
Monitoring Temporal Patterns in

Guideline-Based Care

eingereicht von
Michael Paesold

DIPLOMARBE IT

zur Erlangung des akademischen Grades

Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften

(Mag. rer. soc. oec.)

Fakultät für Informatik, Universität Wien

Fakultät für Informatik, Technische Universität Wien

Studienrichtung Wirtschafsinformatik

Begutachterin

ao. Univ.-Prof. Mag. Dr. Silvia Miksch

Institut für Softwaretechnik, Technische Universität Wien

Wien, im März 2006

Abstract

Clinical guidelines and protocols have become increasingly important in clin-
ical practice. Computer-based application of guidelines is one of the keys to
improved patient care. Therefore, integration of guideline execution into
the clinical data �ow becomes more and more important. Temporal data
abstraction is required to apply high-level medical knowledge to low-level
measurements and data.

The guideline modelling language Asbru provides strong temporal ab-
straction capabilities integrated with guideline execution. Because of the
complexity of the language, writing an interpreter for Asbru is non-trivial,
and an execution engine that would live up to the potentials of the language
was not available before.

In this thesis, I describe the design and implementation of a framework to
support the execution of Asbru guidelines, building on existing work. Asbru
guidelines are compiled into a network of abstraction and plan modules. This
network performs the content of the plans synchronised with the patient
state.

Monitoring patient data requires algorithms to match the real world data
with the temporal patterns de�ned in the guideline. In order to provide de-
cision support in high-frequency domains such as intensive care, these algo-
rithms must comply with de�ned runtime constraints. This thesis describes
suitable algorithms for the most important temporal abstraction features of
Asbru.

The described framework and algorithms were integrated in the Asbru
Interpreter and successfully evaluated in a European project.

i

Kurzfassung

Medizinische Leitlinien und Protokolle gewinnen in der klinischen Praxis
immer mehr an Bedeutung. Die computergestützte Anwendung von Leitli-
nien ist einer der Erfolgsfaktoren bei der Verbesserung des Gesundheitswe-
sens. Daher wird die Integration der computerunterstützten Ausführung von
medizinischen Leitlinien in den klinischen Daten�uss wird immer wichtiger.
Temporale Datenabstraktion ist notwendig, um medizinisches Wissen auf
konkrete Messungen und Daten anwenden zu können.

Die Planrepräsentationssprache Asbru integriert weit reichende Möglich-
keiten zur temporalen Datenabstraktion mit der Ausführung von Leitlinien.
Auf Grund der Komplexität der Sprache ist die Entwicklung eines Inter-
preters für Asbru allerdings nicht trivial. Eine Implementierung, die den
Potentialen der Sprache gerecht würde, existierte bisher nicht.

In dieser Diplomarbeit beschreibe ich aufbauend auf bestehenden Ar-
beiten das Design und die Implementierung eines Systems für die Aus-
führung von Asbru Plänen. Asbru Leitlinien werden in ein Netzwerk von
Abstraktions- und Planmodulen übersetzt. Dieses Netzwerk führt den In-
halt der Pläne in Abhängigkeit von den Patientendaten aus.

Die Überwachung der Patientendaten erfordert Algorithmen um die rea-
len Messungen und Daten mit temporalen Vorgaben in der Leitlinie abzuglei-
chen. Um Entscheidungsunterstützung auch in hochfrequenten Anwendungs-
domänen, wie etwa in der Intensivmedizin, verwirklichen zu können, müssen
diese Algorithmen strengen Beschränkungen der Laufzeit entsprechen. Die-
se Arbeit beschreibt solche Algorithmen für die wichtigsten Asrbu-Elemente
zur temporalen Abstraktion.

Das beschriebene System und die Algorithmen wurden in den Asbru-
Interpreter integriert und erfolgreich in einem europäischen Projekt evaluiert.

ii

Contents

Abstract i

Kurzfassung (in German) ii

Acknowledgements ix

1 Introduction 1
1.1 Clinical Guidelines and Protocols 2
1.2 Objectives . 2
1.3 Outline of this Thesis . 2

2 Related Work 4
2.1 Guideline Modeling Methodologies 4

2.1.1 Asbru . 4
2.1.2 EON . 6
2.1.3 GLARE . 7
2.1.4 GLIF . 8
2.1.5 GUIDE . 9
2.1.6 PRODIGY . 10
2.1.7 PROforma . 10

2.2 Temporal Reasoning in Medicine 11
2.2.1 Representation of Time 12
2.2.2 Temporal Data Maintenance 13
2.2.3 Temporal Reasoning 14
2.2.4 Applications of the KBTA Method 15
2.2.5 Other Applications of Temporal Abstraction 19

2.3 Discussion . 21

3 Introduction to Asbru 22
3.1 The Asbru Plan Library . 22
3.2 Representation of Patient Data 22
3.3 Data Abstraction . 23
3.4 Temporal Patterns . 23

3.4.1 Parameter Proposition 24

iii

CONTENTS iv

3.4.2 Time Annotation . 24
3.4.3 Temporal Constraints 25
3.4.4 Constraint Combinations 25
3.4.5 Analysis of Episodes 26
3.4.6 Boolean Representation of Episodes 26

3.5 Plan States . 27
3.6 Components of Asbru Plans 27

3.6.1 Preferences . 28
3.6.2 Intentions . 28
3.6.3 Conditions . 28
3.6.4 E�ects . 28
3.6.5 Plan Body . 28

4 Design 30
4.1 Architecture . 30
4.2 Requirements Analysis and Design Decisions 32

4.2.1 Asbru Modules . 33
4.2.2 Data Points . 37
4.2.3 Episode Data Points 37
4.2.4 The Execution Manager 41

4.3 Class Model . 44
4.3.1 Data Points . 44
4.3.2 Modules . 48
4.3.3 Framework . 52

4.4 Running the Interpreter . 54
4.4.1 Outline of Execution 54
4.4.2 Playback Mode . 57

4.5 Example: Ventilation of Neonates 59

5 Algorithms 63
5.1 Parameter Propositions . 63

5.1.1 Veri�cation of Time Annotations 64
5.1.2 Types of Parameter Propositions 66
5.1.3 Monitoring with a Fixed Reference Point 66
5.1.4 Monitoring with Repeated Reference Points 72
5.1.5 Monitoring with Reference Point Now 72

5.2 Temporal Constraints . 78
5.2.1 Temporal Constraints and Epsilon 80
5.2.2 Algorithm Design . 80
5.2.3 The Temporal Constraint A before B 82
5.2.4 The Temporal Constraint A meets B 84
5.2.5 The Temporal Constraint A overlaps B 86
5.2.6 The Temporal Constraint A starts B 88
5.2.7 The Temporal Constraint A during B 90

CONTENTS v

5.2.8 The Temporal Constraint A �nishes B 92
5.2.9 The Temporal Constraint A equal B 94

6 Evaluation and Conclusion 96
6.1 Testing Individual Components 96

6.1.1 Parameter Proposition 97
6.1.2 Temporal Constraints 97
6.1.3 Constraint Combination 98

6.2 The Asbru Interpreter: System Tests 99
6.2.1 Performance Tests . 100

6.3 Future Work . 100
6.4 Conclusion . 101

Bibliography 102

List of Figures

3.1 A schematic illustration of the Asbru time annotations. 25
3.2 The Asbru plan states and conditions. 27

4.1 Architecture of the Asbru Interpreter. 31
4.2 Data �ow in the Asbru Interpreter. 32
4.3 UML class model of the data points. 45
4.4 UML class model of Asbru modules framework. 49
4.5 Asbru plan library example with parameter de�nition. 55
4.6 UML sequence chart of Asbru execution. 56
4.7 Sample module graph for controlled ventilation. 60
4.8 Sample input data for controlled ventilation. 61

5.1 Extended list of rules for the veri�cation of time annotations. 65
5.2 State chart of monitoring with �xed reference point. 68
5.3 State chart of monitoring with reference point now. 76

6.1 Inputs and found episodes for temporal constraints tests. . . . 98
6.2 Module graph for testing constraint combinations. 99

vi

List of Tables

4.1 Examples of simple Asbru modules. 33
4.2 Temporal constraint modules. 51
4.3 Constraint combination modules. 52
4.4 Episode analysis modules. 52

5.1 Elements of a time annotation and their abbreviations. 63
5.2 Defaults for unspeci�ed parts of a time annotation. 64
5.3 From Allen's temporal relations to Asbru constraints. 79
5.4 De�nition of (in)equality operators with epsilon. 80

6.1 Examples of parameter proposition test cases. 97

vii

List of Algorithms

5.1 Function processEvent for �xed reference point. 71
5.2 Calculating validity with reference point now. 75
5.3 Function processEvent for reference point now. 77
5.4 Function processEvent for temporal constraint before. 83
5.5 Function processEvent for temporal constraint meets. 85
5.6 Function processEvent for temporal constraint overlaps. . . . 87
5.7 Function processEvent for temporal constraint starts. 89
5.8 Function processEvent for temporal constraint during. 91
5.9 Function processEvent for temporal constraint �nishes. 93
5.10 Function processEvent for temporal constraint equal. 95

viii

Acknowledgements

The �rst person who I would like to thank is Andreas Seyfang. Many of
the ideas and concepts in this thesis originate from the fruitful and often
extensive discussions with him. He also was the one who raised my interest
in the domain of Arti�cial Intelligence in Medicine in the �rst place.

Next, I would like to thank Silvia Miksch for giving me the opportunity
to work on this thesis within the Protocure team. I appreciate her support,
encouragement, and her trust in me.

Special thanks goes to my wife Julia and my daughter Ksenia for their
emotional support and love. I am grateful for the support of my parents
Jutta and Dieter Paesold, and my whole family throughout the years.

I thank Peter Votruba from the Protocure team for his contribution to
our good work on the Asbru Interpreter. Finally, I thank Andreas Seyfang,
Jutta Paesold, and Florian Mitter for their revisions and proofreading of the
manuscript.

ix

Chapter 1

Introduction

Improving health care has been a signi�cant ambition in history. It is only a
logical consequence of the developments of the last century that computers
have been integrated into the care process. A great amount of research in
Medical Informatics (MI) and Arti�cial Intelligence (AI) has been devoted to
providing means to facilitate diagnosis, prognosis, and treatment in medicine.

Studies have shown that clinical guidelines and treatment plans have ben-
e�ts in the practice of medicine [30]. Unfortunately, clinicians are often not
familiar with written guidelines and do not apply them appropriately dur-
ing the actual care process [84]. Nevertheless clinical guidelines can improve
patient care if properly developed, communicated, and implemented [37].

To support the computer-based application of guidelines, many frame-
works for design, validation, and execution of clinical guidelines have been
developed. The Arden Syntax [33] was the �rst language for the represen-
tation of clinical knowledge in decision-support systems. The limitations of
Arden and other early approaches have resulted in the development of a wide
range of modeling methodologies available today.

Diagnosis and treatment have usually been seen as distinct tasks in
computer-based decision support, but if both are tightly integrated, each task
can support the other one [61]. The guideline modeling language Asbru [60]
provides the expressive power to represent the abstract temporal concepts
required for both tasks. The foundation of these concepts is knowledge-based
temporal data abstraction and skeletal plan execution.

In this thesis, I describe the design and implementation of a framework
and several algorithms to support temporal data abstraction in the context
of guideline-based care. My work is based on the framework proposed by
Seyfang [59]. The implementation is the basis for the Asbru Interpreter
developed as part of the Protocure II project1, which aims at integrating
formal methods in the life cycle of guidelines.

1See the project homepage at http://www.protocure.org. Accessed Feb 2, 2006.

1

http://www.protocure.org

CHAPTER 1. INTRODUCTION 2

1.1 Clinical Guidelines and Protocols

�Clinical guidelines are systematically developed statements to assist practi-
tioner and patient decisions about appropriate health care for speci�c clinical
circumstances� [22]. Clinical guidelines usually address a speci�c health con-
dition and provide recommendations to the physician about investigation,
diagnosis and treatment. The di�erence between �guideline� and �proto-
col� is not well-de�ned, but a clinical protocol is basically a more detailed,
site-speci�c version of a guideline, referring to a certain class of therapeutic
interventions [41]. In the context of this work I use the term guideline most
of the time, but the statements are true for guidelines as well as protocols if
not explicitly stated otherwise.

1.2 Objectives

The Asbru language provides strong temporal abstraction capabilities in-
tegrated with guideline execution. Unfortunately, an execution engine that
would live up to the potentials of Asbru was not available before. None of the
previous implementations closely integrate plan execution and the required
data abstraction into the clinical data �ow in a high frequency domain such
as intensive care.

To �ll this gap, a new execution engine for Asbru, the Asbru Interpreter,
is being developed. The theoretical work of Seyfang provides the foundation
for this implementation [59] and my work. There are two main objectives
for this thesis. The �rst is to analyse, design, and implement a framework
for a modular execution engine for Asbru, including an exact de�nition of
the semantics of the components and the interactions between them. Mon-
itoring patient data requires algorithms to match the real world data with
the temporal patterns de�ned in the Asbru plan library. In high-frequency
domains such as intensive care, these algorithms must comply with de�ned
runtime constraints. This requires new algorithms. The second main objec-
tive is to design and implement algorithms for monitoring temporal patterns
using the created framework.

1.3 Outline of this Thesis

After having presented the motivation and background for this thesis, I give
an outline of this thesis here.

Chapter 2 gives an overview of the related work on computer-interpretable
clinical guidelines as well as the temporal aspects of modeling medical
knowledge.

CHAPTER 1. INTRODUCTION 3

Chapter 3 introduces the reader to the main concepts of Asbru with a focus
on the temporal aspects.

Chapter 4 gives an overview of the Asbru Interpreter from a software de-
sign point of view. It introduces the basic concepts of the module
framework and its implementation in an object oriented language. An
example from the �eld of arti�cial ventilation of neonates provides a
link from the conceptual level to execution.

Chapter 5 describes algorithms developed for monitoring temporal pat-
terns in patient data. Algorithms for Asbru's most important temporal
abstraction features are presented.

Chapter 6 concludes the thesis with an evaluation of the implementation,
a summary, and an outlook on possible future improvements.

Chapter 2

Related Work

This chapter gives an overview of the related work on computer-interpret-
able clinical guidelines and protocols as well as on the temporal aspects of
modeling medical knowledge. The chapter is divided into two main parts.
The �rst part describes several guideline modeling methodologies, the second
part focuses on temporal data abstraction and intelligent data analysis.

2.1 Guideline Modeling Methodologies

To execute clinical guidelines in a computer-supported way, free-text guide-
lines complemented with tables, formulas, or �ow charts, have to be for-
malised and translated into an executable form. Many researchers have pro-
posed frameworks for design, validation, and execution of clinical guidelines.

This section discusses di�erent guideline modeling methodologies that
support computer-based execution. Besides a general review of each ap-
proach, I focus on the analysis of the temporal features provided by di�erent
approaches. A general in-depth comparison of several methodologies, includ-
ing an analysis of the structures used to model guidelines, can be found e. g.,
in [54].

2.1.1 Asbru

Asbru is a time-oriented plan representation language that represents clinical
guidelines as skeletal plans [60]. Skeletal plans are plan schemata at various
levels of detail, capturing the essence of the procedure, but leaving room for
execution-time �exibility in the achievement of particular goals [25]. In As-
bru, the concept of skeletal plans has been enriched with temporal aspects.
Several knowledge roles are attached to a plan: preferences, intentions, con-
ditions, e�ects and a plan body, which describes the actions to be taken.

Asbru was originally developed in the Asgaard project [65, 45]. Since
then, Asbru has evolved into an XML-based language with many conceptual

4

CHAPTER 2. RELATED WORK 5

extensions [60]. A partial de�nition of the semantics of Asbru has been
created using Structured Operational Semantics. An overview is available
in [5].

Asbru's distinguishing features are:

� Intentions, conditions, e�ects and world states are temporal patterns,
which allow reasoning about the contained knowledge.

� Actions and states can be continuous (durative).

� The language allows to model temporal uncertainties, di�erent gran-
ularities, and repeated patterns in events, actions, plans and world
states.

� Plan can be executed in a �xed sequence, in parallel, or unordered
(with and without mutual exclusion).

� Because of the advanced (temporal) data abstraction capabilities, di-
agnosis and treatment can be tightly integrated allowing each one to
support the other [63].

All conditions for the transition from one plan state to another are ex-
pressed in terms of temporal patterns. A temporal pattern consists of one
or more parameter propositions or plan-state descriptions. Each parameter
proposition contains a value description, a context, and a time annotation.
The time annotation used allows a representation of uncertainty in starting
time, ending time, and duration of an interval. Start and end are de�ned
as shifts from a reference point. Reference points can be de�ned as sets of
cyclical time points or references to parameter changes, allowing for repeated
temporal patterns.

Since Asbru plans cannot be easily modeled using the classical approach
of �ow charts, new visualisation paradigms are needed to represent Asbru
plans. Several tools such as AsbruView [39] and CareVis [1] have been de-
veloped for the visualisation task. Other tools are available to translate
informal, textual guidelines to an intermediate representation [64] and to
the fully formalised Asbru XML representation [85].

There have been two attempts to implement an execution engine for As-
bru. The �rst implementation created by Bosse [9] translated the guideline
into a representation suitable to be executed in Clips. The implementa-
tion was customised for a single clinical protocol and was therefore aban-
doned after the end of the project. A more general implementation is As-
bruRTM [27,26]. It has been used to test Asbru guidelines in intensive care.
Unfortunately, AsbruRTM only supports a subset of the available plan types
in Asbru Light (again only a subset of the full Asbru language) and does not
integrate advanced temporal data abstraction.

CHAPTER 2. RELATED WORK 6

Spock is a system for application of guidelines in Hybrid-Asbru, which is a
semi-formal guideline language that combines formal structure with descrip-
tion text [87]. Spock is therefore not suited for fully-automated execution �
it can support a human agent applying a guideline. Spock is integrated with
the IDAN architecture [8] and can utilise its temporal abstraction capabili-
ties.

Asbru is the representation language used in this thesis, therefore, a more
detailed introduction to its features can be found in chapter 3.

2.1.2 EON

EON was developed at Stanford University between 1996 and 2003 as a
component-based, extensible architecture, and provides a suite of models
and software components for creating guideline-based applications [46]. EON
uses a task-based approach to de�ne decision-support services that can be im-
plemented using alternative techniques. Four tasks can be identi�ed: know-
ledge acquisition, protocol-based decision support, temporal abstraction, and
explanation services.

Knowledge acquisition is done using Protégé representing knowledge in
three models. The generic Dharma guideline model is used to create and
maintain clinical guidelines and protocols. The domain ontology is repre-
sented in the medical speciality model. A patient data model represents the
patient information.

Guideline execution is implemented in the PADDA guideline server [80].
Clinical professionals interact with the PADDA server through the PADDA
client. The temporal-abstraction task is solved using the Knowledge-Based
Temporal-Abstraction method [66] implemented in RÉSUMÉ (see section
2.2.4). Originally RÉSUMÉ and Chronus, a temporal query system, were
directly implemented as parts of the guideline execution component. Later,
the Tzolkin [47] temporal mediator (see section 2.2.4) was integrated for
the temporal abstraction task to provide temporal query and abstraction
services [81]. The temporal abstraction component interfaces with a re-
lational database management system to access patient data as series of
time-stamped values.

Explanation services, which can be used by other components, are im-
plemented in the WOZ [67] explanation server.

EON provides three models to specify decision criteria. Simple expres-
sions such as Boolean operators can be de�ned using simple templates. Ad-
vanced decision criteria are o�ered through the Protégé Axiom Language
(PAL) or through temporal queries as provided by the Tzolkin component.

The EON architecture is used in the ATHENA Decision Support System
(DSS). ATHENA is a guideline-based decision support system for hyperten-
sion management [28,29].

Although EON provides advanced temporal abstraction capabilities, it

CHAPTER 2. RELATED WORK 7

seems that it cannot be used for planning in high-frequency domains, be-
cause of the database-centric approach and the performance limitations of
the temporal abstraction component. Although the component-based archi-
tecture would allow an extension for such a usage scenario, to my knowledge
there haven't been e�orts in that direction.

2.1.3 GLARE

GLARE is a domain-independent system with tools for the full life-cycle of
clinical guidelines [76]. The name stands for GuideLine Acquisition, Rep-
resentation, and Execution. It has been developed at the Universitá del
Piemonte Orientale �Amedeo Avogadro�, Alessandria, Italy.

The representation formalism builds on a limited but comprehensible
set of primitives and is designed to cope with di�erent types of temporal
constraints. Particular attention was paid to the role of periodic events.
The following temporal concepts are considered [75] and solved as instances
of Simple Temporal Problems (STP) [18]:

� Speci�cation of temporal bounds on di�erences (e. g., the time between
two successive intakes of a speci�c medicine should not exceed eight
hours during the �rst two days of treatment).

� Temporal constraints between actions belonging to the same plan.

� Temporal constraints in di�erent plans (e. g., checking of vital signs
must be repeated during the whole surgery).

� Temporal constraints on repeated actions (e. g., a speci�c medicine has
to be taken every eight hours for one week).

Temporal reasoning about these constraints supports guideline creation
as well as execution. When a guideline is being acquired, reasoning can be
useful for instance to check the consistency of the constraints imposed on
actions. At execution time, temporally minimal procedures can be deter-
mined.

GLARE provides a representation formalism, a knowledge authoring tool,
and a guideline execution tool. The formalism is designed to be easily under-
standable so that guidelines can be designed by trained domain-experts and
there is no strong requirement for knowledge engineers. The authoring tool
provides di�erent types of checks to help developing consistent guidelines.

During guideline execution GLARE provides another feature for decision
support: the �what if� facility, which allows hypothetical reasoning [77]. Us-
ing this facility, it is possible to compare di�erent paths in the guideline,
by simulating what could happen if a certain choice was made. Users are
thereby helped in gathering various types of information needed to discrim-
inate alternatives.

CHAPTER 2. RELATED WORK 8

Guidelines are currently directly stored into a relational database. It is
therefore di�cult to evaluate the speci�c features of the guideline represen-
tation. According to [78], an XML representation is worked on. This should
ease the evaluation of GLARE by other groups.

Although GLARE supports temporal constraints on and temporal rea-
soning about actions and plans, publications on GLARE do not talk about
temporal abstraction capabilities for diagnosis and prognosis.

2.1.4 GLIF

The Guideline Interchange Format (GLIF) stresses the importance of shar-
ing guidelines among di�erent institutions and systems [52,10]. As the name
suggests, the original idea for GLIF was a format that other guideline repre-
sentations could be translated into. Because this aim seemed infeasible, the
focus was shifted to build a standard format for sharing guidelines. GLIF
has been collaboratively developed by groups at Columbia, Stanford and
Harvard Universities (the InterMed Collaboratory).

GLIF version 2 enabled modeling a guideline as a �owchart of structured
steps, representing clinical actions and decisions. However the attributes of
the constructs were de�ned as free text so that such guidelines could not be
used for computer-based execution. GLIF3 builds upon GLIF2 but remedies
its main de�ciencies [52].

Guidelines in GLIF3 can be designed at three levels:

� A conceptual, �ow-chart based representation that is human-readable.

� A computable representation that allows a computer to interpret the
logic and sequence speci�ed in guidelines. Guidelines at this level can
be veri�ed for logical consistency and completeness.

� An implementable speci�cation for incorporation into clinical systems.
This level allows adaptation to the existing information systems in
di�erent institution by non-shareable elements.

GLIF3 is an object oriented language. The model is described using Uni-
�ed Modeling Language (UML) class diagrams1. The guidelines are stored
in an RDF-based2 XML representation.

Decision criteria can be written in an expression and query language. The
latest development, GELLO [50], is an object oriented version of GEL [53],
the �guideline expression language�, which itself is a superset of the Arden
Syntax logic grammar. The default medical data model of GLIF is based
on the HL7 Reference Information Model (RIM). GELLO can access all
information in the �virtual medical record� compatible with HL7 RIM.

1UML is de�ned by the Object Management Group, http://www.uml.org/, accessed
Feb 17, 2006.

2Resource Description Framework, http://www.w3.org/RDF/, accessed Feb 17, 2006.

http://www.uml.org/
http://www.w3.org/RDF/

CHAPTER 2. RELATED WORK 9

GLIF provides a layered model for representing medical knowledge. The
core GLIF layer provides a standard interface to all medical data and con-
cepts that may be represented and referenced by GLIF. The RIM layer pro-
vides a semantic hierarchy for medical concepts, and allows attribute speci-
�cation for each class of medical data.

The execution engine named GLEE can be used to execute GLIF3 guide-
lines. Neither the layered model nor the GELLO language are currently
supported as the software is not yet to be integrated in clinical information
systems [86].

2.1.5 GUIDE

Guide, a component-based multi-level architecture, integrates the formalised
model of medical knowledge contained in clinical guidelines with work�ow
management, formally grounded on Petri nets [56]. It has been developed at
the University of Pavia, Italy.

The original system [56,57] was comprised of three components: an edit-
ing tool to support clinical experts in specifying guidelines in a formal rep-
resentation, a translation tool from the guideline into a high-level work�ow
model, and a low-level work�ow builder to model the medical procedures
according to site speci�c requirements.

Similar to other methods, the model allows the decomposition of tasks
in subtasks to describe di�erent levels of abstraction. The medical guideline
is seen as the high-level model, the organisational work �ow as the low-level
model. Both are represented and implemented as an integrated system using
work�ow management methods and tools. The use of time constraints allows
the modeler to represent how long it may take for a task to be executed.

The work�ow model is translated into a Petri net for simulation pur-
poses. The simulation allows to validate the care�ow model and to analyse
the resource allocation and time constraints in the work�ow. For real-world
deployment, the system is implemented in a commercial work�ow manage-
ment system and linked with electronic patient record systems.

The original Guide approach has been superseded by the NewGuide
project [13,14]. With the focus still on care�ow, guideline management and
care�ow management have been decoupled and are now only loosely linked
through message-based communication3.

The system architecture de�nes the care�ow management system and
the guideline management system. Both system parts use the shared or-
ganisational and medical ontologies. The guideline management system is
comprised of a guideline editor, a central guideline repository, the inference
engine, and a reporting system. The use of the SOAP message framework

3The message system is implemented using SOAP (see http://www.w3.org/TR/soap/,
accessed Feb 11, 2006).

http://www.w3.org/TR/soap/

CHAPTER 2. RELATED WORK 10

and the de�nition of a virtual medical record eases the integration with
legacy systems.

