]’’ or ‘‘[Edges] all look the same and sometimes 
almost overlap, I wasn’t able to accurately count them’’.

Effort . Effort (69 utterances) describes how much effort a participant 
had to invest to answer questions using the presented uncertainty 
encoding. This includes the cognitive load (−47, +11), the temporal effort
(−2, +5) required, and the physical effort (−4, +0) needed, e.g. ‘‘[...] 
Negative: one has to give a maximum concentration to avoid mistakes.’’, 
‘‘[...] it [took] time to find the correct answer ’’, and, ‘‘[...] Negative: Some 
parts were straining on the eyes.’’ respectively.

Engagement . Engagement, the smallest category with only 35 utter-
ances, describes utterances relating to active participation, commit-
ment, or involvement. This comprises how intellectually engaging (−0, 
+13) and affectively engaging (−0, +9) it was, as well as how aesthetically 
pleasing (−1, +12) the uncertainty encoding was. Examples include, 
respectively, ‘‘It was a very stimulating study [...]’’, ‘‘I really enjoyed 
this! [...]’’, and ‘‘I found the uncertainty visualization aesthetically pleasing 
[...]’’.

Usability . Finally, usability, the largest category with 214 utterances 
total, contains utterances related to how usable a particular uncertainty 
encoding is. This includes how confident (−26, +2) users were in their 
given answers, e.g. ‘‘[the visualization] enabled me to provide accurate 
answers [...]’’. It also included how easy or difficult users found compar-
ing (−35, +8) different attribute levels or certainty, e.g. "it was difficult 
to compare the [enclosure’s] thicknesses. Additionally, usability included 
how intuitive (−4, +8) the uncertainty encoding was, e.g. ‘‘[...] Having 
never seen this before it was easy to pick up’’.  Moreover, it included 
how understandable (−18, +9) the encoding was, e.g. ‘‘[The visualization 
led to] confusion or misinterpretation.’’.  Penultimately, it included how
readable (−23, +45) the encoding was, e.g. ‘‘The uncertainty visualization 
effectively communicated the uncertainty levels, making it easy to identify 
nodes with high or low certainty.’’. Finally, it also included how easy or 
difficult it was to gain an overview (−2, +16) of the data, e.g. ‘‘[...] it 
was easy to access the information with a quick look.’’.

5. Discussion

In this section, we discuss the results, both quantitative and quali-
tative, of our crowd-sourced user study.
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5.1. Quantitative results

