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Figure 1: The constructive network physicalization pipeline: A user is interested in analyzing relational data. Using instructions, and the
NODKANT toolkit, they construct a node-link diagram, generating insights about the data on the fly. The user then analyzes the physical
diagram, leveraging its versatility and engaging with it interactively. Insights generated during construction can be recalled after some time.

Abstract
Physicalizations, which combine perceptual and sensorimotor interactions, offer an immersive way to comprehend complex data
visualizations by stimulating active construction and manipulation. This study investigates the impact of personal construction
on the comprehension of physicalized networks. We propose a physicalization toolkit—NODKANT—for constructing modular
node-link diagrams consisting of a magnetic surface, 3D printable and stackable node labels, and edges of adjustable length. In
a mixed-methods between-subject lab study with 27 participants, three groups of people used NODKANT to complete a series
of low-level analysis tasks in the context of an animal contact network. The first group was tasked with freely constructing their
network using a sorted edge list, the second group received step-by-step instructions to create a predefined layout, and the third
group received a pre-constructed representation. While free construction proved on average more time-consuming, we show that
users extract more insights from the data during construction and interact with their representation more frequently, compared to
those presented with step-by-step instructions. Interestingly, the increased time demand cannot be measured in users’ subjective
task load. Finally, our findings indicate that participants who constructed their own representations were able to recall more
detailed insights after a period of 10–14 days compared to those who were given a pre-constructed network physicalization. All
materials, data, code for generating instructions, and 3D printable meshes are available on https://osf.io/tk3g5/.

CCS Concepts
• Human-centered computing → Visualization application domains; Empirical studies in visualization;

1. Introduction

Network data comprise structured information that captures (com-
plex) relationships, connections, and interactions between enti-
ties. Such data are encountered across various fields [RA16], in-
cluding social sciences, biology, and computer science [LPP∗06,
JPS14]. Several representations—ranging from traditional node-
link diagrams to adjacency matrices, and to hybrid or alterna-
tive approaches—have been proposed for visualizing network

data [FAM23]. However, many individuals struggle to interpret the
physical meaning behind these representations, potentially due to
limited familiarity with network visualization [bor16, ASSB∗23,
GTS10]. Unlike other visualization techniques, such as a bar chart
or a scatterplot, network visualization requires the interpretation
of complex underlying data relationships. This suggests that both
local characteristics (i.e., connectivity, attributes, etc.) and global
topological patterns (i.e., network density, hierarchical structures,
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clusters, etc.) need to be easily distinguishable. Recent research
underscores that core concepts in network visualizations remain
challenging for many, limiting their ability to derive meaningful in-
sights [SCP∗16, ASSB∗23]. Overcoming these challenges requires
new methods that promote a deeper engagement with the data.

Data physicalization refers to the process of transforming ab-
stract data into tangible forms, allowing users to interact and
engage with them physically [JDI∗15]. Compared to traditional
screen-based methods, this approach makes complex data more
accessible by stimulating perceptual and sensorimotor skills—
fostering a deeper understanding and active engagement with the
data. Conversely, constructive visualization (i.e., the construction
of visualizations from physical tokens) encourages users to build
data representations and stimulates deeper reflection on data com-
pared to traditional tools [HCT∗14]. This approach enhances learn-
ing and comprehension [Dea81] and also facilitates hands-on,
personalized data representation [WBH24]. Similar principles are
leveraged in products like IKEA® furniture or LEGO® [Gau14],
where self-assembly creates a sense of accomplishment and enjoy-
ment, experiencing the so-called “IKEA effect” [MNA12]. Com-
bining data physicalization with constructivist principles offers an
opportunity for network visualization to support users in building a
mental map, while also enhancing their understanding of complex
data relationships through physical engagement.

The combined potential of data physicalization [JDI∗15] and
constructive visualization [HCT∗14,HJC14] has not been explored
in the context of network visualization—particularly in terms
of guiding users during the construction process. Specifically,
whether users construct their networks freely or follow visual
instructions, may significantly impact their efficiency, accuracy,
and overall engagement with the data. To explore these factors,
we developed a constructive network physicalization toolkit,
NODKANT (see Figure 1), which enables users to build their
own network representations (specifically, node-link diagrams)
with physical tokens. NODKANT is a playful reference to IKEA’s
product naming tradition, blending “nodes” and “links” to embody
our constructivist network physicalization toolkit. We, then, inves-
tigate how the way data is presented influences users’ construction
and interaction processes, comprehension, and memorability
throughout and after the construction process in a mixed-methods
lab study. Our contributions comprise:

• NODKANT: A network construction kit consisting of a magnetic
surface, 3D printable physical tokens for the nodes, and edges
of adjustable length. This allows the construction of node-link
diagrams with spools, representing nodes, and threads between
them, representing the edges of the network (see Section 3).

• A mixed-methods lab study to assess the users’ construction pro-
cess, comprehension, interaction mechanisms, and memorability
throughout and after construction using our kit (see Section 4).

• Our findings on the benefits and challenges of constructive net-
work physicalization (see Section 5), supplemented by a discus-
sion on implications for network physicalization (see Section 6).

• Open resources: All materials, data, code for generating instruc-
tions, and 3D printable meshes are available on osf.io.

2. Related Work

In this section, we discuss network visualization and physicaliza-
tion, as well as constructivist visualization. We, then, identify the
research gap that we aim to bridge with NODKANT.

Network Visualization and Physicalization Approaches. Net-
work visualization aims to create meaningful and intuitive repre-
sentations to support gaining insights, understanding connections,
and detecting patterns in network data. Sayama et al. [SCP∗16] col-
laborated with researchers and educators to identify the essential
network concepts for high school graduates. Börner et al. [bor16]
studied 273 science museum visitors and found that while most
people are comfortable with basic charts, they struggle with under-
standing network structures, such as topology and clusters. These
challenges extend beyond novices, with AlKadi et al. [ASSB∗23]
showing that even analysts struggle to define exploration goals,
identify relevant structures, and create appropriate visual mappings.