The focus of the project on care�ow management allows to research spe-
ci�c aspects of applying guidelines to the clinical environment, such as com-
pliance or non-compliance to guidelines. The decoupling of �pure medical
action� and �organisation actions�, i. e. those actions that could be managed
by a work�ow management system, allows to handle exceptions that can
arise during the guideline-based process [13].

Regarding the temporal aspects of Guide, the representation formalism
allows the speci�cations of rules and criteria in an object-oriented language
that can also manage qualitative and temporal abstractions [13]. Temporal
abstractions are based on the work by Belazzi et al. [40], which seems to
imply that temporal abstraction capabilities are again an external resource.

2.1.6 PRODIGY

PRODIGY is a decision support system that integrates with primary care
information systems [55,36]. Its main focus is to support general practition-
ers in prescribing. PRODIGY was introduced in 1996 at the University of
Newcastle upon Tyne and is under continued development. The system is
used by a large number of general practitioners in the United Kingdom, in
form of clinical information systems developed by two di�erent vendors [35].
Phase three of the project added support for chronic disease management.

PRODIGY models guidelines as a series of decisions that a general prac-
titioner may have to make in di�erent patient encounters. The model is
based on patient scenarios, which represent entry points into a guideline and
facilitate a patient's automatic entry into an appropriate plan or subplan.
The basic idea of patient scenarios was adopted by EON and GLIF. Protégé
is used as knowledge acquisition tool.

Criteria, as in conditions and preferences, are implemented as Boolean
expressions to express a preference for or against a choice. A criteron may
use quantitative and qualitative expressions, it may contain a reference to
a time period, e. g., �absence of cough within last 3 months�. The criteria
are matched with the data in the electronic patient record (EPR). A set of
functions is provided with which abstract concepts, such as the risk rating,
can be computed from more elementary concepts such as smoking, cholesterol
level, and other risk factors [36].

PRODIGY does not aim at fully-automated guideline execution and al-
ways requires con�rmation of the physician.

2.1.7 PROforma

PROforma is a knowledge composition and process modeling language sup-
ported by acquisition and execution tools, with the goal of supporting guide-

CHAPTER 2. RELATED WORK 11

line dissemination in the form of expert systems that assist patient care
through active decision support and work�ow management [24]. It has been
developed at the Advanced Computation Laboratory of Cancer Research,
UK since 1992. PROforma combines logic programming and object-oriented
modeling, formally grounded in the R2L language.

One aim of the PROforma project is to explore the expressiveness of a
deliberately minimal set of modeling constructs. This is also shown in the
fact that during the onward development of PROforma, the number of pos-
sible plan states has been reduced to the minimum set necessary to provide
the required behaviour (from eleven to four states). The other �states� have
been determined to be inferable from other properties of a task.

The project also extensively considered the topic of safety in systems
development and the risks of agent technologies, in which expert systems are
built that act autonomously. This includes the development of a knowledge
representation language (RED). RED and its implementation R2L are hybrid
rule- and knowledge-based languages that explicitly represent evidence for
assertions and use classic logic to form rules [23].

A semantic speci�cation of PROforma exists that provides operational
semantics for the language through the description of an abstract PROforma
engine along with a set of �public operations� that may be performed on the
engine by an external system [74]. Rules are set out that describe how
the public operations change the state of the abstract engine. Through
the semantic speci�cation the authors hope to encourage tools and software
development using the PROforma language by other groups as well.

A number of components have been written to create, visualise, and enact
PROforma guidelines. The Tallis software suite includes components written
in Java. PROforma has also been used as the basis of a commercial decision
support and guideline technology Arezzo from Infermed Ltd., London, UK.

Similar to Asbru, e�ects of plans are implemented in a computer inter-
pretable form, although PROforma lacks the expressive powers to describe
temporal uncertainty of e�ects.

2.2 Temporal Reasoning in Medicine

Time is an important aspect of the real world. Events occur at some point in
time, facts are true over time, objects exist over time. Relationships between
events, facts, and objects exist over time [51]. Time is so fundamental that
reasoning about time often occurs unnoticed. The same can be observed
when considering decision making in medicine [4].

When modeling information or processes in computer systems, we must
be able to model temporal information and change over time. Representation
of and reasoning about time has been an active direction of research for
the last decades. Section 2.2.1 introduces the most important aspects of

CHAPTER 2. RELATED WORK 12

representation of time.
Two areas of research identi�ed in [16] are especially important for our

work: temporal data maintenance (traditionally linked with the (temporal)
database community and described in section 2.2.2) and temporal reasoning
(traditionally linked with the AI community, see section 2.2.3). The focus of
temporal data maintenance is the storage and retrieval of data in a way that
allows the representation of the time-oriented aspects of the data. Temporal
reasoning addresses reasoning about the state of the world in a time-oriented
way.

Retrieval of time-oriented data as well as temporal reasoning utilise tech-
niques summarised as temporal abstraction. Temporal abstraction, or more
exactly temporal data abstraction, deals with the context-dependent, time-
oriented transformation of raw data into higher-level concepts.

Intelligent Data Analysis (IDA) refers to all methods that are devoted
to support the transformation of data into information exploiting the know-
ledge available on the domain [7]. It usually includes, but is not limited to,
temporal abstraction. Intelligent Data Analysis is a fundamental aspect of
clinical decision support. Therefore, most of the related work represented
here can also be classi�ed as IDA.

An area of research where temporal reasoning plays an important part is
guideline-based care (compare section 2.1).

2.2.1 Representation of Time

There are several aspects that are considered in the discussion about repre-
senting time:

� the basic �shape� of temporal structure,

� the �topological� perspective,

� the basic reference: constant-based or interval-based view of time, and

� modeling of change.

Usually time is conceived as a line on which temporal references can be
aligned. In that case, time is linear and the set of time points is completely
ordered (e. g., in [3]). Another popular approach is a future-branching struc-
ture that allows to represent hypothetical alternatives. A past-branching
structure could provide a framework for abductive reasoning. Circular time
can be useful to describe repetitive patterns or cyclic processes [4].

When time is considered from a topological perspective, i. e. as discrete,
dense, or continuous, it can be analysed under the light of topology in math-
ematics [4]. Time references can be de�ned as discrete succession, i. e. iso-
morphic to N or Z. Other problems may require a continuous conception of
time, i. e. isomorphic to R.

CHAPTER 2. RELATED WORK 13

A much discussed aspect of time is the basic temporal reference to use.
Time can be represented using an instant-based approach that uses time-
points to refer to punctual occurrences [68]. It can also be represented period-
based using intervals as the basic reference [2,3]. Some approaches combine
these two [83].

It is important to note that the question is not only one of representation.
Intervals can be represented as start and end points, in the same way, time
points can be seen as in�nitely short intervals. The distinction is really one
of semantics, as recently discussed in the context of temporal databases [79].
This understanding is common knowledge in linguistics and has been applied
to Arti�cial Intelligence before (e. g., [66]). In linguistics, sentences are clas-
si�ed within di�erent �aktionsart classes� (e. g., activities, accomplishments,
achievements, and states). Whereas for a stative sentence it is true that the
statement is true for any subinterval (e. g., if a person is asleep between 1:00
and 8:00 a.m., she is also asleep between 3:00 and 4:00 a.m.), the same is
not true for an accomplishment/achievement (e. g., if someone built a house
in the interval from September 1 until June 1, then it is false that she built
a house in any subinterval of this interval). Terenziani et al. show that a
point-based semantic is unable to describe such accomplishments/achieve-
ments. They describe a model for temporal databases that handles both
kinds of semantics [79].

When talking about change, there are two main ways to make temporal
references. One can use either absolute time references like �on February 28,
2006� or relative references like �as soon as possible� or �after each meal�. In
the �rst case, time is conceived to have existence from the very beginning
and the concept of state and change are derived from it. The other concept
relies on the notion of change itself, which is directly associated to events.
Change is considered as the fundamental concept and time must be built
from it [4]. In the area of temporal databases, both approaches have been
used (see for example TSQL2 [70] and the Event calculus [83]).

2.2.2 Temporal Data Maintenance

Temporal data maintenance, the time-oriented storage and retrieval of data,
is usually linked to temporal databases. There have been several develop-
ments in the medical informatics community as well as general approaches
in the (temporal) database community, which will be described in the fol-
lowing.

Of general importance is the work of Snodgrass et al. [71], who identi�ed
three di�erent temporal dimensions:

Transaction time (or physical time) is the time at which data is stored
into a database or entered into a system.

Valid time (or logical time) is the time at which the data is valid in the

CHAPTER 2. RELATED WORK 14

real world, for example the time when a blood sample is taken.

User-de�ned time is any other time dimension that is application-depen-
dent and has therefore no special meaning to a temporal database
system, for example the time when the blood sample is analysed in the
laboratory.

Snodgrass also de�nes four types of databases distinguished in their sup-
port for these temporal dimensions. Snapshot or static databases are based
on a �at, timeless model, they only have a notion of the current state. Roll-
back databases keep the history of the recorded data but consider only the
transaction time. Historical databases are based on a model of the valid
time, they can present the past as it is seen at the present. Finally, bitem-
poral databases (originally just temporal databases) are a combination of
historical and rollback databases and explicitly model both transaction time
and valid time. This allows to query the current view of history as well as
the view of history from any past time point.

The bitemporal model was the basis of TQuel (Temporal Query Lan-
guage) [69], and latter TSQL (Temporal Structured Query Language) as
well as TSQL2 [70]. TSQL2 was integrated into the SQL-3 standard as
SQL/Temporal [72].

Temporal data maintenance approaches related to the medical informat-
ics community are, e. g., GCH-OSQL/GCH-OODM, or Chronus. The Gran-
ular Clinical History-Object Structured Query Language (GCH-OSQL) is
an object-oriented temporal query language for temporal databases. GCH-
OODM is the corresponding object-oriented temporal data model. The lan-
guage is designed to support mixed temporal granularities and integrates
temporal abstraction capabilities [15].

Chronus is a query system supporting temporal extensions to SQL for
relational databases. It provides an extension not only to the query language,
but to the relational algebra for managing temporal information. It is built
as a separate component to provide temporal maintenance capabilities on
top of a historical relational DBMS. Its query language is called Time Line
SQL (TL-SQL) [17]. Chronus has been integrated with RÉSUMÉ in the
Tzolkin system (see section 2.2.4).

2.2.3 Temporal Reasoning

Temporal reasoning has been used in medical domains in a number of di�er-
ent tasks, such as diagnosis, prognosis, interpreting, critiquing, and therapy
planning. These tasks are often interdependent and share basic techniques
such as temporal abstraction.

From a methodological point of view, temporal reasoning in the medical
domain can be classi�ed as deterministic or probabilistic approaches. De-
terministic approaches are based on either well-known formalisms from AI,

CHAPTER 2. RELATED WORK 15

ad-hoc rules, or ontologies. Probabilistic approaches are typically associated
with the interpreting or prognosis tasks under uncertainty (including e. g.,
Bayesian belief-networks) [16].

A comprehensive proposal for temporal reasoning is the Knowledge-
Based Temporal-Abstraction (KBTA) method [66]. It de�nes several domain
independent subtasks of temporal abstraction:

1. Temporal context restriction creates relevant interpretation contexts
required for focusing and limiting the scope of inference. Knowledge
must only be applied in the speci�c context where the knowledge is
correct.

2. Vertical temporal inference obtains higher-level concepts based on con-
temporaneous data, e. g., inferring a general state description from
individual parameters.

3. Horizontal temporal inference determines the domain value of an ab-
straction created from di�erent joined abstractions (attached to di�er-
ent time intervals).

4. Temporal interpolation bridges gaps between similar-type disjoint epi-
sodes to create longer intervals using domain-speci�c knowledge.

5. Temporal pattern matching is matching of prede�ned complex temporal
patterns with the patterns created by the abstractions.

Problem-solving methods for these tasks have been implemented in sev-
eral systems, e. g. the RÉSUMÉ system. A particular feature of the KBTA
method is that the temporal abstraction methods are independent of the
domain-speci�c knowledge. The relevant domain knowledge is modeled in
the domain ontology. Therefore, it is possible to reuse the KBTA method
in many domains. Additionally, the method does not rely on prede�ned
patterns, but instead automatically creates abstractions according to the
domain ontology.

The KBTA method is not the only approach to temporal reasoning. The
next sections describe the research on and applications of temporal reasoning
and Intelligent Data Analysis.

2.2.4 Applications of the Knowledge-Based Temporal-Ab-

straction Method

This section describes applications of the Knowledge-Based Temporal-Ab-
straction (KBTA) method [66]. There have been several di�erent approaches
to bene�t from this general framework for temporal reasoning.

CHAPTER 2. RELATED WORK 16

RÉSUMÉ

RÉSUMÉ is the �rst implementation of the KBTA method. It is imple-
mented in CLIPS and is composed of a temporal-reasoning module, a static
domain knowledge base (the domain's temporal abstraction ontology), and
a dynamic temporal fact base for input and output data.

Abstractions are derived from input data, these abstractions and the
input data are again used to derive or retract new abstractions in a recursive
process. A truth-maintenance system is implemented so that changes in
abstractions are propagated correctly by maintaining logical dependencies
among parameters and derived abstractions. This is required to process
data out of temporal order (e. g., analysis of a blood sample in a clinical
laboratory might by available only several days after the blood sample was
taken). The dynamic temporal fact base is therefore essentially a historic
database � it allows to change the present view about the past, based on
new facts.

The domain ontology is represented in the parameter-properties ontol-
ogy, which describes the properties of parameters in the domain, and the
event and context ontologies. Classi�cations and functional knowledge are
represented as either tables or �black box� functions. All domain-speci�c
knowledge is therefore modeled in the domain knowledge base. RÉSUMÉ
itself is domain-independent.

RÉSUMÉ has been tested in several domains including the domain of
therapy for insulin-dependent diabetes. It has also been built into the Tzolkin
system. CAPSUL [11] extends RÉSUMÉ with a language for the speci�ca-
tion of periodic patterns. The main problem of RÉSUMÉ is its performance,
as runtime and space complexity are exponential to the data set size [48].

The Tzolkin System

The Tzolkin system integrates temporal reasoning with temporal data main-
tenance [47]. The approach is called a temporal database mediator. How-
ever, the name temporal abstraction mediator would be more appropriate,
because the software acts as a mediator between clinical applications and
a database management system providing temporal abstraction capabilities.
Tzolkin consists of a temporal reasoning component (RÉSUMÉ), a temporal
maintenance component (Chronus), a query preprocessor, and a controller.

Tzolkin allows to query not only the data already available in the existing
clinical DBMS, but also dynamically generated time-oriented abstractions of
the data using the abstraction capabilities of RÉSUMÉ. Its query language,
SQL for Abstractions (SQLA), is a syntactic as well as semantic superset of
TL-SQL, the query language of Chronus. Additionally to the grain and
when query extensions of TL-SQL, SQLA o�ers a context extension that
de�nes the abstraction context for RÉSUMÉ.

CHAPTER 2. RELATED WORK 17

Tzolkin was used as the temporal abstraction component of the EON
decision-support architecture (see section 2.1.2). However, its main problem
is performance. The combination of both database and rule-based methods
leads to scalability problems in this approach. Basically, RÉSUMÉ generates
all abstractions mentioned in the query and writes them into a temporary
database. Then Chronus uses this temporal database to execute the query.

A batch computation mode was implemented to counter the performance
problem. Batch computation generates and stores all possible abstractions
for a given set of data in advance. The inherent problem with this method
is that the truth-maintenance of RÉSUMÉ does not cover the external data-
base. Therefore, the precomputed abstractions are in fact only a snapshot
of the data and subsequent changes in the underlying clinical database will
lead to the combination of valid and invalid data in the system. The authors
conclude that without a truth-maintenance system at the database level,
caching features are infeasible.

RASTA

RASTA is a distributed temporal abstraction system to facilitate knowledge-
driven monitoring of clinical databases [48]. RASTA is a recursive acronym
for RASTA: A System for Temporal Abstraction. The main motivation
for the development of RASTA was to have a replacement for Tzolkin (and
therefore RÉSUMÉ) as the temporal reasoning component in EON. In the
words of the authors, �RÉSUMÉ does not o�er real-time response rates for
anything other than small single-patient data sets. Its fundamental problem
is that there is an exponential relationship between the size of the data set
it operates on and its memory and CPU requirements.� [48]

RASTA implements a part of the KBTA method using a distributed algo-
rithm. Individual abstractions are evaluated in an abstraction hierarchy, the
abstraction steps can be distributed over several computers. The algorithm
is data-driven, so it does not require complicated synchronisation between
the abstraction processes. From a functionality point of view, RASTA is
similar to RÉSUMÉ. It does not implement ad-hoc temporal queries like
Tzolkin does. RASTA is implemented in Java.

The problem of truth maintenance is implemented using database trig-
gers informing RASTA when data has been modi�ed. In that case, the corre-
sponding changes in the abstractions are propagated through the hierarchy.
This process may involve retracting abstractions, which can be computation-
ally complex.

When distributed over many computers, RASTA supports very large
data sets. It has been used as the temporal reasoning component for EON
in the ATHENA decision support system [28].

CHAPTER 2. RELATED WORK 18

Chronus II

Chronus II is a temporal database mediator that provides temporal query
capabilities on top of regular (snapshot) database management systems [49].
It uses a historical database model and is based on Chronus and parts of
the TSQL2 temporal query speci�cation. Additionally, it integrates RASTA
and thereby provides temporal abstraction capabilities.

The Chronus II design is similar to that of the Tzolkin system. First,
RASTA is used to create abstractions of the raw-data, then Chronus II can
apply the query to the created abstractions. Like RASTA, Chronus II is
implemented in Java. It can be integrated with any standard DBMS that
provides a JDBC connector.

Chronus II has been used in the ATHENA decision support system for
temporal queries. The language has also been used as temporal predicate
language in a guideline modeling system [49].

Momentum

Momentum is an active time-oriented database for temporal abstraction,
exploration and analysis of time-oriented data. It is an answer to the per-
formance problems inherent to the former approaches, namely Tzolkin and
Chronus II [73]. The ine�ciency of Tzolkin has been already discussed above.
Chronus II has similar problems as it works basically the same way. The dif-
ference is only that RASTA can be used in real-world scenarios, because it
can be used on a distributed architecture.

Momentum replaces the temporal database mediation approach with an
integration of temporal reasoning and temporal data maintenance in one
system. It is implemented as a time-oriented Active Database (ADB). When
primitive data is added to the system, de�ned rules incrementally create
or retract abstractions. This is similar to the batch computation mode of
Tzolkin, but is performed dynamically and incrementally. Initially, data is
loaded in an extract, transform, and load (ETL) process from outside data
sources. Updates are done in a delta-based update ETL process. These
concepts are borrowed from data warehousing, and in fact, the architecture
of Momentum can be seen as a special form of a data warehouse.

In addition to the temporal abstraction query and instruction language
(TAQILA), a knowledge de�nition language (KDL) to de�ne domain speci�c
knowledge according to the KBTA ontology has been created. The TAQILA
language supports both entering raw-data into the system as well as querying
raw-data and abstraction concepts. It allows the explanation of derived con-
cepts and dynamic sensitivity analysis using the truth-maintenance system
(�what if?�). The TAQILA language is not SQL-based.

Momentum is implemented in Java. KDL, TAQILA, and query results
are represented in XML. The data is stored into an XML:DB compliant

CHAPTER 2. RELATED WORK 19

native XML database. It is planned to further improve the performance by
making the abstraction algorithms parallel and distributed. The system has
not yet undergone clinical evaluation, according to the latest publications.

The IDAN Architecture

IDAN is a framework for distributed mediation of temporal-abstraction que-
ries to clinical databases [8]. It is task-speci�c and domain-independent.
IDAN consists of time-oriented data sources, domain-speci�c temporal-ab-
straction knowledge sources, temporal abstraction services, and a mediator
to integrate all services. The default abstraction service is ALMA. It is based
on a temporal-deductive database and logical programming (implemented in
a Prolog interpreter).

The easiest way to describe how IDAN works, is to describe the (simpli-
�ed) query processing �ow. An application sends a query to the mediator.
The mediator retrieves relevant concepts from the knowledge sources re-
quired for the query. Then it requests the raw data from the data sources,
converts the returned data, and passes the data and the knowledge rep-
resentation to the abstraction services (ALMA by default). ALMA forms
temporal-abstraction rules from the knowledge, processes the query, and
returns abstract-concept answers. These answers are handed back to the
application.

IDAN integrates several standards for medical vocabulary for diagnosis
and procedures. It is implemented as a number of web services using .NET
technology. Queries, data, and results are represented in XML. The mediator
itself is implemented in the C# programming language.

The focus of IDAN is to provide web services that can be used in many dif-
ferent applications. The architecture is quite di�erent from the Momentum
architecture. Although IDAN is a more generic solution, it is less capable of
the task of continuous monitoring or answering queries about large patient
populations.

2.2.5 Other Applications of Temporal Abstraction

A lot of the research presented in this subsection is in�uenced by the KBTA
theory, but since none of these proposals implement the KBTA method in
the same way as proposed in [66], they are presented in their own section.

Similar to the IDAN architecture (but much earlier), Larizza et al. [40]
use an HTTP based server for temporal abstractions. It is similar to IDAN
in the sense that it is implemented as a web service (although the term web
service was not yet introduced at that time). The domain-independent imple-
mentation provides basic temporal abstractions such as trend abstractions,
state abstractions and complex abstractions, for example temporal operators
de�ned in the Allen interval algebra. It handles data of di�erent granulari-

CHAPTER 2. RELATED WORK 20

ties. The scalability of the system must be questioned as all input-data must
be sent to the server for each individual abstraction request. The same set
of temporal abstractions has been used by Bellazzi et al. for the assessment
of clinical performance of a hemodialysis services [6].

Another important area of research is decision support for intensive care
units (ICU). In this area, there is an intensive use of equipment and sen-
sors. Therefore, the problem is not only one of information and knowledge
extraction, but also of varying quality of sensor data and e�cient design
and implementation. The data is usually hard to interpret even for expert
physicians.

One aspect that is common in research in this area is trend detection.
TrenDx [31] is a trend diagnosis system that provides assistance to medical
diagnosis. It matches patient data to patterns of normal and abnormal trends
called trend templates. It has been applied to the analysis of ICU data, but
only to a single patient.

The Time Series Workbench provides knowledge-based event detection in
complex time series data [34]. High-frequency data is approximated through
a series of line-segments. The merging algorithm is in fact an instance of
temporal interpolation. It is controlled via a single relative error threshold.
A rule-based system is used for pattern matching. The technology does not
operate in real time, but is retrospective. The system has been evaluated in
a neonatal intensive care unit.

Miksch et al. [44] have developed methods for the abstraction of repeated
patterns in high-frequency, rhythmical data (like data from ECG). They have
designed an algorithm to transform a curve constituted by a series of data
points into a set of bends and lines in between them, similar to the way such
graphs appear to domain experts. The resulting qualitative representation
of the curve can be expressed as a list of objects each describing a bend.
In this format, it can be utilised in a knowledge-based system, or for visual
augmentation of the original data.

Seyfang et al. [62] use time-oriented, knowledge-based abstraction meth-
ods to optimise oxygen supply for neonates. The system is based on an
abstraction called spread, which is used to derive steady qualitative descrip-
tions from oscillating high-frequency data using regression lines calculated
in a sliding time window [43]. The width of the spread shows the uncer-
tainty involved in its calculation. This abstraction is used as the basis for a
knowledge-based process to control the oxygen supply in a minimal invasive
way. The system was successfully evaluated in a clinical trial [82].

Charbonnier et al. use a method of segmentation based upon gradual
linear approximations for on-line extraction of temporal episodes from ICU
high-frequency data [12]. At any time, the latest two line segments are clas-
si�ed into nine possible temporal shapes. These shapes can be summarised
into the three major cases steady, decreasing, or increasing. The proposed
system provides real-time detection of potentially dangerous developments.

CHAPTER 2. RELATED WORK 21

2.3 Discussion

The results of applied temporal abstraction techniques are encouraging. The
various methods provide useful decision support for the medical domain.
However, most methods are tailored to a small spectrum of use cases and
the di�erent approaches are usually not integrated in a general framework.
The Knowledge-Based Temporal-Abstraction method provides such a gen-
eral framework. Unfortunately, the developed applications are not suitable
for on-line analysis of high-frequency data in intensive care.

Intensive care is an area where there is need for improved decision support
and high-frequency processing. Therefore, our aim is to provide tools that
are capable of handling high-frequency data as well.

However, temporal abstraction and monitoring are not enough. The
integration of guideline execution into the clinical data �ow becomes more
and more important in order to apply decision support systems to clinical
daily practice [32,63]. This allows to go beyond diagnosis and prognosis, and
provide computer-implemented treatment support.

There are many guideline modeling approaches today, but only few inte-
grate strong data abstraction resources (compare section 2.1). Most guide-
line execution systems are database-centric and are not well-suited for high-
frequency domains. The limitations are not necessarily inherent to the
methodologies, instead they re�ect the design goals set by the research groups
implementing the systems.

Asbru �lls this gap providing strong temporal abstraction capabilities
integrated with guideline execution. The language can be used for the tem-
poral abstraction task as well as guideline modeling in diverse domains [61].
Unfortunately, an execution engine that would live up to the potentials of
the Asbru language did not exist previously. None of the existing systems
closely integrate plan execution and the required data abstraction into the
clinical data �ow in a high frequency domain such as intensive care (compare
section 2.1.1).

For the given reasons we have decided to implement a suitable execution
engine for Asbru, the Asbru Interpreter. The theoretical work of Seyfang
provides the foundation for this implementation [59].

Chapter 3

Introduction to Asbru

This section gives an introduction to the Asbru language. It is mostly a
summary of the available resources: The complete syntax of Asbru can be
found in the Asbru Reference Manual [60], a more detailed introduction to
several aspects of Asbru is available in [41,42,45].

3.1 The Asbru Plan Library

An Asbru plan library is written in XML1 and consists of two major parts,
the domain de�nition section and the plans section. The domain de�nition
de�nes both quantitative and qualitative parameters (i. e. input data and
abstractions of input data).

The plans section contains the plan de�nitions. Plans can be grouped and
hierarchically nested. The plan components, such as conditions or intentions,
refer to the parameters de�ned in the domain de�nition.

3.2 Representation of Patient Data

In Asbru, all patient data and world-state is represented as either parameters
or variables. Parameters are time-stamped data and the implementation
allows extensive reasoning about past states of a parameter. Variables are
timeless data, which behave like variables in programming languages. They
should only be used for secondary tasks, such as keeping status information.