Surprisingly, the four investigated uncertainty encodings
(Section 3.1) fared equivalently in terms of their produced user perfor-
mance (Section 4.2). No statistically significant effects of uncertainty 
encoding on either time taken or task accuracy, and subsequently 
no statistically notable pairwise differences, could be detected. These 
findings are corroborated by a visual inspection of the results (Figs. 
5 and Suppl. 1). Past investigations and evaluations have been rather 
critical of animation as a visual channel, especially within the context 
of uncertainty visualization.  One possible explanation is that noted 
limitations, not only of animation, but also of saturation and fuzzi-
ness, ultimately balance each other out.  Here, we briefly link our 
observed results to the disadvantages of these techniques documented 
in literature.
Limitations of fuzziness. First, fuzziness makes precise quantification 
difficult both from a mapping and cognitive perspective, i.e. the exact 
level of uncertainty may not be clear [55,101]. This is corroborated 
by utterances left by participants regarding the comparability of levels 
of uncertainty, e.g. ‘‘There is not enough contrast to be accurate [when 
comparing relative levels of uncertainty.’’ or ‘‘[...] nodes can confuse you 
[as they look] same’’. Second, fuzziness does not always work well in 
conjunction with other visual variables, e.g. shape or transparency: 
while intuitively communicating the presence of uncertainty, fuzziness 
may interfere with other visual channels and obfuscate their meaning 
and mapping [75]. Indeed, one participant explicitly mentioned that 
‘‘It’s hard to tell apart same uncertain level of attribute when [attribute] 
values are very much different ’’, highlighting the negative interaction 
between the uncertainty’s fuzziness and the attribute level’s node size. 
Finally, small differences may be hard to visualize and detect by users 
of the visualization [55]. In line herewith, it would indeed appear as 
though detecting the least uncertain, i.e. the least fuzzy, node (Umin) 
proved difficult for participants (Fig.  5), though this particular task 
proved difficult across all four uncertainty encodings.
Limitations of saturation. First, human perception of brightness/
saturation is not linear, i.e. small changes are not perceived equally 
along the spectrum, which can lead to misinterpretation of uncer-
tainty [102]. Moreover, the number of meaningfully distinguishable 
levels of brightness/saturation is relatively small and thus not advisable 
for larger ranges [102]. Looking at the quantitative results of our study 
(Fig.  5), it is noticeable how, for all four visual encodings, participants 
struggled to identify the least uncertain node (Umin). For saturation 
specifically, this could be explained by this aforementioned non-linear 
perception as well as the poor distinguishability of different levels. 
Indeed, it is striking how many utterances were left lamenting the 
poor comparability of different saturation levels, e.g. ‘‘Minor differences 
in [saturation are] not [...] visible to the naked eye’’ or ‘‘[...] it was 
hard to identify the saturation of some shades when it came to the nodes 
with least certainty [...]’’. Third, brightness/saturation may also be 
easily confused with other variables, such as intensity, and may also 
interfere with chosen (background) colors [102], though we noted 
no results, either quantitative or qualitative, in this regard. Fourth, 
brightness/saturation, when combined with other visual channels, may 
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Fig. 6. The number of negative and positive statements made by participants relating to (i) effort, (ii) engagement, (iii) layout, and (iv) usability (rows) for each of the four 
representations (columns). Comment counts by statement type are color-coded based on whether they are negative or positive.
be overwhelming to the user, i.e. it does not necessarily match well 
with other encodings [102]. Again, looking at the aforementioned 
numbers of utterances left regarding comparability, it is interesting that 
a number of them complained specifically about this effect, e.g. ‘‘[...] 
bigger nodes may appear more saturated than smaller nodes of the same 
saturation.’’ or ‘‘The more saturated, the larger the appearance.’’.
Limitations of animation. First, animation has been argued to increase 
the cognitive load a user experiences, especially when multiple moving 
elements are present, i.e. as is the case with wiggliness [19]. With 
multiple nodes all wiggling simultaneously, a user could have had trou-
ble comparing uncertainty levels across/between them. Looking at the 
qualitatively coded utterances left by participants (Fig.  6), wiggliness 
proved to not be any more cognitively challenging than any of the 
other uncertainty encodings, though some participants did explicitly 
mention the added effort required, e.g. ‘‘[...] Excessive wiggliness can 
become visually distracting or overwhelming, especially in dense or complex 
networks [...]’’. Second, similar to fuzziness, the mapping of uncertainty 
to wiggliness may make quantifying exact levels of uncertainty diffi-
cult [19]. Here, in line herewith, it is interesting to note that a number 
of participants did indeed leave comments such as ‘‘There wasn’t much 
of a difference in wiggliness between a few nodes, so it was hard to determine 
which was moving the most ’’. Third, animation is fundamentally limited 
by its temporal resolution with regard to a user’s cognitive limits. If 
the speed of the animation does not match a user’s viewing speed 
or attention, the user may miss critical details [18,103]. However, 
we could not identify any particular qualitatively coded utterances 
that would support a claim for additional temporal demand. Fourth, 
motion, and animation more generally, are strongly associated with 
changes over time. This may cause some confusion in users with such 
preconceived associations [18,103], though we did not observe any 
comments corroborating this claim. Finally, animation has been found 
to induce visual fatigue over time, which may negatively impact the 
accuracy and speed with which users are able to navigate and parse 
the visualization [19]. While one participant did explicitly describe the 
experience of working with wiggliness as ‘‘[...] straining on the eyes.’’, 
we were unable to identify any additional cognitive demand, physical 
effect, or cognitive load.
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5.2. Qualitative commentary

Here, we enumerate several interesting observations regarding the 
qualitative feedback received from users. Where possible, we use these 
qualitative results to inform or explain our observed quantitative re-
sults.