As reported by Yoghourdjian et al. [YAD∗18], the visual com-
plexity of graph visualizations is further influenced by several fac-
tors (i.e., size, density, etc.), increasing the perceptual workload
of the intended users. A recent meta-survey [FAM23] underscores
the breadth of the field of network visualization and highlights di-
verse challenges associated with the visualization of dynamic, com-
plex, multivariate, and geospatial network data. Recently, Shu et
al. [SPT∗24] developed interaction supporting network learners to
explain visual patterns and link them to data patterns.

Network physicalization has also shown promise for engage-
ment and data comprehension in different domains, such as biol-
ogy [DMB18], social science [Hem13], and art [MGD∗24]. Dro-
gemuller et al. [DCW∗21] investigated the effect of network physi-
calization on comprehension, finding that 2D visual-haptic repre-
sentations improved accuracy. McGuffin [MSF23] observed that
interacting with augmented physical network layouts facilitated
unique user interactions. Bae et al. [BFY∗24] built upon this to de-
velop a pipeline for network physicalizations that integrates sensing
elements through electrical circuits, enabling interactive selections
on physical networks. These efforts pave the way for exploring
how constructivist approaches can complement and extend exist-
ing techniques by involving people deeply in the creation and ex-
ploration of network representations. Note that all the above studies
heavily rely on the precalculation of 2D or 3D force-based layouts,
which prohibits users from performing layout manipulations as an
interaction scheme. Oppositely, NODKANT experiments with the
levels of layout flexibility during the construction process.

Constructivist Visualization. In the field of constructive visu-
alization, research has focused on democratizing the creation
of visualizations, allowing non-experts to engage directly with
datasets. Huron et al. [HCT∗14] introduced a paradigm for users
to create dynamic visualizations using wooden physical build-
ing blocks. They further demonstrate that constructive visualiza-
tion enables novices to create visualizations [HCT∗14] and spend
more time on data-related tasks than using Excel [Kir10]. Re-
cent work has developed several physical construction toolkits,
such as Physikit [HGG∗16], DataChest [WBH24], and Sensor-
Bricks [BVKVH24], which all use tangible elements, i.e., 3D
printed tokens to create and explore data visualizations.
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Studies have demonstrated the pedagogical potential of con-
structive visualization in both workshops and educational set-
tings [HCBF16, KSB∗23, WH16, Pun02, NP16]. These findings
align with constructivist learning theory, where learners benefit
from a “hands-on” approach through direct interaction with tan-
gible objects rather than abstract methods [HJC14, VMP10]—a
concept known as discovery learning [Dea81]. In LEGO® Seri-
ous Play [GV16], this concept is referred to as “thinking with your
hands”. Grounded in constructivist theory, it presents a method to
facilitate problem-solving and communication, while creating an
open system with infinite possibilities through creative play. The
building is quick and straightforward and can be easily constructed,
deconstructed, reviewed, and changed [Gau14].

Identified Research Gap. While prior work has explored physical
and digital constructive approaches for traditional data representa-
tions (e.g., line charts, bar charts), there is a clear gap in utiliz-
ing these approaches to comprehend the relationships and the pat-
terns of underlying network data. Studies on how user-generated
graph layouts differ from automatically generated ones in the vir-
tual space exist [vHR08, DLF∗09]. Yet there are unique consid-
erations for constructive approaches to the physical space. Thus,
we investigate how different construction approaches can engage
people to overcome these challenges. We investigate the impact of
constructive approaches on network comprehension, building on
network physicalization research [DCW∗21,MSF23,BFY∗24] and
insights from constructive visualization [BZP∗19, HCT∗14].

3. Nodkant: A Network Physicalization Toolkit

We now set out to design a toolkit for network data physicalization.
To begin with, we define a set of design requirements for such a
network physicalization toolkit. Huron et al. [HCT∗14] suggest that
constructive visualization can profit from three creation paradigms:
simplicity, effectiveness, and dynamism. We contextualize these
paradigms in the scope of network visualization and our designs.

[Simplicity] Minimal number of parts and maximum amount of
personalization. Using a simple case, Huron et al. [HJC14] demon-
strate the versatility of square, colored, wooden tokens to create a
multitude of different data representations. We follow this concept
by minimizing the amount of unique parts in the representation,
while simultaneously providing users with as much freedom in cre-
ating their personalized representations as possible. We argue that
simple elements, when thoughtfully designed, can serve as versa-
tile building blocks for complex systems. At the same time, they
streamline the design, reduce cognitive load, and facilitate use.

[Effectiveness] Familiar and accurate representation of the con-
cept. Networks have long been used by humans to represent entity
relationships [MFD20], with node-link diagrams being arguably
the most common representation [Tam16]. Applications like social
network visualization [DLM24], transport networks [WNT∗20],
and biological networks [EBK∗24] are intuitively understood
methods to abstract complex phenomena.

[Dynamism] Make use of the physical nature of the representa-
tion. Data physicalizations possess unique abilities to engage audi-
ences purely through their tangible nature [ZM08,WSK∗19]. Digi-
tal representations commonly provide benefits such as interactivity,

however, haptic interactions have also been explored and show ben-
efits for physical network representations [DCW∗21]. Recent de-
velopments, such as Bae et al.’s [BFY∗24] computational pipeline
to incorporate sensing into data physicalizations, represent a step
towards leveraging the potential of interactivity in data physical-
izations as well [PEW∗24].

Designing NODKANT. Graphs that use edges represented as lines
can benefit from improved readability [ANMMG24]. Straight-line
node-link diagrams represent only one way to visualize network
data [Tam16] and comprise two fundamental parts—nodes and
links. In these diagrams, nodes represent entities or objects, while
edges represent their relationships or connections, visually forming
a network. These simple components can be used to easily create
diverse network representations.