Parameters are input channels of the system. The data can be retrieved
from various data sources, e. g., text �les, measuring devices, or a relational
database system. The modular architecture allows to easily implement cus-
tom modules for speci�c data sources. This also facilitates the integration
with existing patient record systems.

1The current DTD for Asbru, documentation, and the reference manual can be found
at: http://www.asgaard.tuwien.ac.at/plan_representation/asbrusyntax.html. Ac-
cessed Feb 26, 2006.

22

http://www.asgaard.tuwien.ac.at/plan_representation/asbrusyntax.html

CHAPTER 3. INTRODUCTION TO ASBRU 23

3.3 Data Abstraction

Data abstraction deals with the transformation of information obtained from
external sources. Most of the data is delivered as quantitative measurements.
However medical concepts are usually not expressed in terms of quantitative
values but instead as context-dependent, higher-level concepts, such as �high
blood pressure�.

Data abstraction is most relevant in high-frequency domains, in which
sensors deliver input at a rate of several records per minute or second, but it
is also applicable to low-frequency domains. The issues of data abstraction
fall into three main categories: data validation, calculation of derived values,
and transformation into qualitative information [42].

Any data obtained from sensors varies in quality over time. Under good
conditions it is fairly reliable and exact, but under circumstances not di-
rectly visible to the monitoring process they become very unreliable. Data
validation must compensate for spurious values in input data and protect
downstream modules from getting confused by invalid data.

In addition to the original data, a number of statistical measures derived
from that data are important for the abstraction of higher-level concepts.
Regression lines and trend analysis are important examples of derived values.
For instance, determining if a parameter is increasing, stable, or decreasing
is a common task.

Validated data and derived values still have the form of two-dimensional
data points describing the value of a parameter at a certain instant in time.
To facilitate reasoning about the observed data, the quantitative values
should be transformed into qualitative values, and instantaneous measure-
ments that have the same qualitative values should be concatenated to an
interval over time during which the abstracted parameter's value stays un-
changed.

Asbru provides support for these three data abstraction categories. Addi-
tionally, it provides temporal abstraction capabilities to facilitate reasoning
in a time-oriented way. In [61], a more detailed report of Asbru's temporal
data abstraction capabilities is given. It is illustrated with two examples
from the domains of arti�cial ventilation and diabetes.

3.4 Temporal Patterns

Asbru provides a rich representation to describe the temporal dimension
of values to be observed. The basic syntactic construct is the temporal
pattern. All conditions for the transition from one plan state to another
are expressed as temporal patterns. Temporal patterns can also be used to
obtain qualitative information through temporal abstraction. An observation
matching a temporal pattern is called an episode.

CHAPTER 3. INTRODUCTION TO ASBRU 24

A temporal pattern consists of a parameter proposition, a combination
of multiple nested temporal patterns, or a plan-state descriptions. Temporal
patterns can be combined using temporal constraints (3.4.3) and constraint
combinations (3.4.4).

3.4.1 Parameter Proposition

Parameter propositions are de�ned using the parameter-proposition ele-
ment and consist of a parameter name, a value description, a context and a
time annotation [60]:

Parameter name. The name of the parameter to be monitored, e. g., body-
temperature or blood-glucose level.

Value description. A predicate or comparison both referring to the named
parameter, either a value description, a value range, or a query for its
availability, e. g. higher than 37 ◦C or a qualitative value such as high.

Context. A set of parameters and their allowed values. The context must
hold during the whole period of time in question. It is used to describe
a set of situations under which the temporal pattern as a whole is valid.

Time annotation. A �exible description of the interval during which the
designated parameter must take the value given by the value descrip-
tion for the parameter proposition to become true. See section 3.4.2.

The point in time when both the parameter and the context start match-
ing their respective descriptions is called the positive �ank . The point in
time after the positive �ank, when one or both, parameter or context, stop
matching their descriptions, is called the negative �ank. If the interval be-
tween positive and negative �ank matches the time annotation, this interval
is called a �tting interval.

3.4.2 Time Annotation

A time annotation describes an interval of time. It speci�es three time ranges
constraining start, end, and duration of the interval. The time annotation
therefore allows a representation of uncertainty in starting time, ending time,
and duration [58]. In the Asbru language the constraints are de�ned as shifts
relative to a reference point. This enables to easily de�ne time annotations
relative to an event not known at plan creation time, e. g., the start of plan.

As already said, the constraints on start and end of the interval are de-
�ned as shifts (o�sets) relative to a reference point. The earliest starting shift
and the latest starting shift de�ne the earliest and the latest point in time
when a �tting interval must start. The earliest �nishing shift and the latest
�nishing shift de�ne the earliest and the latest point in time when a �tting

CHAPTER 3. INTRODUCTION TO ASBRU 25

time

Earliest Starting Shift

Earliest Finishing Shift

Latest Starting Shift

Latest Finishing Shift

Reference

Minimum Duration

Maximum Duration

Possible Interval

Figure 3.1: A schematic illustration of the Asbru time annotation [60]. The �gure
shows the constraints for the positive �ank, negative �ank, and the duration, and
a possible �tting interval.

interval must end. Minimum duration and maximum duration constrain the
duration of a �tting interval. Figure 3.1 illustrates the time annotation.

The reference point can be either a �xed point in time, the current time
(now), a reference to a plan-activation or parameter-change, or a set of cycli-
cal time points. The latter three allow de�ning repeated temporal patterns.

3.4.3 Temporal Constraints

Temporal constraints allow to de�ne temporal relations of two temporal pat-
terns using the thirteen temporal relations de�ned by Allen [2]. Temporal
constraints are met if two observed intervals from the two inputs meet the
de�ned relation.

Asbru implements only seven of the thirteen relations. The set of thirteen
contains inversions for the relations too, which can easily be accomplished
by exchanging the arguments. Temporal constraints are de�ned using the
temporal-constraint element. See table 5.3 on page 79 for the list of
supported temporal relations.

3.4.4 Constraint Combinations

A constraint combination connects two or more temporal patterns using
one of the Boolean operators and, or, or xor. The output of a constraint
combination is de�ned as follows:

and The constraint combination and is ful�lled if (and only if) there is at
least one currently valid episode for each input temporal pattern.

or The constraint combination or is ful�lled if (and only if) there is at least
one currently valid episode for at least one input temporal pattern.

CHAPTER 3. INTRODUCTION TO ASBRU 26

xor The constraint combination xor is ful�lled if (and only if) there is ex-
actly one input temporal pattern with more than zero currently valid
episodes.

Constraint combinations are de�ned using constraint-combination.
Additional to constraint combinations, Asbru provides an element to de�ne
the Boolean negation of a temporal pattern: constraint-not.

3.4.5 Analysis of Episodes

Episodes matching a temporal pattern can be further analysed to abstract
higher-level concepts from a temporal pattern. The episode-analysis-def
element provides several operators to extract the following features from a
stream of episodes matching a temporal pattern:

� The number of currently valid episodes that match the temporal pat-
tern.

� The duration of the latest matching episode.

� The start of the latest matching episode.

� The end of the latest matching episode.

� The total duration of all currently valid episodes.

A count constraint on a temporal pattern (element count-constraint)
allows to compare the number of episodes that match the temporal pattern
with an expression evaluating to a numeric value. The count constraint is
ful�lled, if the temporal pattern is ful�lled for as many times as de�ned.

3.4.6 Boolean Representation of Episodes

Another intuitive way to create further abstractions on the result of a pa-
rameter proposition is to transform the found episodes into a Boolean para-
meter. The stream of episodes is translated into a series of intervals during
which the Boolean value is true if (and only if) an episode occurs at this par-
ticular moment in time. In other words, at the positive �ank of an episode
a data point with value true is issued, at the negative �ank one with value
false [61].

This is done by encapsulating a temporal pattern using the boolean-def
element. Note that the result is usually only useful for parameter proposi-
tions, because e. g., the episodes issued by temporal constraints enclose the
input episodes, which means that the Boolean parameter will be true during
each convex (enclosing) interval formed by a pair of input episodes.

CHAPTER 3. INTRODUCTION TO ASBRU 27

activated

START

or time out

filter
failed

setup
failedfilter

failed
setup

abort

suspend

reactivate

suspend

complete

Plan-Execution StatesPlan-Selection States

aborted

suspended

completed

ready

considered

rejected

possible

filter
failed

filter

manual/automatic

Figure 3.2: The Asbru plan states and conditions for plan state transitions [60].
The states of the plan selection phase are shown on the left-hand side, the execution
phase states on the right-hand side of the �gure. In Asbru 7.2, the activation of a
plan can be manual or automatic, in the latter case the state ready is skipped. In
Asbru 7.3 each state transition can be speci�ed to need user con�rmation. There-
fore, the ready state of version 7.2 is obsoleted in version 7.3.

3.5 Plan States

In the Asbru plan-state model, all plans and actions are durative, therefore,
a set of mutually exclusive plan states describes the actual state of the plan
during both plan selection and execution phase. Conditions specify state
transition criteria for the transition between neighbouring plan states [41].
Figure 3.2 illustrates the plan states and the possible transitions based on
the transition criteria.

Plan states of parents and children are synchronised through propagation
of plan states. If a parent plan is aborted or suspended, this is also propa-
gated to its children. Plan states are also propagated from the children to
the parents. There are several ways to control the exact propagation seman-
tics between children and their parent, for example through the propagation
speci�cation (see [60]).

3.6 Components of Asbru Plans

An Asbru Plan consist of a name, a set of arguments, a time annotation
representing the temporal scope of the plan, and �ve components or knowl-
edge roles: preferences, intentions, conditions, e�ects, and a plan body. The
arguments, the time annotation, and all components are optional [45].

CHAPTER 3. INTRODUCTION TO ASBRU 28

3.6.1 Preferences

Preferences bias or constrain the selection of a speci�c plan to achieve a given
goal and express a kind of behaviour of a plan (strategy, utility).

3.6.2 Intentions

Intentions specify high-level goals at various levels. Intentions are temporal
patterns of actions or world-states that should be maintained, achieved, or
avoided. They are not only used for plan selection, but are important for
critiquing to decide if alternatively taken actions (non-compliance with the
guideline) have nonetheless ful�lled the intentions of a plan.

Intentions can be grouped in four categories: they can de�ne an inter-
mediate state or an intermediate action as well as an overall state pattern
or an overall action pattern.

3.6.3 Conditions

Conditions are temporal patterns that need to hold at particular plan steps
to induce a particular state transition of the plan instance. There are six
di�erent conditions that enable transition from one plan state into another.
Two of those are preconditions for plan states before the activation of a plan
(�lter-precondition and setup-precondition), the other four conditions induce
the plan state transitions after the initial activation of a plan (suspend-
condition, reactivate-condition, complete-condition, and abort-condition).

3.6.4 E�ects

E�ects describe the functional relationship between parameters resulting
from the execution of the plan or the overall e�ect of a plan by means of qual-
itative functions. E�ects have a likelihood annotation, i. e. the probability
of occurrence of the e�ect.

3.6.5 Plan Body

The plan body contains subplans or actions that are to be performed when
the plan itself is activated. The plan body might also be a reference to the
plan body of another plan (refer-to), or the plan might be declared abstract
(to-be-de�ned), i. e. only inherited plans will de�ne a plan body. A plan might
be a non-decomposable action to be performed by a user (user-performed).
To de�ne cyclical plans, the cyclical-plan element is used in the plan body.

Subplans

To decompose a plan into one or more subplans, the subplans element is
used in the plan body. This element is used to group plan steps in one of

CHAPTER 3. INTRODUCTION TO ASBRU 29

the following temporal orderings:

sequential The steps are performed in strict order, each is started only
after its predecessor is �nished.

parallel All steps or subplans are started at the same time, they may �nish
at any time.

any-order The subplans are performed one at a time, without strict order-
ing, but at each instant in time, only one step is performed (i. e. their
execution will not overlap).

unordered There is no ordering between the steps. They may overlap or
not, and each may start and end whenever appropriate.

Additionally there are several properties that can be de�ned to control
the exact semantics of subplan control. The continuation speci�cation de-
�nes the number or the subset of the steps which must be performed before
the parent plan can complete successfully. The waiting strategy allows to
de�ne if the parent plan should wait for optional subplans. It can also be
de�ned that aborted subplans should be retried. Finally, the propagation
speci�cation allows to de�ne exactly when the abortion of a subplan should
be propagated to its parent plan (i. e. if the parent plan should be aborted
as soon as a speci�c subplan or a certain number of subplans are aborted or
rejected).

Chapter 4

Design

This chapter gives an overview of the Asbru Interpreter from a software
design point of view. It introduces the basic concepts of the module frame-
work, and how the various components interact with each other. I describe
the data �ow in the Asbru Interpreter and its implementation in an object
oriented language, speci�cally Java.

Section 4.1 describes the overall architecture of the Asbru Interpreter.
Section 4.2 details design decisions for the modules and the framework, and
analyses the requirements for various components. In section 4.3, I present
the class model of the Asbru Interpreter. Section 4.4 describes the inter-
action of the di�erent components during execution. Finally, section 4.5
concludes the chapter with an example from the �eld of arti�cial ventilation
of neonates.

4.1 Architecture

Conceptually the Asbru Interpreter consists of three basic units: data ab-
straction, monitoring, and plan execution. In the data abstraction unit,
various temporal or atemporal abstractions are applied to the patient data
to gain information at higher conceptual levels. The provided quantitative or
qualitative data is monitored to detect temporal patterns in the abstracted
data. This information is used to control the selection and execution of
plans. This data �ow is not unidirectional, instead, the execution unit can
interact with both monitoring and abstraction unit to adjust the monitored
patterns and to adapt the abstraction process to the context given by the
current plan states.

The idea of modularising data abstraction as network of modules goes
back to functional programming and control theory. Each module is respon-
sible to compute a single (simple or more complex) transformation of the
input data. A module instance is created for each abstraction, e. g., for the
product of two inputs, the average of a list of values, or the comparison of

30

CHAPTER 4. DESIGN 31

Execution Manager

DA Modules Monitoring

Modules

Plan Execution

Modules

 Data Interfaces File I/O Serial I/O DB Access

 User Interfaces
Interactive

Data Entry

Plan State

Control

Output

Visualization

 Asbru Interfaces CompilerParser Runtime

Figure 4.1: The architecture of the Asbru Interpreter. The Asbru Interpreter is
designed in several layers. Communication between these layers is restricted to well
de�ned APIs.

two values.
Monitoring and plan execution were originally seen as components in-

dependent of data abstraction. Nevertheless Seyfang recognises that data
abstraction and guideline execution should be integrated [61]. The three
conceptual components mentioned above � data abstraction, monitoring,
and plan execution � can be seamlessly integrated in a directed graph of
modules.

Figure 4.1 shows the architecture of the Asbru interpreter. The Asbru
Interpreter is designed in several layers, communication between these layers
is restricted to well de�ned APIs. The Asbru Interface layer contains the
components to translate an Asbru plan library from the XML de�nition into
a module graph. Each Asbru element in the plan library is mapped into
one or more modules, which are grouped into data abstraction, monitoring
and plan execution modules. The Execution Manager controls the data �ow
between the modules and represents the core execution component. The
Data Interface layer provides access to patient data from various sources.

Figure 4.2 shows the data �ow in the Asbru Interpreter. At program
start, the Asbru plan library XML �le is compiled into a directed graph of
modules. For each time step, the Execution Manager enacts each of the
modules in the network to process patient data, monitor temporal patterns,
and execute the plans in the guideline. These modules are largely compatible
with each other, which allows information extracted by any module to �ow
back into the abstraction or monitoring process. To handle complex networks
with many inputs in high-frequency applications, the Execution Manager

CHAPTER 4. DESIGN 32

Asbru Compiler

Execution Manager

Recommendations

and Control Data

Asbru Plan Library

<plan-library>

 <domain-defs>...

 <plans>...

</plan-library>

Patient Data

Module Graph

Execution

Trace

Figure 4.2: Data �ow in the Asbru Interpreter. The Asbru plan library is compiled
into a directed graph of modules by the Asbru Compiler. The Execution Manager
uses this module network to process patient data and execute the plans representing
the guideline. The output of the modules is provided in a uniform way, to be
displayed in a graphical user interface. All state transitions are documented in a
log �le which for the analysis of the execution path.

ensures that each module is enacted exactly when needed, allowing for small
time steps by some modules without the overhead created by other modules
which would not provide new information at that moment.

The output of the system can be displayed in a graphical user interface.
Using custom-built modules, the output can be integrated with the control
of medical devices in a close-loop setting.

During operation, the interpreter writes an extensive log �le documenting
all abstraction steps and plan state changes. This is later transformed into
various reports focussing on di�erent aspects by easily customisable post-
processing tools.

More information about the various subsystems and components is pro-
vided in the next sections.

4.2 Requirements Analysis and Design Decisions

This section discusses functional requirements for important components of
the Asbru Interpreter. From these requirements I try to make sensible de�-
nitions for the expected behaviour of the various components. I begin with
describing the properties of modules, the basic processing units in the inter-

CHAPTER 4. DESIGN 33

Module Description
AddModule Add the result of two or more numbers.
ConstantModule Outputs a single constant value.
MaximumModule Outputs the maximum value of all input channels.
DayOfWeekModule Extracts the day of the week from a date.
EqualModule Outputs if the two inputs are equal.
AndModule Outputs the logical and of two or more inputs.
HistogramModule Computes a histogram of a series of values.

Table 4.1: Examples of simple Asbru modules.

preter and continue with data points, which de�ne how information can be
passed between di�erent modules. After describing the requirements for the
Execution Manager, which is the core component in the execution process,
I conclude this section with a discussion about the playback mode in the
interpreter.

4.2.1 Asbru Modules

As explained above, the Asbru Interpreter works by connecting instances of
self-contained, independent modules to represent the de�nitions in the plan
library. The base class for all modules is the BaseModule. All modules are
derived from this single class and inherit its properties. The requirement for
the BaseModule class is that it must provide all outside visible properties
and methods for any module. Table 4.1 on page 33 lists some examples of
simple modules.

De�ning Modules

Input of Data and Output of Results. Each module must be able to
receive input data, calculate the new output and return the result. Each
input and output has a time stamp at which the value becomes valid, the
valid time. A module does not receive an input before the input's valid time.
On the other hand it may output a value with a valid time in the future. For
example there is a simple DelayModule that delays each data point by some
amount of time simply by adding the de�ned time span to the valid time of
the input value.

The method for processing input values is called newData, as proposed by
Seyfang [59], and receives a single DataPoint argument. The newDatamethod
must be implemented by every module and returns a new DataPoint.

At any time, a module may decide that it does not want to output any-
thing at all for the current input. In this case it returns null.

If a module has no parents in the module graph, it will never receive input

CHAPTER 4. DESIGN 34

but it must still output data. There are two kinds of modules that may act as
root elements in the module graph: constant modules and raw data modules.
Constant modules represent constants found in Asbru plans, these modules
are only called once and their output cannot change afterwards. Raw data
modules are modules that receive their input from outside of the system,
e. g., a module may read data from a �le or receive data from a measuring
device.

Summarising, we can de�ne an Asbru module as:

De�nition 4.1 (Modules) An Asbru module is a single processing ele-
ment in a directed graph that receives input from its direct parents in the
graph. A module can have an arbitrary number of children receiving its out-
put. For each time step the module's processing method is called exactly once.
If the module has more than one parent, it receives a data point set with the
input data from all parents. A module may output a single data point with
a de�ned valid time at each time step.

De�nition 4.2 (Modules) Root modules in the graph (i. e. modules with-
out a parent) must be either constant modules or raw data modules. Raw
data modules provide a method to return the next point in time at which they
want to output a data point.

Alarms. A module may need to output data at a speci�ed rate, or it may
want to be triggered at certain times to change its internal state. This is for
example required by one version of the TimeWindowModule that outputs all
input values in groups at a speci�ed rate, independent of how many inputs
it has actually received during that time.

Therefore, a module can register alarms. For each triggered alarm, the
timeout method of the module is called, which receives the valid time of the
alarm and a �ag that can be de�ned by the module when registering the
alarm in the ExecutionManager. The method may optionally return a new
DataPoint.

Alarms are registered for a speci�ed point in time. If both input data
and alarms are available for a speci�c point in time, the sequence of delivery
is important. For instance the TimeWindowModule may want to include
the input for the current time step (alarm after input), or it may want to
exclude the input for the current time step (alarm before input). Therefore,
we de�ne pre-alarms and post-alarms. Both can be registered independently
in the ExecutionManager using setPreAlarm and setPostAlarm, respectively.

A module may output data for a single time step at pre-alarm, new data
input, or post-alarm. That raises the question of what happens if a module
outputs more than one data point for one time step. More than one output
per time step would violate de�nition 4.1, therefore we de�ne:

CHAPTER 4. DESIGN 35

De�nition 4.3 (Alarms) A module is called for registered alarms. An
alarm is delivered to the module before the data input for the current time
step for pre-alarms, or afterwards for post-alarms. The module may output
a new data point for each alarm.

If a module outputs more than one data point for a given valid time, each
subsequent data point replaces the previous one. If the data points can be
merged1, they are combined into a single data point instead.

Control Inputs. Many modules have properties that de�ne how exactly
data input must be processed. For the TimeWindowModule this may be the
length of the window. Most of the time these properties are known at the
time of compiling the Asbru library, for instance when they are de�ned as
attributes of the element in the XML �le. In those cases the properties can be
given to the module at the time of instantiation. Some of the properties can
themselves be de�ned dynamically based on further elements, though. When
the Asbru compiler cannot evaluate such a property to a constant expression,
it must construct a subgraph of modules to evaluate the property at runtime.

Such a property could be delivered to a module as an additional regular
input. This seems unintuitive because these properties must be known before
real data input can be processed, and they are usually de�ned to be �xed
as soon as they are set once. To accommodate these di�erences we de�ne a
new data �ow channel between modules: control inputs.

De�nition 4.4 (Control Inputs) A module can have one or more control
inputs. The output of any regular module can be connected to the control
input channel of such a module. Control inputs are seen as regular parents
of the modules, with the following di�erences: A module cannot output a
new value when it receives new control input, instead it must only change
its internal state. A module can tell the Execution Manager that the control
input for itself is frozen and will not change any more during the execution.
In this case the manager stops delivering control input changes to the module.

Control inputs are delivered to the module in the newControlDatamethod
receiving a DataPoint. The method must return true or false to indicate if
control input has been frozen. Control inputs are also important for playback,
described in sections 4.2.4 and 4.4.2.

De�nition of Input and Output Data Type. A module is able to
declare what kind of input it expects and what the output of the module
will be. This enables the Execution Manager to check the module graph for
inconsistencies and therefore to detect bugs in the Asbru compiler. These
properties include:

1DataPoints can be merged if the respective class implements the interface Mergeable-

DataPoint and the merge actually succeeds.

CHAPTER 4. DESIGN 36

� The input data type.

� The cardinality of the input, i. e. how many input channels the module
expects, e. g., no input, one input, one or more, two or more inputs.

� The control input data type.

� The cardinality of the control inputs.

� The output type.

Raw Data Modules

Raw data modules are modules that output data independent of inputs and
usually have no parents in the graph. These modules extend the class Raw-
DataModule. As said in de�nition 4.2, raw data modules must provide a
method to return the next point in time at which they want to output data.
This method is de�ned in RawDataModule and is called getNextInternalTime.
It returns the time for the next expected output in the internal time of the
interpreter.

If a module does not have any more data to output, it must return the
symbolic value NO_MORE_DATA. If a module does not know the time for
the next data, it may return ASK_AGAIN. This instructs the Execution
Manager to query the module again in the next time step.

Since this causes a lot of overhead if the internal frequency of the inter-
preter is set to a high value (the default) and the output of the raw data
module is of lower frequency, it is strongly recommended that the module
calculates a good approximation for the next output and returns this to the
Execution Manager. The manager will then ask for new data at the speci�ed
time.

Plan Modules

Plan modules are special in that a parent plan needs to send data to its
children, propagating plan states and synchronisation information, but the
children need to propagate their plan state or a return value back to the
parent. This introduces cycles into the module graph, which would be free
of cycles otherwise. This means that we cannot propagate inputs in such
a way that a module is called only once for each time step, receiving all
information.

Therefore, we change the timing of the output of plan modules so that
the output at time t will only be delivered to the connected modules at time
t+1. This breaks the cycles by delaying by one time step any data �ow that
may go upwards in the graph.

Nevertheless this delays plan state transitions and would cause the tran-
sitions to fall behind data delivered to plan modules. This is avoided by

CHAPTER 4. DESIGN 37

dividing the internal steps for regular data �ow, from now on called macro
steps, into an arbitrary number of micro steps that are reserved for plan
state transitions.

De�nition 4.5 (Macro Steps) Macro steps are the time steps used by the
Execution Manager to process data �ow between regular modules. Data input
from raw data modules and pushing this data through the module graph must
only happen at macro steps. The macro frequency de�nes the number of
macro steps per time interval.

De�nition 4.6 (Micro Steps) Micro steps are time steps between the ma-
cro steps that are reserved for plan state transitions, i. e. propagating of plan
modules' outputs. The micro frequency is a multiple of the macro frequency.
At micro steps, no other modules except plan modules may output data points.

The micro frequency fmicro is usually set to 1000·fmacro, but the value can
be changed for very deep plan module subgraphs. The Execution Manager
checks for plan state transitions that over�ow the available micro time steps.
In the case of an over�ow it throws a PlanStepOver�owException and aborts
execution because the behaviour would be indeterministic.

All plan modules are based on AbstractPlanModule and output Plan-

ModuleOutputDataPoints.

4.2.2 Data Points

A data point in the Asbru Interpreter describes a structured unit that is used
to send data from one module to the next. Data points can contain anything
from single values to a set of other data points.

All data points have some common properties:

Valid Time. The valid time de�nes the point in time when the data be-
comes valid or known. A data point is not delivered to a recipient
before its valid time.

Validity. This Boolean property de�nes if the data point represents the
value of a parameter (valid), or if it represents that the parameter has
no known value, i. e. its value is unde�ned (invalid).

Each data point class extends the abstract class DataPoint that imple-
ments these properties. See section 4.3.1 for a description of the most im-
portant data point classes.

4.2.3 Episode Data Points

Section 3.4.2 gave an introduction to temporal patterns, parameter proposi-
tions and time annotations in Asbru. In short, we can say that a parameter

CHAPTER 4. DESIGN 38

proposition monitors whether a parameter meets a value description in a
constrained interval of time, for a de�ned amount of time. The parameter
proposition is basically de�ned by the referenced parameter, a value descrip-
tion and a time annotation.

