
Time Shapes -

A Visualization for Temporal

Uncertainty in Planning

eingereicht von

Peter Messner

Diplomarbeit

zur Erlangung des akademischen Grades

Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften

(Mag. rer. soc. oec.)

Sozial- und Wirtschaftswissenschaftliche Fakultät

Universität Wien

Technisch-Naturwissenschaftliche Fakultät

Technische Universität Wien

Studienrichtung: Wirtschaftsinformatik

Begutachterin: ao. Univ.-Prof. Mag. Dr. Silvia Miksch

Institut für Softwaretechnik der Technischen Universität Wien

Wien, im April 2000

ii

Dedicated to my grandmother Anna,

for her love and support through all the years.

iii

Kurzfassung

Diese Arbeit beschreibt eine zweidimensionale Darstellung von zeitlichen Unsicherheiten

im Planungsprozess, die wir SOPOView nennen. Sie ist Bestandteil des Programms As-

bruView, das entwickelt wurde, um die Arbeit mit Plänen, die in der Sprache Asbru defi-

niert wurden, zu unterstützen. Der primäre Anwendungsbereich dieser Sprache ist die

medizinische Therapieplanung; die von uns präsentierte Lösung ist jedoch nicht auf die-

sen Anwendungsbereich beschränkt.

Wir stellen zunächst die Sprache Asbru sowie das Programm AsbruView in dem

Ausmass vor, wie es für das Verständnis des Kontexts sowie der Anforderungen an

SOPOView notwendig ist.

Unsere Darstellung erlaubt die Definition von Unsicherheiten in der Startzeit, End-

zeit und Dauer eines Planes. Wir stellen das zugrundeliegende Konzept der SOPOs vor,

sowie unsere Anpassungen und Erweiterungen, die notwendig waren, um den Anforde-

rungen der Sprache Asbru gerecht zu werden. Wir skizzieren kurz den Entwicklungspro-

zess vom Design bis hin zur Implementierung und gehen dabei auf die besondere Rolle

der Usability (Benutzbarkeit) ein.

Wir haben SOPOView mit insgesamt acht ÄrztInnen evaluiert. Die Ergebnisse und

Konsequenzen dieser Evaluation werden präsentiert und ausführlich diskutiert.

iv

Abstract

This thesis introduces a two-dimensional visualization of temporal uncertainty in plan-

ning, which we called SOPOView. It is part of the user interface AsbruView, that supports

the understanding and manipulation of plans written in the representation language As-

bru. Asbru's primary application domain is that of medical therapy planning; however,

our solution is not restricted to that domain.

We present the basics of the language Asbru and of the user interface AsbruView,

that are necessary in order to understand the context and requirements for our own so-

lution SOPOView.

Our visualization enables a definition of uncertainty in a plan's starting time, en-

ding time, and duration. We present the underlying concept of SOPOs and our adapta-

tions and enhancements that were necessary in order to meet Asbru's requirements. We

briefly outline the process from early design to the implementation and explain the role

of usability within our approach.

We have evaluated SOPOView with eight domain experts (physicians). The fin-

dings of this evaluation are presented and discussed in detail.

v

Contents

1 Introduction..1

1.1 Motivation... 1

1.2 Structure of the Thesis ... 2

2 The Asgaard/Asbru Approach ...3

2.1 About the Project ... 3

2.2 The Asbru Language... 4

2.2.1 Basic Concept .. 4

2.2.2 Time Annotations ... 4

2.2.3 Constraints within Time Annotations... 7

2.2.4 The Plan Body.. 8

2.2.4.1 Sequential Plans... 8

2.2.4.2 Any-Order Plans... 9

2.2.4.3 Parallel Plans ... 9

2.2.4.4 Cyclical Plans... 9

2.2.5 Preferences, Intentions, Conditions and Effects 10

2.3 Visualization of Asbru Plans... 10

2.4 The User Interface AsbruView.. 11

2.4.1 Program Design ... 12

2.4.2 Topological View .. 12

2.4.3 Temporal View... 13

2.4.4 Common Concepts ... 13

2.5 From Asbru to AsbruView: An Example ... 14

2.5.1 Natural Language... 14

2.5.2 Asbru Code ... 15

2.5.3 AsbruView... 16

2.6 Related Work: Protocol-Based Care .. 17

2.6.1 MLMs and the Arden Syntax .. 17

2.6.2 The EON Approach ... 18

2.6.3 The GLIF Approach... 19

vi

3 Visualization of Temporal Information ..21

3.1 From Timelines to LifeLines ... 21

3.2 AsbruView's Time Annotation Glyph ... 23

3.3 SOPOs: Sets of Possible Occurrences.. 25

3.3.1 Occurrences .. 25

3.3.2 Representation of Relations ... 26

3.3.3 Visualization of Asbru's Time Annotations.. 27

3.3.4 Examples of Sequential and Parallel SOPOs 29

4 User Interface Design and Usability ..32

4.1 The User Interface ... 32

4.2 Usability ... 33

4.3 The Design Process .. 35

4.4 User-Centered Design... 35

4.5 From Paper and Pencil to SOPOView... 36

4.6 Evaluation... 37

5 SOPOView ...39

5.1 Left Part: Plan Structure ... 39

5.2 Right Part: SOPO Diagram .. 43

5.2.1 Adaptations to the concept of SOPOs.. 43

5.2.1.1 Colors ... 43

5.2.1.2 Position of Axes.. 43

5.2.1.3 Hierarchical Decomposition.. 44

5.2.1.4 Undefined Parameters... 45

5.2.1.5 Optional Plans.. 45

5.2.2 Reading the Diagram.. 48

5.2.2.1 Marked SOPOs ... 48

5.2.2.2 Temporal Order of Plans.. 48

5.3 User Interaction... 50

5.3.1 Plan Selection.. 50

5.3.2 Level of Detail ... 50

5.3.3 Changing Time Annotations ... 51

5.3.3.1 Direct Manipulation of SOPOs... 51

5.3.3.2 Time Annotation Editor ... 52

5.3.4 Scrolling ... 52

vii

5.3.5 Control Bar.. 53

5.3.5.1 Choosing the Time Scale ... 53

5.3.5.2 Changing a Plan's Color... 53

5.3.5.3 Showing a Grid in the Diagram .. 53

5.3.5.4 Zoom in and out .. 53

5.4 Integration Into AsbruView ... 54

5.4.1 Technical Details .. 54

6 Evaluation ...55

6.1 Goals.. 55

6.2 Sample... 55

6.3 Evaluation Procedure.. 56

6.4 Test Equipment and Environment... 56

6.5 SOPOView: Findings ... 56

6.6 Comparison: SOPOView vs. Temporal View ... 59

6.7 Discussion... 60

7 Conclusion...62

7.1 Summary.. 62

7.2 Thoughts on SOPOs.. 63

7.3 Limitations .. 63

7.4 Future Work .. 64

Appendix A ...66

A.1 Questionnaires.. 66

Appendix B ...77

B.1 Evaluation: Numerical Results... 77

Bibliography ...80

viii

List of Figures

2.1 A schematic illustration of the Asbru time annotations. 6

2.2 Graphical representation of a clinical guideline specification. 11

2.3 AsbruView's principal architecture. ... 12

2.4 An example of Asbru code... 15

2.5 Screenshot of the AsbruView program. .. 17

3.1 An example of LifeLines for the display of Juvenile Justice youth record. 22

3.2 An example of LifeLines showing a patient's medical record............................. 23

3.3 Time Annotation Glyph. .. 24

3.4 One-dimensional representation of occurrences. .. 25

3.5 Two-dimensional representation of occurrences. .. 26

3.6 Two-dimensional representation of Allen's relations. 27

3.7 An example of allowed regions for occurrences. ... 27

3.8 One-dimensional visualization of a time annotation. 28

3.9 Two-dimensional visualization of a time annotation. 29

3.10 Example of Sequential SOPOs.. 30

3.11 Example of Concurrent SOPOs. .. 30

3.12 Example of Concurrent SOPOs with overlapping... 301

4.1 A model of the attributes of system acceptability. .. 33

4.2 The star model. ... 36

5.1 Screenshot from the AsbruView program showing SOPOView. 41

5.2 All of Asbru's plan types in SOPOView's left part. ... 42

5.3 Axes position by Rit [1986]. .. 44

5.4 Axes position in SOPOView.. 44

5.5 A screenshot from SOPOView, showing the hierarchical decomposition (1)........ 46

5.6 A screenshot from SOPOView, showing the hierarchical decomposition (2)........ 46

5.7 A screenshot from SOPOView, showing the hierarchical decomposition (3)........ 47

ix

5.8 Part of the SOPO diagram showing undefined parameters.47

5.9 Part of the SOPO diagram showing SOPOs of optional plans. 47

5.10 Part of the SOPO diagram: a sequential plan's sub-plans with overlapping. 47

5.11 Time Annotation Editor. .. 52

A.1 Questionnaire I. Before the test. (German original). 67

A.2 Questionnaire II. After the test. (German original). .. 68

A.3 Questionnaire I. Before the test. (English translation)..................................... 72

A.4 Questionnaire II. After the test. (English translation)...................................... 73

B.1 Numerical results from Questionnaire II, Part I and II..................................... 78

B.2 Results of the comparison SOPOView vs. Temporal View................................. 79

x

Acknowledgments

First of all, I would like to thank my supervisor Silvia Miksch for her support and the

friendly atmosphere within which I could carry out my work. It was approximately a year

ago, when I first came into contact with her and started to get interested in the medical

application domain. It was she who encouraged me to engage in the rather difficult and

complex topic that this thesis was for me in the very beginning.

Robert Kosara deserves special thanks for his numerous suggestions and substan-

tial contributions to my work. It was he who developed AsbruView, which lays the foun-

dation of my own program. At all times during design and implementation, Robert

offered me his help and knowledge, which I cannot appreciate enough. Without him, this

work would have been a different one.

The physicians who helped us during evaluation also deserve special thanks. They

not only took their time during working hours but gave us valuable feedback for further

development. The participants were (in alphabetical order and using German titles):

Dr. Shahram Adel, Dr. Sophia Brandstetter, Dr. Maria Dobner, Dr. Thomas Dobner, Dr.

Lieselotte Kirchner, Dr. Manuel Langer, ao. Univ.-Prof. Dr. Christian Popow, Dr. Birgit

Rami, and Dr. Sabine Wagner, who assisted during one test.

Thanks to Michael Sundell for an early revision of this thesis.

xi

A picture is worth a thousand words,

unless of course, you're talking about

a picture of a thousand words.

(Anonymous)

To be uncertain is to be uncomfortable.

To be certain is to be ridiculous.

(Chinese Proverb)

1

Chapter 1

Introduction

1 Introduction

In this chapter, we introduce the application domain briefly as well as the motivation and

overall structure of this thesis.

1.1 Motivation

Within the medical domain, clinical guidelines and protocols are used to communicate

procedural knowledge and to guide the medical staff. Thus, treatment planning from

scratch is typically not necessary. Additionally, these guidelines and protocols help to

assess and assure a treatment's quality, to improve decision-support, and to reduce the

cost.

Besides free text, several methods have been presented that support the authoring of

such guidelines and protocols, including flowcharts or decision tables. Using those me-

thods, a high number of clinical protocols have been acquired. However, these repre-

sentations often lack the means to fully capture both the complexity and the temporal

dimension of treatment plans.