Learnability and intuitivity . A key question underlying any (novel) 
uncertainty encoding is how easily it is to comprehend and whether 
it is truthful to the data it should actually represent. Here, we look 
at users’ responses regarding an encoding’s learnability and intuitivity. 
Interestingly, wiggliness was viewed exclusively positively in terms 
of its learnability ( : +3) and intuitivity ( : +4), described by two 
participants as ‘‘[...] easy to figure out ’’ or ‘‘[...] easy [to] interpret ’’. 
Comments left regarding enclosure, fuzziness, and enclosure, on the 
other hand, were not always positive regarding their learnability ( : 
[−1, +5], : −2, : [−1, +6]) and intuivity ( : −3, : [−1, +1], 
: +3). Given these small differences, however, we argue that the 

four uncertainty representations are ultimately comparable in terms of 
both their learnability and intuitivity.  Unless the target user group is 
strongly familiar with a particular representation of uncertainty, we ar-
gue that animated wiggliness could form an equally learnable/intuitive 
representation as conventional alternatives, at least for the kinds of data 
and tasks presented here, i.e. relatively simple, low-level tasks [95] 
applied to small to intermediate-sized graphs [86]. It remains to be 
seen whether wiggliness (and animation more generally) is a suitable 
representation of uncertainty for more complex datasets and tasks. 
Understanding and readability . Related to intuitivity and learnability,
understanding and readability describe how well participants were able 
to utilize the presented uncertainty encoding. Regarding understand-
ing, the four representations are fairly comparable ( : [−3, +1], : [−4, 
+6], : −7, : [−4, +2]). However, when looking at readability, we 
note that those using wiggliness were slightly more critical ( : [−11, 
+12]) than those using the other three encodings ( : [−6, +13], : 
[−3, +9], : [−3, +11]). Comments left regarding wiggliness’ poorer 
readability included ‘‘certain movements/wobbles can create an optical 
illusion almost [...]’’ or ‘‘[...] the visualization did not clearly show the 
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uncertainty or variability in the data [...]’’ However, for the smaller to 
medium-sized graphs presented here, this difference in perceived read-
ability had no impact on users’ quantitative results (Fig.  5). However, 
it is worth asking whether, with larger and denser graphs, wiggliness 
could lead to a statistically notable decrease in either user performance 
or experience. We argue that this is broadly in line with the work of 
Lundström et al. [19] who concluded that ‘‘animation methods [were 
an] effective approach for uncertainty visualization’’.  We thus argue 
that experimental follow-up work is needed to study the impact of 
wiggliness on user understanding and performance for more complex 
datasets and tasks. 
Overview. Overview describes how easily a participant was able to 
quickly navigate the visualization in order to identify core aspects of 
the data. Here, we note that wiggliness ( : +7) was noted exclusively 
positively and more often than the other uncertainty encodings in-
vestigated ( : [−2, +5], : +2, : +2). Comments left by users of 
wiggliness noted the ease with which they were able to quickly identify 
regions of high and low uncertainty, e.g. ‘‘[...] at a quick glance large 
differences in uncertainty can be easy and obvious to spot due to differences 
in wiggling [...]’’ or ‘‘[...] The movement draws attention to uncertain nodes, 
helping prioritize focus during analysis.’’. Such utterances are in line with 
the speculation of Ehlschlager et al. [79], who posited that audiences 
may find animation useful for ‘‘quick qualitative impressions of the 
magnitude of uncertainty’’.  As noted previously, (smaller) differences 
were more difficult to detect using wiggliness. This could point towards 
wiggliness being useful for big-picture, qualitative impressions of un-
certainty instead of fine-grained comparisons of smaller differences, 
i.e. allowing users to quickly identify (groups of) nodes with high or 
low uncertainty. 
Confidence and comparability . Confidence and Comparability describe 
the degree to which study participants were sure of their answers, 
particularly when comparing nodes’ attribute levels and attribute un-
certainties. In general, users expressed low confidence in their given 
answers across uncertainty encodings ( : [−9, +1], : −4, : −9, : 
[−4, +1]). Across representations, participants also expressed difficulty 
in comparing attribute levels and uncertainties ( : [−11, +2], : −5, 
: [−11, +4], : [−8, +2]). This low confidence and difficulties in 