The point in time when the parameter starts to match the value descrip-
tion is called the positive �ank, when the parameter stops to match, this is
the negative �ank. An interval of positive and negative �ank that matches
the time annotation is called a �tting interval. The interval during which
a �tting interval is matching the time annotation is called the interval of
validity.

For a better understanding let us look at an example. A parameter
proposition might by de�ned as �high blood pressure for at least 1 hour during
the last 6 hours� 2. Any measurement of high blood pressure after low or
regular blood pressure is a positive �ank, a measurement of normal or low
blood pressure after high blood pressure is a negative �ank. An observation
that matches the value description and the time annotation is called an
episode.

We assume that we measure high blood pressure at 8:00 for the �rst time,
at 13:00 we measure regular blood pressure for the �rst time after 8:00. So the
positive �ank is at 8:00, the negative �ank is at 13:00. Given the minimum
duration of 60 minutes, the parameter proposition �rst matches at 9:00,
which is called the start of validity. We have found an episode, although the
negative �ank is still unknown.

At 13:00 we detect the negative �ank. The complete interval of positive
and negative �ank is called a �tting interval. At 18:00 (i. e. 12:00 plus six
hours) the given episode stops matching the time annotation, which is called
the end of validity. The interval de�ned by start and end of validity is the
interval of validity.

An episode data point must be able to represent all this information. Ad-
ditionally several modules representing temporal patterns in Asbru perform
further combinations or transformations of the output of a parameter propo-
sition. Other modules analyse their output. Therefore, we need a uni�ed
output format for temporal data. The following questions summarise the
capabilities of the feature abstraction modules deployed on found episodes,
i. e. the information for which the monitoring process must provide the ba-
sis [59]:

� Was there a �tting interval?

� How many �tting intervals are there?

� What is the duration of each of them?
2Exactly: minimum duration is 1 hour, earliest �nishing shift is -5 hours, reference

point now.

CHAPTER 4. DESIGN 39

� When does a �tting interval start, when does it end?

We can derive the following requirements for the output of parameter
propositions:

1. The parameter proposition module must output a data point whenever
the parameter proposition becomes ful�lled, at the start of validity. In
the example we must observe high blood pressure for at least one hour
to know that the parameter proposition is ful�lled.

2. The output at the start of validity must include the time when the
value of the parameter �rst met the value description, i. e. the positive
�ank. In the example, when we �rst observed high blood pressure.

3. The output must include the time when the value of the parameter
stopped to meet the value description, i. e. the negative �ank. If the
negative �ank is not known at the start of validity, like in our exam-
ple, then a separate data point must be output with the positive and
negative �ank as soon as the latter is known (referred to as end of
before-found interval).

4. If the parameter proposition's output is known to stay unchanged in-
dependent of any further input, end of monitoring must be reported.

5. An episode must be identi�able uniquely, so the output needs an iden-
ti�er that is the same for all data points referring to the same episode,
but unique across all di�erent episodes.

A parameter proposition module does not output data points for more
than one episode at a time. Other temporal patterns may result in over-
lapping episodes. Because of the way we de�ne a module (de�nition 4.1), a
module must not output more than one data point at a time. Therefore, we
must add another requirement for the output of temporal modules:

6. A module must be able to output more than one information about
an episode, as well as information about di�erent episodes in a single
data point.

To meet these requirements I propose the following properties for an
EpisodeDataPoint:

Start and end of validity. The start and end of validity matches perfectly
with the valid time that each data point has. The valid time describes
when the information of a data point becomes valid, just as the start
of validity describes when an episode becomes valid. We will later see
that sometimes an episode is detected earlier than its start of validity.3

3See section 5.1.5 for parameter propositions with reference point now.

CHAPTER 4. DESIGN 40

If we set the valid time of a data point to a later time, the Execution
Manager will only deliver the data point to the subsequent modules
at the speci�ed time. These are exactly the correct semantics for the
start and end of validity.

Episode data objects. A single EpisodeDataPoint may contain zero, one,
or more episode data objects (EpisodeInfo), each representing informa-
tion about a single episode. All episodes share the same valid time,
but they have a �ag to tell the meaning of each episode information.

Episode information �ag. Each episode data object has a �ag that
describes what information the data object provides about the
episode. The values for the �ag are start of validity (SV), end of
validity (EV), and end of before-found interval (EOBFI, i. e. neg-
ative �ank found). A data object can represent more than one
type of information, therefore, the �ags can be combined.

This is also useful for merging data point objects. The semantics
for the merging of the �ags are:

� SV merged with EOBFI results in only SV, the end was not
found �before�.

� EV merged with EOBFI results in the combination of both.

� SV merged with EV means that the episode was never valid
(start and end at the same time), and there was no real
episode. Depending on the implementation, the complete
episode is deleted, or both �ags are left as-is. An episode
information with SV and EV set must therefore be ignored
by subsequent modules as a possible artefact of the merge
implementation.

Episode identi�er. Each episode data object has an episode iden-
ti�er that is shared by all episode data objects representing the
same episode, but unique across all di�erent episodes during the
runtime of the interpreter.

Positive �ank. Each episode data object representing SV and EO-
BFI contains the positive �ank of the �tting interval, an episode
data object representing only EV may not contain the positive
�ank.

Negative �ank. An episode data object representing SV must con-
tain the negative �ank if it is already known, for EOBFI the
negative �ank must always be set, for EV it may be set.

Revocable episodes. If a monitoring module knows that an episode
will not have an end of validity, this information can be used
for further optimisations. Therefore, each episode data object

CHAPTER 4. DESIGN 41

contains the information if the episode may have an end of validity
(revocable) or if its validity is unconstrained (not revocable).

End of monitoring. The episode data point contains a �ag to indicate
whether end of monitoring has been reached for this module, i. e. the
output for this instance will not change any more. This state is global
for this instance and independent of a single episode and is therefore
contained in the episode data point itself.

A module must not output any more episode data points after it has
output end of monitoring.

Another important requirement for a sequence of episode data points is
that the information of each episode must always be complete, i. e. for each
start of validity there must be an end of validity if the episode's validity is
not unconstrained, and for each start of validity with an unknown negative
�ank there must be an end of before-found interval report, even if the latter
is only known after the end of validity.

4.2.4 The Execution Manager

The Execution Manager is the core component in the execution process and
represents a messaging system that moves data points between modules in
the module graph. It must accomplish the following tasks:

� Maintain the module graph.

� Maintain the internal time during runtime and optionally synchronise
it with an external time source (e. g., the clock of the computer where
the interpreter runs).

� Maintain a list of alarms registered by modules.

� Determine the time steps at which data points must be processed.

� For each time step with new input data or alarms set, process new
data for all modules and push output data points to the subsequent
modules.

� Where required, keep a record of data points to process at a later time.
Whenever previous data must be analysed based on new parameters,
provide means to reprocess the recorded data points.

The next subsections describe each of these items in detail.

CHAPTER 4. DESIGN 42

Maintaining the Module Graph

The Execution Manager provides methods to add modules to the module
graph and de�ne the modules' parents (modules providing output) and chil-
dren (modules reading output). The list of modules is ordered in such a way
that each parent is ordered before its children. For the propagation of data
point through the module graph, the modules must only be processed in
order of the sorted list, so that each module is processed before its children.

Alarms

A module may register alarms for certain points in time to take speci�ed
actions (see Alarms in section 4.2.1). The manager must provide methods to
register pre-alarms and post-alarms. For pre-alarms, the module's timeout
method is called just before input data for the current time step is passed
to the module, for post-alarms, timeout is called just afterwards.

Determining the Next Execution Time Step

The next time step relevant for execution must be determined by the manager
by looking at:

� The next alarms registered by modules.

� Available input data from raw data modules (representing external data
sources).

� Data points earlier queued for a later time step in the execution process.

The earliest point in time of these three sources is used for the next execution
time step.

Processing each Time Step

For each time step in the execution process the manager must process alarms
and new input data for each module. The module list is iterated in the order
determined by the module graph with parents before their children. For each
module the sequence of tasks is:

1. Process new control inputs if the module did not set control inputs to
frozen (see section 4.2.1 on page 35).

2. Process all pre-alarms available for the module at this time step.

3. If available, process new input data points using the module's newData
method. For raw data modules request new output from the module.

4. Process all post-alarms available for the module at this time step.

CHAPTER 4. DESIGN 43

5. Store the combined output of alarms and data processing of the mod-
ule as the current (or future) output of the module (see also module
de�nition 4.3 on page 34).

Analysing Historical Data (Playback)

The aim of the interpreter is to analyse and monitor data on-line as it arrives.
We must admit that there are cases for which this is not possible. Consider
an example of the suspend condition of an Asbru plan. The condition is
ful�lled if �the patient had fever for at least 6 hours, at the earliest four
days before the plan was started�. Here, the start of the plan is a parameter
a�ecting the monitoring of another parameter (blood pressure), but the start
of the plan is only known after the value of the blood pressure was examined.

We see in this example that the interpreter must be able to re-analyse
recorded data at a later time. To minimise the e�ect on regular processing
and to avoid duplication of e�ort, this should be done in a way so that
the analysis of recorded data uses the same infrastructure as on-line data
processing. Therefore, let me introduce a new mode in the manager, called
playback.

In playback mode the manager processes recorded data again in a sub-
graph of the module graph. Regular modules are not aware of the di�erence
between on-line and playback mode. Playback can only happen for modules
that are currently paused and reset, otherwise a module would have to be
aware of the playback operation. A module must be put into this paused
state before the start of execution using the manager method variants of
setPlaybackTriggers. The manager then sets the module to state paused and
determines, which inputs of the module must be recorded for a later playback
of the data.

Using one of the setPlaybackTriggers methods we de�ne selected plan
states of plan modules that will trigger the playback of a module (or probably
a set of modules). This can be done by the Asbru compiler when reading the
guideline or at runtime by a plan module itself. Additionally, plan states can
be de�ned to trigger the reset and pausing of modules. If the triggers are to
be set while processing data, the compiler must at least activate a module
for playback before processing input data.

The only modules that must be aware of playback mode are plan modules.
During playback mode plan modules receive the output of the reprocessed
data, usually from monitoring modules. The plan modules must change their
state according to the new input, but must not yet propagate any plan state
transitions. The recorded data is historical and could cause interim state
changes that are not correct at the time of playback any more.

After the playback of the recorded data is completed, the participating
modules are put into on-line processing mode and the manager proceeds with
the next time step after the one triggering playback. At that time, plan state

CHAPTER 4. DESIGN 44

transitions resulting from the processed data will be performed.
Playback must happen between two regular time steps. This requires

that playback is very fast and �ts into the time slot available between two
regular time steps. For on-line processing of high frequency data this time
slot might be very short. I discuss methods to minimise the amount of work
to be done at playback in section 4.4.2.

4.3 Class Model

In this section I give an overview of the class model of the Asbru Interpreter,
with an emphasis on the parts relevant to monitoring temporal patterns. For
the purpose of this section, I divide the classes of the interpreter into three
major groups:

Data points. Data points represent di�erent kinds of structured data to be
passed between modules.

Modules. Modules are used to represent di�erent elements of the Asbru
language. The di�erent kinds of modules are grouped in packages
according to their tasks and properties.

Framework. Core classes like the manager, the compiler classes, and many
utility classes represent the framework.

For each group I show how the de�ned requirements and the designed
model have been translated into a class model suitable for implementation
in the object oriented programming language Java 2.

4.3.1 Data Points

Figure 4.3 on page 45 shows the class model of the data point classes. The
�gure only shows the relevant information and hides accessor methods for
instance �elds.

All data points are inherited from the class DataPoint, which de�nes the
valid time of a data point instance. For supporting valid time and transaction
time separately, an additional �eld must be added for the transaction time.
The valid time should then probably be stored as an o�set to transaction
time to reduce the memory footprint.

The time in a data point is stored in internal time, which usually has at
least microsecond resolution. Therefore, time is stored as 64 bit long in the
interpreter.

The base class also contains two abstract methods that must be imple-
mented by all inheriting classes: isValid and copy. The isValid method must
return whether the data point represents an actual value (i. e. a valid data
point) or the lack of a value for a parameter (i. e. invalid or unknown data).

CHAPTER 4. DESIGN 45

+isValid() : bool

+copy() : DataPoint

-validTime : long

DataPoint

DataPointSet

+merge() : EpisodeDataPoint

-endOfMonitoring : bool

EpisodeDataPoint

+isStartOfValidity() : bool

+isEndOfValidity() : bool

+isEndOfBeforeFound() : bool

+isRevokable() : bool

-ID : long

-positiveFlank : long

-negativeFlank : long

-flags : int

EpisodeInfo

1 *

-value : double

FloatDataPoint

-value : int

IntDataPoint

-value : long

TimeDataPoint

DurationDataPoint

DateDataPoint

+getNumber() : Number

NumberDataPoint

-planState : PlanState

-dataOutput : DataPoint

-firstOfMultipleTransitions : bool

-planStateHasChanged : bool

PlanModuleOutputDataPoint

SynchronizationFlag

1

*

DataPointSeries

MergeableDataPoint

Figure 4.3: UML class model of the DataPoint classes.

The validity is mostly stored as a special value in data point classes, e. g., a
FloatDataPoint uses NaN4 for an invalid data point, whereas an IntDataPoint

uses −1 for an unknown value because an integer value cannot be negative5.
The general contract for any data point class is that all �elds must be

�nal and changing the �elds of a data point must not be possible. This is
necessary so that a data point can be passed around by reference without
the possibility of any component changing its property while others use the
data point (compare to Java strings).

At some places in the interpreter it is still necessary to create a duplicate
of an arbitrary data point with a new valid time. Therefore, each data point

4Abbreviation of �Not a Number�
5An integer value actually represents a qualitative value that is mapped to a positive

number.

CHAPTER 4. DESIGN 46

class is required to implement the copy method that takes a new valid time
as argument and creates an exact copy of the data point but with this new
valid time.

Data Point Sets and Series

Whenever a module receives input from more than one parent module, the
manager combines the input data points to a DataPointSet. A data point
set represents an ordered list of data points. The index of the contained
data points corresponds to the indexes of the input modules of the module
receiving the data point set.

A data point set itself and each contained data point have their own valid
time. A data point set may also contain data points of di�erent types. In
Java 5 the DataPointSet could be perfectly implemented using a generic, but
because the interpreter is currently targeted for the Java 2 language speci-
�cation, there exists a separated inherited DataPointSet class for each data
point type, e. g., FloatDataPointSet or EpisodeDataPointSet, for convenience.

The DataPointSeries class on the other hand represents an ordered series
of values of a speci�c data type. Such a data point only has a single valid
time. The series may have an ordering property attached to it, de�ning the
order of the contained elements. Data point series are output by a single
module and treated like any other regular data point. They can be put into
sets, of course.

Number Data Points

Classes inheriting NumberDataPoint are data point types that can be repre-
sented as a single number (in addition to the valid time). The FloatDataPoint
contains a single �oating point number, actually of type double for increased
precision.

The IntDataPoint class stores a positive integer number, but really repre-
sents a qualitative value in Asbru, such as low, medium, and high, or true and
false. A qualitative value map can be associated with the data point that
maps the integer value to the qualitative value represented as text string.

Time Data Points

Time data points inherit from the TimeDataPoint class. All time values in
the interpreter are stored as long values representing the internal time of the
interpreter. The internal time starts with value zero at the start time de�ned
in an interpreter project �le. The time resolution is also con�gurable so that
a value of 1000 could actually mean 1000 nanoseconds or 1000 seconds after
the start of the interpreter. The Execution Manager can convert between
the internal time and a regular Java time representation, so it is neither
necessary nor advisable to calculate in internal time units directly.

CHAPTER 4. DESIGN 47

There is a further distinction between a point in time and an interval or
duration of time. A point in time should be displayed as a combination of a
date and a time component, whereas a duration of time should be displayed
e. g., as number of years, months, and days or just as microseconds, de-
pending on the resolution of the value. Therefore, two di�erent classes exist
for time representation, the DateDataPoint class and the DurationDataPoint
class.

It is also important to note, that a duration of time cannot be accurately
stored as just a single number of microseconds. Not every year has the same
number of days, because of leap years; not every month has the same number
of days; not every day has the same number of days, because of daylight
saving time zone changes; and not every minute has the same number of
seconds, because of leap seconds. For calendar oriented applications, storing
a duration would require four separate �elds, one for months, one for days,
one for minutes and one for the smallest unit, e. g. microseconds.

Episode Data Points

Episode data points were already discussed in detail in section 4.2.3. They
are implemented in the class EpisodeDataPoint with an inner class Episode-
Info, where one instance of EpisodeDataPoint can have zero, one, or more
instances of EpisodeInfo.

The start and end of validity of an episode is mapped to the valid time of
the data point itself, whereas identi�er, positive �ank, and negative �ank are
stored as ID, positiveFlank, and negativeFlank in an EpisodeInfo data object.
The type of event represented by the data object is stored as a single integer
�ag using a single bit for each state. It can be extracted using the accessor
methods like isStartOfValidity. The latter returns true if the EpisodeInfo

stands for start of validity at the time given by the valid time of the data
point. A single data object may represent more than one event (see page 40
for an extensive discussion).

Episode data points implement the MergeableDataPoint interface, so data
points with the same valid time can be merged into a single data point.

Plan Module Data Points

The output of a plan module contains multiple elements of data for several
recipients. The PlanModuleOutputDataPoint combines all the elements into
a single, structured data point. Such a data point contains:

Plan state The current plan state of the plan module.

Data output An arbitrary data point that is used for instance in the Data-
ItemModule to set the value of a variable.

CHAPTER 4. DESIGN 48

Plan state transition �ags The Boolean �ag planStateHasChanged states
if the plan module has just gone through a plan state transition and the
plan state has changed since the last output of the plan module. The
Boolean �ag �rstOfMultipleTransitions tells if this plan state transition
is only the �rst of two or more plan state transitions happening in same
macro time step.

Synchronisation �ags The data point contains one synchronisation �ag
for each child of the plan module. The �ags are used to initialise,
activate, or reset child plans.

4.3.2 Modules

Figure 4.4 on page 49 shows the class model of some examples of module
classes and the core components of the framework. As above, the �gure hides
irrelevant �elds and members for a better overview.

The base class for any Asbru module is BaseModule. It provides the basic
interface needed by the Execution Manager to interact with the modules.
The method initialize is called by the manager to give the module a reference
to the manager, the method reset is used to reset the internal state of a
module. The other methods newData, newControlData, and timeout are called
to deliver regular input, control input, and alarms to the module, and receive
the output.

Additionally there are two abstract module classes that are special to the
manager. Those are RawDataModule and AbstractPlanModule.

Raw Data Modules

Raw data modules provide an additional method getNextInternalTime that
returns the time stamp of the next available input data. The manager uses
this method to determine the next internal time step when new input data
will be available. If the time of the next input data is not yet known, a
symbolic value can be returned to indicate that the module should be polled
again later.

Each module is associated with a DataImport class that provides an in-
terface to the external data source. A data importer may simply read a text
�le, but it can also interface with an external measuring device.

One DataImport object may provide more than one data channel. A raw
data module selects from the channels by either index or name. The channel
names are de�ned in the Asbru library, otherwise they are equal to the name
of the parameter de�ned by the raw data module.

CHAPTER 4. DESIGN 49

#initialize()

#reset()

+newControlData() : DataPoint

+newData() : DataPoint

+timeout() : DataPoint

BaseModule

AbstractPlanModule

#processEvent() : DataPoint

#reset()

+newData() : DataPoint

+timeout() : DataPoint

-stateRunning : short

-timeAnnotationLegal : bool

-inclStartingShift : bool

-inclFinishingShift : bool

-inclDuration : bool

ParameterPropositionModule

#getEpisodeCount() : int

#getFulfilledInputCount() : int

#isFulfilled() : bool

#reset()

+newData() : DataPoint

-channelMap : Map

-currentId : long

-currentNegativeFlank : long

-currentPositiveFlank : long

-inputSet : ConstraintInputSet

ConstraintCombinationModule

#reset()

+newData() : DataPoint

+timeout() : DataPoint

-validCount : int

-currentId : long

-currentPositiveFlank : long

-maximumNegativeFlank : long

ConstraintNotModule

+getNextInternalTime() : int

-channelName : string

-channelIndex : int

-dataImport : DataImport

RawDataModule

-processRevoke() : List

#processEvent() : List

#reset()

+newControlData() : DataPoint

+newData() : DataPoint

-epsilon : long

#inputSets : InputSet[]

#outputList : List

TemporalConstraintModule

+getModule() : BaseModule

+getState() : ModuleState

+isPlaybackRequired() : bool

+isPlaybackSource() : bool

+isControlInputFrozen() : bool

-dataQueue : List

-dataHistory : List

-dataInputs : ModuleEntry[]

-controlInputs : ModuleEntry[]

-children : ModuleEntry[]

ModuleEntry

+addModule()

+connectModules()

+connectControl()

+setPlaybackTriggers()

+isPlaybackTrigger() : bool

+addDataPointListener()

+removeDataPointListener()

+initialize()

+clear()

+getModuleEntry() : ModuleEntry

+getModuleCount() : int

+isInPlayback() : bool

+getNowPlayback() : long

+getNowReal() : long

+getNow() : long

+convertDateToTicks() : long

+convertTicksToDate() : Date

+intervalMillisToTicks() : long

+intervalTicksToMillis() : long

+extractPrivateTicks() : long

+setPreAlarm()

+setPostAlarm()

+cancelPreAlarm()

+cancelPostAlarm()

+newUniqueId() : long

-entryList : List

-planModules : List

-rawDataModules : List

ExecutionManager

BinaryAbstractionModule

NAryAbstractionModule

1

1

1..*

1

ModuleGraphConstructor

ExecutionUnit

«uses»

«uses»

FixedParameterPropositionModule

MovingParameterPropositionModule

«uses»

Figure 4.4: UML class model of the Asbru Interpreter showing examples of mod-
ules described in this work.
Abstract classes or methods are in italic letters, the pre�x − stands for private, #
for protected, and + for public �elds or methods. Not all �elds and methods are
displayed, method arguments are hidden.

CHAPTER 4. DESIGN 50

Plan Modules

Plan modules are inherited from AbstractPlanModule, which implements the
basic infrastructure for plan condition checks, plan state transitions, and
synchronisation with child plans.

Plan modules di�er from other modules in their awareness of the current
state of execution and the modules they are connected to. There are some
important rules for plan modules:

� A plan module must check whether execution is in on-line or playback
mode and must not create any output during playback mode. During
playback we must not propagate plan state transitions since we are
dealing with recorded data and obviously cannot change the history of
the outside world by plan state transitions.

� A plan module is not reset to its initial state at start of playback
mode, instead the plan module is itself responsible to manage its state
according to the current mode of operation.

� The output of a plan module must always be of type PlanModuleOut-

putDataPoint. The output at time t must have a valid time of t + 1
(see also section 4.2.1).

Abstraction Modules

Abstraction modules, like the ones given in Table 4.1 on page 33, are usu-
ally inherited from either BaseModule directly, or are inherited from e. g.,
BinaryAbstractionModule for binary operators, or NAryAbstractionModule for
operations with any number of inputs.

Most of the abstraction modules are stateless and only work on the cur-
rent input each time they are called. Others like the TimeWindowModule

keep a limited history of data. Such modules must implement the reset

method to reset their internal state.

Monitoring Modules

An important part of my work was to create modules for the monitoring unit
of the interpreter. Chapter 5 describes the algorithms used for each module.
I give a summary of the implemented modules here.

Parameter propositions. Parameter propositions are de�ned using the el-
ement parameter-proposition. There are three primary types of pa-
rameter propositions, those with �xed reference point, reference point
now, or repeated reference points. The base class for all parameter
propositions is ParameterPropositionModule.

CHAPTER 4. DESIGN 51

The type of the parameter proposition is de�ned by the reference point
of the time annotation. For a time annotation with reference now, a
MovingParameterPropositionModule is used, for a time annotation with
a single �xed reference point a FixedParameterPropositionModule is cre-
ated. For repeated reference points a RepeatedParameterProposition-

Module must be created.

The value description and the context are combined using a Boolean
�and� to create a single Boolean input for the parameter proposition.
The constraining intervals of the time annotation can be speci�ed using
the constructor of the module classes or using control inputs at runtime.
The output of a parameter proposition is an EpisodeDataPoint.

Temporal constraints. Temporal constraints compare the intervals of two
episodes using the interval relations by Allen [2]. They are de�ned
using the element temporal-constraint. The implementation class
is selected, based on the type attribute of temporal-constraint, the
possible values are listed in Table 4.2. The base class of all those
implementing modules is TemporalConstraintModule.

Constraint Implementing Class
before EpisodeBeforeModule

meets EpisodeMeetsModule

overlaps EpisodeOverlapsModule

starts EpisodeStartsModule

during EpisodeDuringModule

�nishes EpisodeFinishesModule

equal EpisodeEqualModule

Table 4.2: The temporal constraint modules.

Input and output of temporal constraint modules are of type Episode-
DataPoint. A temporal constraint takes exactly two inputs.

Constraint combinations. Boolean combinations of the results of tempo-
ral patterns can be done using constraint-combination. The combi-
nation is selected with the type attribute. The possible combinations
are listed in Table 4.3. The base class of the implementation classes is
ConstraintCombinationModule.

All constraint combination modules take one or more inputs of type
EpisodeDataPoint and output the same type.

Boolean negation of constraints. The Boolean negation of a temporal
pattern is de�ned by the element constraint-not. This element is

CHAPTER 4. DESIGN 52

Combination Implementing Class
and ConstraintAndModule

or ConstraintOrModule

xor ConstraintXorModule

Table 4.3: The constraint combination modules.

implemented in the ConstraintNotModule. The module takes one input
of type EpisodeDataPoint and outputs data points of the same type.

Episode analysis. There are some elements in Asbru that analyse episodes
output by modules monitoring temporal patterns, foremost the element
episode-analysis-def. This element has several operators, with each
implemented in its own module. Table 4.4 lists the operators with the
implementation classes.

Operator Implementing Class
count CountModule

duration EpisodeDurationModule

total-duration TotalEpisodeDurationModule

start EpisodeStartModule

end EpisodeEndModule

Table 4.4: The episode analysis modules for the di�erent operators.

The CountModule class is additionally used to implement the element
count-constraint by comparing the output of the count module with
the expression de�ned in the count constraint, using a regular compar-
ison module.

All these modules process inputs of type EpisodeDataPoint. The output
is either an integer number or a time value.

4.3.3 Framework

Besides the subset of modules, �gure 4.4 on page 49 also shows four classes
of the framework. The class ExecutionUnit is the main class used to start the
interpreter. The Asbru compiler is implemented in the class ModuleGraph-

Constructor. As the name of the class suggests, the compiler class constructs
the module graph from the plan library, using the ExecutionManager.