In the Asgaard Project, a time-oriented machine-readable language, called Asbru, was

developed to represent and to annotate durative treatment plans. As it would nearly be

impossible for physicians and other medical staff to compose plans in Asbru, a user in-

terface, called AsbruView, was developed to provide means for the understanding and

manipulation of those plans used in medical therapy planning. Basically, AsbruView con-

sists of two different views: one representing the topology, i.e. the structure, of plans,

and the other representing the temporal dimension.

Especially, dealing with temporal aspects is of fundamental importance in planning and

decision processes, not only in the medical domain. Most of the clinical data are time-

stamped, telling the physician what to do during a certain time interval or at an exact

time point. However, uncertainty in those temporal relations can be hard to visualize.

2

This thesis introduces a two-dimensional alternative representation of uncertain temporal

aspects of plans, which we called SOPOView.

Utilization of SOPOView is, however, not restricted to the medical application domain.

This visualization can be used in planning in general, where uncertainty in temporal in-

formation emerges.

1.2 Structure of the Thesis

In the next chapter, we present the framework for this thesis, namely the Asgaard/Asbru

Project. The basic concepts of the language Asbru as well as the user interface AsbruView

will be described briefly in order to understand the context and the requirements for our

solution SOPOView. The presentation of three selected approaches in computerization of

clinical guidelines rounds out the chapter. Afterwards, fundamental concepts for the vi-

sualization of temporal information will be discussed and an in-depth description of the

concept we used for our approach will be given. In chapter 4, we introduce the basics of

the field of user-interface design and explain the role of usability. Besides, we describe

our own process from the early beginning in design up to the implemented program.

Finally, our solution SOPOView will be presented. The ideas behind the representation

and the user interaction possibilities will be discussed in detail. The following chapter de-

scribes the evaluation we performed with physicians to test SOPOView's usability and

suitability and reports the results that led to the final conclusion, given in chapter 7. In

the appendix, we attached the questionnaires we used for the evaluation in both the

german original version and the english translation, and the numerical results of the

evaluation.

3

Chapter 2

The Asgaard/Asbru Approach

2 The Asgaard/Asbru Approach

This chapter introduces the general framework for this thesis, the basics of the language

Asbru and the user interface AsbruView that supports the understanding and manipula-

tion of time-oriented, skeletal plans written in Asbru.

2.1 About the Project

To assure a certain level of quality in clinical care and treatment, guidelines and protocols

became an important tool to communicate clinical procedural knowledge, collected

through experience or clinical studies, over the last decades. Clinical guidelines can be

considered as a set of reusable skeletal plans that are used for management of patients

who have a particular clinical condition. They are instantiated and refined dynamically by

care providers, such as physicians, over significant periods of time. Skeletal plans can be

defined as plan schemata at various levels of detail that capture the essence of a pro-

cedure, but leave room for execution-time flexibility in the achievement of particular

goals [Friedland and Iwasaki, 1985]. Clinical protocols are a more detailed version of

clinical guidelines. They are often used when guidelines need to be applied uniformly to

enable statistical analysis of outcomes for comparison among a set of guidelines (e.g.,

experimental chemotherapy protocols for cancer therapy) [Miksch et al., 1997]1.

In the Asgaard Project, a set of tasks and computational models are investigated that

support the application and execution of clinical guidelines by a care provider other than

the guideline's designer [Shahar et al., 1998]. The project tries to build the bridge be-

tween the planning approaches and the medical approaches, addressing the demands of

the medical staff on the one side and applying rich plan management on the other side

[Miksch, 1999].

1 Throughout this thesis, the terms protocol, guideline, and (treatment) plan will be used interchangeably.

4

The Asgaard system was designed to support a wide range of medical applications, from

intensive care units to competitive sports. So far, parts of the project have been applied

to clinical treatment protocols for artificial ventilation of newborn infants and for gesta-

tional diabetes mellitus.

The underlying requirement for the development of task-specific problem-solving me-

thods is the existence of a powerful modeling language. As the concept of time is a fun-

damental decision-criterion in medicine, this language needs to be expressive with re-

spect to temporal annotations. Furthermore, it needs to have a rich set of parallel, se-

quential, and iterative operators. Given these requirements, the time-oriented, intention-

based plan representation language Asbru was developed.

2.2 The Asbru Language

Asbru is the language used for the representation of clinical guidelines in the Asgaard

Project. In Asbru, guidelines are modeled by a set of hierarchical skeletal plans. A de-

tailed description of the language is given by Miksch et al. [1997] or Shahar et al.

[1998]. In the following sections, we will give a brief overview of those features of Asbru

that are necessary in order to understand the concepts of the user interface, especially

the one used for representing temporal aspects of plans.

2.2.1 Basic Concept

The basic entity in Asbru is the plan. A plan consists of a unique name, an optional set of

arguments including a time annotation (representing the temporal scope of the plan),

and the following five optional components: a plan body, preferences, intentions, condi-

tions and effects. A plan is composed hierarchically of a set of sub-plans. Each plan may

contain any number of sub-plans, which may themselves be composed of sub-plans

again, and so forth. A plan that is not further decomposed is called an action. Plans can

be executed in parallel, in sequence, in a particular order, or every time measure.

2.2.2 Time Annotations

In order to define temporal aspects of plans, time annotations are used. They allow a

representation of uncertainty in starting time, ending time, and duration [Rit, 1986] (for

5

a detailed description of this concept, see section 3.3). The time annotation supports

multiple time lines (e.g., different zero-time points and time units) by providing reference

annotations. The reference annotation can be an absolute reference point, a reference

point with uncertainty (defined by an uncertainty region), a function of a previously exe-

cuted plan instance (e.g., start plan B thirty minutes after having completed plan A), or a

domain-dependent time point variable (e.g., conception) [Miksch et al., 1997].

The uncertainty in starting time, ending time, and duration is represented by temporal

shifts from the reference annotation (see Table 2.1).

Name Short Description

Earliest Starting Shift ESS Defines the earliest point in time when the

plan (or the action) can start.

Latest Starting Shift LSS Defines the latest point in time when the

plan must start.

Earliest Finishing Shift EFS Defines the earliest point in time when the

plan can end.

Latest Finishing Shift LFS Defines the latest point in time when the

plan must end.

Minimal Duration MinDu Defines the minimal duration of the plan.

Maximal Duration MaxDu Defines the maximal duration of the plan.

Table 2.1: Components of a time annotation.

The temporal shifts are associated with time units (e.g., minutes, days) or domain-

dependent units (e.g., gestational weeks). Each shift may or may not be defined in a

time annotation. This is useful because during the design phase of a plan, some parts

may not be known or they may not be of interest (e.g., only the duration is of impor-

tance, but not the plan's starting and ending interval).

6

Figure 2.1: A schematic illustration of the Asbru time annotations. The upper part pre-

sents the generic annotation; the lower part shows a particular example [Miksch et al.,

1997].

In Asbru, a time annotation is written like this:

[[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], REFERENCE].

The time annotation of the example shown in Figure 2.1 would thus be

[[24 WEEKS, 26 WEEKS], [32 WEEKS, 34 WEEKS], [7 WEEKS, 9 WEEKS], CONCEP-

TION],

which means "starts 24 to 26 weeks after conception, ends 32 to 34 weeks after the con-

ception, and lasts 7 to 9 weeks".

As mentioned before, all the temporal parameters can be unknown or undefined to allow

incomplete time annotations. In Asbru, this is denoted by an underscore, "_". For an

example of undefined parameters, see Figure 3.3. In addition, certain short-cuts, such as

one for the current time (using the symbol "*NOW*"), or the duration of the plan (using

the symbol "*") are allowed. Furthermore, sets of cyclical time points are defined to allow

temporal repetitions (e.g., MORNINGS, or MIDNIGHTS).

7

2.2.3 Constraints within Time Annotations

Taking any time annotation [[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], REFERENCE], one

has to assure that every single component must be reasonable and all components of

this time annotation must be compatible in the following way:

• For every single time point within the starting interval [ESS, LSS], there must exist at

least one duration out of the interval [MinDu, MaxDu] that allows the finishing inter-

val [EFS, LFS] to be reached.

• Every single time point within the finishing interval [EFS, LFS], must be reachable by

at least one duration out of the interval [MinDu, MaxDu] from the starting interval

[ESS, LSS].

To enable the previous two statements to be true, we can summarize seven require-

ments for a reasonable time annotation. A detailed description is given by Duftschmid

[1999]:

1. ESS ≤ LSS.

2. EFS ≤ LFS.

3. ESS ≤ EFS.

4. LSS ≤ LFS.

5. MinDu ≤ MaxDu.

6. (EFS - LSS) ≤ MinDu ≤ MINIMUM [(EFS - ESS), (LFS - LSS)].

First, MinDu only makes sense if it's value is at least (EFS - LSS), as otherwise EFS

could never be reached with a plan's duration equal to MinDu.

Second, MinDu should not be larger than the minimum of (EFS - ESS) and (LFS -

LSS), as this would mean that either for the starting point ESS the finishing point

EFS could not be reached, or for the starting point LSS the finishing point LFS could

not be reached.

8

7. MAXIMUM [(EFS - ESS), (LFS - LSS)] ≤ MaxDu ≤ (LFS - ESS).

First, MaxDu only makes sense if it's value is at most (LFS - ESS), as otherwise LFS

could never be reached with a plan's duration equal to MaxDu.

Second, MaxDu should always be larger than the maximum of (EFS - ESS) and (LFS

- LSS), as this would mean that either for the starting point ESS the finishing point

EFS could not be reached, or for the starting point LSS the finishing point EFS could

not be reached.

2.2.4 The Plan Body

The plan body is a set of sub-plans to be executed in a certain way, specified by the plan

type. There are several types of plans - whereas one single plan body can only have one

type: sequential, concurrent or cyclical. A sequential plan specifies a set of sub-plans that

are executed in total sequence. Concurrent plans can either be executed in parallel or in

any order. There are two dimensions for classification of sequential or concurrent plans:

the number of plans that should be completed to enable continuation and the order of

plan execution. For an overview, see Table 2.2. A cyclical plan includes a plan that can be

repeated, and optional temporal and continuation arguments that can further specify its

behaviour. These basic plan types will be described here briefly:

2.2.4.1 Sequential Plans

A plan with the type DO-ALL-SEQUENTIALLY (which is the proper expression in Asbru)

consists of several sub-plans that are to be executed in total sequence. All sub-plans

must be executed in a predefined order. When the last sub-plan is completed successful-

ly, the whole plan is completed, too.

A variant of this plan type is the type DO-SOME-SEQUENTIALLY where only a subset of the

sub-plans have to be performed in order to complete. These plans are part of the conti-

nuation condition. All the other plans, i.e. those that do not have to be performed, are

called optional plans.

9

2.2.4.2 Any-Order Plans

If the order of execution of a plan's sub-plans is not known before treatment, one can

use one of the following two plan types: DO-ALL-ANY-ORDER and DO-SOME-ANY-ORDER.

DO-ALL-ANY-ORDER plans consist of sub-plans that are to be executed in any possible

order. All sub-plans however have to be completed successfully for continuation.

Like a sequential plan, it is also possible that only a subset of the plans must be executed

in order to complete. The appropriate plan type will then be DO-SOME-ANY-ORDER. Again,

the plans that have to be performed are within the continuation condition, all the others

are optional plans.