With NODKANT, we intend to provide an effective strategy to
represent networks—akin to the way they are represented in liter-
ature and practical applications. Bae et al. [BFY∗24] use spheres
to represent nodes in their 3D network physicalizations. Their
pipeline focuses on the sensing capabilities of their model and
does label nodes to make them identifiable. Conversely, McGuf-
fin et al. [MSF23] emboss the node labels into cuboids to represent
nodes in their 3D network models. Drogemuller et al. [DCW∗21]
use spheres to represent nodes. Due to the limited size of their
model, they also omit placing node labels. In NODKANT, a node
is embodied by a spool, i.e., a flat cylinder as shown in Figure 2a.
This shape can be easily produced using digital fabrication tools
like a 3D printer or laser cutter. The top of the cylinder accommo-
dates space for a node label, which can be simply written, attached
as a sticker, printed, or laser-engraved.

Finally, we support the dynamic creation of our network physi-
calizations. When using fabrication to create network physicaliza-
tion, creating nodes and edges in a single step limits the materi-
als that can be used. The existing network physicalization meth-
ods [BFY∗24, MSF23, DCW∗21] create solid edges between the
nodes. While this consolidates the network’s structure, it limits the
size of the representation due to the print surface and constrains the
corresponding interactivity. To support the step-by-step creation of
physical networks, we propose to use yarn to represent edges (Fig-
ure 2a). Using digital fabrication tools, we create a spool attached
to each end of a length of yarn. This enables users to easily manip-
ulate edge lengths if needed (Figure 2b). Placing a magnet under-
neath the spool creates a rotational axis for the spool at the contact
point, which allows the edge lengths to be adjusted after the spool
is placed. We design the spools to stack on top of each other, al-
lowing a single node to have multiple connections (Figure 2c). The
magnets provide enough stability to stay connected while the re-
sulting stacks can be easily moved around on the surface. Note also
that, based on this setting, a user can loosen the yarn to form various
edge styles other than straight lines depending on their preferences.

4. Studying Constructive Network Physicalization

We assess our proposed NODKANT toolkit in an exploratory study
evaluating the influence of personal construction on a user’s com-
prehension of network data. The theory of embodied cognition in
cognitive psychology proposes that human perception is strongly

© 2025 The Author(s).
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(a) (b) (c)

Figure 2: Steps to create a NODKANT diagram. (a) Nodes are 3D printed and magnets are placed underneath, while edges are fitted with
a length of yarn. (b) Edge lengths are adjusted by turning the spools until the edge has the desired length. (c) Edge spools and nodes are
stacked vertically on a magnetic surface, where the magnets ensure stability until, step by step, a physical network is formed.

connected to our interactions with the environment and how this in-
fluences learning processes [NEFM99]. Suwa and Tversky [ST02]
show that creating representations of concepts, such as sketches,
facilitates idea generation. Huron et al. [HJC14] investigate this
further by employing generic physical tokens with which users
freely create personalized data representations. Inspired by these
approaches, our approach constitutes a physical method to create
external representations for an abstract concept. While we restrict
the visual representation to node-link diagrams, users retain the
flexibility to determine the layout, which is an important part of
the presentation mapping (geometry) [MGWP23].

4.1. Research Questions

The potential benefits of constructing a personalized physicaliza-
tion, combined with the unique challenges inherent to network vi-
sualization present an interesting opportunity. We design our ex-
ploratory study based on four distinct research questions:

[RQ1: Construction] What is the influence of different ways to
present the data on user experience, while constructing the net-
works? Constructive visualization enables a user to create a person-
alized representation of a given dataset. Limiting the representation
to a node-link diagram still leaves plenty of room for customiza-
tion. We investigate the impact of different methods to support a
user during construction [WHJ23], on the user’s experience.

[RQ2: Comprehension] How does constructing a network physi-
calization impact a user’s comprehension? When users construct
a personalized node-link diagram, they embody part of the presen-
tation mapping in the visualization pipeline [JD13]. This process
enables user interaction—even before the physical representation is
fully realized [HJC14]. Conversely, user-created layouts may hin-
der readability compared to algorithmically optimized designs. To
investigate this, we measure users’ insight generation and perfor-
mance in network analysis tasks, depending on whether and how
they constructed their physicalization.

[RQ3: Interaction] Which interaction patterns emerge from the
use of NODKANT? With NODKANT, we propose a network physi-
calization toolkit that supports the creation of node-link diagrams.
Physicalizations inherently afford physical interactions through
their physical embodiment [JDF13]. In our case, we see opportuni-
ties for interaction both during and after the construction process.

To investigate this, we monitor users’ interactions and analyze be-
havioral differences based on their construction method.

[RQ4: Memorability] Does constructing a network physicaliza-
tion impact memorability? Physicalizations are more memorable
than screen-based visualizations [SSB15, HMC∗20]. To investi-
gate why data physicalization supports users in remembering data,
we measure delayed insight generation and task performance in a
follow-up study.

4.2. Metrics

Quantitative Metrics. During the construction session, we mea-
sure the time taken by the participants during construction. To
assess their subjective experience, we use the NASA-TLX ques-
tionnaire [HS88] as a benchmark. Additionally, we measure users’
time and accuracy in completing benchmark tasks. For efficiency,
we omit task-specific NASA-TLX evaluations and instead collect a
single subjective difficulty rating from participants.

In the follow-up study, we ask participants closed questions
about global properties like the represented entities and study con-
text. We ask participants to recall known numeric properties and
derive properties they did not calculate before. Finally, we include a
Likert scale rating section into the follow-up to gather participants’
subjective assessments of NODKANT by using four questions that
relate to the value of visualization according to Stasko [Sta14]
(“The presented visualization was... i) trustworthy, ii) understand-
able, iii) available, and iv) quickly accessible”) and five questions
that refer to the emotional value of visualization (“The presented
engaged in a... i) creative, ii) affective, iii) intellectual, iv) social,
v) physical way”), as defined by Wang et al. [WSK∗19].