The Execution Manager

The module graph is maintained in the ExecutionManager class using the
ModuleEntry class and a list of entries. The manager creates oneModuleEntry

CHAPTER 4. DESIGN 53

for each module. An entry object stores references to all regular parent
modules (dataInputs), parent modules used as control inputs (controlInputs),
and child modules (children).

The entry object also stores the current output of the module and output
data points with a future valid time in the dataQueue. If the module is used
as a source for playback of another module, the dataHistory list is used to
record all output. Additionally it manages all state information associated
with a module that is not directly implemented in the BaseModule, because
this is irrelevant to the module itself.

The module entries are stored in three lists. The entryList object contains
all modules in the graph. The lists planModules and rawDataModules only
contain plan modules and raw data modules, respectively.

Connecting modules. A module must �rst be added to the manager
using the addModule method. Then the module can be connected to other
modules using the variants of connectModules and connectControl to de�ne
the parent-child relationships.

De�ning playback triggers. Whenever the Asbru compiler determines
that playback is needed to evaluate an expression in the plan library, it uses
the setPlaybackTriggers method to register the plan states of a certain plan
module to trigger playback for the corresponding modules at runtime. The
method isPlaybackTrigger returns true if a combination of plan module and
plan state is registered to trigger playback.

Time lines in the Execution Manager. The manager has two di�erent
time lines, the on-line or real6 time line and the playback time line. The
playback time line is only active during playback. The method getNowReal

always returns the current on-line time, the method getNowPlayback returns
the current playback time if playback is active. The getNow method returns
either of both depending on playback being active or not. So a module that
is not aware of playback (i. e. all modules except plan modules) can just use
getNow to get the current time step that is processed. Plan modules must
always use getNowReal for any output.

The method isInPlayback returns true if the manager is currently in play-
back mode.

Converting to and from internal time. The methods convertDataTo-
Ticks, convertTicksToDate, intervalMillisToTicks, and intervalTicksToMillis are
used to convert dates and intervals (i. e. durations) to and from internal
time. The method extractMicroTicks extracts the micro time steps (reserved

6The term real time might be misleading because this time value must not necessarily
be synchronised with the physical clock in the computer, e. g., in batch-mode processing.

CHAPTER 4. DESIGN 54

for plan state transitions) from a value in internal time as o�set to the
preceding macro step.

Alarms. The methods setPreAlarm, setPostAlarm, cancelPreAlarm, and can-
celPostAlarm allow modules to set or cancel alarms from modules. For each
alarm, the module's timeout method is called.

Unique identi�ers. The method newUniqueId returns a new unique iden-
ti�er of type long that is unique during the runtime of the interpreter, as
long as not more than 263 identi�ers are requested. This method is used in
monitoring modules to create unique identi�ers for EpisodeDataPoints.

4.4 Running the Interpreter

After having given a static picture of the components of the interpreter in
the last section, the �rst part of this section aims at providing an outline of
the execution process. A part of a guideline from the �eld of ventilation of
neonates is used as an example. The second part focuses on the problems
and solutions associated with re-analysing previous data using the playback
mode in the Execution Manager.

4.4.1 Outline of Execution

Figure 4.6 on page 56 presents an UML sequence chart of an interpreter run
using a very simple plan library that does not contain any plans but only
de�nes a parameter in the domain de�nition part of the library. Figure 4.5
shows the XML plan library.

The domain de�nition contains a parameter de�nition that compares
values read from e. g. a �le, with a constant expression, and checks if the read
value is greater than the constant. In this example the body temperature of
a patient is compared to the value 37 ◦C.

Compiling the Module Graph

The process is started by calling the run method of ExecutionUnit. The
execution unit reads the project speci�cation, creates DataImport instances
to read external data and creates a ModuleGraphConstructor instance, the
Asbru compiler. The compiler parses the Asbru plan library using an XML
parser library and evaluates the de�nitions.

To evaluate the parameter A de�ned in the library, three modules are
needed: a FloatRawDataModule to read the value from the source de�ned in
the project �le, a FloatConstantModule to supply the constant value, and a
GreaterModule to compute the comparison operator �greater-than�.

CHAPTER 4. DESIGN 55

<plan− l ib rary>
<domain−defs>
<domain name="example">
<parameter−group>
<parameter−def name="body−temp" type=" temperature ">
<raw−data−def mode="manual"/>

</parameter−def>
<parameter−def name=" f e v e r " type=" boo lean ">
<comparison−def operator=" greater− than ">
<left−hand−parameter>
<parameter−ref name="body−temp">

</ left−hand−parameter>
<right−hand−parameter>
<numerical−constant value="37" un i t="C"/>

</right−hand−parameter>
</comparison−def>

</parameter−def>
</parameter−group>

</domain>
</domain−defs>
<plans />

</ plan− l ib rary>

Figure 4.5: Asbru plan library used for the UML sequence chart in �gure 4.6.

The compiler creates instances of these modules and adds them to the
manager. Then it connects the raw data module as �rst input and the
constant module as second input to the comparison module.

After the compiler has �nished, the execution unit calls the initialize

method of the ExecutionManager class. The manager now sorts the list of
modules according to the dependencies in the module graph and initialises
the modules passing the reference to the manager itself and the index of the
module in the list, the latter mainly for debugging purposes.

Execution

The execution starts with calling the run method of the Execution Manager.
The execution unit passes the end date and time for the execution as de�ned
in the project �le.7 The run method iteratively calls the step method until
the end date is reached, or no more data is available and the execution is
�nished.

At �rst the manager executes step for internal time zero. We assume

7The end date is especially important when processing o�-line data and the plan library
contains iterating constructs but the execution should be aborted after a few iterations.

CHAPTER 4. DESIGN 56

c : ModuleGraphConstructoru : ExecutionUnit m : Manager

construct()

r1 : FloatRawDataModule

c1 : FloatConstantModule

g1 : GreaterModule

new

new

new

addModule(r1)

addModule(c1)

addModule(g1)

connectModules(r1, g1) connectInput(r1)

connectModules(c1, g1) connectInput(c1)

initialize() initialize(0, m)

initialize(1, m)

initialize(2, m)

run()

run(endDate)
step()

newData()

return(f1)

newData()

return(FloatDataPoint(37))

newData(DataPointSet(f1,c37))

return(IntDataPoint(f1.value > 37)

step()

newData(DataPointSet(undefined,c37))

return(undefined)

Figure 4.6: UML sequence chart of Asbru execution. The diagram shows a min-
imal example containing no plans but only a parameter declaration in the domain
de�nition (see Figure 4.5). The execution of a plan library including plans is not
fundamentally di�erent.

CHAPTER 4. DESIGN 57

that no data input is available from the raw data module at this time, so the
manager only evaluates the constant modules. The manager calls newData
of the FloatConstantModule instance c1 and stores the returned data point as
the current (and only) output of the module. It then determines that there is
new input data for the GreaterModule and processes newData of that module.
The input from the raw data module is still unde�ned, so the output of the
GreaterModule is also unde�ned.

The next call to step skips to the �rst available input data of the raw data
module. The raw data module returns the read value as FloatDataPoint, here
called f1. The manager again calls newData of the GreaterModule, which is
now able to compare the value of f1 with the value of the constant, here 37.
The Boolean result is returned as qualitative IntDataPoint.

We assume that there are no more input values available, so the run

method returns and the execution is �nished.

4.4.2 Playback Mode

The playback mode has been introduced in section 4.2.4. Here I focus on the
Execution Manager's role, the exact semantics, and possible optimisation
techniques. In playback mode the Execution Manager reprocesses recorded
data in a subgraph of the module graph to analyse data with parameters
unavailable before. Regular modules are not aware of the di�erence between
on-line and playback mode, only plan modules must adapt their behaviour
as explained in section 4.3.2.

The most common use-case for playback is either a parameter proposition
with a time annotation containing non-constant shifts or a non-constant
reference point, e. g., referencing the start of a plan, or a subgraph of modules
processing temporal patterns depending on such a module. In such a case
the input data for the parameter proposition must be recorded until the
non-constant part of the time annotation is known and �xed. Only then the
original input data of the module can be re-analysed.

The sequence of events during playback at time treal = T without any
optimisations is:

� At time treal = T the manager determines that playback is required to
make the output of module M available.

� The manager switches into playback mode and initialises playback of
module M and any plan modules that receive the output of M .

� The manager starts at time tplayback = 0 and �rst delivers the latest
control input data for each module with valid time T . This is the
control data that was missing before. Using time T makes sure that
the modules receive the necessary parameters valid at the current real
time, e. g., the start of a referenced plan.

CHAPTER 4. DESIGN 58

� All time steps for which either input data or registered alarms for
module M exist are processed as long as tplayback ≤ T . The processing
works just as in on-line mode, with the exception that plan modules
do not execute plan state transitions.

� As soon as execution reaches time T again, the manager switches back
from playback mode and processes time step treal = T +1. At this time
step, plan modules are now allowed to propagate plan state transitions
that may result from the output of module M .

� Module M is switched to on-line processing and is now part of the
regular module graph.

The implementation of switching between regular and playback mode
is done in the incrementNow method of the ExecutionManager class. The
methods initializePlayback and �nishPlayback are used to set-up and tear-
down playback. The ModuleEntry method getCurrentData returns historical
instead of current data in playback mode. Based on playback being active
or not, the manager's step method either selects a playback subgraph or the
full module graph for processing.

Optimising Playback

The problem with playback is that data needs to be processed between two
regular execution steps, and the available amount of time is very limited
for high frequency domains. Therefore, the amount of data that needs to
be re-analyse should be minimised, otherwise playback will disrupt on-line
processing.

There are basically two ways to reduce the amount of processed data
within the given framework:

1. At start of playback use knowledge about the participating modules
to select the latest possible start time for playback that will give the
same result as starting at time zero.

2. Reduce the number of data points recorded as input for a module to
those that represent a qualitative change for the module. For instance,
there is no need to store repeated equal input values for a parameter
proposition, only changes from true to false or from false to true are
relevant.

The second optimisation can be implemented quite easily using a �lter
module in front of the corresponding module. For parameter propositions
this is implemented as IntRedundancyFilterModule, which simply �lters any
input that does not represent a qualitative change in that context. The
manager stores the �ltered output instead of the output of the original parent
module.

CHAPTER 4. DESIGN 59

The �rst optimisation is more complex to achieve and is currently not
implemented, nevertheless achievable. The heuristics to calculate the earliest
required input data should supposedly go into the modules themselves. At
least for many common time annotations with a de�ned earliest starting time
or a maximum duration, the maximum data delay can be de�ned.

The manager would have to deliver the control inputs and query the
modules for the earliest required start time. To get the last qualitative
state before that point in time, the manager would select the last data point
before each module's start time as the �rst data point to be delivered for
the corresponding module. The global start time would be the minimum of
those data points' valid time.

4.5 Execution of a Real-World Guideline: Ventila-

tion of Neonates

The example above already covered a lot of the manager's interaction with
the modules. Of course each step requires much more work than what was
shown here, but the aim was to provide a comprehensible overview of the
data �ow during execution.

From the �eld of arti�cial ventilation of neonates, I use for display pur-
poses the following fragment of a protocol controlling the fraction of inspired
oxygen based on measurements of partial pressure on oxygen in blood [62].

�An external monitoring device measures the saturation of oxy-
gen in blood (SpO2). It delivers numeric values at a rate of 1 Hz.
These values are abstracted to qualitative values. For example,
SpO2 below 80% is mapped to acute hypoxy, while higher values
are mapped to decreased, normal and increased. If the qualitative
value of SpO2 equals acute hypoxy for at least 4 seconds, then
normal ventilation should be suspended. In this situation, the
patient will receive emergency treatment by the medical sta�. If
the patient returns to less critical state, as de�ned by SpO2 being
unequal acute hypoxy for at least 10 seconds, normal ventilation
is resumed.�

In Asbru, SpO2 is a raw parameter. In addition, we introduce an
abstracted qualitative parameter SpO2-qualitative with the possible values
acute hypoxy, decreased, normal, and increased, where acute hypoxy corre-
sponds to SpO2 < 80%. Furthermore, a plan called �Normal Ventilation�
is created with a suspend condition and a re-activate condition, both im-
plemented as parameter-propositions. Each parameter proposition has ref-
erence point now. The �rst parameter-propositon has the condition SpO2-
qualitative equal acute hypoxy and the time annotation minimum duration =

CHAPTER 4. DESIGN 60

Constant

"acute-hypoxy"

Qualitative

Abstraction

Not
Comparison

equals

Parent Plan

"Ventilation"

Parameter Proposition

MinDu = 4s

Parameter Proposition

MinDu = 10s

Plan

"Normal Ventilation"

Plan

"Set FiO2"

Suspend

Condition

Reactivate

Condition

Raw Data SpO2

Plan

"Emergency Handling"

Figure 4.7: Sample module graph. A raw data module for the parameter SpO2
is connected to a qualitative abstraction module. The resulting qualitative value
is compared against a qualitative constant. This comparison module is connected
to a parameter proposition module used for the suspend condition of the normal
ventilation plan module. Another parameter proposition module is connected to
the re-activate condition, which uses the negated output of the comparison module
as input. The three other plan modules framed with a dashed line are shown to
illustrate the context of this example but are not described here.

CHAPTER 4. DESIGN 61

Caption:
Sample input data. The graph shows the measurements of saturation of oxigen in blood (SpO2). The
horizontal line shows the threshold for apnoea (80%). The doted lines mark relevant time points
described in the text.

Beschreibung im Text:
Figure ... shows an excerpt from monitored saturation of oxigen in blood (SpO2). Time point A
represents one of many time steps during which the plan normal-ventilation is activated and no
changes are required. Here, the value of SpO2 is above the threshold (80%). Therefore, the
comparison module does not create new output, after outputting false once at program start.

At time point B the SpO2 value falls below the threshold. Therefore the comparison module outputs
true. ... und was jetzt das PP Modul 1 macht (positive flank, alarm setzen und sonst nichts, oder so)

At time point C the alarm set at time point B triggers, PP = Cond. fulfilled, Plan suspended

At time point D neg.flank für PP1, pos. flank für PP2

At time point E alarm für PP2 triggered, plan resumed.

B D EC A

80%

S
pO

2

time
40%

Figure 4.8: Sample input data. The graph shows the measurements of saturation
of oxygen in blood (SpO2). The horizontal line shows the threshold between the
qualitative region of acute hypoxy (below 80%) and the other qualitative regions
not relevant in our example. The dotted lines mark relevant time points described
in the text.

4 sec. The second parameter-proposition contains SpO2-qualitative not-equal
acute hypoxy and minimum duration = 10 sec.

Figure 4.7 on page 60 shows the relevant part of the module graph that
is generated by the Asbru Compiler based on this speci�cation.

Let us now look at a typical series of events during abstracting and
monitoring the input using the described modules. Figure 4.8 above shows
an excerpt from monitored saturation of oxygen in blood (SpO2).

Time point A represents one of many time steps during which the plan
normal ventilation is activated and no changes are required. The value of
SpO2 is above the threshold (80%). Therefore, the comparison module does
not create new output, after outputting false once at program start.

At time point B, the SpO2 value falls below the threshold. Therefore,
the comparison module outputs true. The directly connected parameter-
proposition module at the left detects a positive �ank in its input channel
and sets an alarm to current-time + 4s.

At time point C (i. e. 4 seconds after B), the alarm set at time point B
triggers and since the qualitative abstraction of SpO2 did not change (i. e. no
negative �ank occurred), the parameter proposition module reports a found
episode to the plan module. This means that the suspend condition of the
plan gets ful�lled and the plan changes its state to suspended.

At time point D, the �rst parameter-proposition detects a negative �ank
(SpO2 is no more in the range of acute hypoxy) and changes its output to
not-ful�lled. In this case, this input has no consequence for the state of the
plan module. The second parameter proposition module detects a positive
�ank, as the comparison module outputs false now, which is inverted by the

CHAPTER 4. DESIGN 62

not module. Consequently, the parameter proposition module sets an alarm
to current-time + 10s.

At time point E (i. e. 10 seconds after D), the previously set alarm for the
second parameter proposition module triggers and since there has not been
negative �ank for this module until then, this parameter-proposition reports
a found episode to the plan module. Therefore, the re-activate condition of
the plan evaluates to true and the plan resumes (i. e. it changes its state back
to activated).

Chapter 5

Algorithms for Monitoring

Temporal Patterns

Monitoring patient data requires algorithms to match the real world data
with the temporal patterns de�ned in the Asbru plan library. These al-
gorithms must continually process the input and �nd matching patterns
immediately. Additionally, they should require as little state information
as possible. In this chapter I describe adequate algorithms for the most
important temporal features of the Asbru language.

5.1 Parameter Propositions

As explained in chapter 3, the basic Asbru element to build temporal patterns
is the parameter proposition. The heart of a parameter proposition is its time
annotation.

Table 5.1 lists the intensively used abbreviations for the elements of a
time annotation. The values for shifts or durations may be unde�ned, Ta-
ble 5.2 shows the defaults for unde�ned constraints.

RP Reference Point
ESS Earliest Starting Shift
LSS Latest Starting Shift
EFS Earliest Finishing Shift
LFS Latest Finishing Shift
MinDu Minimum Duration
MaxDu Maximum Duration

Table 5.1: Elements of a time annotation and their abbreviations.

63

CHAPTER 5. ALGORITHMS 64

value default
ESS −∞
LSS ∞
EFS −∞
LFS ∞

MinDu 0
MaxDu ∞

Table 5.2: Defaults for unspeci�ed parts of a time annotation, from [59].

5.1.1 Veri�cation of Time Annotations

To be able to create a simple and correct algorithm for monitoring parameter
propositions, it is important to detect any illegal input before the start of
monitoring. Illegal here means a time annotation that cannot match any
interval. An example for an illegal time annotation is ESS > LSS. If the
earliest starting shift is greater than the latest starting shift, no positive
�ank can match this constraint.

Additionally, we can identify abnormal time annotations, which are just
sub-optimally formalised constraints. For instance if EFS−LSS > MinDu,
any matching interval must be longer than EFS−LSS and MinDu will not
be a constraint. For the purpose of creating a simple algorithm, abnormal
time annotations are not relevant, since the aim is to have as few special
cases as possible. Additionally, abnormal time annotations can still match
intervals, so we do not want to exclude them from monitoring.

Duftschmid et al. describe ways to verify clinical guidelines [20,21]. In [19]
Duftschmid also describes a number of implicit constraints on time annota-
tions, which are also listed in the Asbru Reference Manual [60]. Seyfang
recognises that there is a distinction between illegal time annotations and
those that are still valid but only de�ned in a non-optimal way. He di�eren-
tiates between illegal and abnormal time annotations and lists the following
rules for time annotations to be legal [59]:

ESS ≤ LSS (5.1)

EFS ≤ LFS (5.2)

MinDu ≤ MaxDu (5.3)

EFS − LSS ≤ MaxDu (5.4)

MinDu ≤ LFS − ESS (5.5)

At this point I continued their work and found that this list is not exhaustive.
The list of rules for abnormal time annotations contains among others the
following:

CHAPTER 5. ALGORITHMS 65

ESS ≤ EFS
LSS ≤ LFS

Combining the given rules with (5.1) and (5.2) from above, we can write the
restrictions in a slightly di�erent form:

ESS ≤ LSS ≤ LFS
ESS ≤ EFS ≤ LFS

The implicit rule ESS ≤ LFS is now more visible. Examining this restric-
tion shows that a time annotation in violation of this rule is illegal. If the
earliest starting shift is equal to or greater than the latest �nishing shift, the
maximum duration for this interval will be zero or negative. ESS > LFS
as well as MaxDu < 0 are illegal because an interval cannot end before it
started. In our implementation, the duration of even the shortest possible
time span of one micro step is considered to be greater than zero. Therefore,
even the smallest interval is longer than zero time steps. A time annota-
tion of MaxDu = 0 would not match any interval, rendering such a time
annotation illegal. Two additional rules must be added:

ESS < LFS (5.6)

0 < MaxDu (5.7)

Figure 5.1 shows the extended list of rules for legal time annotations.

ESS ≤ LSS

EFS ≤ LFS

ESS < LFS

MinDu ≤ MaxDu

0 < MaxDu

EFS − LSS ≤ MaxDu

MinDu ≤ LFS − ESS

Figure 5.1: Extended list of rules for the veri�cation of time annotations.

Although an interval cannot be negative, a de�nition of MinDu < 0
only results in an abnormal time annotation. But since a negative duration
would confuse our algorithm, we set MinDu = 0 for any MinDu < 0.

CHAPTER 5. ALGORITHMS 66

5.1.2 Types of Parameter Propositions

We will now focus on �nding appropriate algorithms for monitoring parame-
ter propositions, but �rst we must distinguish three basic types of parameter
propositions. The three types are di�erent in their reference point.

� single �xed reference point

� repeated reference point

� the moving reference point now

To simplify the modules used for monitoring, the input is reduced to a single
Asbru Boolean. Boolean true means that the parameter description and the
context are met, Boolean false or unde�ned1 means that they are not met.
For this abstraction, other modules will be used as input to the parameter
proposition modules.

With this simpli�cation we can just concentrate on the positive �anks
(PF) and the negative �anks (NF) (see page 24).

5.1.3 Monitoring with a Fixed Reference Point

The algorithm for monitoring parameter propositions are based on those pro-
posed by Seyfang [59]. Seyfang gives a detailed analysis for each. Therefore,
I only summarise the existing work here and then concentrate on the work
done to actually implement the algorithms in code.

For the �xed reference point it is easier to work on �xed times instead of
shifts. This is possible since we need to know the reference point before we
can start monitoring anyway.

Earliest starting time (EST): The absolute time point RP + ESS, or
−∞ if ESS is not speci�ed.

Latest starting time (LST): The absolute time point RP + LSS, or ∞
if LSS is not speci�ed.

Earliest starting time (EFT): The absolute time point RP + EFS, or
−∞ if EFS is not speci�ed.

Latest starting time (LFT): The absolute time point RP + LFS, or ∞
if LFS is not speci�ed.

The interval for matching positive �anks ([EST, LST]) and the interval
for matching negative �anks ([EFT, LFT]) are now known in absolute time.
During the monitoring process we can now easily observe the passing of

1In Asbru a Boolean can actually have three values: true, false, and unde�ned (or
unknown). We interpret a change from true to both false and unde�ned as a negative
�ank.

CHAPTER 5. ALGORITHMS 67

the interval for the positive �ank and the passing of the interval for the
negative �ank. The third interval constraining a �tting interval is relative
to the positive �ank: [PF + MinDu, PF + MaxDu]. So for each positive
�ank occurring during [EST, LST] we have to re-calculate the time window
during which a negative �ank must occur.

Of course not all constraining shifts will be de�ned all the time. This
has the following consequences for the monitoring process.

EST unde�ned. We do not have to wait for EST, the starting interval
begins before the start of the monitoring process.

LST unde�ned. Any PF after EST will be accepted, only LFT may end
monitoring.

EFT unde�ned. Any NF before LFT is suitable, the �nishing interval be-
gins before the start of the monitoring process.

LFT unde�ned. The latest time for NF is only constrained by MaxDu +
PF . Since this constraint is renewed at each PF, there is no direct
constraint for the latest NF, however it is indirectly constrained by the
latest possible PF.

MinDu unde�ned. There is no minimum duration, but if EFT has not
yet passed, NF is constrained by EFT.

MaxDu unde�ned. The latest time for NF is given by LFT alone.

LST and LFT unde�ned. There is always a chance that a matching in-
terval can be found in the future. Monitoring does not end early.

LFT and MaxDu unde�ned. Once a suitable PF is found, the interval is
a �tting interval already at EFT or PF +MinDu, because NF cannot
come too late.

To monitor the passing of the time windows, alarms will be used. For the
purpose of this description we look at alarms and the positive and negative
�anks as uniform events.

Figure 5.2 shows the state chart for monitoring presented in [59]. As
the author notes the state chart is not a completely formal representation
because it mixes events (e. g. PF arrived) with conditions (e. g. MaxDu =
LFT = ∞) for the state transitions. Therefore, great care must be taken
when transforming the state machine into code.

As the author also notes, implementing Figure 5.2 node by node and arc
by arc as �nite state machine seems redundant. Instead he presents pseudo
code for an algorithm based on four state variables. The three state variables
SI (starting interval), DI (during interval), and FI (�nishing interval) can

CHAPTER 5. ALGORITHMS 68

PF

NF

PF

E
FT

E
FT

E
FT

MinDu

MinDu

LFT, LST

NF, MaxDu

LST

te
rm

in
at

e

NF

E
FT

E
FT

MinDu

MinDu

LST

LST LST

NF, MaxDu

M
ax

D
u=

LF
T=

∞

MaxDu

NF
NF

NF

NF

MaxDu=LFT=∞

NF

MaxDu, LFT
NF, LFT

LFT

LST

report start of fitting interval

report end of before found fitting interval

report complete fitting interval

S
ta

rt EST

DI = during

FI
 =

 d
ur

in
g

SI = during

PFfound = true

LFT

1 2 3 4 5

6 7 8 9 10

11

12

Figure 5.2: State chart of monitoring a parameter proposition with a �xed refer-
ence point. Wide, stripped arcs stand for the action �output description of �tting
interval� performed during these state transitions. This action is split in cases
where the interval is found to �t before it ends. From [59].

have the values before, during, and past. The state variable PFfound can be
true or false.

Each state is represented as an area with dotted borders in the state
chart (Figure 5.2). The areas are labelled with the state variable's short
name. The starting interval (SI) is the interval during which PF must occur
to start a �tting interval. The �nishing interval (FI) is the interval during
which NF must occur. The during interval (DI) is de�ned by MinDu and
MaxDu with PF. It starts with MinDu being over and ends with MaxDu,
LFT, or NF. PFfound tells if a �tting PF has been found.

Implementation of the Proposed Algorithm

Based on the suggested pseudo code in [59] I have developed the algorithm
presented as the function processEvent on page 71.

CHAPTER 5. ALGORITHMS 69

The algorithm is based on the four state variables described above. Before
the start of monitoring the constraining intervals are checked according to
the rules in section 5.1.1. As we internally de�ne the start of monitoring as
time 0 (zero), the conditions LST >= 0 and LFT > 0 must be ful�lled, too.
If the time annotation is illegal (i. e. it cannot match any interval), monitoring
is not started for this parameter proposition and end of monitoring will be
reported.