2.2.4.3 Parallel Plans

A plan with the type DO-ALL-TOGETHER consists of a set of sub-plans that have to start

together but may have different durations. All of the sub-plans must be successfully

completed for the containing plan to succeed. If only a subset of the sub-plans must be

performed, the containing plan will have the type DO-SOME-TOGETHER.

2.2.4.4 Cyclical Plans

In order to represent repetitive actions (e.g., performing a blood glucose test before

every meal), cyclical plans (DO-EVERY) can be used. Temporal and continuation argu-

ments can be specified, e.g., the maximum number of attempts or the delay between

retries. A cyclical plan can only have one sub-plan, this sub-plan however can consist of

several sub-plans again.

All plans must complete
to continue

Some plans must com-
plete to continue (conti-
nuation condition speci-
fied as subset of plans)

Start together DO-ALL-TOGETHER DO-SOME-TOGETHER

Execute in any order DO-ALL-ANY-ORDER DO-SOME-ANY-ORDER

Execute in total order
(sequence)

DO-ALL-SEQUENTIALLY DO-SOME-SEQUENTIALLY

Table 2.2: Plan Types in Asbru.

10

2.2.5 Preferences, Intentions, Conditions and Effects

Preferences, intentions, conditions and effects are not of importance for the present the-

sis. However, for reasons of completeness, they will be described here briefly. A detailed

description of these components of a plan is given by Miksch et al. [1997] and Shahar et

al. [1998].

Preferences are plan parameters that express a kind of behaviour of the plan, or bias or

constrain the selection of the plan and thus influence the overall applicability of the plan.

Intentions are high-level goals at various levels of the plan. They can be thought as tem-

poral patterns to be maintained, achieved or avoided. Conditions are temporal patterns

that need to hold at particular plan steps to induce a particular state transition of the

plan instance. By using conditions, one can decide which plan should be applied due to a

certain state of the patient that the plan was designed for. Effects describe the relation-

ship between plan arguments and measureable parameters or the overall effect of a plan

on parameters when applied to a patient.

2.3 Visualization of Asbru Plans

In order to give users access to Asbru, a user interface has been developed that will be

presented in the following section. Before, we briefly describe the challenges in visuali-

zing plans written in Asbru (a detailed description is given by Kosara [1999]).

Hierarchical Decomposition. Plans can either be actions or consist of sub-plans, and

they can be reused as as sub-plan of another plan. The visualization has to communicate

this concept.

Temporal Order. The way a plan's sub-plans are to be performed, indicated by the plan

type, should be easy to recognize from the representation.

Compulsory vs. Optional Plans. Plans (or actions) either must be executed, or they

can be optional. The visualization has to elucidate this difference.

Cyclical Plans. Many tasks in treatment plans can be repetitive. A way has to be found

to represent the cyclical nature of a plan.

11

Temporal Uncertainty. A plan's time annotation does not have to be complete. There-

fore, the visualization must indicate undefined parts. Furthermore, uncertainty in the

plan's beginning, end, and duration must be made clear.

Figure 2.2 shows an early example of a graphical representation of a guideline specifica-

tion [Miksch et al., 1997]. One can easily see that the given requirements are hardly

met, especially regarding temporal uncertainty, about which the representa-tion cannot

tell anything.

Figure 2.2: Graphical representation of a clinical guideline specification.

2.4 The User Interface AsbruView

AsbruView is the user interface that was developed to provide a means for manipulating

time-oriented, skeletal plans written in Asbru [Kosara, 1999]. As the solution for visuali-

zing temporal aspects of plans presented in this thesis (SOPOView) will be part of Asbru-

View, one has to know the basics of this user interface and the way plans and their tem-

poral dimensions are depicted.

12

2.4.1 Program Design

The program consists of three main components: the model, a controller, and any num-

ber of views (see Figure 2.3). The model contains the raw data, i.e. the representation of

the plans themselves. All changes made to the model are handled by the controller which

provides a basic user interface for the actions. The controller notifies the views of chan-

ges in the model. Views display the model and accept user inputs that they convert into

method calls to the controller. Communication between views and controller is performed

through interfaces. In AsbruView, there are two views: the topological view and the tem-

poral view. The way of visualizing temporal aspects of plans presented in this thesis (SO-

POView) was implemented as another view, thus extending the user interface AsbruView.

Figure 2.3: AsbruView's principal architecture: A controller containing a model and

communicating with a number of views [Kosara, 1999].

2.4.2 Topological View

This view deals with the topology, i.e. the layout or the hierarchical structure of the

plans. It shows whether plans are to be performed in sequence, in parallel, etc. However,

it does not deal with temporal issues (that is done in the Temporal View, see below). In

order to make the view easier to understand, a number of metaphors are used for As-

bru's concepts. The basic metaphor behind a plan is that of a running track. During the

13

execution of the plan, the physician (or the patient) is considered to be running along the

plan, starting at the left side, until reaching the finishing flag on the right when the plan

has succeeded. Plans are stacked on top of each other to depict the hierarchical decom-

position of plans. Optional plans are marked by a question-mark texture on the top face.

This texture proved to be easy to understand and is used throughout all views. The plan

types are indicated by the way the sub-plans are arranged. For an example of the Topo-

logical View, see Figure 2.5.

2.4.3 Temporal View

This view is two-dimensional and based on the idea of timelines or LifeLines (e.g.,

[Plaisant et al., 1998]; a detailed description of this concept is also given in section 3.1).

However, timelines are not usable for the kind of temporal uncertainty used in Asbru.

Therefore, a special glyph was developed that replaces the simple line. This time annota-

tion glyph, as we call it, will be discussed in detail in section 3.2.

In the Temporal View, a plan is represented as a colored rectangle that may contain

other rectangles depending on whether the plan has sub-plans or not. The rectangles are

divided into a left and a right part. In the left part, the plans' names and the plan types

are shown whereas in the right part, the time annotation glyphs are drawn. The two

parts are separated by a dotted line, that also marks the beginning of the time axis. As

the left part of this visualization is also used in SOPOView, a detailed description can be

found in section 5.1. For an example of the Temporal View, see Figure 2.5.

2.4.4 Common Concepts

Throughout all views, plans are represented by graphical objects which need to be as-

signed a color to differentiate between them. These colors are the same for a given plan

in all the views, thus making identification across views easier.

The user can always choose the level of detail to be shown regarding the hierarchical

decomposition of plans. Plans can therefore be opened or closed in order to see or hide

the structure of the underlying sub-plans. This functionality is made available through

triangles that can be clicked in both Topological View and Temporal View.

Optional plans, as mentioned before, are drawn with a question-mark texture throughout

all views, thus enabling users to recognize these plans more easily.

14

2.5 From Asbru to AsbruView: An Example

The following treatment plan for I-RDS (infants' respiratory distress syndrome) was pre-

sented by Miksch [1999] and shall help explain how such a plan is written in Asbru (Fi-

gure 2.4) and represented in AsbruView (Figure 2.5). The example covers only the

highest level of the plan hierarchy.

2.5.1 Natural Language

After infants’ respiratory distress syndrome (I-RDS) is diagnosed, a plan dealing

with limited monitoring possibilities is activated, called initial-phase. Depending

on the severity of the disease, three different kinds of plans are followed: con-

trolled-ventilation, permissive-hypercapnia, or crisis-management. Only one plan

at a time can be activated; however, the order of execution and the activation

frequency of the three different plans depend on the severity of the disease.

Additionally, it is important to continue with the plan weaning only after a

successful completion of the plan controlled-ventilation. After a successful exe-

cution of the plan weaning, the extubation should be initiated. The extubation

can be either a single plan extubation or a sequential execution of the sub-plans

cpap and extubation.

The most important part is the sub-plan controlled-ventilation. The intentions of

this sub-plan are to maintain a normal level of the blood-gas values and the

lowest level of mechanical ventilation (as defined in the context of controlled

ventilation therapy) during the span of time over which the sub-plan is executed.

This sub-plan is activated immediately, if peak inspiratory pressure PIP ≤ 30 and

the transcutaneously assessed blood-gas values are available for at least one

minute after activating the last plan instance initial-phase (as reference point).

The sub-plan must be aborted, if PIP > 30 or the increase of the blood-gas level

is too steep (as defined in the context of controlled ventilation-therapy) for at

least 30 seconds. The sampling frequency of the abort condition is 10 seconds.

The sub-plan is completed successfully, if FiO2 ≤ 50%, PIP ≤ 23, f ≤ 60, the pa-

tient is not dyspnoeic, and the level of blood gas is normal or above the normal

range (as defined in the context of controlled ventilation-therapy) for at least

three hours. The sampling frequency of the complete condition is 10 minutes.

The body of the sub-plan controlled-ventilation consists of a sequential execution

of the two sub-plans one-of-increase-decrease-ventilation and observing.

15

2.5.2 Asbru Code

(PLAN I-RDS-therapy ...
(DO-ALL-SEQUENTIALLY

(initial-phase)
(one-of-controlled-ventilation)
(weaning)
(one-of-cpap-extubation)))

(PLAN one-of-controlled-ventilation ...
(DO-SOME-ANY-ORDER

(controlled-ventilation)
(permissive-hypercapnia)
(crisis-management)
CONTINUATION-CONDITION controlled-ventilation))

(PLAN controlled-ventilation
(PREFERENCES (SELECT-METHOD BEST-FIT))
(INTENTION:INTERMEDIATE-STATE

(MAINTAIN STATE(BG) NORMAL controlled-ventilation *))
(INTENTION:INTERMEDIATE-ACTION

(MAINTAIN STATE(RESPIRATOR-SETTING) LOW controlled-ventilation *))
(SETUP-PRECONDITIONS

(PIP (<= 30) I-RDS *now*) (BG available I-RDS
[[_, _], [_, _],[1 MIN,_] (ACTIVATED initial-phase-l#)]))

(ACTIVATED-CONDITIONS AUTOMATIC)
(ABORT-CONDITIONS ACTIVATED

(OR (PIP (> 30) controlled-ventilation [[_, _], [_, _], [30 SEC, _], *self*])
(RATE(BG) TOO-STEEP controlled-ventilation

[[_, _], [_, _], [30 SEC,_], *self*])))
(SAMPLING-FREQUENCY 10 SEC))

(COMPLETE-CONDITIONS
(FiO2 (<= 50) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(PIP (<= 23) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(f (<= 60) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(STATE(patient) (NOT DYSPNOEIC) controlled-ventilation

[[_, _], [_, _], [180 MIN,], *self*]))
(STATE(BG) (OR NORMAL ABOVE-NORMAL) controlled-ventilation

[[_, _], [_, _], [180 MIN,_], *self*])
(SAMPLING-FREQUENCY 10 MIN))

(DO-ALL-SEQUENTIALLY
(one-of-increase-decrease-ventilation)
(observing)))

Figure 2.4: An example of Asbru code (part of a treatment plan for infants' respiratory

distress syndrome (I-RDS)).

16

2.5.3 AsbruView

17

Figure 2.5: Screenshot of the AsbruView program showing the protocol for treating in-
fants' respiratory distress syndrome (I-RDS). The left/upper half shows the Topological
View, the right/lower half shows the Temporal View.

2.6 Related Work: Protocol-Based Care

In this section, three approaches in the area of computerization of clinical guidelines will

be presented. These selected projects shall illustrate the research and work that has

been done within the domain. A more comprehensive overview is given by Duftschmid

[1999], for example.