Qualitative Metrics. We record the construction sessions with
an overhead camera setup and think-aloud protocol to analyze
construction strategies, as well as interactions and thoughts dur-
ing benchmark tasks. After construction, as well as the individual
benchmark tasks, we ask participants to summarize their thoughts
during construction and transcribe this as open feedback. Before
the benchmark tasks, we record the open exploration of the network
by the participants for an insight-based evaluation. In the follow-
up study, we ask open questions about global and local structures
and analyze the answers for insights.

© 2025 The Author(s).
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4.3. Conditions

Our toolkit enables users to create personalized embeddings of net-
work data, as we assume that the way the dataset is presented
to the user may have a significant impact on their comprehen-
sion. Existing studies on user-created layouts in digital environ-
ments [vHR08, DLF∗09] confronted users with unstructured lay-
outs to rearrange. We opt instead to have our participants create a
layout from scratch, better highlighting our toolkits’ versatility. Wei
et al. [WHJ23] present different strategies to guide users in creat-
ing personalized visualizations: next-step, ghost, and gallery. For
our use case, we present a fixed visual mapping, the node-link dia-
gram; thus, we will not investigate the gallery-based option, where
users are shown representation alternatives to choose from. We base
our conditions on these techniques.

Free Construction (FC). In next-step, a user is shown possible po-
sitions for the next step to take. In our case, this can be easily trans-
lated into a step-by-step placement of edges (Figure 3, FC). Edge
lists represent network data by listing each connection between two
nodes. When working with a randomized edge list, users can recon-
struct the network by placing edges one at a time. However, this
process often requires extensive rearrangement due to the random-
ness. We, therefore, opt to present the data to the user as a sorted
edge list. Different sorting criteria are possible for this [Mey79],
and to choose the most suitable one for our case, we compared sort-
ing edges by degree of associated nodes, and following a spanning
tree in a pilot study (see Section 4.4).

Layout Construction (LC). Ghost shows an outline of the fi-
nal representation to the user, to indicate where tokens should be
placed. The spatial embedding of a network is an area of ongo-
ing research. To assist users in this process, we propose to pro-
vide users with a pre-computed layout as a means of presentation
(Figure 3, LC). A force-directed layout algorithm ensures that the
resulting layout conforms to established aesthetic criteria [Tam16].
To prevent users from getting lost while constructing their network,
we provide step-by-step instructions on how to recreate the given
layout, similar to instructions found in LEGO® or IKEA® man-
uals. To maintain consistency across conditions, the steps are pre-
sented in the same order as the edge-list in the (FC) condition.

No Construction (NC). A NODKANT diagram is a data
physicalization—regardless of how (and by whom) it is constructed
(Figure 3, NC). In the NC condition, we provide a group of partici-
pants with a pre-constructed representation of the layout, serving
as a baseline for our comparisons.

FC LC NC

Figure 3: Study conditions. FC: Users freely construct their net-
work from a sorted edge list. LC: Users construct a pre-computed
layout using a step-by-step manual. NC: Users solve network
analysis tasks using a pre-constructed layout.

4.4. Pilot Study

As a first step, we conducted a small pilot study among six co-
authors to determine which network size is suitable, i.e., the upper
limit for a lab study. Additionally, as mentioned above, we com-
pared two different sortings of the edge list for free construction
scenarios to determine the most appropriate.

Procedure. We selected three networks (grafo2693.13,
grafo634.24, and grafo1034.29) from Rome-
Lib [BGL∗97] based on node count, edge count, and density.
Each participant assembled all three networks following a counter-
balanced schema also alternating between FC and LC. For FC
sessions, we tested two edge list sorting algorithms, one sorted by
node degree and the other sorted along a spanning tree following
node degree for non-spanning edges. We measured the time for
each run and discussed emerging thoughts and implications.

Results. Completion times mainly depended on the edge number
in the network, with the smallest network taking around 6–10 min-
utes, and the largest one taking 20–27 minutes to construct in FC.
We noticed a broader variation of construction times in the FC con-
dition compared to LC, owing to different strategies employed by
the participants. In summary, we made the following decisions for
the lab study based on our findings: Study times around 1 hour,
we decided to use a dense network with around 30 edges. An
edge list formed around a spanning tree leads to participants inef-
ficiently using construction space sometimes, prompting us to fa-
vor the sorting by node degree. Dwyer et al. [DLF∗09] suggest
it may be intimidating to present users with a layouting task with-
out usecase; therefore, we decided to use data with relatable or
recognizable context.

4.5. Data

In our pilot study, we discussed the importance of a salient use case
for our tasks. We decided to use the animal contact network from
the network data repository [RA15], created for studying rabies
propagation [RHGC15]. In the network, nodes represent raccoons
and edges represent recorded contact interactions between them. In
our pilot study, we identified that a network with approximate 30
edges should be feasible to construct within 30 minutes. Thus, we
selected the mammalia-raccoon-proximity-50 network
with 16 nodes and 33 edges and assigned randomized names as
labels to make it more relatable. The network density (0.1375) pro-
vides a sufficient challenge for analysis tasks [YAD∗18], while the
low number of nodes limits task complexity. Also, the origin of the
data provides context for users to interpret the tasks.

4.6. Tasks

We select a set of tasks for our user performance evaluation from
the network task taxonomy by Lee et al. [LPP∗06]. Before exposing
participants to benchmark tasks to measure completion times and
error rates depending on the experiment condition, we ask them
to freely examine the network. This allows us to transcribe the re-
sulting statements and measure insight generation as proposed by
North [Nor06]. We follow this with numeric observations about the
general overview—namely counting or estimating the number of

© 2025 The Author(s).
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nodes and edges in the network. The remaining tasks are assigned
according to a balanced scheme and we present them here in the
order of occurrence in the taxonomy [LPP∗06], orienting on friend-
of-a friend scenarios. We select several topology-based tasks:

[Adjacency] Find the most and least connected nodes in the
dataset. We use the context of popularity in a social structure and
the corresponding risk of infection.
[Direct Accessibility] Find out if three pairs of nodes are con-
nected. We employ the contexts of friendships and direct disease
transmission.
[Indirect Accessibility] Find all nodes accessible at a hop distance
of two for three different nodes. We employ the contexts of a friend-
of-a-friend and the spread of infectious diseases.
[Common Connection] Find the common neighbors of three pairs
of nodes. We employ the contexts of having common friends and
infection by common contact.
[Connectivity] Find bridge nodes in the network, defined as nodes
that upon removal cause a split of the network into components
with at least two connected nodes. We use the contexts of connect-
ing friend groups and isolating risk patients.
[Paths] Find the shortest paths between three pairs of nodes. We
employ the contexts of connection in a social network and critical
paths in contact tracing.