At the start of monitoring the state variables are initialised. If EST is
unde�ned (−∞) or is before the start of monitoring (< 0), any positive �ank
before or equal to LST2 will match the starting interval (SI). Therefore, the
starting interval is set to during in that case, otherwise to before. The same
is done for EFT and the �nishing interval (FI). The during interval (DI) is
set to before, PFfound to false. For EST, LST, EFT, and LFT alarms are
registered appropriately.

The monitoring itself happens in the processEvent function. According
to each event the state variables are changed and resulting changes of the
output are reported. Nevertheless there are several cases when more than
one state transition in the original state chart (Figure 5.2) is required in one
step. This is because some transitions are based on input (events, e. g. PF)
whereas others are based on conditions (i. e. MaxDu = LFT = ∞). Some
of them can be based on both, e. g. MinDu can mean the event minimum
duration expired or the condition MinDu = 0.

Unde�ned constraints. As we have just seen with the example of MinDu,
unde�ned constraints of the three intervals may require the algorithm to
explicitly check the condition at each state that has an outgoing transition
labelled with the respective constraint. Let me analyse the constraints in
this regard. Since an unde�ned maximum never implies an action3 (the
interval does not expire), only the minimum constraints are relevant. That
leaves EST, EFT, and MinDu. Unde�ned values for EST and EFT are
already taken care of at the start of monitoring. Therefore, we only need
to explicitly check for unde�ned MinDu and the explicitly given condition
MaxDu = LFT =∞.

So when must MinDu = 0 be checked? Looking at the state chart we
can see that this condition must be checked in states 2, 4, 7, and 9. Into these
states we come through PF, EFT, and LST. Thus, if we check MinDu = 0
directly after PF and EFT, we can even ignore LST because there is no way
to move through LST on 2 → 4 or 7 → 9. We will always move 2 → 3 or
7 → 8 �rst. Conclusion: The algorithm must check an unde�ned MinDu
after PF and EFT.

MaxDu = LFT = ∞ must be checked in states 8 and 10, to which we

2LST must be >= 0, otherwise the time annotation is illegal.
3The exception to the rule, MaxDu = LFT =∞, is explicitly given in the state chart.

CHAPTER 5. ALGORITHMS 70

come through EFT, MinDu (states 8, 10), and LST (8 → 10). As above,
there is no need to check after LST because checking for MaxDu = LFT =
∞ in state 8 already moves the state 8 → 11. Conclusion: The algorithm
must check MaxDu = LFT =∞ after EFT and MinDu.

Result. In my implementation I have solved the processing of additional
conditions by recursively calling processEvent in those cases. The main part
is given as pseudo code of processEvent on page 71. A description for each
event with references to the state transitions in the chart is given below.

EST Earliest starting time passed. SI (starting interval) is set to during,
corresponding to transition Start→ 1 in the state chart.

LST Latest starting time passed. If we have a valid positive �ank right
now (PFfound = true), set SI (starting interval) to past (2→ 4, 3→
5, 7→ 9, 8→ 10), otherwise terminate (1, 6→ terminate).

EFT Earliest �nishing time passed. Set FI (�nishing interval) to during
(1 → 6, 2 → 7, 3 → 8, 4 → 9, 5 → 10). Then, if a positive �ank
was found, check for MinDu = 0 and implicitly MaxDu = LFT =∞
(recursively call processEvent(MinDuEx), as explained above).

LFT Latest �nishing time passed, terminate (6, 7, 8, 9, 10→ terminate).

PF Positive �ank found. If the positive �ank is within the starting interval
(SI = during), set PFfound to true, set DI (during interval) to before,
and set the duration alarms for MinDu and MaxDu (1 → 2, 6 → 7).
Also check for MinDu = 0 as explained above.

MinDuEx Minimum duration expired, set DI (during interval) to during
(2 → 3, 4 → 5, 7 → 8, 9 → 10). If FI (�nishing interval) is during,
check for MaxDu = LFT = ∞. If so, report start of interval (NF is
not yet known; 8→ 11, 10→ 12).

NF Negative �ank found. If we have a valid positive �ank, FI (�nishing in-
terval) is during and DI (during interval) is during, then if MaxDu =
LFT = ∞ report end of before-found interval (start of interval was
reported before; 11 → 6, 12 → terminate), otherwise report complete
interval (8 → 6, 10 → terminate). Additionally, if we are still in
the starting interval (SI), set PFfound to false (2 → 1; 7, 8, 11 →
6), otherwise add end of monitoring to the output and terminate
(4, 5, 9, 10, 12→ terminate).

MaxDuEx Maximum duration expired. Set DI (during interval) to past.
If we are still in the starting interval (SI), set PFfound to false (3 →
1, 8 → 6), otherwise terminate reporting end of monitoring (5, 10 →
terminate).

CHAPTER 5. ALGORITHMS 71

Function processEvent(event). Pseudo code for monitoring of a parame-

ter proposition with �xed reference point.

Data: SI starting-, FI �nishing-, DI during-interval, PFfound positive �ank

function processEvent(event)

switch event do

case EST:
SI← during

case LST:

if PFfound then
SI← past

else
result← end of monitoring

case EFT:
FI← during
if PFfound and (MinDu = 0 or DI = during) then

result← processEvent(MinDuEx)

case LFT:
result← end of monitoring

case PF:

if SI = during then
PFfound← now
DI← before
set alarms for MinDu, MaxDu

if MinDu = 0 then result← processEvent(MinDuEx)

case MinDuEx:
DI← during
if FI = during and MaxDu = LFT = ∞ then

result← start of interval

case NF:

if PFfound and FI = during and DI = during then

if MaxDu = LFT = ∞ then
result← end of before-found interval

else
result← complete interval

if SI = during then
PFfound← false

else
result← result ∪ end of monitoring

case MaxDuEx:
DI← past
if SI = during then

PFfound← false
else

result← end of monitoring

return result

CHAPTER 5. ALGORITHMS 72

The algorithm for monitoring parameter propositions with a �xed refer-
ence point is implemented in the class FixedParameterPropositionModule. The
algorithm has been tested to give correct and timely answer for all inputs.
For testing and veri�cation see chapter 6.

5.1.4 Monitoring with Repeated Reference Points

Monitoring a parameter proposition with repeated reference points can be
simply seen as iterative monitoring with a �xed reference point and calculat-
ing the union of the individual episodes as output, i. e. eliminating duplicated
episodes found with more than on reference point. Duplicate episodes are
episodes that have the same positive �ank.

Each individual module for a speci�c reference point must run until end
of monitoring is reported for this speci�c instance. Because the distance of
reference points can be shorter than the time until end of monitoring, an
arbitrary number of modules must be created and run in parallel. The pa-
rameters de�ning the maximum number of needed instances are only known
at runtime, therefore, implementing a dedicated module for each reference
point requires modi�cations of the module graph at runtime.

Another approach would be to create a single module to have multiple
instances of the state machine to monitor each reference point. The algo-
rithm to monitor each of those would still be the same as described in the
previous subsection.

In the current implementation, the �rst approach is taken, i. e. for each
new reference point a FixedParameterPropositionModule is created and added
to the module graph. As soon as the module reports end of monitoring, the
module is removed from the graph. This is implemented in the RepeatedPa-
rameterPropositionModule.

5.1.5 Monitoring with Reference Point Now

In contrast to a parameter proposition with a �xed or repeated reference
point, monitoring with reference point now is di�erent in several aspects:

1. We cannot de�ne any constraint based on �xed time points because
the intervals are constantly moving.

2. There is no end of monitoring because of the �rst statement.4

3. Again, because the constraints are moving, a �tting interval is usually
only �tting for a constrained (shorter or longer) time frame, after which
it is no longer matching the constraints. The start of this time frame
is called start of validity, the end is called end of validity.

4The monitoring is only stopped for this parameter proposition if the information is
not needed any more.

CHAPTER 5. ALGORITHMS 73

4. Any valid shift must be zero or negative, i. e. point to the past, because
we can at no point look into the future. So a time annotation with
positive shifts would never result in a �tting interval.5

By now the constraints for positive and negative �anks were �xed in time.
We imagined the time and therefore the �anks as moving. To understand
monitoring with reference point now, we should consider the �anks as �xed
in time (after they occurred) and then calculate the window of during which
the interval will be a �tting interval, based on the �anks and the constraints.
If such a time window is found, start and end of validity is output at start
and end of this window. What does not change from the case with a �xed
reference point is the processing of the minimum and maximum duration as
those have already depended on the positive �ank. A more detailed analysis
is given below.

Calculating the E�ective Duration Constraints

The constraints that a time annotation imposes on a �tting interval, con-
sist of two parts, the duration of the interval and the location on the time
axis. Let me consider the duration �rst. Obviously, it is constrained by the
minimum and maximum duration (MinDu and MaxDu). As we have seen
before, the minimum duration is also set by the latest starting shift and the
earliest �nishing shift. The maximum duration is also de�ned by the earli-
est starting shift and the latest �nishing shift. The e�ective minimum and
maximum durations are therefore de�ned as follows [59]:

EffMinDu = max(EFS − LSS, MinDu)
EffMaxDu = min(LFS − ESS, MaxDu)

So as soon as a positive �ank is found, a negative �ank must now occur
between PF + EffMinDu and PF + EffMaxDu. Alarms for the duration
constraints are set at the positive �ank.

Calculating Start and End of Validity

For the validity of an interval, i. e. the time window during which an interval
is a �tting interval, we look at the �anks again. At PF we can say that
for this interval, the window of validity will start at PF plus the absolute
value of the (negative) latest starting shift, PF + |LSS|, or PF − LSS. If
it sounds odd to a reader that the start of validity should be constrained
by the latest starting shift, remember that the time and thus also the latest
starting time is moving forward. For example, a second after the start of

5When compiling the plan library, positive numbers in the shifts of a time annotation
with reference now are mapped to negative numbers for user convenience.

CHAPTER 5. ALGORITHMS 74

validity, now − |LSS| will be after PF, and PF will actually be earlier than
the latest starting time now.

If the minimum duration is de�ned, the start of validity is also con-
strained by PF + MinDu because we cannot know that the interval is a
�tting interval before MinDu has passed. Accordingly we must de�ne the
start of validity based on the negative �ank, NF − LFS.

SVPF = PF − LSS

SVNF = NF − LFS

SVMinDu = PF + MinDu

The end of validity is calculated from PF and ESS, and NF and EFS.

EVPF = PF − ESS

EVNF = NF − EFS

To calculate the actual time window of validity for a found interval we must
consider all these �ve constraints. For a more detailed analysis see [59].

SV = max(SVPF , SVNF , SVMinDu)
EV = min(EVPF , EVNF)

The pseudo code for calculating the start and end of validity for real values
is given in algorithm 5.2. The methods are used to calculate the validity as
soon as a �tting interval is found. For start of validity the default value is
now because this is the earliest time we can know that the �tting interval
is valid anyway. When there are no constraints on the earliest starting or
�nishing time, there is no end of validity, therefore, the default value is
positive in�nite (∞).

Figure 5.3 on page 76 shows the state chart for monitoring with reference
point now. Note that the automaton must be able to take several steps in
immediate succession. Equally to the state chart for a �xed reference point,
some arcs are labelled with events while others are labelled with queries.

Implementation of the Proposed Algorithm

The algorithm proposed by Seyfang lacks explicit output of end of validity.
In the case of a constrained maximum duration, i. e. MaxDu 6=∞∨LFS 6=
∞, the �tting interval is only known at NF, and therefore, SV and EV
are both known at the report of the complete interval. For the case of an
unconstrained maximum duration, i. e. MaxDu = LFS = ∞, the situation

CHAPTER 5. ALGORITHMS 75

Algorithm 5.2: Pseudo code for calculating the start and end of validity
of a found interval for monitoring of a parameter proposition with reference
point now.

Result: Start of validity for found interval.
function getSV(now, PF, NF)

SVPF , SVNF , SVMinDu ← now
if LSS de�ned then

SVPF ← PF − LSS

if NF known then

if LFS de�ned then
SVNF ← NF − LFS

else
SVNF ← NF

SVMinDu ← PF + MinDu
return max(SVPF , SVNF , SVMinDu)

Result: End of validity for found interval.
function getEV(now, PF, NF)

EVPF , EVNF ←∞
if ESS de�ned then

EVPF ← PF − ESS

if NF known and EFS de�ned then
EVNF ← NF − EFS

return max(EVPF , EVNF)

is di�erent. At PF +MinDu the start of a �tting interval must be reported.
It is then quite simple to come up with an example time annotation for which
end of validity will be before the negative �ank. In such a case, end of validity
must be reported appropriately �rst and end of before-found �tting-interval
later as soon as NF occurs.

My implementation ful�ls this requirement by implementing the algo-
rithm based on the two state variables PFfound (PF was found) andMinDu-
Passed (minimum duration passed after PF), and the additional variable
EVbeforeNF (end of validity was reported before the negative �ank). At
start of monitoring, these state variables are set to false.

Output When monitoring with a �xed reference point, the output of the
algorithm was always valid at the time it was reported. Now, monitoring
with reference point now, we will often �nd information that is known now,
but must be output in the future. For example, if the latest starting shift
is −5 hours, and there is no constraint on the maximum duration, the start
of validity will be now + 5 hours earliest and should only be reported to
other modules in the monitoring process at that time. My framework imple-
mentation makes this quite easy by allowing output with a future valid time.
The Execution Manager keeps the output for us until the valid time occurs

CHAPTER 5. ALGORITHMS 76

MaxDu= LFS = ∞

Start

MaxDu ≠ ∞ or LFS ≠ ∞

NF

M
in

D
u

P
F

NF

NF

P
F

M
axD

u

M
in

D
u

NF

report start of fitting interval

report end of before found fitting interval

report complete fitting interval

Figure 5.3: State chart of monitoring a parameter proposition with reference
point now. Wide, stripped arcs stand for the action �output description of �tting
interval� performed during these state transitions. This action is split in cases
where the interval is found to �t before it ends. From [59].

and only then reports the information to other modules. In the pseudo code
this is illustrated by e. g., report start of validity at SV, which means to
report the start of validity, but with a valid time of the start of the validity
time window.

Result The algorithm for monitoring a parameter proposition with ref-
erence point now is given as pseudo code of the function processEvent on
page 77. A description for each event is given below.

PF Positive �ank found. Set PFfound to now, MinDuPassed and EVbe-
foreNF to false. Set alarms for MinDu (at PF +MinDu) and MaxDu
(at PF + MaxDu). If the e�ective minimum duration is zero, recur-
sively call processEvent(MinDuEx) to either set MinDuPassed to true
or, if there is no constraint on the maximum duration, report the found
interval.

NF Negative �ank found. If there is a currently valid positive �ank (i. e. not
expired), check if MinDuPassed is true, set PFfound to false and cancel
any duration alarms.

CHAPTER 5. ALGORITHMS 77

Function processEvent(event). Pseudo code for monitoring of a parame-

ter proposition with reference point now.

Data: MinDuPassed if MinDu has passed, EVbeforeNF if EV has happened
before NF, PFfound positive �ank found

function processEvent(event)

switch event do

case PF:
PFfound← now
MinDuPassed, EVbeforeNF← false
set alarms for MinDu, MaxDu

if E�MinDu = 0 then
result ← processEvent(MinDuEx)

case NF:

if PFfound then

if MinDuPassed then

if MaxDu = LFS =∞ then
result ← end of before-found interval

if not EVbeforeNF then
EV ← getEV(now, PFfound, now)

if EV de�ned then
result ← result ∪ end of validity at EV
cancel alarm for EV

else
SV ← getSV(now, PFfound, now)

result ← start of validity at SV
EV ← getEV(now, PFfound, now)

if EV de�ned then
result ← result ∪ end of validity at EV

PFfound← false
cancel alarms for MinDu, MaxDu

case MinDuEx:
MinDuPassed← true
if MaxDu = LFS =∞ then

SV ← getSV(now, PFfound, unde�ned)

result ← start of validity at SV
EV ← getEV(now, PFfound, unde�ned)

if EV de�ned then
set alarm for EV before NF at EV

case EVBeforeNF:
EVbeforeNF← true
result ← end of validity

case MaxDuEx:
PFfound← false

return result

CHAPTER 5. ALGORITHMS 78

If MinDuPassed is true, then, if there is no maximum duration con-
straint report end of before-found interval and end of validity if it has
not been reported yet. If there is a maximum duration constraint,
report the complete interval now.

MinDuEx Minimum duration expired. Set MinDuPassed to true. If there
is no maximum duration constraint, report start of validity. If end
of validity based on the positive �ank (EVPF) is de�ned, i. e. ESS is
de�ned, register an alarm for EV before NF at EV.

EVBeforeNF End of validity occurred before the negative �ank. Set EVbe-
foreNF to true and report end of validity now.

MaxDuEx Maximum duration expired. Set PFfound to false.

The algorithm for monitoring a parameter proposition with reference
point now is implemented in the class MovingParameterPropositionModule

(see the class overview in chapter 4). The class EpisodeDataPoint is used
to report information in any of the three parameter proposition modules as
well as all other modules presented in this chapter. Its properties and the
requirements for any module using this data point class are described in
detail in section 4.2.3.

5.2 Temporal Constraints

Asbru temporal constraints are based on Allen's thirteen temporal relations
as �rst described in [2]. Temporal relations, e. g. before, overlaps, or equal, are
used in the natural language to describe information about events and inter-
vals in time. Allen formalised these relations in an interval-based temporal
logic to create algorithms for computational reasoning about intervals [2,3].
Kaiser et al. [38] have analysed possible temporal relations between di�erent
plan states and plan state transitions in Asbru plans to gain knowledge and
provide means for the veri�cation of guidelines.

However, Asbru temporal constraints themselves are not used to gain
knowledge about temporal intervals or events. Instead they are used to gain
knowledge about a patient's health condition by matching patient data with
patterns de�ned as temporal relations in the plan library. The task is to �nd
all instances of a given temporal relation of episodes from two streams. This
requires a distinctive set of algorithms.

Table 5.3 lists the seven temporal constraints de�ned in Asbru. Each of
the other six of the thirteen possible relations is an inverse of a given one
and can be achieved by exchanging the arguments.

CHAPTER 5. ALGORITHMS 79

Relation De�nition
A before B NFA < PFB

A meets B NFA = PFB

A overlaps B PFA < PFB ∧ PFB < NFA < NFB

A starts B PFA = PFB ∧ NFA < NFB

A during B PFA > PFB ∧ NFA < NFB

A �nishes B PFA > PFB ∧ NFA = NFB

A equal B PFA = PFB ∧ NFA = NFB

Table 5.3: Allen's temporal relations translated into Asbru temporal constraints.
The constraints are de�ned based on the positive and negative �anks of the intervals.

Output. The output of a temporal constraint is an episode for each match-
ing pair of input episodes (from inputs A and B). The positive �ank for
the output episode is the earlier positive �ank (PFout = min(PFA, PFB)),
the negative �ank is the later negative �ank of the two inputs (NFout =
max(NFA, NFB)). In other words, the output episodes' �anks enclose the
input episodes. The interval of validity must be the intersection of the in-
tervals of validity of the pair of input episodes.

Input Ordering. Seyfang describes algorithms to monitor temporal con-
straints at near constant computational costs per episode, i. e. O(n) where
n is the number of all processed input episodes [59]. He achieves this by
simplifying the problem assuming that the temporal patterns arrive totally
ordered by the positive �ank at the monitoring module. In practice this sim-
pli�cation can be achieved by delaying information (based on the maximum
data delay for a given input) so that data from both inputs is processed in
order. Since the current framework implementation does not support indi-
vidual data delay yet, another approach is needed. A di�erent issue is that
some temporal patterns will always generate output that cannot be processed
in order without an in�nite delay of the processing.

A simple example of such a temporal pattern is the before constraint. Any
episode of input A will be before any later episode of input B. Therefore, for
any later episode of input B, the module needs to output the combinations
of all earlier episodes from input A with the given episode from input B. The
start (positive �ank) of the output episodes will not be ordered but instead
goes back to the �rst episode of input A for each episode of input B (compare
Figure 6.1 on page 98). Because of this, it would be impossible to monitor
the output of two before constraints for equality for example.

For the given reasons I have created algorithms that accept unordered
input. This is achieved at the expense of higher computational costs. It must
be said that the aim was not to �nd the fastest possible algorithm (from a
runtime perspective), but a correct algorithm that could act as a reference

CHAPTER 5. ALGORITHMS 80

Operator De�nition with epsilon
a = b |a− b| ≤ epsilon
a > b a > b− epsilon
a ≥ b a ≥ b− epsilon
a < b a < b + epsilon
a ≤ b a ≤ b + epsilon

Table 5.4: De�nition of (in)equality operators with epsilon.

implementation for future optimisation work. A sensible enhancement will
be to implement the algorithms proposed by Seyfang for the cases where this
is possible, and use mine in the other cases.

5.2.1 Temporal Constraints and Epsilon

The reference point of an Asbru parameter-proposition may also be de�ned
with an epsilon-region, which denotes a region around the time point given
as the reference. This means, that the actual time point can lie somewhere
between the reference minus epsilon and the reference plus epsilon.

Asbru provides epsilon for temporal constraints, too. In this context,
epsilon is useful under some circumstances to describe �fuzzy� matches within
de�ned bounds. If data is received from di�erent sources, the data might not
be exactly synchronised, so when monitoring for equality the actual positive
and negative �anks of two intervals might by o� by some tenth of a second,
compared to an interval length of some seconds or minutes, for example. If
these two intervals should match as equal, epsilon provides means to achieve
this.

Some of the cases where epsilon seems useful could be described in dif-
ferent ways by combining several temporal constraints (e. g., A before B or

A meets B) with appropriate parameter propositions to limit how much an
episode A could be before B to match the before constraint. This technique
might help to solve some but not many of the use cases for epsilon and is
rather ine�cient.

In the pseudo code given in the next subsections, epsilon is not explicitly
included for readability. Instead, the rede�nition of the operators given
in Table 5.4 is assumed. For example, if the pseudo code reads NF (a) <
NF (b), the comparison will be NF (a) < NF (b)+epsilon for epsilons greater
than zero.

5.2.2 Algorithm Design

The algorithms I have created for monitoring temporal constraints are based
on a single design for all types of constraints. The common implementation

CHAPTER 5. ALGORITHMS 81

is done in the Java class TemporalConstraintModule. The algorithm uses two
sorted sets, i. e. one for each input, and a list of already output episodes.
The sorted input sets provide a sorted representation of the inputs currently
relevant for processing and additionally means to add and remove inputs
from the set with O(lnn) behaviour. The latter is needed to e�ciently
remove revoked inputs. The sorted view is needed to �nd matching inputs
with a runtime of O(1) best case to O(n) worst case, where n is the number
of currently valid inputs in the opposite input of the currently processed one.
This is currently done using a standard Java TreeMap.

The output list is used for two purposes. First it records input episodes
that are known to match, but are not yet known complete (negative �ank
unknown), second it is used to keep track of output episodes that must be re-
voked if an input is revoked later. Nevertheless there are certain monitoring
modules that output episodes that will never be revoked, for example moni-
toring parameter propositions with a �xed reference point. Optimisation is
possible here because waiting for the revocation of an episode (i. e. end of
validity) is not necessary. Because of this, each episode carries the informa-
tion if it is revocable, in other words if there can be an end of validity of this
episode. If none of the inputs of a pair of episodes constituting an output
episode is revocable, the output episode can be removed from the list as soon
as the interval is known-complete, i. e. both positive �ank and negative �ank
are known.

Basic task. The task for monitoring at each time step is:

� For each input process start of validity and end of before-found inter-
val of any episodes. For each input episode, match the input against
existing, valid inputs that are potential �ts. Eliminating episodes that
are no potential �ts is a key aspect in a fast algorithm here. Found
matches are added to the output list.

� Process end of validity of any input episodes. For each �nished episode,
revoke all already output episodes.

� If both input modules reported end of monitoring, create an output
episode representing end of monitoring for this module.

Item two and three above are the same for all temporal constraints and
only need one common implementation. The di�erence between the di�erent
temporal relations is only in the part actually matching the episodes. This
is implemented for each temporal constraint in its own subclass of Tempo-
ralConstraintModule as method processEvent.

As said above, eliminating episodes that are no potential �t is important.
When matching a given episode, the list of inputs of the other input channel
is searched. We want to �nd the most probable matches �rst in the list

CHAPTER 5. ALGORITHMS 82

and also have an abort condition that allows us to ignore all other inputs
as not matching. The list of episodes can be sorted by either positive �ank
or negative �ank, and the list can be searched forward or backward. Which
of the �anks is most signi�cant for matching depends on the given temporal
relation we want to monitor.

For example looking at the A before B relation, the negative �ank of an
episode a must occur before the positive �ank of an episode b. Therefore, the
inputs of A should be sorted by the negative �ank and the inputs of B by the
positive �ank. When analysing an instance of B, the most probable match
for A before B is the oldest instance of A. Therefore, the instances of A will
be sorted in ascending order. An analysis for the best order of the inputs
for each temporal constraint is given below, together with the de�nition and
the algorithm for each.

5.2.3 The Temporal Constraint A before B

Two intervals A and B match the constraint A before B if and only if interval
A ends before interval B starts. Based on the �anks of the intervals, the
constraint A before B is de�ned as:

NFA < PFB

Input Ordering. As explained earlier, the input sets are kept as sorted set
to enable fast lookups of matching episode pairs. For the before-relation, the
best approach is to sort episodes of input A by the negative �ank ascending
and episodes of input B by the positive �ank descending.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 83 and is implemented in EpisodeBeforeModule.

The processEvent method receives two arguments, �rst the type of infor-
mation this event represents (one of PFA, PFB, NFA, NFB), second the
episode data as one element out of an EpisodeDataPoint. Note that if both
positive �ank and negative �ank are known at the initial report of an episode,
the method will still be called for PF and NF separately, so we need not
think about this special case. The method must return new output as list of
EpisodeDataPoints and additionally store or update output in the output list.
The list below describes how the algorithm reacts on each kind of input.

PFA At the positive �ank of an input A we cannot know if the episodes
can match an episode B. The event could be ignored. Nevertheless
the episode must be stored to keep track of it in case that the episode
becomes invalid (end of validity) before the negative �ank is reported.
Therefore, the episode is stored in the input set A.

CHAPTER 5. ALGORITHMS 83

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A before B.