2.6.1 MLMs and the Arden Syntax

Development of the Arden syntax was quickly advanced because of the pressing needs to

facilitate exchange of protocols among health-care institutions. The Arden syntax is a

standard procedural language that encodes situation-action rules [Hripcsak et al., 1994].

These rules are implemented as software modules and are called Medical Logic Modules

(MLMs). A plan or protocol is modeled by a set of MLMs. They are mostly used for the

implementation of alert- or reminder-systems.

Originally, MLMs were designed to have a single set of input data, a single application of

criteria logic, and a single set of resulting actions. A single MLM is thus not sufficient for

the representation of complex guidelines, because protocols consist of sequences of

actions. Each sequence requires its own set of data including dependencies between dif-

ferent actions and decisions. Efforts have been made to implement guidelines by chaining

together multiple MLMs [Sherman et al., 1995]. There, a guideline is modeled by a set of

MLMs that are sequentially executed, and each MLM implements one single step within

the guideline. Typically, MLMs interact with the physician through messages. These mes-

sages may serve to alert health care staff of a potentially worrisome patient situation, or

they may act as reminders indicating the execution of a certain action by the physician.

MLMs use various kinds of elements to structure the control flow: a data slot to specify

the links to patients' records; an evoke slot to define the condition that triggers a MLM;

and a logic slot to determine whether the one action defined within the action slot should

be done. Additionally, there are slots concerning the maintenance of the module and re-

ferences to the literature.

18

Examples of application areas are hypokalemia with digoxin therapy, tuberculosis cul-

tures with positive or invalid results, calculation of creatinine clearance, and identification

of patient records that include admission but no discharge summaries.

2.6.2 The EON Approach

The EON system is composed of a set of cooperating components, which represent inde-

pendent, reusable software modules that developers can assemble to build systems that

solve tasks related to the administration of protocol-directed therapy [Musen et al.,

1996; Tu and Musen, 1996]. These components are: problem-solving methods that in-

terpret the abstract protocol specifications, and that apply those specifications to indivi-

dual patients; a temporal-reasoning system, called RÉSUMÉ [Shahar and Musen, 1993],

that can infer from time-stamped patient data the presence of higher-level, interval-

based, abstract concepts; a temporal query system, called Chronus, that can perform

time-oriented queries on a time-oriented patient database; and the domain-specific

knowledge bases (i.e. protocol specifications) required by all the other components. Si-

milar to MLMs, EON provides recommendations about the treatment of patients, and

allows for commenting on the interventions performed by the practitioner if they differ

from those recommended by the protocol.

The elementary knowledge structures used within EON for the representation of a proto-

col are: procedures, protocol steps, intervention states, eligibility criteria, selection con-

ditions, intervention rules, and revision rules. Procedures are used to implement the cli-

nical algorithm underlying a protocol. Protocol steps may be intervention steps that spe-

cify an intervention or they may be assessment steps that specify data to be collected to

assess or diagnose a patient. Intervention and assessment steps may also be combined

within one protocol step. Intervention states are types of interventions, which may be in

one of the states active, completed, aborted, or suspended to indicate the progress of

the intervention. Eligibility criteria allow the identification of patients to whom a protocol

may be applied and are represented explicitly within an EON protocol. Selection condi-

tions define when to proceed from one protocol step to the next and which protocol step

to choose from a set of alternatives. Intervention rules define the domain-specific attri-

butes of protocols. Revision rules are instructions that define how to change the state of

an intervention or modify attribute values such as the dose of a prescribed drug.

EON protocols have a hierarchical structure, where each protocol may be decomposed

into a set of finer-granularity protocols. A protocol is composed of a declarative and a

19

procedural component: The declarative component defines parts of the protocol, their

properties, and the relationships among them, whereas the procedural component speci-

fies the temporal sequencing, branching, and looping of prescribed or suggested treat-

ment interventions. The declarative part is modeled by a so-called ontology, which pro-

vides specific classes of protocols for different clinical domains. The procedural part is

defined and visualized by means of a directed graph and an associated execution model.

Examples of protocols implemented in EON are clinical-trial protocols for breast-cancer

treatment and protocols for the management of AIDS patients within the T-HELPER sy-

stem [Musen et al., 1992].

2.6.3 The GLIF Approach

The GuideLine Interchange Format (GLIF) is a model for representing protocols in a ma-

chine-readable format [Ohno-Machado et al., 1998]. The main goal in the development

of GLIF was to create a standard for representing protocols that facilitates protocol sha-

ring across the software tools at different medical institutions that manipulate, analyze,

or otherwise compute with an electronic representation of a health-care protocol. GLIF is

the result of a joined effort of researchers from three different US universities (Columbia,

Harvard and Stanford), called the InterMed Collaboratory. The basis of GLIF was provided

by the analysis of four existing systems: MLM/Arden [Hripcsak et al., 1994], EON [Musen

et al., 1996; Tu and Musen, 1996], MBTA [Barnes and Barnett, 1995], and GEODE-CM

[Stoufflet et al., 1996].

The GLIF approach defines a specific data model, which comprises a set of classes for

guideline entities, attributes of those classes, and data types for the attribute values. The

topmost object of the model, which is the GLIF guideline object, contains a name, a list

of authors, a characterization of the guideline's intention, a specification of the patient-

eligibility criteria, an unordered list of all steps in the guideline, an indication of the star-

ting step in the guideline, and a list of supporting didactic material. This syntax is based

on a generic data interchange format called ODIF standing for Object Data Interchange

Format [Pattison-Gordon, 1996], which allows the representation of object-instances in

text. Sequences of decisions and actions can be explicitly defined within GLIF by specify-

ing a collection of steps for a guideline, and by defining the starting step thereof. Guide-

line steps can be either action steps or decision steps, the latter being divided into condi-

tional steps, branch steps, and synchronization steps. Beginning with the starting step,

each guideline step comprises its successor step(s) within the specified sequence.

20

Examples of guidelines modeled with GLIF are guidelines for influenza vaccination, for

cholesterol screening and management, for breast-mass workup, and for breast-cancer

treatment protocol.

21

Chapter 3

Visualization of Temporal

Information

3 Visualization of Temporal Information

The core issue of this thesis is the representation of temporal aspects in planning. In this

chapter, we give an overview of how temporal information can be visualized. We present

one basic concept, called timelines, and its adaptations in the medical domain. Finally,

we discuss in detail the concept of SOPOs that we chose for our own visualization

approach.

3.1 From Timelines to LifeLines

A timeline is a linear, graphical visualization of events over time [Karam, 1994]. They are

widely used in project management (e.g., MS Project) or in historical presentations. The

basic idea is to draw a diagram with a horizontal time axis and then divide the space

above or below the axis vertically into regions for every plan or event to be depicted. In

this vertical region, a horizontal line is drawn over the time span of the corresponding

event. Tufte [1983] describes this concept extensively and presents many examples.

In the medical domain, this concept was adapted to represent patients' medical records.

Bui et al. [1999] present a patient record interface, called TimeLine, that establishes a

hierarchy of graphical timelines based on a patient's medical problem list. There, events

that represent patient data are denoted along the timelines by iconic links and graphics.

Furthermore, each timeline can be expanded to reveal sub-timelines. This hierarchical

decomposition enables users to view information at several levels of detail.

Another representation of patient records is presented by Plaisant et al. [1998], and is

called LifeLines. Originally, it was developed at the University of Maryland within a pro-

ject for the Maryland Department of Juvenile Justice to visualize personal history records

[Plaisant et al., 1996]. Later on, this technique was extended to medical applications. In

22

LifeLines, different aspects of the record, such as medical problems, allergies, diagnosis,

medications, etc., are grouped in facets and are represented as horizontal lines, while

icons represent discrete events such as physician consultations, progress notes or tests.

Line color and thickness can be used to illustrate relationships or significance. Zooming

and filters allow users to focus on part of the information, revealing more details on de-

mand. Figures 3.1 and 3.2 show examples of LifeLines.

An experiment was conducted to investigate the benefits of the LifeLines interface [Lind-

warm et al., 1998]. Thirty-six participants used a static version of either LifeLines, a

graphical interface, or a tabular representation to answer questions about a database of

temporal personal history information. Results suggest that overall the LifeLines repre-

sentation led to much faster response times, primarily for questions which involved inter-

val comparisons and making intercategorical connections.

Figure 3.1: An example of LifeLines for the display of Juvenile Justice youth record. The

facets are Cases, Placements, Assignments and Reviews (vertical region on the left). Line

thickness indicates the severity of the offense, color the depth of penetration in the juve-

nile justice system [Plaisant and Shneiderman, 1997].

23

Figure 3.2: An example of LifeLines showing a patient's medical record [Plaisant et al.,

1998].

3.2 AsbruView's Time Annotation Glyph

The depiction of time annotations in AsbruView is based on the idea of LifeLines (see

previous section), but had to be enhanced to allow a visualization of uncertainty in star-

ting, finishing and duration interval. As introduced in Chapter 2, a time annotation in As-

bru is defined as follows:

[[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], REFERENCE],

where [ESS, LSS] denotes the starting interval, [EFS, LFS] the finishing interval, and

[MinDu, MaxDu] the duration interval. REFERENCE indicates the reference annotation,

24

e.g., a time point, from which the intervals' time shifts originate. A detailed description of

the single parameters is given in section 2.2.2.

In AsbruView, a plan's time annotation is represented by a time annotation glyph. The

time shifts ESS, LSS, EFS and LFS are shown as vertical lines with arrows, on which a bar

representing the maximum duration (MaxDu) rests. On top of the MaxDu-bar, two dia-

monds are depicted carrying the second bar that represents the minimum duration (Min-

Du). MinDu is constrained by the time span between LSS and EFS. It cannot become

shorter, as in that case, the MinDu-bar would fall down. If one of LSS or EFS is not de-

fined, the corresponding diamond becomes a circle. This circle can move when MinDu is

changed. In addition, undefined parts are colored in gray instead of black [Kosara,

1999]. In Figure 3.3, an example of a time annotation glyph is given.

Figure 3.3: Time Annotation Glyph [Kosara and Miksch, 1999].

On the left side of Figure 3.3, the top illustrates the definition of time annotations, the

bottom shows an example, which means "starts 2 to 3 days after diagnosis, ends 11 days

after diagnosis at the latest and lasts for 6 days at a minimum". The maximum duration

and the earliest finishing shift are undefined. The right side shows two cases where the

time scale of the time annotation is not the same as that of the current time axis. In As-

bruView, different time granularities have not been implemented.

25

3.3 SOPOs: Sets of Possible Occurrences

The graphical representation presented in the following was introduced as part of a ge-

neral frame for propagating temporal constraints over events [Rit, 1986]. Events are

characterized by sets of possible occurrences (SOPOs), where an occurrence is defined as

a one-dimensional interval during which an event happens.

3.3.1 Occurrences

As an occurrence is a numerical interval, a timeline would be an obvious means for re-

presenting occurrences and their relations (see Figure 3.4). However, this representation

is ambiguous because SOPOs have to be represented with intervals, while in fact they are

sets of intervals. The interval in Figure 3.4 for example could represent the set of occur-

rences beginning after 3 and ending before 6, or the set of such occurrences with a du-

ration equal to 3, or even the set of occurrences whose beginning cannot belong to

[4, 5]. This ambiguity comes from the two-dimensional nature of an occurrence - begin-

ning and end - and leads to the two-dimensional representation shown in Figure 3.5.