4.7. Recruiting

We recruited 27 university students, aged between 20 and 28 years
for our study. Five of the students identified as female, the remain-
ing 22 as male. Four of them had already completed a bachelor’s
program in computer science, and 23 had a high school diploma.
All participants reported basic knowledge about networks, having
completed a course on algorithms, where the concept is first pre-
sented. None of the participants had further education or profes-
sional experience with networks in a visualization context.

4.8. Procedure

We employed a between-subject design in our study. Participants
were assigned to one of three groups, corresponding to one of
the three conditions (FC, LC, NC) using a balanced scheme. All
study participants received onboarding about node-link diagrams.
We first explained to them the meaning behind the network, i.e.,
nodes representing individual animals, and the edges between them
represent the interactions. We listed them two possible use cases
for such networks: investigating i) social structures and ii) the cor-
responding ways of disease transmission. Every participant was in-
structed about the parts of NODKANT and was explicitly encour-
aged to interact with it freely during the tasks.

Construction. Participants from groups FC and LC received train-
ing on how to construct a network using NODKANT. They were
given the option of free interaction with its components until they
felt confident with them. After completing the scale ranking proce-
dure of the NASA-TLX [HS88], participants were handed a printed
set of instructions to construct the network: FC participants re-
ceived a sorted edge list, while LC participants received an in-
struction booklet. After construction, we asked participants about

their thoughts during the process. Conversely, participants in the
NC group received a pre-constructed representation to observe in-
stead of completing this step themselves.

Benchmark Tasks. With their physical networks in hand, we
asked participants to reason about interesting global structures and
interesting nodes they could detect. First, we asked them to count
or estimate the number of nodes and edges. Then, participants
completed a set of network exploration tasks. We provided a
context for each task for the two use cases (social structures and
disease transmission), explaining how the task may be relevant in
a social network and disease-monitoring scenario. The order of
tasks was counter-balanced across the participants using a Latin
square scheme. We asked participants to think aloud during the
tasks and leave feedback after each task. After all tasks were
completed, we requested them to comment on at least one positive
and one negative experience during their experiment and asked for
additional informal feedback. Finally, we thanked the participants
and concluded the on-site experiment.

Follow Up. Each participant received an online questionnaire ex-
actly 10 days after completing the on-site study. Participants were
first asked to recollect the context of the experiment and what nodes
and edges were represented. We asked them to freely recall list in-
teresting global and local structures in the network, without cues.
Additionally, we provided them with cued questions on the number
of nodes and edges, and edge density—a detail which they were
not asked to calculate during the on-site part, to avoid receiving
only memorized answers. Lastly, participants completed two Lik-
ert scale ratings about NODKANT. At the end of the questionnaire,
participants were again thanked and received a debrief about the
purpose and procedure of the study.

4.9. Analysis

Quantitative Analysis. Due to our between-subject study design,
we obtain a sample of 9 participants per group, preventing mean-
ingful statistical analysis. Thus, we omit statistical testing on the
results and discuss the results purely visually. We compute the
NASA-TLX [HS88] scores as weighted averages across the scales
Mental Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort, and Frustration, with weights as obtained in the
scale ranking procedure. Task accuracy is computed as the ratio
of correct observations to total observations in tasks with a set of
nodes as answers, e.g. ground truth is (A,B), reported set is (A),
accuracy is 50%. When the task is to determine a number, we re-
port the accuracy as 1−|erel |, where erel denotes the error relative
to the ground truth, e.g. ground truth is 10, reported number is 9,
erel = 10%, and accuracy is 90%. For tasks that have three sub-
tasks, we report the average accuracy across sub-tasks. We classify
the answers to the closed questions in the follow-up as correct,
semi-correct, and incorrect. For example, an answer to “Which en-
tity did the nodes represent?" could be “raccoon" (correct, 100%),
“animals" (semi-correct, 50%), or “people" (incorrect, 0%). We
report the subjective task difficulty on a 1–10 scale (1-easy; 10-
difficulty). Task and construction times are reported in m:ss. The
time runs from when participants receive the assignment until they
confirm to be satisfied with the result. In the case of subtasks, we

© 2025 The Author(s).
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D. Pahr et al. / NODKANT 7 of 12

report the total time for all tasks. In the subjective Likert scale rat-
ings, we asked participants to rate their experience according to the
scale Disagree → Somewhat Disagree → Neutral → Somewhat
Agree → Agree.

Qualitative Analysis. We further analyzed video recordings and
categorized the degree of interactions of our participants. We dis-
tinguish three categories: (1) the participant is passive or simply
points at the representation, (2) the participant touches the network
during the session without disturbing the layout, and (3) the partic-
ipant moves the parts around.

We transcribed the participants’ open feedback and further pro-
cessed it, resulting in 521 individual utterances. We conducted two
rounds of coding, one for categorization and one for rating insight-
related utterances resulting from the first coding. Both were con-
ducted by three independent coders (one was present in both proce-
dures). For the categorization, we follow a combination of induc-
tive and deductive coding [Chi97]. In the inductive session, each
coder independently assigned a single concept to each utterance.
Each coder produced their own set of codes, ranging between 21
and 105 different concepts. The coders then met in a joint session
to produce a unified codebook resulting in 35 codes pertaining to 8
categories. After this, a deductive coding session took place, where
the coders independently assigned these codes to the utterances.
In another joint session, the coders discussed their assignments in
cases where no consensus was reached. In a final individual ses-
sion, each coder reviewed dissenting assignments. After that, the
remaining 2-to-1 conflicts were resolved following a majority vote.