comparing node attribute levels and uncertainty may explain the gen-
erally poor results of participants for identifying the smallest attribute 
node (Amin) and the least certain node (Umin) (Fig.  5).  As visual 
representations of uncertainty often aim to communicate relative levels 
of uncertainty [3], these poor results are somewhat disconcerting. The 
visualization shown to users was static, limiting ease of comparison. 
An interactive system, e.g. with hover or click-based details, could aid 
comparison of uncertainty levels and boost user confidence. 
Effort . As observed by Lundström et al. [19], animation (for the 
purposes of uncertainty animation) caused more visual fatigue owing 
to the ‘‘movement and flickering of the image’’. However, when look-
ing at the number of comments left by users regarding the cognitive 
load, wiggliness ( : [−11, +1]) fared equivalently to the other three 
representations ( : [−13, +3], : [−8, +2], : [−15, +5]). Regarding 
wiggliness’ cognitive load, one participant did write that ‘‘[wiggliness 
was an] information overload.’’, while another commented that ‘‘There 
was a lot going on to focus on which can make decision making difficult 
[...]’’. Interestingly, negatively coded utterances regarding the cogni-
tive load for the other three uncertainty encodings were less specific, 
describing their experiences generally as ‘‘hard’’, ‘‘tough’’, or ‘‘difficult ’’. 
We also noted no meaningful differences in the perceived physical 
effect ( : −1, : −0, : −1, : −2). However, one participant, in line 
with Lundström et al.’s [19] observations, did explicitly mention that 
wiggliness proved to be ‘‘[...] straining on the eyes.’’. Here, we specu-
late, based on other qualitatively coded utterances, that participants 
(unfamiliar with network visualizations) were already overwhelmed by 
the complexity of the graph’s topology (discussed next), meaning the 
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uncertainty encoding itself did not add any notable additional cognitive 
load or physical effort.  Here, it is worth asking whether a larger and 
more complex network, with more complex patterns of node attribute 
uncertainty, could have revealed differences in the effort required as 
well as the physical effect on users. A graph of hundreds of nodes, each 
wiggling at different rates, could indeed prove taxing to parse visually. 

Topology . Utterances related to node placement and edge placement
described the ease or difficulty with which users were able to parse 
the topology of the presented graph. Comments were mostly negative 
across all four representations, for both node ( : −9, : [−2, +1]) and 
edge placement( : −8, : −5, : [−7, +1], : −5). Interestingly, enclo-
sure was the only uncertainty encoding with many negative comments 
relating to node placement. However, making sense of the edges in the 
drawing was generally regarded as challenging, i.e. negative. In the 
case of wiggliness specifically, one participant expressed the difficulty 
they experienced given the constant movement of the edges. In the case 
of fuzziness, one participant remarked that the fuzzy border made it 
difficult to determine whether an edge was or was not incident to a 
particular node.  A denser graph, i.e. a graph with more edges, and 
subsequently more edge movement per frame, would probably make 
parsing the graph’s topology even more challenging. It is thus worth 
asking whether, in the context of topological analyses of networks, 
animated wiggliness would be best suited for either smaller graphs or 
subgraph views only. 