As occurrences begin before they end, all possible ones belong to the gray region of Fi-

gure 3.5. In our example, the occurrence o is clearly identified within the diagram. The

diagonal axis has in addition a particular meaning: it is the locus of occurrences whose

beginning equals the end, thus the locus of dates (i.e. time points with zero duration).

This links the two-dimensional representation with the one-dimensional one: the begin-

ning and the end of any occurrence o are dates and can be projected onto the diagonal,

defining a segment. This segment is then the one-dimensional representation of o.

Figure 3.4: One-dimensional representation of occurrences.

26

Figure 3.5: Two-dimensional representation of occurrences.

3.3.2 Representation of Relations

Using the two-dimensional diagram with a beginning and an end axis, one can represent

temporal relations between different occurrences (intervals).

Allen [1983] has proposed a framework for temporal reasoning - the interval-based tem-

poral logic. The only ontological temporal primitives in Allen's logic are intervals. Allen's

motivation was to express natural-language sentences and to represent plans. Allen has

defined 13 basic binary relations between time intervals (six of which are inverses of the

other six): before, after, overlaps, overlapped, starts, started by, finishes, finished by,

during, contains, meets, met by, and equal to.

Figure 3.6 summarizes the set of these temporal relations. The regions and lines are

shown from which an occurrence must originate in order to be in a certain relation to

occurrence o. Figure 3.7 shows an example of allowed regions, marked in gray, for oc-

currences, that happen before and after occurrence o.

27

Figure 3.6: Two-dimensional representation of Allen's relations [Duftschmid, 1999].

Figure 3.7: An example of allowed regions for occurrences that happen before and after a

certain occurrence o.

3.3.3 Visualization of Asbru's Time Annotations

Rit's two-dimensional representation of temporal relations can be used to visualize As-

bru's time annotations. Consider the following example of a time annotation in Asbru:

[[1 WEEKS, 3 WEEKS], [3 WEEKS, 6 WEEKS], [1 WEEKS, 4 WEEKS], CONCEPTION],

28

which means "starts 1 to 3 weeks after conception, ends 3 to 6 weeks after conception

and lasts 1 to 4 weeks". A one-dimensional visualization of this time annotation is given

in Figure 3.8.

Figure 3.8: One-dimensional visualization of a time annotation.

While the starting interval [ESS, LSS] and the finishing interval [EFS, LFS] of the time

annotation can be exactly indicated, a problem arises regarding the representation of the

duration intervals. Any fixed positioning of the two duration intervals (as shown in Figure

3.8), will only allow the representation of a certain occurrence out of the complete set of

allowed time intervals. In order to solve this visualization problem, the time annotation

can be considered as a SOPO and thus be drawn within the two-dimensional diagram

(see Figure 3.9).

29

Figure 3.9: Two-dimensional visualization of a time annotation.

The gray region in Figure 3.9 defines the SOPO for the above time annotation. Any point

inside the SOPO defines an allowed time interval, i.e. it can be considered as an occur-

rence as shown in Figure 3.5, with an exact beginning in [ESS=1, LSS=3], end in

[EFS=3, LFS=6] and duration in [MinDu=1, MaxDu=4]. The reference point of the time

annotation is, in our example, CONCEPTION - assumed to reside in the origin of the dia-

gram. As the values for ESS, LSS, EFS and LFS are quoted relatively to the reference

annotation, they can be directly applied to the horizontal and vertical axis. The duration

constraints are incorporated in such a way that two parallel lines are inserted with a di-

stance of MinDu and MaxDu from the diagonal axis. Graphically, they cut off the upper

left and lower righthand corners of the rectangle (ESS, LSS, EFS, LFS).

3.3.4 Examples of Sequential and Parallel SOPOs

Figure 3.10 shows two SOPOs representing plans that are to be executed in sequence.

We define TA1 as the first plan's time annotation, and TA2 as the second plan's time an-

notation. In Asbru notation, they are as follows (all in the same time unit):

TA1: [[1, 3], [3, 5], [1, 3], 0].

TA2: [[3, 5], [5, 7], [1, 4], 0].

30

Figure 3.10: Example of Sequential SOPOs.

Figure 3.11 shows two SOPOs representing concurrent plans. Their time annotations, TA1

and TA2, are in Asbru notation as follows:

TA1: [[1, 3], [3, 5], [1, 3], 0].

TA2: [[1, 3], [5, 7], [3, 6], 0].

Figure 3.11: Example of Concurrent SOPOs.

31

Figure 3.12 shows two SOPOs representing concurrent plans whose finishing intervals

overlap. Their time annotations, TA1 and TA2, are in Asbru notation as follows:

TA1: [[1, 3], [3, 5], [1, 3], 0].

TA2: [[1, 3], [4, 6], [2, 5], 0].

Figure 3.12: Example of Concurrent SOPOs with overlapping.

32

Chapter 4

User Interface Design

and Usability

4 User Interface Design and Usability

From our initial idea to the running of the software program, many steps had to be taken

to be successful at the end. In this chapter, we present the basic stages of such an engi-

neering process, focussing on the user interface and its usability.

4.1 The User Interface

The human-computer interface, or simply user interface, represents the only part of an

application system with which the end-users come into direct contact [Ravden and John-

son, 1989]. One could say that for the user, the interface is the system. Whether the

human can "use" the system or not therefore depends on that interface. If end-users feel

uncomfortable using the system; if it causes confusion or frustration - either because it

interferes with their work, or it takes much more time to carry out tasks - then they may

find it inefficient to use, and finally stop using it altogether. Thus, designing a user inter-

face that meets the end-users' requirements is the key-success factor. However, ...

... User interface design is a very difficult business. It combines two awkward disciplines:

psychology and computer science. These disciplines have very different cultural back-

grounds: psychology is concerned with people; computer science with computer machi-

nery. Psychologists are supposedly sympathetic and understanding; computer scientists

are supposedly mathematical and precise. Psychologists have enough trouble understan-

ding people even when they are not using computers; computer scientists have enough

trouble getting programs to work even when they are not being used by people. Good

user interface design requires these two perspectives to be united. ... [Thimbleby, 1990].

33

One approach that not only takes those two disciplines but also some others (e.g., so-

ciology or linguistics) into account, is called usability engineering. Before we present the

stages of this lifecycle model, we will look at the term usability and its meanings.

4.2 Usability

Today, computers are not only tools for computer scientists, hackers or freaks. They

have begun to play a significant role of daily applications, thus enabling users without the

background of computer scientists to benefit from them. On our way into the information

society, where bits and bytes will finally dominate over atoms (which characterize the

industrial age we have begun to leave), usage of computers and information technology,

like the Internet, increases almost day by day. Visionaries like Nicholas Negroponte draw

an image of our future, in which computers play an ubiquitous part in our life [Negro-

ponte, 1995].

Often, user-friendliness is mentioned when it comes to discussions about requirements

and prerequisites. However, the expression user-friendliness is somehow improper as it

first suggests a computer or system being able to be friendly (whatever that means), and

secondly suggests only a one-dimensional classification. Instead, the expression usability

was introduced which shall help us to consider the many dimensions we are talking

about.

Figure 4.1: A model of the attributes of system acceptability [Nielsen, 1993].

34

The question whether a certain system satisfies all the various needs and requirements

of the users and of other people involved, like users' clients, or managers, is not that of

usability but more that of system acceptability as a whole. Usability itself is only part of

that higher order goal. Figure 4.1 shows all the attributes of system acceptability, inclu-

ding usability. Their usefulness, for example, determines whether or not a system can be

used to achieve some desired goal. It comprises utility, the question of whether the sy-

stem's functionality provides what is needed, and usability, which is the question of how

well users can access that functionality [Nielsen, 1993].

Following this model, usability is not a single, one-dimensional property of a user inter-

face, but has several components. We define the following five usability attributes [Niel-

sen, 1993], that are sometimes also addressed as goals of the user-interface design

[Shneiderman, 1998]:

• Learnability: the system should be easy to learn and the user should be able to

carry out some basic tasks after a short period of time.

• Efficiency of Use: once the user learned how to use the system, tasks should be

carried out productively.

• Memorability: this attribute addresses the retention over time. Casual users should

remember how to use the system without having to learn everything again.

• Few and Noncatastrophic Errors: during work with the system, a few errors may

occur, and the user should be able to recover from them.

• Subjective Satisfaction: the system should be pleasant to use. That does not mean

that users have to be overwhelmingly happy when using it. They simply should like it.

Not all of those attributes need to have the same importance in software projects. That

largely depends on the usability goals specified, due to user characteristics, their needs

and requirements and the tasks they will carry out using the system. In designing our

user interface SOPOView, the most important attributes were efficiency of use and a low

error rate, as well as subjective satisfaction. In the medical domain, physicians have to

work efficiently when using our program, and errors have to be prevented as consistently

as possible, for they lead to delays during treatment. On the other hand, it probably

35

takes more time to learn how to use our program, in particular because the representa-

tion of temporal data in the diagram is unconventional and complex, and takes time to

become familiar with.

4.3 The Design Process

Designing the user interface is not a one-shot affair; it is a process that starts with an

initial analysis and finishes with a successful implementation. Basically, software engi-

neering is the term that denotes this process. It was first introduced at the NATO Science

Committee Conference in 1968. There, software engineering was defined as "the esta-

blishment and use of sound engineering principles in order to obtain economically soft-

ware that is reliable and works efficiently on real machines" (Fritz Bauer).

In the traditional view, often referred to as the waterfall model [Sommerville, 1992],

stages of the process were arranged in a linear fashion; in this manner the output of

each stage became the input of the next. For example, requirements for a software were

gathered at the beginning and used in the design, which was then coded and tested.

When the product was completed, it was tested again and maintained until being elimi-

nated or replaced. It soon became apparent that stages overlap and that information

must flow in both directions, while during design problems with requirements were

found, and during coding problems with design were found. An adaptation and enhance-

ment to the waterfall model is the spiral model [Boehm, 1988], in which several itera-

tions are required and in which a prototyping approach is used to better understand the

requirements for the following stage.

4.4 User-Centered Design

Considering those two models, the waterfall and the spiral model, users are not really

involved throughout the design process. They may be consulted during design phase,

and they are of course necessary to carry out tests, but they obviously do not play the

central role in development. In user-centered design, user issues become central to the

design process, early testing and evaluation are carried out with users, and the whole

process is highly iterative.

Many design methods have been evolved in this field of human-computer interaction

(HCI). This field of study does not focus on just the design of user interfaces, but on all

36

the aspects that relate to the interaction between users and computers. Among others,

approaches like the Soft Systems Methodology (SSM) [Checkland and Scholes, 1990],

where the emphasis is on understanding the situation in which a problem is thought to

lie, and not on finding a solution, or the Open Systems Task Analysis (OSTA) [Eason and

Harker, 1989], where the focus is on understanding both the social and technical system

and the transformation that occurs when introducing a computer system into a working

environment, became very popular.

Our own approach in designing SOPOView is based on the star model (see Figure 4.2), in

which no exact ordering of activities exists and in which evaluation is central. All aspects

of user-interface design are subject to evaluation during the whole development process

[Hix and Hartson, 1993]. In the star lifecycle approach, system development may begin

in any of the stages shown in Figure 4.2. As the whole process is iterative, requirements,

design, and the product gradually evolve over time, becoming well defined in the end.