During the first coding procedure, we identified 149 comments
from 5 different codes as insights. We categorize insights in three
levels: (1) reading data, (2) reading between data, and (3) read-
ing beyond data [SGA22]. The coders first assigned their rating.
In a joint session, they discussed dissenting selections. In a second
individual session, the coders revised their choices until no more
conflicts remained that could not be broken by a majority vote.

5. Results

We present our results as they relate to each of our research ques-
tions (see Section 4.1), and summarize the implications of all rele-
vant metrics (Table 1) to provide succinct answers.

5.1. RQ1: Construction

Quantitative Results. For FC, the median construction time was
just under 27 minutes. The median for LC was about seven minutes
faster. In the weighted average TLX-score, we observe a higher
median for FC than for LC (FC: 33.67, LC: 22.67). We show the
results for responses for the NASA-TLX across all sub-scales, as
well as the weighted average in Figure 5. Notably, we observe a
higher median in physical demand for FC (30) than for LC (20),
as well as three very high ratings (≥ 80). We also observe higher
medians in FC compared to LC for performance (FC: 40, LC: 15),
effort (FC: 30, LC: 20) and frustration (FC: 25, LC: 10). Interest-
ingly, temporal demand shows a very similar distribution for FC
and LC, while we observe equal medians in mental demand, but a
higher variation of ratings in LC.

Table 1: Relation of metrics to research questions. ↑ placed after
a condition indicates that the metric had positive implications for
it, ↓ means negative. ↔ denotes ambiguous implications between
conditions.

RQ1 RQ2 RQ3 RQ4
Construction Time FC ↓
Construction TLX FC ↓

Task Time FC ↔ LC ↔ NC
Task Accuracy FC ↔ LC ↔ NC
Task Difficulty FC ↔ LC ↔ NC

Value (Traditional) FC ↓
Value (Emotional) FC ↔ LC ↔ NC

Q
ua

nt
ita

tiv
e

Follow-up Accuracy NC ↓ NC ↓
Construction Strategy FC ↑

Physical Properties FC ↓ LC ↓ FC ↑ LC ↑
Interaction FC ↑

Usability FC ↓ LC ↓
Task Load FC ↓ LC ↓

Engagement FC ↑ LC ↑
Feedback FC ↔ LC FC ↔ LC

Insights FC ↑ NC ↓
Q

ua
lit

at
iv

e
Video FC ↑

Qualitative Results. We found a total of 28 (FC:20, LC:8) utter-
ances referring to strategies during construction. Five FC partic-
ipants followed instructions (“worked from node to node in or-
der they came up") and used our edge list sorting, while four re-
ported individual sorting strategies (“looked at which names come
up more often for the best start"). Six FC participants started form-
ing clusters during construction (“noticed clusters forming so I kept
them in separate areas"). Five FC and three LC participants re-
marked on rearranging nodes during construction (“Moved nodes
around a lot during construction", and “should have checked [the]
final outcome before, [and] had to rearrange a bit", respectively).
Only LC participants expressed strategies concerning label place-
ment during construction. 10 comments on task load were related
to strain during construction (FC:4, LC:6). In FC, two comments
referred to frustration, one to increased temporal effort, and one to
low performance. For LC, one comment referred to lowered while
three to increased mental demand, and three comments referred to
increased temporal and physical effort, each. Two comments repre-
sented feedback on possible physical improvements of spool han-
dling. Visual inspection of construction results shows that FC led
to more “messy" representations than LC.

Summary RQ1: Construction. Our findings indicate that con-
structing diagrams with NODKANT takes longer on average and
has a slightly higher impact on a user’s task load when using FC
compared to LC. Interestingly, the TLX scores do not show an
impact of the longer construction times in FC. FC results are
less refined compared to the outcome of LC (see Figure 4-a,b).
Many negative comments overall refer to frustration caused by dif-
ficulties with string tension. Yet, we find indications in the quali-
tative data that during construction FC participants were deeply
engaged and worried more about global issues like emerging clus-
ters, while LC participants’ major concern lay in the aesthetic
details, such as keeping the edges straight.

© 2025 The Author(s).
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8 of 12 D. Pahr et al. / NODKANT

FC

LC

Figure 4: Example layouts. FC graphs use a lot of space and edges
are often loose. LC graphs closely resemble the given layout. NC
participants were given a faithful recreation of the LC layout.

5.2. RQ2: Comprehension

Quantitative Results. Overall, task completion times between all
groups were similar, with FC (avg = 01:52) being on average 30
seconds slower than LC and NC (both avg = 01:22). Because three
participants took particularly long, the average time for the con-
nectivity task in LC was about double compared to LC and NC
(FC: 02:55, LC: 01:24, NC: 01:15). We observe notably higher me-
dian completion times for FC in the tasks common connections (FC:
01:46, LC: 01:15, NC: 01:27), indirect accessibility (FC: 04:08, LC:
03:20, NC: 03:12) and overview (FC: 01:10, LC: 00:40, NC: 00:41).
We also observe high accuracy for all conditions on average across
all tasks. In the overview task, we observe a lower median accuracy
for FC (FC: 78.79, LC: 90.91, NC: 90.91). Across all benchmark
tasks, LC participants rated the tasks difficulty highest on aver-
age, followed by FC, and NC (FC: 3.82, LC: 4.16, NC: 3.13). Me-
dian ratings for FC were notably higher compared to the others for
the connectivity task (FC: 7, LC: 4, NC: 4), while LC ratings were
higher for indirect accessibility (FC: 4, LC: 6, NC: 4) and overview
(FC: 4, LC: 5, NC: 4). The median rating for LC was lower than
others for paths (FC: 4, LC: 4, NC: 3), while FC was rated lower
for adjacency (FC: 1, LC: 2, NC: 2).