Data: SetA sorted set of episodes from input A, ordered by NF ascending,
unde�ned last. SetB sorted set of episodes from input B, ordered by
PF descending. OutputList list of episodes that have been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB
{Find all episodes of SetA that ended before episode}
foreach a ∈ SetA do

if NF (a) unde�ned then
break

if NF (a) < PF (episode) then
add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else
break

case NFA:

if not episode ∈ SetA then
break

update episode in SetA
{Find all episodes of SetB that started after episode}
foreach b ∈ SetB do

if NF (episode) < PF (b) then
add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else
break

case NFB:

if episode ∈ SetB then
update episode in SetB

{Find all output episodes that contain this episode and report

end of before-found interval for each}
foreach output ∈ OutputList do

if episode part of output then
add end of before-found interval of output to result

if not Revocable(output) or Revoked(output) then
remove output from OutputList

return result

CHAPTER 5. ALGORITHMS 84

PFB Store the episode in the input set B. Then �nd all episodes of input set
A that ended before this episode. We can abort the search if either an
episode A with an unknown negative �ank (sorted last) is found or the
negative �ank of an episode A is greater than or equal to the positive
�ank of the input episode.

NFA If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped. It provides no new
information relevant for the output of this module.

If the episode is still valid, update the episode in the input set A and
�nd all instances in input set B that started after this episode.

NFB Update the episode in the input set B. Then �nd all output episodes
that contain this input episode and report end of before-found interval
for them. Revoked episodes and episodes based on inputs that were
not revocable can now be removed from the output list.

5.2.4 The Temporal Constraint A meets B

Two intervals A and B match the constraint A meets B if and only if interval
A ends exactly when interval B starts. Based on the �anks of the intervals,
the constraint A meets B is de�ned as:

NFA = PFB

Input Ordering. To �nd matches for this constraint, we need to compare
the negative �ank of episodes from input A with the positive �ank of episodes
from input B. Therefore, the input set A will be sorted by the negative �ank,
whereas the input set B will be sorted by the positive �ank.

In contrast to the before relation we cannot say whether the most proba-
ble matches will be the earliest or the latest episode, but instead they will be
those that are close to each other. The best way to �nd potential matches
would be to use binary search in the sorted set to �nd matches. Nevertheless
I have made the assumption that the delay between a positive �ank and the
start of validity is shorter than the time from start to end of validity. As long
as this assumption is true, we can �nd most matches in the most recently
found episodes. Both input sets are therefore sorted in descending order.

Epsilon. When epsilon is used with this temporal constraints, there can
be unexpected results because only NFA and PFB are checked, which is
su�cient if epsilon is not considered. With epsilon, a relation matching
overlaps or before can also match meets. This is the desired behaviour.
However intervals in any relation potentially match meets, if epsilon is higher
than the interval length. Common sense must say that epsilon should be very

CHAPTER 5. ALGORITHMS 85

low compared to the expected interval lengths and so this is not a problem,
but it should be mentioned.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 85 and is implemented in EpisodeMeetsModule.

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A meets B.

Data: SetA sorted set of episodes from input A, ordered by NF descending,
unde�ned last. SetB sorted set of episodes from input B, ordered by
PF descending. OutputList list of episodes that have been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB
{Find all episodes of SetA so that a meets episode}
foreach a ∈ SetA do

if NF (a) unde�ned then break

if NF (a) = PF (episode) then
add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else if not NF (a) ≥ PF (episode) then
break

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode meets b}
foreach b ∈ SetB do

if NF (episode) = PF (b) then
add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else if not NF (episode) ≤ PF (b) then
break

case NFB:
{Same as NFB for the before constraint above}

return result

The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Store the episode in the input set B. Find all episodes of input set A
that end exactly at PFB.

CHAPTER 5. ALGORITHMS 86

NFA If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped. If the episode is still
valid, update the episode in the input set A and �nd all instances in
input set B that start exactly at NFA.

NFB Same as for A before B. Update the episode in the input set B. Then
�nd all output episodes that contain this input episode and report end
of before-found interval for them.

5.2.5 The Temporal Constraint A overlaps B

Two intervals A and B match the constraint A overlaps B if and only if
interval A starts before the start of interval B, and the end of interval A
lies between the start and the end of interval B. Based on the �anks of the
intervals, the constraint A overlaps B is de�ned as:

PFA < PFB ∧ PFB < NFA < NFB

Input Ordering. The overlaps constraint is similar to the meets con-
straint. The negative �ank of input A and the positive �ank of input B are
the signi�cant properties to compare. The input set A will be sorted by the
negative �ank and the input set B will be sorted by the positive �ank again.
The sort order will be descending for both.

Algorithm Description. Di�erent from above is that we must also check
PFA and more importantly NFB to be sure that two intervals match. NFB

will usually not be known at NFA for two matching intervals, but it is
su�cient to know that NFB is later than NFA, the exact time of NFB

is irrelevant. Of course, the algorithm must take care of this special case
because of the principle that all facts must be reported as soon as they can be
known. The implementation is simpli�ed by determining that input B will be
processed before input A. So when we �nd NFA, and an episode in the input
set B does not have the negative �ank de�ned, we know that it will occur later
than now. This is implemented in the superclass TemporalConstraintModule.

The pseudo code for input matching is given as function processEvent on
page 87 and is implemented in EpisodeOverlapsModule.

The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Store the episode in the input set B. Find all episodes of input set A
that ful�l the constraint A overlaps B. If the negative �ank of episode
B is unknown, it must occur later than any known negative �ank of
episodes from set A.

CHAPTER 5. ALGORITHMS 87

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A overlaps B.

Data: SetA sorted set of episodes from input A, ordered by NF descending,
unde�ned last. SetB sorted set of episodes from input B, ordered by
PF descending. OutputList list of episodes that have been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB
{Find all episodes of SetA so that a overlaps episode}
foreach a ∈ SetA do

if NF (a) unde�ned then break

if NF (a) > PF (episode) then
if PF (a) < PF (episode) and (NF (a) < NF (episode)
or NF (episode) unde�ned) then

add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else
break

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode overlaps b}
foreach b ∈ SetB do

if PF (episode) < PF (b) then
if NF (episode) > PF (b) and (NF (episode) < NF (b)
or NF (b) unde�ned) then

add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else
break

case NFB:
{Same as NFB for the before constraint above}

return result

CHAPTER 5. ALGORITHMS 88

NFA If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped. If the episode is still
valid, update the episode in the input set A and �nd all instances
in input set B that ful�l the constraint A overlaps B. If the negative
�ank of any episode B is unknown, it must occur later than the given
negative �ank of episode A.

NFB Same as for A before B. Update the episode in the input set B. Then
�nd all output episodes that contain this input episode and report end
of before-found interval for them.

5.2.6 The Temporal Constraint A starts B

Two intervals A and B match the constraint A starts B if and only if interval
A and B start together, and interval A ends before interval B ends. Based
on the �anks of the intervals, the constraint A starts B is de�ned as:

PFA = PFB ∧ NFA < NFB

Input Ordering. For the starts constraint, PFA and PFB are the most
signi�cant �anks that must be compared. The negative �anks must also be
checked, and as for the overlaps constraint the algorithm must take care of
the case when NFA is known and NFB is not yet known but known to occur
later.

The input sets A and B will be sorted by the positive �anks of the
episodes. Both will be sorted in descending order to �nd the latest episodes
�rst.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 89 and is implemented in EpisodeStartsModule.

The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Store the episode in the input set B. Find all episodes of input set A
that ful�l the constraint A starts B. If the negative �ank of episode
B is unknown, it must occur later than any known negative �ank of
episodes from set A.

NFA Same as for A overlaps B. If the episode cannot be found in the input
set, end of validity has already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set A and
�nd all instances in input set B that ful�l the constraint A starts B.
If the negative �ank of any episode B is unknown, it must occur later
than the given negative �ank of episode A.

CHAPTER 5. ALGORITHMS 89

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A starts B.

Data: SetA sorted set of episodes from input A, ordered by PF descending.
SetB sorted set of episodes from input B, ordered by PF descending.
OutputList list of episodes that have been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB
{Find all episodes of SetA so that a starts episode}
foreach a ∈ SetA do

if NF (a) unde�ned then continue

if PF (a) = PF (episode) then
if NF (a) < NF (episode) or NF (episode) unde�ned
then

add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else if not PF (a) ≥ PF (episode) then
break

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode starts b}
foreach b ∈ SetB do

if PF (episode) = PF (b) then
if NF (episode) < NF (b) or NF (b) unde�ned then

add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else if not PF (episode) ≤ PF (b) then
break

case NFB:
{Same as NFB for the before constraint above}

return result

CHAPTER 5. ALGORITHMS 90

NFB Same as for A before B. Update the episode in the input set B. Then
�nd all output episodes that contain this input episode and report end
of before-found interval for them.

5.2.7 The Temporal Constraint A during B

Two intervals A and B match the constraint A during B if and only if interval
A starts after the start of interval B and ends before the end of interval B.
Based on the �anks of the intervals, the constraint A during B is de�ned as:

PFA > PFB ∧ NFA < NFB

Input Ordering. For the during constraint it is not immediately obvious
which �anks should be used for the input ordering. Using the positive �ank
of episode A for sorting has the advantage that we will �nd our abort condi-
tion faster when searching through the list. When processing episodes from
input A, sorting episodes from input B by the negative �ank, with unknown
negative �anks �rst, will sort the potential matches �rst. Unknown negative
�anks of episodes from input B will again mean that they will occur later
than any known negative �ank of input A.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 91 and is implemented in EpisodeDuringMod-

ule.
The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Store the episode in the input set B. Find all episodes of input set A
that ful�l the constraint A during B. If the negative �ank of episode
B is unknown, it must occur later than any known negative �ank of
episodes from set A.

NFA Same as for A overlaps B. If the episode cannot be found in the input
set, end of validity has already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set A and
�nd all instances in input set B that ful�l the constraint A during B.
If the negative �ank of any episode B is unknown, it must occur later
than the given negative �ank of episode A.

NFB Same as for A before B. Update the episode in the input set B. Then
�nd all output episodes that contain this input episode and report end
of before-found interval for them.

CHAPTER 5. ALGORITHMS 91

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A during B.

Data: SetA sorted set of episodes from input A, ordered by PF descending.
SetB sorted set of episodes from input B, ordered by NF descending,
unde�ned �rst. OutputList list of episodes that have been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB
{Find all episodes of SetA so that a during episode}
foreach a ∈ SetA do

if NF (a) unde�ned then continue

if PF (a) > PF (episode) then
if NF (a) < NF (episode) or NF (episode) unde�ned
then

add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else
break

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode during b}
foreach b ∈ SetB do

if not NF (b) unde�ned and not PF (episode) < NF (b)
then break

if PF (episode) > PF (b) and (NF (episode) < NF (b) or
NF (b) unde�ned) then

add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

case NFB:
{Same as NFB for the before constraint above}

return result

CHAPTER 5. ALGORITHMS 92

5.2.8 The Temporal Constraint A �nishes B

Two intervals A and B match the constraint A �nishes B if and only if
interval A starts after the start of interval B, and interval A and B �nish
together. Based on the �anks of the intervals, the constraint A �nishes B is
de�ned as:

PFA > PFB ∧ NFA = NFB

Input Ordering. For the �nishes constraint, NFA and NFB are the most
signi�cant �anks that must be compared. Here it is not necessary to compare
episodes with unknown negative �anks. Both, input set A and B will be
sorted by the negative �ank in descending order with unknown negative
�anks last.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 93 and is implemented in EpisodeFinishesMod-

ule.
The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Same as PFA. We need to know the negative �anks of episode A and
B, therefore, the episode is just stored in input set B.

NFA If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set A and
�nd all instances in input set B that ful�l the constraint A �nishes B.

NFB If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set B and
�nd all instances in input set A that ful�l the constraint A �nishes B.

CHAPTER 5. ALGORITHMS 93

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A �nishes B.

Data: SetA sorted set of episodes from input A, ordered by NF descending,
unde�ned last. SetB sorted set of episodes from input B, ordered by
NF descending, unde�ned last. OutputList list of episodes that have
been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode �nishes b}
foreach b ∈ SetB do

if NF (b) unde�ned then break

if NF (episode) = NF (b) then
if PF (episode) > PF (b) then

add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else if not NF (episode) ≤ NF (b) then
break

case NFB:
if not episode ∈ SetB then break

update episode in SetB
{Find all episodes of SetA so that a �nishes episode}
foreach a ∈ SetA do

if NF (a) unde�ned then break

if NF (a) = NF (episode) then
if PF (a) > PF (episode) then

add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else if not NF (a) ≥ NF (episode) then
break

return result

CHAPTER 5. ALGORITHMS 94

5.2.9 The Temporal Constraint A equal B

Two intervals A and B match the constraint A �nishes B if and only if
interval A and interval B start and end together. Based on the �anks of the
intervals, the constraint A equal B is de�ned as:

PFA = PFB ∧ NFA = NFB

Input Ordering. For the equal constraint, the positive and negative �ank
of both intervals must match exactly. Because we need to know the complete
intervals anyway, both input sets will be sorted by the negative �ank in
descending order, unknown negative �anks last.

Algorithm Description. The pseudo code for input matching is given as
function processEvent on page 95 and is implemented in EpisodeEqualModule.

The list below describes how the algorithm reacts on each kind of input.

PFA Same as for A before B. The episode is stored in the input set A.

PFB Same as PFA. The episode is stored in the input set B.

NFA Same as for A �nishes B. If the episode cannot be found in the input
set, end of validity has already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set A and
�nd all instances in input set B that ful�l the constraint A equal B.

NFB If the episode cannot be found in the input set, end of validity has
already occurred and this event will be skipped.
If the episode is still valid, update the episode in the input set B and
�nd all instances in input set A that ful�l the constraint A equal B.

CHAPTER 5. ALGORITHMS 95

Function processEvent(event, episode). Pseudo code for monitoring of

the temporal constraint A equal B.

Data: SetA sorted set of episodes from input A, ordered by NF descending,
unde�ned last. SetB sorted set of episodes from input B, ordered by
NF descending, unde�ned last. OutputList list of episodes that have
been output.

function processEvent(event, episode)

switch event do

case PFA:
add episode to SetA

case PFB:
add episode to SetB

case NFA:
if not episode ∈ SetA then break

update episode in SetA
{Find all episodes of SetB so that episode equal b}
foreach b ∈ SetB do

if NF (b) unde�ned then break

if NF (episode) = NF (b) then
if PF (episode) = PF (b) then

add pair (episode, b) to OutputList

add start of validity of (episode, b) to result

else if not NF (episode) ≤ NF (b) then
break

case NFB:
if not episode ∈ SetB then break

update episode in SetB
{Find all episodes of SetA so that a equal episode}
foreach a ∈ SetA do

if NF (a) unde�ned then break

if NF (a) = NF (episode) then
if PF (a) = PF (episode) then

add pair (a, episode) to OutputList

add start of validity of (a, episode) to result

else if not NF (a) ≥ NF (episode) then
break

return result

Chapter 6

Evaluation and Conclusion

In this chapter, I focus on the testing and veri�cation done on the imple-
mentation developed as part of this thesis. A discussion of the current state
of the Asbru Interpreter, including desirable future improvements, follows.
A summary and conclusion completes this chapter as well as the thesis.

6.1 Testing Individual Components

There are basically three phases of software testing: unit testing, integration
testing, and system testing. Unit testing is used to validate a particular
module of source code. The test cases should be as independent as possible
from each other. Integration testing groups modules in larger aggregates
and then applies tests. Integration testing aims at verifying requirements
on subsystems of an implementation. System testing is conducted on a
complete, integrated system.

Testing a software system is generally far from trivial. Testing an exe-
cution engine for a guideline modeling language, especially one as complex
as Asbru, is an even more demanding task. The set of possible inputs to
the system is increased by the fact that the �program� is actually de�ned by
the plan library. Therefore, it is even more important to identify subsystems
that actually can be tested against a semantic speci�cation.

Several groups of tests ensure that the Asbru Interpreter exactly meets
the elaborate semantics of the Asbru Language. This includes for example
testing of the temporal abstraction components or the veri�cation of the
correct plan propagation semantics (see section 6.2).

This section describes some aspects of the testing done on the subsystems
of the Asbru Interpreter, especially the integration tests of the monitoring
modules for parameter propositions, temporal constraints, and constraint
combinations. Section 6.2 describes the conducted system tests. For several
important components, unit tests have been created. These class-level tests
are not further described in this thesis.

96

CHAPTER 6. EVALUATION AND CONCLUSION 97

Reference ESS LSS EFS LFS MinDu MaxDu
now 0 min
now -10 min -5 min 2 min 10 min
now -10 min -1 min -1 min
now 0 min 1 min
self 20 min 1 min 2 min
self 5 min 10 min
self -10 min 10 min 0 min 10 min 10 min 15 min

Table 6.1: Examples of time annotations used for the tests of the parameter
proposition module.

6.1.1 Parameter Proposition

A desirable target for testing the parameter proposition would be to not
only have complete path coverage of the source code of the module, but
to also cover all possible states of the state machine. Remember that the
parameter proposition module for a �xed reference point basically uses three
three-state variables and one two-state variable. There are eight di�erent
events triggering state transitions, although not all events are possible in all
states as long as the outside system (mainly the Execution Manager) works
correctly. The code paths for the events additionally depend on the shifts of
the time annotation, more speci�cally, whether speci�c shifts are de�ned or
not.

It would be complex to devise a method to create all those test cases
required to achieve the code coverage described above. Another option would
be to use a brute-force testing approach to generate all possible qualitatively
di�erent time annotations as well as input sets. An optimistic, educated
guess is that this would require at least 107 test runs.

Due to constraints on the available time, I had to chose a less complete
approach. Assuming that the state chart in Figure 5.2 on 68 is complete and
correct (which is not yet proven), I tried to show in section 5.1.3 that my
algorithm is a correct and complete implementation of this state chart.

Then I created a set of test cases that execute the most commonly used
as well as several unusual time annotations to show that at least many cases
work as expected. Table 6.1 shows a selection of these test cases. A �le with
time-stamped Boolean values is used as input. The results are compared to
a manually calculated results table.

6.1.2 Temporal Constraints

When testing temporal constraint modules, an important factor to pay at-
tention to is that the inputs may be received out-of-order. Therefore, it is

CHAPTER 6. EVALUATION AND CONCLUSION 98

Figure 6.1: Inputs and found episodes for temporal constraints tests. Above the
x-axis the input episodes from input A and B are shown. Below, the enclosing
intervals of the temporal relations found by the respective temporal constraint
modules are shown. Note the huge and overlapping episodes found for the before

relation.

necessary to test the modules with valid and invalid input from parameter
propositions with di�erent data-delay properties.

Figure 6.1 schematically shows the inputs for the temporal constraints
tests. For each input channel, six di�erent parameter propositions with dif-
ferent time annotations are created. Each of the six parameter propositions
for input A is monitored for the seven temporal relations with each of the
six parameter propositions for input B, resulting in 36 di�erent timing com-
binations and 252 created constraint combination modules.

The output of each module is checked for correctness. The input pattern
given in the �gure is repeated twice. Additionally, the input sequence is
reversed to test for negative matches.

6.1.3 Constraint Combination

For the trivial case of two or more parameter propositions with the time
annotation now (i. e. RP=now, EFS=0), the result of a constraint combi-
nation of these parameter propositions is equal to the result of the Boolean
combination of the inputs. It is therefore easy to test the modules for a
large number of inputs without the need to calculate the expected results in
advance.

Figure 6.2 shows the module graph for testing the constraint combination
and. Two Boolean inputs are monitored using the parameter proposition

CHAPTER 6. EVALUATION AND CONCLUSION 99

Boolean Raw

Data B

Assert equal

Constraint

Fulfilled?

Boolean Raw

Data A

Boolean and
Parameter

Proposition now

Parameter

Proposition now

Constraint

Combination and

Figure 6.2: Module graph for testing constraint combinations. Two Boolean
inputs are monitored using the parameter proposition now. The output of the con-
straint combination and is compared with the regular Boolean and of the Boolean
inputs. The results must match. The graph shows the setup for the and combina-
tion, tests for or and xor work the same way.

now. The output of the constraint combination and is compared to the
regular Boolean and of the Boolean inputs. The results must match. This
is repeated for all constraint combinations. A similar setup can be used to
test the constraint-not module.

In addition to these tests, I created test cases resembling the ones de-
scribed for the temporal constraint modules. These tests check that the
�anks of the issued episodes are also correct.

6.2 The Asbru Interpreter: System Tests

During my work on the implementation of the framework for the Interpreter,
members of the Protocure project started to implement the compiler com-
ponents as well as the modules required for plan execution. As soon as the
�rst version of the interpreter began to take shape, a framework was created
to evaluate the plan execution semantics of the execution unit.

The test framework creates 2000+ prototypical plan con�gurations based
on plan library templates. These tests evaluate the correct plan propagation
for all temporal orderings of subplans as well as propagation speci�cations.
The tests ensure that the Asbru Interpreter exactly meets the elaborate
semantics of the Asbru language.

The integration tests as well as the system tests have proven to be in-
valuable tools for regression testing during the ongoing development of the

CHAPTER 6. EVALUATION AND CONCLUSION 100

software. Without automated tests, a project of such a complexity would be
infeasible.

6.2.1 Performance Tests

Asbru is well suited for guidelines and protocols in high-frequency domains.
A design goal for the interpreter was to achieve an e�cient implementation
that would be usable in domains such as intensive care. Data in this domain
is usually recorded at 1 Hz or 200 Hz.

Performance tests show that the interpreter can process input from sev-
eral channels and moderately complex abstractions thereof at a rate of more
than 1 kHz on a standard notebook PC.

We have found that the single most relevant bottleneck in the system
currently is the execution trace log, which accumulates to several megabytes
of XML data in a few seconds of processing data at a frequency of 1 kHz.
The trace log can be disabled, which improves the performance by at least
a factor of three. The complete trace log (which includes every single data
point created by all the modules) is usually used in low-frequency domains to
evaluate compliance with a guideline. For high-frequency domains, it is only
used for selected sample scenarios, to validate the implementation. In these
cases, performance is not critical and the data volume is small. A further
improvement would be the implementation of a selective �lter to extract
the interesting parts of the execution trace at runtime, before the trace is
converted into a stream of XML data. Currently, the �ltering is performed
by XSLT scripts in post-processing the log.

6.3 Future Work

By now, the Asbru Interpreter supports a subset of the available language
features (Asbru Light). Although the feature set is not complete, a gen-
eral usage is certainly possible. Further work is required to implement the
remainder of the Asbru language elements.

As mentioned in section 2.2.4 in the context of the Knowledge-Based
Temporal-Abstraction method, clinical data often arrives out of temporal
order. For example, analysis of a blood sample in a clinical laboratory might
by available only several hours after the blood sample was taken. On the
other hand, sensor data is available immediately. There are two di�erent
temporal dimensions involved here � the time when the blood sample was
taken, and the time when the data is available in the system. To allow
the representation of these di�erent temporal dimensions, Snodgrass et al.
have proposed to store a transaction time as well as a valid time for each
datum [71].

Implementing temporal reasoning in an e�cient way is hard when data
does not arrive temporally ordered (compare section 2.2.4). Therefore, Sey-

CHAPTER 6. EVALUATION AND CONCLUSION 101

fang [59] proposes to use a concept called data delay to delay the processing of
individual input channels of the system. The data delay can be individually
speci�ed for each input channel, so that the delay for sensor measurements
can be very low, whereas the delay for an analysis in a clinical laboratory
can be set to a reasonable amount of time.

This is currently not implemented in the system. The Execution Manager
does not distinguish between the two temporal dimensions and is not able
to handle di�erent data delays. For the clinical guidelines that have been
evaluated so far, this is not a problem, even less for batch processing of
patient data to analyse a guideline. Nevertheless, in a clinical setting with
a mixture of high-frequency and low-frequency data, the implementation
would need revision. Due to the architecture of the interpreter and the
forethought in designing the components, it will be possible to achieve this
goal by rewriting only a small portion of the execution code.

6.4 Conclusion

Guideline-based care plays an increasingly important part in clinical environ-
ments. Automated application of clinical guidelines and protocols requires
the abstraction of raw-data into higher-level medical concepts. The most
powerful tools available require an immense amount of computing-resources
because they create all possible abstractions without any information, which
will ever be used or queried.

Asbru's methodology is unique in that it allows temporal abstraction and
reasoning to be integrated with guideline-based plan execution. In Asbru,
temporal abstraction can be implemented in a resource-e�cient way, because
the required temporal abstractions are limited to the concepts used for the
speci�c guideline or protocol (i. e. by a restriction of the problem space).

In this thesis I analysed the requirements for implementing the modular
framework for execution of Asbru guidelines proposed by Seyfang [59] and
the Protocure team1. Based on the gathered knowledge I de�ned exact and
sound semantics for the modules and the interactions between the various
components. I then described my implementation, which was illustrated as
part of the Asbru Interpreter with an example from the �eld of ventilation
of neonates.

New algorithms were required to implement Asbru's temporal abstrac-
tion based on [59]. The algorithms for monitoring parameter propositions
have a constant-time cost of O(1) for each new input (or O(n) for the com-
plete input set over the total runtime). This fact together with the e�cient
implementation of the Execution Manager are the foundation of the out-
standing performance of the system and its eligibility for data-driven plan
execution in high-frequency domains.

1Protocure project homepage: http://www.protocure.org. Accessed Feb 2, 2006.

http://www.protocure.org

Bibliography

[1] Wolfgang Aigner and Silvia Miksch. Supporting protocol-based care in
medicine via multiple coordinated views. In J. C. Roberts, P. Rodgers,
and N. Boukhelifa, editors, Proceedings of the Second International Con-
ference on Coordinated and Multiple Views in Exploratory Visualization
(CMV 2004), pages 118�129. IEEE Computer Society Press, 2004.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832�843, November 1983.

[3] James F. Allen. Towards a general theory of action and time. Arti�cial
Intelligence, 23(2):123�154, July 1984.

[4] Juan Carlos Augusto. Temporal reasoning for decision support in medi-
cine. Arti�cial Intelligence in Medicine, 33(1):1�24, 2005.

[5] Michael Balser, Christoph Duelli, and Wolfgang Reif. Formal semantics
of Asbru � an overview. In H. Ehrig, B. Kraemer, and A. Ertas, edi-
tors, Proceedings of the 6th World Conference on Integrated Design and
Process Technology (IDPT-02), pages 1�8, Pasadena, CA, 2002. Society
for Design and Process Science.

[6] Riccardo Bellazzi, Cristiana Larizza, Paolo Magni, and Roberto Bel-
lazzi. Quality assessment of hemodialysis services through temporal
data mining. In Michel Dojat, Elpida Keravnou, and Pedro Barahona,
editors, Arti�cial Intelligence in Medicine. Proceedings of the 9th Con-
ference on Arti�cial Intelligence in Medicine in Europe (AIME 2003),
pages 11�20, Protaras, Cyprus, 2003. Springer-Verlag.