6. Limitations and future work

Many roads to rome. In this paper, based on the findings of our 
literature survey (Section 3.1), we focused explicitly on three non-
animated visual encodings of uncertainty: saturation ( ), enclosure 
( ), and fuzziness ( ). However, as made clear in Fig.  2, many other 
possible (static) representations of uncertainty present themselves, such 
as color hue, direct text labels, or opacity. It is hence important to note 
that our evaluation of wiggliness is by no means exhaustive. Follow-
up studies should additionally investigate and compare such visual 
channels in order to more completely gauge the effectiveness of these 
representations for uncertainty visualization in networks.

Investigating intricate interactions. In this paper, we focused on the 
visualization of one node attribute and its attached uncertainty in iso-
lation. However, in real (domain-specific) applications, a visualization 
may need to visually map not simply one but multiple node attributes 
to various visual channels. Additionally, each of these attributes may 
bring with it its own uncertainty. Alternatively, a single attribute may 
have multiple (types of) uncertainties attached to it. In such cases, 
the interaction between these selected visual channels becomes impor-
tant. For example, the use of node fuzziness may make understanding 
node shape difficult. Alternatively, the use of node brightness may 
complicate a user’s understanding of node color.  Here, it is worth 
asking whether and how wiggliness interacts with other common visual 
channels. 

A loaded question. In this study, we made an effort to thoroughly 
investigate both user performance and experience from a quantitative 
and qualitative perspective. However, one aspect that has not been 
explicitly investigated was the cognitive task load of these individual 
uncertainty visualizations. According to past studies, though not our 
own qualitative results, animated wiggliness should conceptually result 
in a greater cognitive load compared to static representations. Future 
work should investigate the effect of representation on (cognitive) 
task load explicitly, using, for example, NASA’s TLX [104], to better 
understand when and how to use them.  Additionally, future work 
could combine task-based user studies with eye-tracking inn order to 
understand where a user focuses their attention. 
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Task and data complexity . In this study, we deliberately focused on 
simple, low-level graph analysis tasks and small, abstract networks to 
evaluate the baseline effectiveness of wiggliness as an uncertainty en-
coding. While our results suggest that wiggliness can be a conceptually 
useful approach in these controlled settings, future work must explore 
its applicability under greater complexity—both in task demands and 
data scale. For example, domain-specific tasks such as identifying the 
most certain paths or clusters may reveal different strengths or lim-
itations of wiggliness. Likewise, larger and denser graphs introduce 
new challenges: as visual complexity increases, wiggliness may either 
become imperceptible or introduce excessive node occlusion due to 
increased spatial demands. Understanding how uncertainty visualiza-
tions scale with data and task complexity is essential to their broader 
adoption in real-world applications.

7. Conclusion

In this paper, we studied the impact of animated wiggliness for 
node attribute uncertainty visualization on user performance and ex-
perience in a mixed methods setup in a large-scale, crowd-sourced 
user study of 160 participants. Despite animation’s infrequent use and 
recommendation in literature, we find animated wiggliness to perform 
equivalently to saturation, enclosure, and fuzziness. Interestingly, when 
investigating qualitative feedback received from participants, we find 
that, at least for the comparably simple datasets and tasks presented 
here, wiggliness is as learnable, intuitive, and understandable as all 
other investigated representations.  We do, however, note several com-
ments by users that hint at wiggliness’ possible shortcomings, such as 
inducing visual fatigue and being poorly readable in certain situations. 
These shortcomings may limit wiggliness’ utility for larger and more 
complex graphs and tasks.  Nonetheless, the results of this study point 
towards the potential utility of wiggliness for uncertainty visualization 
in networks. In future work, we aim to investigate the efficacy of 
animated wiggliness in larger and denser networks in order to evaluate 
the approach’s scalability and utility in practice.
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