In terms of traditional visualization values [Sta14], the NC and
LC participants gave high marks for trust, understanding, and
availability of information. FC participants rated timeliness mildly
negative. For the emotional values, we observe generally low affec-
tion, the least from the NC group. Here, LC participants rated intel-

Figure 5: NASA-TLX ratings for network construction. FC
participants report higher physical demand, overall effort, and
frustration, as well as less performance satisfaction than LC par-
ticipants, yielding a slightly higher weighted average score for FC.

lectual engagement and creativity strongly positive, while physical
engagement was ranked strongly positive by FC participants.

Qualitative Results. Figure 6 shows a comparison of insights
recorded on-site with insights recorded in the follow-up question-
naire. We classified a total of 274 comments as insights, out of
which 149 were recorded on-site and 125 in the follow-up. On-
site, we see that FC participants had most insights (FC: 57,LC: 45,
NC: 47), and the most deep insights (FC: 17,LC: 13, NC: 6). On-
site, FC participants most notably identified more insights on ad-
jacency (“Zoey and Odin seem to have a lot of friends"), and con-
nectivity (“seems like Kaia and John are connections between the
two groups"). Cluster-identification (“easily splits in two groups"),
density (“one side is strongly connected"), and outlier identifica-
tion (“some animals have only one contact") were similarly rep-
resented in the collected insights across the groups, with FC par-
ticipants reporting slightly fewer for each category. 59 comments
were related to participants’ task load during the benchmark tasks
(FC:25, LC:21, NC:13). 35 comments refer to mental effort, while
24 of them point to a increase (FC:11, LC:11, NC:2) and 11 to al-
leviation (FC:5, LC:5, NC:1). Increased physical effort was only
reported by FC and LC participants (FC: 4, LC: 1). Six comments
refer to frustration (FC:5, LC:1). Overall, effort was mentioned 8
times—equally often in positive as in negative connotation (FC:2,
LC:2, NC:4). Four participants remarked negatively on their perfor-
mance (FC:3, LC:1). While five FC and LC participants reported in-
creased temporal effort (FC:2, LC:3), five NC participants reported
positive experiences in the context. 84 of our transcribed utterances
refer to the general usability of NODKANT.

Layout clarity was the subject of 37 comments in total. Two ut-
terances for each group refer to it positively (“topology is quite
clear"). The 31 negative comments occurred predominantly among
FC and LC participants (“the messy structure made it a bit harder")
(FC:17, LC:11, NC:3). 17 utterances were classified as expressing
participants’ uncertainty (“not sure if there was a single shortest
path"). Most of these originated from LC participants (FC:5, LC:11,
NC:1). We coded 13 comments as referring to participants recall-
ing details about the graph from memory (“knew the answer from
the general overview, just checked if it was right") during the tasks
(FC:5, LC:5, NC:3). Seven statements related the experience dur-
ing the study to learning (“it is very nice recap for graphs") (LC:4,
NC:3). Intuitivity in solving the tasks was predominantly reported
by NC participants (FC:5, LC:5, NC:3). We received two comments

© 2025 The Author(s).
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D. Pahr et al. / NODKANT 9 of 12

Figure 6: Insight codes distribution per group. Center to left: On-
site study insights, with FC participants reporting more insights
than LC and NC. Center to right: Follow-up insights, where NC
participants report notably fewer insights. Lightness indicates in-
sight level.

praising the clarity of our instructions by LC participants. A total
of 34 comments refer to engagement (FC:15, LC:14, NC:5). Of the
14 affectionate statements(“playful experience, it was fun!"), com-
parably few refer to NC (FC:6, LC:5, NC:3). Similarly, intellec-
tual engagement was predominantly reported by FC and LC (FC:5,
LC:5, NC:2). Finally, only FC and LC participants reported physical
engagement. Six participants gave feedback in the form of visual
improvement suggestions, such as coloring nodes and edges.

Summary RQ2: Comprehension. Bearing in mind the stark dif-
ferences in visual appearance between the different representations,
as shown in Figure 4, the results above are surprising. Firstly,
the impact of the construction method on task time and ac-
curacy is negligible. FC participants had to work with their—
much messier—graphs, often impacting tasks that are supported
by layout clarity, increasing mental effort, and uncertainty , ulti-
mately lessening trust. However, FC participants reported more
and deeper insights on the first inspection and were physically en-
gaged by construction.

5.3. RQ3: Interaction

Analyzing our recordings of the on-site study reveals that NC par-
ticipants never touched the graph and only performed pointing in-
teractions. Comparing FC and LC recordings shows that FC par-
ticipants had more touch-based contact (FC: 4, LC: 1) and moved
parts around on the canvas more often (FC: 4, LC: 2). 63 comments
related to physical properties of NODKANT, the least of which
come from participants in the NC group (FC:26, LC:29, NC:8).
The only physical property referenced by NC was the height of
the spool stacks, which some participants recognized as an indi-
cator for node degree (“its nice because the node height indicates

degree.") (FC:12, LC:9, NC:8). FC and NC participants addition-
ally reported problems with string tangling (FC:2, LC:2). String
tension (FC:11, LC:14) and insufficient string length (FC:1, LC:4)
most often caused problems during the LC condition. Our partici-
pants refer to interaction techniques to solve benchmark tasks on
86 separate occasions. Most of these comments refer to visual tech-
niques (“went clockwise from the starting node and ticked them
off "), most of which originate from NC participants (FC:8, LC:21,
NC:44). Only FC and LC participants report using physical tech-
niques to solve the benchmark tasks (FC:9, LC:4). We show the
interaction techniques our participant used in Figure 7. Four partic-
ipants moved nodes individually to determine connections to neigh-
bors (“I wiggled the nodes and checked if neighbors wiggle," Fig-
ure 7 (a)). Three participants refer to manipulating edges (“tugged
on the strings to see the connections better," Figure 7 (b)). Two re-
ported manipulating two nodes at once (“if you pull two edges apart
and see the lines that get straight you can check if they connect to a
common neighbor," Figure 7 (c)). Two participants reported com-
paring node heights by rearranging the graph (“counted like coins
by pushing the stacks close to each other," Figure 7 (d)).