[7] Riccardo Bellazzi, Yuval Shahar, et al. Intelligent data analysis in medi-
cine and pharmacology (panel summary). Held during during AMIA
1999 Annual Symposium. Washington, DC, November 1999.

[8] David Boaz and Yuval Shahar. A framework for distributed mediation of
temporal-abstraction queries to clinical databases. Arti�cial Intelligence
in Medicine, 34(1):3�24, 2005.

102

BIBLIOGRAPHY 103

[9] Tibor Bosse. An interpreter for clinical guidelines in asbru. Master's
thesis, Vrije Universiteit Amsterdam, 2001.

[10] Aziz A. Boxwala, Mor Peleg, Samson W. Tu, Omolola Ogunyemi,
Qing T. Zeng, Dongwen Wang, Vimla L. Patel, Robert A. Greenes, ,
and Edward H. Shortli�e. GLIF3: a representation format for shareable
computer-interpretable clinical practice guidelines. Journal of Biomed-
ical Informatics, 37(3):147�161, June 2004.

[11] Shubha Chakravarty and Yuval Shahar. A constraint-based speci�cation
of periodic patterns in time-oriented data. In 6th International Work-
shop on Temporal Representation and Reasoning (TIME '99), pages
29�40, Orlando, FL, 1999. IEEE Computer Society Press.

[12] Sylvie Charbonnier. On-line extraction of temporal episodes from icu
high-frequency data: A visual support for signal interpretation. Com-
puter Methods and Programs in Biomedicine, 78:115�132, May 2005.

[13] Paolo Ciccarese, Ezio Ca�, Lorenzo Boiocchi, Assaf Halevy, Silvana
Quaglini, Anand Kumar, and Mario Stefanelli. The NewGuide project:
Guidelines, information sharing and learning from exceptions. In Michel
Dojat, Elpida Keravnou, and Pedro Barahona, editors, Arti�cial Intelli-
gence in Medicine. Proceedings of the 9th Conference on Arti�cial Intel-
ligence in Medicine in Europe (AIME 2003), pages 163�167, Protaras,
Cyprus, 2003. Springer-Verlag.

[14] Paolo Ciccarese, Ezio Ca�, Lorenzo Boiocchi, Silvana Quaglini, and
Mario Stefanelli. A guideline management system. In Marius Fieschi
et al., editors, Proceedings of the 11th World Congress on Medical In-
formatics (Medinfo 2004), pages 28�32, San Antonio, TX, 2004. IOS
Press.

[15] Carlo Combi, Giancarlo Cucchi, and Francesco Pinciroli. Applying
object-oriented technologies in modeling and querying temporally ori-
ented clinical databases dealing with temporal granularity and indeter-
minacy. IEEE Transactions on Information Technology in Biomedicine,
1(2):100�127, June 1997.

[16] Carlo Combi and Yuval Shahar. Temporal reasoning and temporal data
maintenance in medicine: Issues and challenges. Computers in Biology
and Medicine, 27:353�368, September 1997.

[17] Amar K. Das and Mark A. Musen. A temporal query system for
protocol-directed decision support. Methods of Information in Medi-
cine, 33(4):358�370, 1993.

[18] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint net-
works. Arti�cial Intelligence, 49(1-3):61�95, 1991.

BIBLIOGRAPHY 104

[19] Georg Duftschmid. Knowledge-Based Veri�cation of Clinical Guidelines
by Detection of Anomalies. PhD thesis, Vienna University of Technol-
ogy, Vienna, January 1999.

[20] Georg Duftschmid and Silvia Miksch. Knowledge-based veri�cation of
clinical guidelines by detection of anomalies. OEGAI Journal, 18(2):37�
99, 1999.

[21] Georg Duftschmid and Silvia Miksch. Knowledge-based veri�cation of
clinical guidelines by detection of anomalies. Arti�cial Intelligence in
Medicine, 22(1):23�41, April 2001.

[22] Marilyn J. Field and Kathleen H. Lohr, editors. Clinical Practice Guide-
lines: Directions for a New Program, Institute of Medicine, Washington
DC, 1990. National Academy Press.

[23] John Fox and Subrata Das. Safe and Sound: Arti�cial Intelligence in
Hazardous Applications. AAAI Press/MIT Press, 2000.

[24] John Fox, Nicky Johns, and Ali Rahmanzadeh. Disseminating medical
knowledge: the PROforma approach. Arti�cial Intelligence in Medicine,
14(1�2):157�181, September 1998.

[25] Peter E. Friedland and Yumi Iwasaki. The concept and implementation
of skeletal plans. Journal of Automated Reasoning, 1(2):161�208, 1985.

[26] Christian Fuchsberger, Jim Hunter, and Paul McCue. Testing Asbru
guidelines and protocols for neonatal intensive care. In Silvia Miksch,
Jim Hunter, and Elpida T. Keravnou, editors, Arti�cial Intelligence in
Medicine. Proceedings of the 10th Conference on Arti�cial Intelligence
in Medicine in Europe (AIME 2005), pages 101�110, Aberdeen, UK,
2005. Springer-Verlag.

[27] Christian Fuchsberger and Silvia Miksch. Asbru's execution engine:
Utilizing guidelines for arti�cial ventilation of newborn infants. In
Proceedings of the Joint Workshop Intelligent Data Analysis in Medi-
cine and Pharmacology and Knowledge-Based Information Management
in Anaesthesia and Intensive Care (IDAMAP and KBIM-AIC 2003),
Workshop at the 9th Conference on Arti�cial Intelligence in Medicine
in Europe (AIME 2003), pages 99�125, Protaras, Cyprus, 2003.

[28] Mary K. Goldstein, Robert W. Coleman, Samson W. Tu, Ravi D.
Shankar, Martin J. O'Connor, Mark A. Musen, Susana B. Martins,
Philip W. Lavori, Michael G. Shlipak, Eugene Oddone, Aneel A. Ad-
vani, Parisa Gholami, and Brian B. Ho�man. Operationalizing clinical

BIBLIOGRAPHY 105

practice guidelines amidst changing evidence: Athena, an easily modi-
�able decision-support system for management of hypertension in pri-
mary care. Journal of the American Medical Informatics Association,
9(6 Suppl 1):11�16, 2002.

[29] Mary K. Goldstein, Robert W. Coleman, Samson W. Tu, Ravi D.
Shankar, Martin J. O'Connor, Mark A. Musen, Susana B. Martins,
Philip W. Lavori, Michael G. Shlipak, Eugene Oddone, Aneel A. Advani,
Parisa Gholami, and Brian B. Ho�man. Translating research into prac-
tice: Organizational issues in implementing automated decision support
for hypertension in three medical centers. Journal of the American Med-
ical Informatics Association, 11(5):368�376, 2004.

[30] Jeremy M. Grimshaw and Ian T. Russell. E�ects of clinical guidelines
on medical practice: a systematic review of rigorous evaluation. Lancet,
342:1317�22, November 1993.

[31] Ira J. Haimowitz and Isaac S. Kohane. Managing temporal worlds for
medical trend diagnosis. Arti�cial Intelligence in Medicine, 8(3):299�
321, July 1996.

[32] Werner Horn. AI in medicine on its way from knowledge-intensive to
data-intensive systems. Arti�cial Intelligence in Medicine, 23(1):5�12,
2001.

[33] George Hripcsak, Peter Ludemann, T. Allan Pryor, Ove B. Wigertz,
and Paul D. Clayton. Rationale for the Arden syntax. Computers in
Biomedical Research, 27(4):291�324, August 1994.

[34] Jim Hunter and Neil McIntosh. Knowledge-based event detection in
complex time series data. In AIMDM '99: Proceedings of the Joint
European Conference on Arti�cial Intelligence in Medicine and Medical
Decision Making, pages 271�280, London, UK, 1999. Springer-Verlag.

[35] Peter Johnson, Samson W. Tu, and Neill Jones. Achieving reuse of
computable guideline systems. In Vimla L. Patel et al., editors, Pro-
ceedings of the 10th World Congress on Medical Informatics (Medinfo
2001), pages 99�103, London, UK, 2001. IOS Press.

[36] Peter D. Johnson, Samson W. Tu, Nick Booth, Bob Sugden, and Ian N.
Purves. Using scenarios in chronic disease management guidelines for
primary care. In J. Marc Overhage, editor, Converging Information,
Technology, and Health Care. Proceedings of the AMIA 2000 Annual
Symposium, pages 389�393, Los Angeles, CA, 2000. Hanley and Belfus.

[37] Mary E. Johnston, Karl B. Langton, R. Brian Haynes, and Alix Math-
ieu. E�ects of computer-based clinical decision support systems on clin-

BIBLIOGRAPHY 106

ician performance and patient outcome: a critical appraisal of research.
Annals of Internal Medicine, 120(2):135�142, January 1994.

[38] Katharina Kaiser and Silvia Miksch. Treating temporal information
in plan and process modeling. Technical Report Asgaard-TR-2004-1,
Vienna University of Technology, Institute of Software Technology and
Interactive Systems, Vienna, February 2004.

[39] Robert Kosara and Silvia Miksch. Metaphors of movement: A visu-
alization and user interface for time-oriented, skeletal plans. Arti�cial
Intelligence in Medicine, 22(2):111�131, 2001.

[40] Cristiana Larizza, Riccardo Bellazzi, and Giordano Lanzola. An HTTP-
based server for temporal abstractions. In Proceedings of the Fourth
Workshop on Intelligent Data Analysis in Medicine and Pharmacology
(IDAMAP-99), pages 52�62, Washington, DC, 1999.

[41] Silvia Miksch. Plan management in the medical domain. AI Commu-
nications, 12(4):209�235, 1999.

[42] Silvia Miksch and Andreas Seyfang. Continual planning with time-
oriented, skeletal plans. In Werner Horn, editor, ECAI 2000, Proceed-
ings of the 14th European Conference on Arti�cial Intelligence, pages
511�515, Berlin, Germany, 2000. IOS Press.

[43] Silvia Miksch, Andreas Seyfang, Werner Horn, and Christian Popow.
Abstracting steady qualitative descriptions over time from noisy, high-
frequency data. In AIMDM '99: Proceedings of the Joint European
Conference on Arti�cial Intelligence in Medicine and Medical Decision
Making, pages 281�290, London, UK, 1999. Springer-Verlag.

[44] Silvia Miksch, Andreas Seyfang, and Christian Popow. Abstraction and
representation of repeated patterns in high-frequency data. In Nada
Lavrac, Silvia Miksch, and Branko Kavsek, editors, Proceedings of the
Fifth Workshop on Intelligent Data Analysis in Medicine and Pharma-
cology (IDAMAP-2000), Workshop Notes of the 14th European Confer-
ence on Arti�cial Intelligence (ECAI-2000), pages 32�39, Berlin, Ger-
many, 2000.

[45] Silvia Miksch, Yuval Shahar, and Peter Johnson. Asbru: A task-speci�c,
intention-based, and time-oriented language for representing skeletal
plans. In E. Motta et al., editors, 7th Workshop on Knowledge En-
gineering: Methods and Languages (KEML-97), Milton Keynes, UK,
1997.

[46] Mark A. Musen, Samson W. Tu, Amar K. Das, and Yuval Shahar.
EON: A component-based approach to automation of protocol-directed

BIBLIOGRAPHY 107

therapy. Journal of the American Medical Informatics Association,
3(6):367�388, 1996.

[47] John H. Nguyen, Yuval Shahar, Samson W. Tu, Amar K. Das, and
Mark A. Musen. Integration of temporal reasoning and temporal-data
maintenance into a reusable database mediator to answer abstract, time-
oriented queries: The Tzolkin system. Journal of Intelligent Information
Systems, 13(1�2):121�145, 1999.

[48] Martin J. O'Connor, William E. Grosso, Samson W. Tu, and Mark A.
Musen. RASTA: A distributed temporal abstraction system to facil-
itate knowledge-driven monitoring of clinical databases. In Vimla L.
Patel et al., editors, Proceedings of the 10th World Congress on Medical
Informatics (Medinfo 2001), pages 508�512, London, UK, 2001. IOS
Press.

[49] Martin J. O'Connor, Samson W. Tu, and Mark A. Musen. The Chronus
II temporal database mediator. In Isaac Kohane, editor, Bio*medical
Informatics: One Discipline. Proceedings of the AMIA 2002 Annual
Symposium, pages 567�571, San Antonio, TX, 2002. Hanley and Belfus.

[50] Omolola Ogunyemi, Qing Zeng, and Aziz A. Boxwala. BNF and built-
in classes for object-oriented guideline expression language (GELLO).
Technical Report DSG-TR-2001-018, Brigham and Women's Hospital,
Boston, MA, 2001.

[51] Gultekin Ozsoyoglu and Richard T. Snoodgrass. Temporal and real-
time databases: a survey. IEEE Transactions on Knowledge and Data
Engineering, 7(4):513�532, August 1995.

[52] Mor Peleg, Aziz A. Boxwala, Omolola Ogunyemi, Qing Zeng, Sam-
son W. Tu, Ronilda Lacson, Elmer Bernstam, Nachman Ash, Peter
Mork, Lucila Ohno-Machado, Edward H. Shortli�e, and Robert A.
Greenes. GLIF3: The evolution of a guideline representation format.
In J. Marc Overhage, editor, Converging Information, Technology, and
Health Care. Proceedings of the AMIA 2000 Annual Symposium, pages
645�649, Los Angeles, CA, 2000. Hanley and Belfus.

[53] Mor Peleg, Omolola Ogunyemi, Samson W. Tu, Aziz A. Boxwala, Qing
Zeng, Robert A. Greenes, and Edward H. Shortli�e. Using features of
Arden Syntax with object-oriented medical data models for guideline
modeling. In Susan Bakken, editor, Visions of the Future and Lessons
from the Past. Proceedings of the AMIA 2001 Annual Symposium, pages
523�527, Washington, DC, 2001. Hanley and Belfus.

[54] Mor Peleg, Samson W. Tu, Jonathan Bury, Paolo Ciccarese, John Fox,
Robert A. Greenes, Richard Hall, Peter D. Johnson, Neill Jones, Anand

BIBLIOGRAPHY 108

Kumar, Silvia Miksch, Silvana Quaglini, Andreas Seyfang, Edward H.
Shortli�e, and Mario Stefanelli. Comparing computer-interpretable
guideline models: A case-study approach. Journal of the American
Medical Informatics Association, 10:52�68, 2003.

[55] Ian N. Purves, Bob Sugden, Nick Booth, and Mike Sowerby. The
PRODIGY project � the iterative development of the release one model.
In Nancy M. Lorenzi, editor, Transforming Health Care Through In-
formatics: Cornerstones for a New Information Management Para-
digm. Proceedings of the AMIA 1999 Annual Symposium, pages 359�
363, Washington, DC, 1999. Hanley and Belfus.

[56] Silvana Quaglini, Mario Stefanelli, Anna Cavallini, Giuseppe Micieli,
Clara Fassino, and C. Mossa. Guideline-based care�ow systems. Arti�-
cial Intelligence in Medicine, 20(1):5�22, September 2000.

[57] Silvana Quaglini, Mario Stefanelli, Giordano Lanzola, Vincenzo Ca-
porusso, and Silvia Panzaras. Flexible guideline-based patient care�ow
systems. Arti�cial Intelligence in Medicine, 22(1):65�80, April 2001.

[58] Jean-Francois Rit. Propagating temporal constraints for scheduling. In
Proceedings of the Fifth National Conference on Arti�cial Intelligence,
pages 383�388, Menlo Park, California, 1986. AAAI Press.

[59] Andreas Seyfang. An Integrated System for Temporal Data Abstraction
to Facilitate Guideline Execution and Knowledge-Based Data Analysis.
PhD dissertation, Vienna University of Technology, Institute of Soft-
ware Technology and Interactive Systems, Vienna, 2006. To appear, by
courtesy of the author.

[60] Andreas Seyfang, Robert Kosara, and Silvia Miksch. Asbru reference
manual, Asbru version 7.3. Technical Report Asgaard-TR-2002-1, Vi-
enna University of Technology, Institute of Software Technology and
Interactive Systems, Vienna, January 2002.

[61] Andreas Seyfang and Silvia Miksch. Advanced temporal data abstrac-
tion for guideline execution. In Katharina Kaiser, Silvia Miksch, and
Samson W. Tu, editors, Computer-based Support for Clinical Guidelines
and Protocols. Proceedings of the Symposium on Computerized Guide-
lines and Protocols (CGP 2004), volume 101 of Studies in Health Tech-
nology and Informatics, pages 88�103, Prague, 2004. IOS Press.

[62] Andreas Seyfang, Silvia Miksch, Werner Horn, Michael S. Urschitz,
Christian Popow, and Christian F. Poets. Using time-oriented data
abstraction methods to optimize oxygen supply for neonates. In Silvana
Quaglini, Pedro Barahona, and Steen Andreassen, editors, Arti�cial In-
telligence in Medicine. Proceedings of the 8th Conference on Arti�cial

BIBLIOGRAPHY 109

Intelligence in Medicine in Europe (AIME 2001), pages 217�226, Lon-
don, UK, 2001. Springer-Verlag.

[63] Andreas Seyfang, Silvia Miksch, and Mar Marcos. Combining diagnosis
and treatment using asbru. International Journal of Medical Informat-
ics, 68(1�3):49�57, 2002.

[64] Andreas Seyfang, Silvia Miksch, Cristina Polo-Conde, Jolanda Witten-
berg, Mar Marcos, and Kitty Rosenbrand. MHB � a many-headed bridge
between informal and formal guideline representations. In Silvia Miksch,
Jim Hunter, and Elpida T. Keravnou, editors, Arti�cial Intelligence in
Medicine. Proceedings of the 10th Conference on Arti�cial Intelligence
in Medicine in Europe (AIME 2005), pages 146�150, Aberdeen, UK,
2005. Springer-Verlag.

[65] Yuval Shahar, Silvia Miksch, and Peter Johnson. The asgaard project:
a task-speci�c framework for the application and critiquing of time-
oriented clinical guidelines. Arti�cial Intelligence in Medicine, 14(1�
2):29�51, September 1998.

[66] Yuval Shahar and Mark A. Musen. Knowledge-based temporal abstrac-
tion in clinical domains. Arti�cial Intelligence in Medicine, 8(3):267�
298, July 1996.

[67] Ravi D. Shankar and Mark A. Musen. Justi�cation of automated
decision-making: Medical explanation or medical argument? In
Nancy M. Lorenzi, editor, Transforming Health Care Through Informat-
ics: Cornerstones for a New Information Management Paradigm. Pro-
ceedings of the AMIA 1999 Annual Symposium, pages 395�399, Wash-
ington, DC, 1999. Hanley and Belfus.

[68] Yoav Shoham. Temporal logics in ai: Semantical and ontological con-
sideration. Arti�cial Intelligence, 33(1):89�104, September 1987.

[69] Richard T. Snodgrass. The temporal query language tquel. ACM Trans-
actions on Database Systems, 12(2):247�298, June 1987.

[70] Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language.
Kluwer Academic Publishers, 1995.

[71] Richard T. Snodgrass and Ilsoo Ahn. A taxonomy of time databases.
In SIGMOD '85: Proceedings of the 1985 ACM SIGMOD international
conference on Management of data, pages 236�246, New York, NY,
USA, 1985. ACM Press.

[72] Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and An-
dreas Steiner. Transitioning temporal support in TSQL2 to SQL3. In

BIBLIOGRAPHY 110

Opher Etzion et al., editors, Temporal Databases: Research and Prac-
tice, pages 150�194. Springer-Verlag, 1997.

[73] Alex Spokoiny and Yuval Shahar. A knowledge-based time-oriented
active database approach for intelligent abstraction, querying and con-
tinuous monitoring of clinical data. In Marius Fieschi et al., editors,
Proceedings of the 11th World Congress on Medical Informatics (Med-
info 2004), pages 84�88, San Antonio, TX, 2004. IOS Press.

[74] David R. Sutton and John Fox. The syntax and semantics of the pro-
forma guideline modeling language. Journal of the American Medical
Informatics Association, 10(5):433�443, September/October 2003.

[75] Paolo Terenziani, Carlo Carlini, and Stefania Montani. Towards a com-
prehensive treatment of temporal constraints in clinical guidelines. In
9th International Symposium on Temporal Representation and Reason-
ing (TIME '02), pages 20�27, Manchester, UK, 2002. IEEE Computer
Society Press.

[76] Paolo Terenziani, Gianpaolo Molino, and Mauro Torchio. A modular
approach for representing and executing clinical guidelines. Arti�cial
Intelligence in Medicine, 23(3):249�276, 2001.

[77] Paolo Terenziani, Stefania Montani, Alessio Bottrighi, Mauro Torchio,
and Gianpaolo Molino. Supporting physicians in taking decisions in
clinical guidelines: the GLARE �what if� facility. In Isaac Kohane, edi-
tor, Bio*medical Informatics: One Discipline. Proceedings of the AMIA
2002 Annual Symposium, pages 772�776, San Antonio, TX, 2002. Han-
ley and Belfus.

[78] Paolo Terenziani, Stefania Montani, Alessio Bottrighi, Mauro Torchio,
Gianpaolo Molino, and Gianluca Correndo. The GLARE approach to
clinical guidelines: Main features. In Katharina Kaiser, Silvia Miksch,
and Samson W. Tu, editors, Computer-based Support for Clinical Guide-
lines and Protocols. Proceedings of the Symposium on Computerized
Guidelines and Protocols (CGP 2004), volume 101 of Studies in Health
Technology and Informatics, pages 162�166, Prague, 2004. IOS Press.

[79] Paolo Terenziani and Richard T. Snodgrass. Reconciling point-based
and interval-based semantics in temporal relational databases: A treat-
ment of the telic/atelic distinction. IEEE Transactions on Knowledge
and Data Engineering, 16(5):540�551, 2004.

[80] Samson W. Tu and Mark A. Musen. From guideline modeling to guide-
line execution: De�ning guideline-based decision-support services. In
J. Marc Overhage, editor, Converging Information, Technology, and

BIBLIOGRAPHY 111

Health Care. Proceedings of the AMIA 2000 Annual Symposium, pages
863�867, Los Angeles, CA, 2000. Hanley and Belfus.

[81] SamsonW. Tu and Mark A. Musen. Modeling data and knowledge in the
eon guideline architecture. In Vimla L. Patel et al., editors, Proceedings
of the 10th World Congress on Medical Informatics (Medinfo 2001),
pages 280�284, London, UK, 2001. IOS Press.

[82] Michael S. Urschitz, Werner Horn, Andreas Seyfang, Antonella Hallen-
berger, Tina Herberts, Silvia Miksch, Christian Popow, Ingo Müller-
Hansen, and Christian F. Poets. Automatic control of the inspired oxy-
gen fraction in preterm infants � a randomized crossover trial. American
Journal of Respiratory and Critical Care Medicine, 170(10):1095�1100,
September 2004.

[83] Lluís Vila and Eddie Schwalb. A theory of time and temporal inci-
dence based on instants and periods. In 3rd International Workshop on
Temporal Representation and Reasoning (TIME '96), pages 21�28, Key
West, FL, May 1996. IEEE Computer Society Press.

[84] Margret C. M. Vissers, Arie Hasman, and Cees J. van der Linden. Im-
pact of a protocol processing system (ProtoVIEW) on clinical behaviour
of residents and treatment. International Journal of Biomedical Com-
puting, 42(1�2):143�150, July 1996.

[85] Peter Votruba, Silvia Miksch, and Robert Kosara. Facilitating know-
ledge maintenance of clinical guidelines and protocols. In Marius Fieschi
et al., editors, Proceedings of the 11th World Congress on Medical In-
formatics (Medinfo 2004), pages 57�61, San Antonio, TX, 2004. IOS
Press.

[86] Dongwen Wang, Mor Peleg, Samson W. Tu, Aziz A. Boxwala, Omolola
Ogunyemi, Qing Zeng, Robert A. Greenes, Vimla L. Patel, and Ed-
ward H. Shortli�e. Design and implementation of the GLIF3 guideline
execution engine. Journal of Biomedical Informatics, 37(5):305�318,
October 2004.

[87] Ohad Young and Yuval Shahar. The Spock system: Developing a run-
time application engine for Hybrid-Asbru guidelines. In Silvia Miksch,
Jim Hunter, and Elpida T. Keravnou, editors, Arti�cial Intelligence in
Medicine. Proceedings of the 10th Conference on Arti�cial Intelligence
in Medicine in Europe (AIME 2005), pages 166�170, Aberdeen, UK,
2005. Springer-Verlag.

	Abstract
	Kurzfassung (in German)
	Acknowledgements
	Introduction
	Clinical Guidelines and Protocols
	Objectives
	Outline of this Thesis

	Related Work
	Guideline Modeling Methodologies
	Asbru
	EON
	GLARE
	GLIF
	GUIDE
	PRODIGY
	PROforma

	Temporal Reasoning in Medicine
	Representation of Time
	Temporal Data Maintenance
	Temporal Reasoning
	Applications of the KBTA Method
	Other Applications of Temporal Abstraction

	Discussion

	Introduction to Asbru
	The Asbru Plan Library
	Representation of Patient Data
	Data Abstraction
	Temporal Patterns
	Parameter Proposition
	Time Annotation
	Temporal Constraints
	Constraint Combinations
	Analysis of Episodes
	Boolean Representation of Episodes

	Plan States
	Components of Asbru Plans
	Preferences
	Intentions
	Conditions
	Effects
	Plan Body

	Design
	Architecture
	Requirements Analysis and Design Decisions
	Asbru Modules
	Data Points
	Episode Data Points
	The Execution Manager

	Class Model
	Data Points
	Modules
	Framework

	Running the Interpreter
	Outline of Execution
	Playback Mode

	Example: Ventilation of Neonates

	Algorithms
	Parameter Propositions
	Verification of Time Annotations
	Types of Parameter Propositions
	Monitoring with a Fixed Reference Point
	Monitoring with Repeated Reference Points
	Monitoring with Reference Point Now

	Temporal Constraints
	Temporal Constraints and Epsilon
	Algorithm Design
	The Temporal Constraint A before B
	The Temporal Constraint A meets B
	The Temporal Constraint A overlaps B
	The Temporal Constraint A starts B
	The Temporal Constraint A during B
	The Temporal Constraint A finishes B
	The Temporal Constraint A equal B

	Evaluation and Conclusion
	Testing Individual Components
	Parameter Proposition
	Temporal Constraints
	Constraint Combination

	The Asbru Interpreter: System Tests
	Performance Tests

	Future Work
	Conclusion

	Bibliography