Basically, the star model's stages are equivalent to the stages of the usability engi-

neering lifecycle model [Nielsen, 1993].

Figure 4.2: The star model [Hix and Hartson, 1993].

4.5 From Paper and Pencil to SOPOView

Designing our own solution, called SOPOView, was not intended to be a closed process

with an implemented product for use at its end. Much more, it was part of the evolution

of the user interface AsbruView, where we were looking for an alternative representation

of temporal data. With AsbruView, we are still at the prototyping stage as a number of

37

intended features of the program, due to functional analysis, are not available at the

moment. Continuous evaluation helps us to find hidden requirements and to further de-

velop our program.

In developing SOPOView, we started with the concept of SOPOs, which was introduced in

the previous chapter, and made early paper mockups to visualize the ideas of our con-

ceptual design. The conceptual design concerned with questions of what is required. As

the original concept [Rit, 1986] did not meet all the requirements from the language As-

bru, we had to adapt and enhance it. A detailed description is given in the next chapter.

The other requirements for our representation were derived from the results of the eva-

luation of AsbruView [Kosara, 1999].

After we had covered almost all requirements in our paper mockups, we started to im-

plement a first prototype. Its aim was to find an appropriate means to visualize SOPOs

and to define its parameters. Later, techniques for the overlapping of SOPOs were deve-

loped and the basic user interaction possibilities, like the dragging of SOPOs, were im-

plemented and refined. For reasons of simplicity and flexibility, this first prototype was

independent from AsbruView. After incorporating SOPOView into AsbruView, we conduc-

ted some tests within the team where we found a few incompatibilities and problems in

terms of visualization, which could be fixed and solved within a short period of time. Our

program was then ready for evaluation with physicians.

4.6 Evaluation

As shown in the star model (Figure 4.2), evaluation is central in the design process. Our

own evaluation and the results will be presented in detail in Chapter 6, but some funda-

mental aspects should already be mentioned here. What is evaluation about? The follo-

wing definition was taken from Preece [1994]:

Evaluation is concerned with gathering data about the usability of a design or product by

a specified group of users for a particular activity within a specified environment or work

context.

As one can see, evaluation does not aim to solve problems, but rather provides a means

of identifying problem areas, difficulties, weaknesses, or areas of possible improvement.

In doing our evaluation, we wanted to find out what physicians want and what problems

they experience when carrying out tasks with our prototype. Our evaluation was a sum-

38

mative one, i.e. that it took place after the product, our prototype, has been developed

(in contrast to a formative one, where evaluation meshes closely with design and guides

design by providing feedback). When conducting a summative evaluation, sometimes

also referred to as usability testing [Shneiderman, 1998], various techniques can be

used, of which some shall be mentioned here briefly.

Mostly, evaluation depends on some kind of observation or monitoring of users' interac-

tions. The observer collects data by making notes, or some other form of recording, like

videotaping, may be used. That strongly depends on where the evaluation takes place. In

a usability laboratory, video recording and keystroke logging can be done relatively

easily, compared to the users' normal work environment, where the use of those me-

thods will be restricted. A supporting technique during evaluation is the thinking aloud

method [Nielsen, 1993]. Essentially, the test person uses the system while continuously

thinking out loud. By verbalizing their thoughts, users enable the observer to understand

how they view the system. Finally, users' subjective opinions about the system can be

gathered by questionnaires and during interviews.

During our evaluation, we gathered data by observing the physicians while they were

working with our prototype. In between, we asked questions about why they interacted

with the system in a certain way to force them to think aloud. The evaluation concluded

with a questionnaire (see Appendix A) and a final interview.

39

Chapter 5

SOPOView

5 SOPOView

This chapter presents the core part of this thesis, namely the implementation of the vi-

sualization of temporal aspects of plans. We call our solution SOPOView, due to the fact

that it first uses the concept of SOPOs to visualize temporal relations (see section 3.3),

and is then implemented as an additional view within AsbruView (see section 2.4).

In the next sections, we introduce the basic parts and layout of SOPOView. We describe

the part representing the structure of plans as well as the diagram used for the vi-

sualization of SOPOs. As the basic concept of SOPOs had to be adapted in order to fulfill

the requirements of the language Asbru, and in order to enable an acceptable visualiza-

tion, all those enhancements will be discussed in detail.

Figure 5.1 shows a screenshot of SOPOView within the AsbruView program. The example

of the plan is the same as the one introduced in Chapter 2, which is the treatment of in-

fants' respiratory distress syndrome (I-RDS).

5.1 Left Part: Plan Structure

A plan here is represented as a colored rectangle that may contain any number of other

rectangles (sub-plans). If a plan has sub-plans, a small black triangle is drawn on the

left, pointing to the right if the plan is closed, or pointing down if the plan is opened (i.e.

its sub-plans are shown). The plan's name appears to the right of the triangle. Below the

triangle, symbols indicate the plan type, i.e. the way its sub-plans are to be performed.

To the right of those symbols, the rectangles representing the sub-plans begin. This

leads to a kind of tree structure that is quite widespread in standard software systems

today. Examples of the different symbols for the plan types are shown in Figure 5.2 and

are summarized in Table 5.1.

40

Plan Types Asbru Notation Symbols used

Sequential Plan Do-All-Sequentially,

Do-Some-Sequentially

Bullets (like in a bullet list)

Parallel Plan Do-All-Together,

Do-Some-Together

Two parallel lines

Any-Order Plan Do-All-Any-Order,

Do-Some-Any-Order

Two arrows pointing into opposite directions

Cyclical Plan Do-Every Circular arrow

Table 5.1: Plan Types and their representation.

Optional plans are indicated by a question-mark texture, as it is the case in the Topologi-

cal and Temporal View (see section 2.4.4).

41

Figure 5.1: Screenshot from the AsbruView program showing SOPOView. The example

plan is the treatment for infants' respiratory distress syndrome (I-RDS). The left/lower

part shows the structure of the plan, the right/upper part shows the sub-plans' time an-

notations using SOPOs.

42

Do-All-Sequentially Do-Some-Sequentially

Do-All-Together Do-Some-Together

Do-All-Any-Order Do-Some-Any-Order

Do-Every

Figure 5.2: All of Asbru's plan types in SOPOView's left part.

43

5.2 Right Part: SOPO Diagram

Here, the concept of SOPOs introduced in Chapter 3 is used to represent the temporal

aspects, i.e. the time annotations of plans written in Asbru.

5.2.1 Adaptations to the concept of SOPOs

In order to meet all the requirements from the language Asbru, the basic concept of

SOPOs as introduced in Chapter 3 had to be enhanced. Still, a plan's time annotation is

depicted as a colored region within the diagram (that is the SOPO) as it was shown in

Figure 3.9. However, a hierarchical decomposition, i.e. the way plans are made up of

sub-plans, and so forth, was not covered by the representation presented by Rit [1986],

and therefore had to be added.

5.2.1.1 Colors

Since every plan's time annotation is represented as an area in the diagram (SOPO), it is

assigned the same color that the plan itself has in the other views. Thus, identification of

a plan's SOPO should be easy. However, problems may arise for color-deficient users.

5.2.1.2 Position of Axes

The way the three axes of the diagram are drawn is the first adaptation to Rit's repre-

sentation. There, the horizontal axis marked the beginning in time, while the vertical axis

marked the end in time. The origin of the two axes is found in the left bottom (see Figure

5.3). In SOPOView, the arrangement is rotated by 90 degrees to the right: the horizontal

axis markes the end in time and the vertical axis the beginning in time. The origin of the

two axes is found in the top left (see Figure 5.4).

There were two reasons for the change in position of the axes: first, the common way of

scrolling on a screen is from left to right and from top to bottom. If the number of plans

(and thus of SOPOs) to be drawn exceeded the available area of display, the user had to

scroll from left to right, but also from bottom to top, as the SOPOs are arranged along

the diagonal axis that starts in the bottom left and goes to the top right. The other

44

reason is that if new sub-plans are added the left part of SOPOView must grow toward

the bottom, as this is the way plans are depicted there. As mentioned before, however,

the SOPO diagram would grow toward the top right - that is, in the opposite direction.

For example, when finding a certain plan in the left part, the user would have to scroll

down, but at the same time scroll up and right within the SOPO diagram. We simply

wanted the user to be able to scroll in the same direction in both parts of SOPOView, to

reduce both confusion and inconsistency.

Figure 5.3: Axes position by Rit [1986]. Figure 5.4: Axes position in SOPOView.

5.2.1.3 Hierarchical Decomposition

Plans may consist of sub-plans, which themselves may consist of other sub-plans, and so

forth. A plan's time annotation is represented by a SOPO in the diagram. A way had to be

found to visualize the hierarchy of SOPOs, since a plan's time annotation is composed of

its sub-plans' time annotations. This is done by using background colors.

Figures 5.5 to 5.7 show an example, where the plan hierarchy is as follows: Plan A con-

sists of the plans B, C and D, that are to be executed in sequence. Plan C is composed of

two sub-plans, E and F, that are also executed in sequence. Plan D consists of the two

sub-plans G and H, that are to be performed in parallel. The figures show screenshots of

SOPOView.

In Figure 5.5, Plan E is marked, which is indicated by a dotted border around the colored

rectangle in the left part (in AsbruView, this indication is called "ants trail" because the

dots move around the rectangle), and by the marked SOPO with its parameters explicitly

shown in the diagram. Plan E and F are the sub-plans of plan C, which is easy to grasp in

the left part of SOPOView. In the diagram, the two plans' SOPOs can be found within a

45

colored triangle, which indicates not only their unity within plan C, but also plan C's ear-

liest starting and latest finishing shift. The color of this triangle, however, is not the same

as plan C's color in the left part.

First, this is due to the fact that we wanted to signalize the level of detail in the diagram.

Plan C is opened, i.e. its sub-plans E and F are shown, and thus plan C shall move into

the background. This is done by still using the same color, but semi-transparent. Second,

we only used the plan color for the plan's SOPO. The background triangle, however, is

not the plan's SOPO.

In order to get plan C's time annotations, the user simply has to mark plan C in the left

part or click within the background triangle in the diagram. This would lead to the repre-

sentation shown in Figure 5.6. Plan C is marked and its SOPO is shown in the diagram.

One can see that the background triangle's horizontal edge corresponds to the plan's

earliest starting shift (ESS, that is 4 seconds in the example), and that the background

triangle's vertical edge corresponds to the plan's latest finishing shift (LFS, that is 15 se-

conds in the example). Within these two temporal shifts, all of the time annotations of

plan C's sub-plans (the SOPOs), had to be found. In Figure 5.7, the closed plan C is

shown, i.e. its sub-plans (and SOPOs) are not visible in both left part and diagram of SO-

POView. The opening and closing of plans will be discussed in detail in section 5.3.

5.2.1.4 Undefined Parameters

In Asbru, it is possible to leave parts of a plan's time annotation undefined (see section

2.2.2). Thus, a way had to be found to visualize undefined parameters of SOPOs. How-

ever, undefined parameters mean that the according edges of the SOPO are unknown.

The solution we chose was to assign the undefined parameter a certain value that is ne-

cessary to draw the according edge of the SOPO, but to use a dashed line instead. Figure

5.8 shows an example of one marked and one unmarked SOPO with undefined parame-

ters. Still, this visualization was unsatisfactory, as the supposed values imply a certain

width of the temporal interval in the diagram that does not exist. Further, depending on

the colors of the SOPOs, the dashed lines can be difficult to see. So far, no optimal solu-

tion has been found.