Summary RQ3 : Interaction. Despite explicitly encouraging all
participants to physically interact with the representations, we ob-
serve that physical interaction after construction occurred only
in FC and LC. Additionally, despite constructing the represen-
tations, LC participants rarely interacted physically with the
graph. Unsurprisingly, NC participants who did not construct a
graph never physically interacted with it. We conclude that free
construction motivates people to physically engage with their
representation more.

5.4. RQ4: Memorability

Memorability was investigated in the follow-up study conducted
online 10–14 days after the on-site part of the experiment.

Quantitative Results. Average accuracy for closed questions was
73.01%, with LC participants’ accuracy being slightly lower than
others (FC: 75.31, LC: 66.06, NC: 77.91). While most participants
across all groups remembered what the entities in the graph rep-
resented, most NC participants answered only partially correctly
on the question on the defined relation. Most participants at least
remembered one of the given contexts. On average, LC partici-
pants had lower accuracy in remembering node count (FC: 89.58,

(a) (b) (c) (d)

Figure 7: Different interactions with NODKANT. (a) Wiggling a
single node reveals connections. (b) Tugging on nodes reveals com-
mon neighbors. (c) Pulling an edge shows connected nodes. (d)
Pushing nodes together allows direct comparison of degree.

© 2025 The Author(s).
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LC: 70.14, NC: 92.19) and edge count (FC: 65.82, LC: 44.11, NC:
77.78), while all three groups did comparably well in deriving the
average node degree (FC: 84.72, LC: 83.33, NC: 86.11).

Qualitative Results. Most notably, NC participants reported the
least insights (Figure 6) overall (FC: 51,LC: 46, NC: 28). In gen-
eral, the insights recorded in the follow-up were classified lower
on average, with LC participants remembering the most deep in-
sights (FC: 1,LC: 7, NC: 1). FC participants retained more insights
on clusters, connectivity, density and outliers, while LC participants
recounted more insights on adjacency.

Summary RQ4: Memorability. Here, quantitative results show
that most participants recalled questions that were asked in the on-
site part and could even derive the average node degree relatively
accurately, which was not asked before. This attests well to the gen-
eral memorability of data physicalization. More interestingly, the
distribution of reported insights in our follow-up indicates that con-
structing a physicalization makes it more memorable. While we
acknowledge that time spent with the representation may be a con-
founding factor for this, we also observe deeper insights retained
in LC, which points towards a positive influence of readability on
memorization.

6. Discussion and Conclusion

Comparison with Related Work. Van Ham and Ro-
gowitz [vHR08] found that users tend to enclose clusters in
hulls when arranging graphs. We show that such patterns occur
similarly in physical settings. In addition, our results show that
a constructive approach supports the generation of early and
deep insights on the presented data. We pose constructive
approaches like NODKANT could support analytical reasoning
(Figure 8a). Moreover, we show that our toolkit supports physical
interaction with our representation and spatial perception of the
embodied data. While it does not support the construction of “real"
three-dimensional graphs like Bae et al.’s [BFY∗24] or McGuffin
et al.’s [MSF23] approaches, it uses its 2.5-dimensional properties
to convey certain aspects of the graph intuitively. Moreover,
as opposed to static contemporary approaches, such as the one
presented by Drogemuller et al. [DCW∗21], our technique invites
“analog" manipulation that can be used to navigate network data.
While Dwyer et al. [DLF∗09] show various interaction patterns of
users creating graph layouts on touch screens, NODKANT affords
unique physical interaction even after construction. While they
observed that user-generated layouts could influence performance,
our participants were able to compensate for the messiness of their
self-generated layouts through familiarity. In the past, physical
data representations have been shown to be more memorable
than virtual representations [SSB15, HMC∗20]. Recently, Pahr
et al. [PEW∗24] demonstrated that interactivity can enhance
the perception of an active physical representation. In contrast,
we show that even interaction during construction makes
physicalization more effective and memorable, presenting a
unique opportunity for physical data representations. Future work
in data physicalization could make use of constructive metaphors,
allowing users to be more involved and creating useful insights
into the presented data.

(a) (b) (c)

Figure 8: Applications of constructive network physicalization.

Limitations and Future Work. Our study participants were able
to build a small network and completed a series of benchmark tasks
with NODKANT. We acknowledge that participants often had prob-
lems keeping the edges straight, leading to tangling and confu-
sion. While we show that the downsides of this are compensated
by physical interactions and memorability, we acknowledge that
users need to be supported during the construction process. For
instance, designing self-retracting edge spools could mitigate the
cognitive and physical overhead of construction and allow users to
engage more with the data—as opposed to graph aesthetics. We
also acknowledge that due to time constraints, only a single net-
work dataset was investigated. As such, investigating how network
size and density influence the interaction with NODKANT is left
for future work. Also, our study population is comprised mainly
of young, educated male students. This allowed us to rely on their
experience in navigating data visualization. An interesting avenue
for future work would be to investigate how the user’s involvement
while constructing a representation influences their visual literacy,
for example in educational settings (Figure 8b).We also performed
isolated experiments with one user at a time, thus limiting the so-
cial aspect of engagement [WSK∗19]. The NODKANT toolkit itself
does not rely on experience with visualization and only requires a
few cheap and easily accessible parts. This could support work-
shops where groups of people collaboratively construct a repre-
sentation of community-relevant data (Figure 8c).

Concluding Remarks. We provide users with a simple, effec-
tive, and dynamic toolkit for constructing network physicalization.
Huron et al. [HJC14] propose that this allows a user to make use
of the “visual mapping" stage of the visualization pipeline [JD13].
By limiting the toolkit to the construction of node-link diagrams,
we allow users to engage in the “presentation–mapping" part of the
pipeline. NODKANT demonstrates how physical interaction with
data can enhance the sense-making process through construction.
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