5.2.1.5 Optional Plans

In the other views, optional plans (i.e. plans that do not have to be performed) are mar-

ked by a question-mark texture (see section 2.4.4). Following this principle, SOPOs of

optional plans are also filled with question-marks (see Figure 5.9).

46

Figure 5.5: A screenshot from SOPOView, showing the hierarchical decomposition (1).

Figure 5.6: A screenshot from SOPOView, showing the hierarchical decomposition (2).

47

Figure 5.7: A screenshot from SOPOView, showing the hierarchical decomposition (3).

Figure 5.8: Part of the SOPO diagram Figure 5.9: Part of the SOPO diagram
showing undefined parameters. showing SOPOs of optional plans.

Figure 5.10: Part of the SOPO diagram showing
a sequential plan's sub-plans, with overlapping.

48

5.2.2 Reading the Diagram

This section describes the way the user has to read the diagram in order to get to know

the temporal information and relations of the plans.

5.2.2.1 Marked SOPOs

Once a plan has been marked, the corresponding SOPO also appears marked in the dia-

gram. For an example, see Figure 5.5. There, Plan E is the current plan. In the diagram,

dashed lines are drawn from both axes to the corresponding corners of the SOPO. On the

axes, the temporal intervals thus created are marked by a thicker light-gray line.

Further, the intervals' borders are given in light-gray numbers as well. Thus, one can

easily ascertain a plan's starting interval (ESS = 4, LSS = 7, in our example) and fini-

shing interval (EFS = 8, LFS = 11, in our example). The minimal and maximal duration of

a plan's SOPO are written directly into the diagram, using "minDu" and "maxDu" as ab-

breviations. They normally appear to the right of the SOPO; in case there is not enough

room to the right, they appear to the left of the SOPO. In our example, the minimal du-

ration is 2, the maximal duration is 6. As introduced in section 3.3, the minimal and ma-

ximal duration can be interpreted as the distance between the diagonal edges of the

SOPO and the diagonal axis of the diagram.

5.2.2.2 Temporal Order of Plans

Of particular interest is the temporal relation between plans. In Asbru, plan types indi-

cate whether plans are to be performed in sequence, in parallel, or in any order (see

section 2.2.4). According to Allen's relations (see Figure 3.6), these plan types are indi-

cated by the way the plans' sets of possible occurrences (SOPOs) are arranged within the

diagram.

Sequential Plans

In Asbru, sequential plans are defined as plans whose sub-plans are performed in total

sequence. For a plan consisting of two sub-plans, the second one can start only when the

previous one has finished. Again, let us take Figure 5.5 for an example. The marked Plan

E is the first sub-plan of Plan C which has the type Do-All-Sequentially. Therefore, Plan

F's earliest starting shift corresponds to Plan E's earliest finishing shift (8 seconds in the

49

example). If 8 seconds is the earliest point in time for Plan E to be finished, then it is also

the first point in time for Plan F to start. Accordingly, Plan F's latest starting shift corres-

ponds to Plan E's latest finishing shift (that is 11 seconds in the example).

Plans to be performed in sequence are therefore arranged like stairs along the diagonal

axis. Still, it is possible that the plans' SOPOs overlap in the diagram. Figure 5.10 shows

an example of a sequential plan that consists of three sub-plans. The first and the second

SOPO overlap, due to the fact that both their finishing intervals overlap with their star-

ting intervals. The second and the third SOPO do not overlap because the third plan's

finishing interval does not overlap with its starting interval.

Any-Order Plans

These plans consist of several sub-plans, whose order of execution is not known at the

time of the plan's design. In the left part of SOPOView, this plan type is indicated by two

arrows pointing into opposite directions. In the diagram, the sub-plans' SOPOs are drawn

in a sequence, like those of a sequential plan (see previous description).

Of course, looking at the diagram, one cannot tell whether a plan's sub-plans are to be

performed in total sequence or in any order. Merely, assuming different starting and fi-

nishing intervals for the sub-plans does not communicate the nature of the any-order

plan type. For the sub-plans' time annotations, it would be better to assume the same

starting and finishing interval for all of them. The interpretation would be that all the

sub-plans had to start and finish within certain temporal borders, but that their order of

execution is unknown. However, this would lead to overlapping SOPOs, as is the case

with parallel plans, and therefore would not be a unique representation either.

Parallel Plans

Sub-plans that are to be performed in parallel have the same starting interval, but may

have different durations and finishing intervals. An example of a parallel plan is given in

Figure 5.5. There, Plan G and H are to be executed in parallel. In the diagram, their

SOPOs lie vertically in the same interval [ESS, LSS].

In our example, the plans' finishing intervals and therefore the SOPOs overlap. This

overlapping area is drawn semi-transparent, so that one can still see the overlapped

SOPO's edges. During evaluation, this proved to be an insufficient solution, especially

when more than just two SOPOs overlap, or when the SOPOs are identical. A possible

50

solution to these deficiencies could be the introduction of a third dimension into the dia-

gram. There, parallel SOPOs can be stacked on top of each other. However, an additional

dimension would also increase the overall complexity of the diagram.

5.3 User Interaction

This section describes the basic user interaction concepts used in SOPOView.

5.3.1 Plan Selection

In both the left part and diagram, a plan, or SOPO, is selected by clicking on it. In the

left part, a border consisting of moving dots ("ants trail") is drawn around the plan's co-

lored rectangle. In the diagram, the plan's SOPO is marked (see section 5.2.2.1). In case

there are several SOPOs overlapping, one can click into the overlapping area to switch

between the plans. By clicking into a background triangle, one can select the correspon-

ding opened superplan (see also section 5.2.1.3).

5.3.2 Level of Detail

This term refers to the visible levels within a plan hierarchy (see also section 5.2.1.3).

Following the principle of details-on-demand in information visualization [Shneiderman,

1998], the user can choose the level of detail by opening and closing plans, i.e. by choo-

sing whether the plan's sub-plans will be visible or not. To open or close a plan, this plan

has first to be selected.

In the left part of SOPOView, the plan can then be opened or closed by clicking into the

black triangle to the left of the plan's name. When the mouse cursor is moved over the

triangle, it changes into a hand, which symbolizes that the triangle can be

clicked on. In the diagram, a small dark circle is drawn in the lower right corner of the

SOPO (see Figure 5.6 or 5.7, for example). Its function is the same as that of the black

triangle in the left part. Accordingly, the mouse cursor changes into a hand when moved

over this circle.

51

5.3.3 Changing Time Annotations

There are two ways to change a plan's time annotation: by directly manipulating the

SOPO, or by using an editor. In order to enable a proper visualization of SOPOs, the re-

strictions introduced in section 2.2.3 were considered.

5.3.3.1 Direct Manipulation of SOPOs

Provision of direct manipulation offers many advantages: users can carry out tasks ra-

pidly and can observe the results immediately; it allows easy learning and errors to be

avoided; and it affords a higher subjective satisfaction. A detailed discussion of direct

manipulation is given by Shneiderman [1998].

In our diagram, one can click on a SOPO and thus select it. Without releasing the mouse

button, the SOPO can be dragged, moved around the diagram, and dropped at some

other place ("drag and drop"). When moved outside the visible area, the diagram scrolls

automatically to support the dragging. The SOPO moves by one time unit. However,

there are certain restrictions imposed by the language Asbru to be considered:

First, only SOPOs representing plans without any sub-plans can be moved (such plans

are called actions). If a plan has sub-plans, its time annotation is the propagation of the

sub-plans' time annotations and can only be changed by changes in the sub-plans' time

annotations.

Second, the SOPO (of an action) can only be moved horizontally. This is due to the fact

that a plan's starting interval must correspond to the finishing interval of the previous

plan (in a sequential plan). In addition, the very first plan in a plan hierarchy has to start

with the earliest starting shift equal to zero.

Third, the leftmost possible position of a SOPO is the diagonal axis. Having a corner or an

edge on the diagonal axis means that these points of the SOPO have the same starting

and finishing point in time, i.e. a duration of zero. All parts of a SOPO left to the diagonal

would have a finishing time occurring before the start, which is impossible.

The other way of directly manipulating a SOPO is by changing the position of its edges. If

the user moves the mouse cursor over one edge of the SOPO, the cursor changes into a

double-sided arrow pointing into the directions in which the edge can be dragged. For

example, on the edges representing the finishing interval, this arrow would point to the

left and right. After the cursor has changed into an arrow, the user can click and move

the edge to the permitted direction. The value of the time annotation's parameter then

52

changes by one time unit. Thus, the arrows should only appear when it is permitted to

change the corresponding time shift. For plans which consist of sub-plans, the arrows do

not appear, as their time annotations cannot be changed directly. The same is true of the

dashed lines which represent the undefined parts of a time annotation.

With direct manipulation, the user can only change the edges of the SOPO by one time

unit (e.g., one second or one hour, depending on the current time scale). To change, for

example, the minimal duration from 1 hour to 1.5 hours, one has to use the editor. Also,

to specify a parameter as undefined, the editor has to be used (see below).

5.3.3.2 Time Annotation Editor

The other possibility to change a plan's time annotation is by using an editor. To open

the editor, the user simply has to click on a SOPO with the right mouse button. For an

example of the editor, see Figure 5.11.

In the editor, all the parameters, ESS, LSS, EFS, LFS, MinDu and MaxDu, can be as-

signed any value that meets the constraints within time annotations. Furthermore,

checkboxes enable the user to specify parameters as undefined.

Figure 5.11: Time Annotation Editor.

5.3.4 Scrolling

To enable navigation in the diagram, a horizontal and a vertical scrollbar were imple-

mented. The way the user scrolls in the diagram is indicated by the small square button

53

between the two scrollbars in the bottom right. By default, the user scrolls diagonally,

which is indicated by a double-headed diagonal arrow on that button (see Figure 5.1, for

example). The two scrollbars are then synchronized. By clicking on the button, the user

can change the way of navigation. Doing this, two double-headed arrows appear on the

button: a horizontal and a vertical one. The user can then scroll horizontally using the

horizontal scrollbar, or vertically using the vertical scrollbar.

5.3.5 Control Bar

The following possibilities of changes concerning the appearance are made available

through a control bar at the bottom of SOPOView. See Figure 5.1, for example.

5.3.5.1 Choosing the Time Scale

The user can select any time scale from seconds up to years using the pull-down list. The

selection is used for the representation in the diagram, and is indicated on both the be-

ginning and ending axis by an abbreviation in brackets (by default, it is seconds, indica-

ted as [sec]).

5.3.5.2 Changing a Plan's Color

The colors that are used throughout AsbruView are generated randomly. Sometimes,

colors might be misleading or contrasts might be bad. At any time, the user can change a

plan's color, which of course affects also the other views in AsbruView.

5.3.5.3 Showing a Grid in the Diagram

By activating this checkbox, a grid is drawn in the diagram. The distance between the

lines is always five time units. This should enable a better orientation in the diagram.

5.3.5.4 Zoom in and out

The two buttons that show a magnifier with a plus and a minus in the glass can be used

to zoom in and out the diagram.

54

5.4 Integration Into AsbruView

In section 2.4.1, the basic structure of the user interface AsbruView, that supports the

understanding and manipulation of time-oriented, skeletal plans written in Asbru, was

introduced. In AsbruView, any number of views can be used to visualize certain aspects

of the underlying model. SOPOView was implemented as such a view. In fact, SOPOView

consists of two views: the left part showing the structure of the plans, and the SOPO dia-

gram. This is due to the fact that the program code for the left part was reused from the

Temporal View and integration into SOPOView was thus easier. For practical working,

there are no disadvantages, of course.

5.4.1 Technical Details

The whole program was written in the programming language Java (release 1.2, also

known as the Java Platform 2). In Java, the source code is first compiled into a platform-

independent byte-code. To run the program, this byte-code will then be interpreted by

the Java Virtual Machine on any platform. This way, programs developed on a certain

platform can be moved and run (theoretically) on all the other platforms.

The other main reason for us to use Java are the features the language provides for user

interface design. The program makes heavy use of the possibilities of the Swing classes

of Java, which not only provide all the necessary components used in a modern user in-

terface, but also good event handling methods and listeners used to react to changes

done by the user.

However, since a lot of computing power and memory is necessary to draw the three-

dimensional plan structure of the Topological View and then move there, or to react pro-

perly and smoothly to the user interactions on the SOPO diagram, work can be very diffi-

cult and demanding if such a computing system is not available. The system used for our

evaluation (see next chapter) was fast enough for our purposes.

55

Chapter 6

Evaluation

6 Evaluation

This chapter reports the results of the evaluation we did to assess the usability and sui-

tability of our visualization presented in this thesis.

As introduced in Chapter 4, evaluation plays the central role within a software engi-

neering process. Without evaluating a system or user interface, the designer would never

know whether users feel comfortable in using the software or whether the software

makes work easier and more efficient at all. Especially in the medical domain, thought

patterns of physicians can be so very different from our own (as computer scientists),

that design decisions we thought good may turn out to be inappropriate.

6.1 Goals

Essentially, this evaluation was done to answer the following questions:

• Do physicians understand the concept of SOPOs used for the visualization of temporal

aspects of plans?

• Is the depiction of plans' time annotations with SOPOs easy to understand, or do phy-

sicians have problems in reading the diagram?

• Does the SOPO diagram make understanding the temporal relations between plans

easier?

• How do physicians evaluate SOPOView in comparison to Temporal View?

6.2 Sample

The participating persons (four male, four female) are all practicing physicians in diffe-

rent fields: neonatal intensive care, pediatrics, intensive care, and neurological surgery.

Half of them (two male, two female) already helped us to evaluate the user interface

AsbruView approximately a year ago. They not only could remember the program and

56

important features, but also had some basic knowledge about the plan representation

language Asbru, e.g., hierarchical decomposition of plans and plan types.

All the participants use a computer for their daily work. They are all familiar with word

processing software, and all except one use spread sheets and Internet browsers. Only

one person had experience with a project planning software. Overall, participants rated

their computer skills to be good; only two rated their skills to be low.

All but one use clinical protocols or guidelines in some way. They are written down in

plain text or drawn as flowcharts. On an average, these representations were rated to be

okay, but improvements were said to be very welcome.

6.3 Evaluation Procedure

Evaluation was done separately with every participant. After being told what to expect,

the participant was asked to fill out a first questionnaire (see Appendix A) about basic

computer skills and the usage of clinical protocols. Then, the basics of the user interface

were explained: how to author plans using the Topological View and how to define the

plans' time annotations in SOPOView and in Temporal View. To change from a rather ge-

neral explanation to a practical example, a predefined plan was presented. After this, the

test person was asked to author an example plan on his or her own, including the defini-

tion of time annotations in SOPOView, in comparison to the Temporal View. At the end,

the participant was asked to fill out another questionnaire (see Appendix A), to assess

the program's usability. The tests usually lasted about an hour and a half.

6.4 Test Equipment and Environment

The same system was used in all the tests: An Intel Celeron 433 MHZ portable PC, with

64 MB RAM and a 1024x768 LCD panel. A separate mouse was also used. All but one of

the tests were conducted in the physicians' usual work environment in the hospital. One

test was conducted at the participant's home.

6.5 SOPOView: Findings

The numerical results of our evaluation are presented in Appendix B. Here, these results

will only be summarized and discussed together with the findings of the observations and

interviews done during evaluation.

57

All participants understood the concept of SOPOs used to visualize temporal aspects and

relations of plans. However, that did not mean that participants did not have any pro-

blems in reading the diagram and thinking in an unconvential way (what the representa-

tion in a two-dimensional diagram is, in the beginning). In fact, a plan's time annotation

consists of three parts: the beginning shown on the vertical axis, the end shown on the

horizontal axis, and the duration shown on the diagonal axis. Almost all participants had

problems in leaving behind their traditional way of thinking, in which time only flows

along one axis. Even when SOPOs were marked and their temporal information was high-

lighted along the axes, some participants had problems in understanding those values.

Two participants found the position of the axes misleading. In fact, they proposed the

original orientation presented in section 3.3, where the horizontal axis marks the begin-

ning, and the vertical axis marks the end in time. Other test persons changed the axes

by mistake when asked to interpret a plan's time annotation.

Most participants had trouble understanding the temporal relations between plans, i.e. in

reading the diagram along the diagonal axis. Taking the time annotations of sequential

plans, one can mirror the first plan's finishing interval over the diagonal axis, to see

whether the following plan's starting interval is the same. Problems occurred with any-

order plans, as they are depicted like sequential plans and one cannot see any difference

in the diagram. It would be useful, for example, to draw arrows between the SOPOs to

visualize the nature of any-order plans in some way.

Some participants had problems understanding the representation of a plan's duration in

the diagram. Unlike the traditional way of representing a plan's duration by a line or bar,

which becomes broader the longer the plan lasts for, the duration is indicated by the di-

stance between the SOPO and the diagonal axis. Therefore, there is no relation between

the size of a SOPO and its duration. To help users, the minimal and maximal duration

could be indicated, for example, by arrows pointing from the diagonal axis to the SOPO.

The colored background triangles used to communicate the hierarchical decomposition of

plans were heavily criticized. The colors of the triangles are not the same as the ones

used for the plans in the other views, and thus recognition of plans was rather difficult.

The use of color in the whole was considered not only to be helpful, but also to be ne-

cessary to differentiate SOPOs in the diagram. However, some participants complained

about contrasts between colors, in particular in connection with background colors.

58

One of the bigger problems turned out to be the representation of parallel plans by

overlapping SOPOs. All participants found it difficult to recognize how many SOPOs are to

be performed in parallel by just looking at the diagram. Especially when such parallel

plans consist of sub-plans, the representation does not communicate that in an appro-

priate manner. Suggestions for improvement ranged from showing the number of over-

lapping SOPOs and using other hints to a three-dimensional diagram, where parallel

SOPOs are stacked on each other. In fact, during design phase of SOPOView, a third di-

mension was taken into consideration, but finally was rejected because of its complexity.

The representation of undefined parts of a time annotation by dashed edges of a SOPO

was rated to be satisfactory. Still, recognition strongly depends on the colors used. Some

participants had to take a second look to recognize the dashed lines, and thus a better

way has to be found. As described in Chapter 5, the current visualization of undefined

parameters in SOPOs is pretty controversial: we assume a value for the edge of the

SOPO to be drawn, although this value is undefined and therefore can be somewhere

else.

Although it is possible to author time annotations in different time units, this proved to

be inconvenient for representation in our diagram. SOPOs defined in a smaller time unit

(e.g., seconds) will not be visible in a large time scale (e.g., days), and in the opposite

case, the larger SOPOs will fill the whole visible area in a smaller chosen time scale. Du-

ring evaluation, this happened only once, but interpreting the SOPO diagram then turned

out to be almost impossible.

Another deficiency in visualization is the fact that SOPOs represent a set of possible oc-

currences, caused by intervals of the beginning, end, and duration, rather than a single

occurrence. Some participants wanted to define a plan's time annotation as a time point

or an exact occurrence with a certain duration. This would not lead to a colored region

(that is, the SOPO), but to a single point or line. However, the current implementation

supports only the definition of such a time annotation, not its visualization. The point or

line was invisible then, and could not be marked any more.

Both possibilities for changing the SOPOs' parameters, either by direct manipulation or

by using the editor, were rated good. However, the overall procedure to define a plan's

time annotation was not rated so highly, as it was rather time-consuming and restricted

by the language Asbru. Several times, participants wanted to have temporal breaks bet-

ween the sequential execution of plans. In Asbru, this is not possible, so one would have

59

to define plans that represent the breaks in between. Also, a means of copying a plan's

time annotation and reusing it for another plan would be helpful.

Another problem that arose was the fact that the user input in the editor is not checked if

it meets the constraints within time annotations (see Chapter 2). For example, a user

could define a duration interval, where it was impossible to reach the finishing interval. A

solution would be to adapt the values of the finishing interval when the minimal and ma-

ximal duration are set, or vice versa.

One participant criticized the unused part of the diagram below the diagonal axis and

suggested, as did another user, that the plan's name and other data such as the time

annotation's parameters be shown there. Since the user may have to scroll to bring a

SOPO into the visible area, this part is not shown all the time (unless implemented so

that it will be shown all the time, or, of course, as an optional feature).

6.6 Comparison: SOPOView vs. Temporal View

Both SOPOView and Temporal View provide representations for Asbru's time annotations.

As the final part of the evaluation, we wanted the participants to compare the SOPO dia-

gram and the Temporal View according to certain criteria. The numeric results can be

found in Appendix B, but are presented and discussed here.

Half of the participants rated the Temporal View to be better in terms of representing the

structure of plans (hierarchical decomposition). Two found the SOPO diagram to be bet-

ter, the other two said that representations were equal. Still, most participants found the

diagram rather unusable without the left part, where structure and plan types are indi-

cated the same way as in the Temporal View. Therefore, indicating the hierarchical de-

composition of plans by colored background triangles in the diagram is not a sufficient

means of visualization.

All except one found that understanding the temporal relations between plans is easier in

the Temporal View; the last participant felt unable to give an answer. This result is pro-

bably due to the fact that thinking within a two-dimensional diagram is rather unconven-

tional, and takes more time to get familiar with than the physicians had during evalua-

tion.

60

Visualization of undefined parts of a time annotation was rated to be equal in both views.

Two participants found the SOPO diagram to be better and two the Temporal View, while

three rated them to be equal (although equally bad), and one could not give an answer.

All but one found that the Temporal View enables faster and better reading of the tem-

poral information in general. Also, half of the participants rated the Temporal View to be

a more clearly arranged representation than the SOPO diagram. Two said the opposite,

and the remaining two could not give an answer.

Half of the physicians found the SOPO diagram to be better, regarding the faster and

better reading of the temporal information of a single (marked) plan. The other half

found the Temporal View to be better.

With the last question, we wanted to know from the participants which view they found

to be better suited for representing temporal aspects of plans. Half of them preferred the

Temporal View, one said they are equal, and three could not give an answer.

6.7 Discussion

Considering the time our participants had to get familiar with the diagram, results were

quite surprising and not completely negative, as might have been expected. However,

most physicians found the diagram to be too complex and not clearly arranged enough.

In their opinion, learning how to use it efficiently would take time which they do not have

in their daily schedule.

Of course, physicians want a software that makes their work with protocols easier and

helps them to understand complex (temporal) relations between actions and plans. Using

SOPOView, representations are still too complex and demand an additional effort in thin-

king. Thus, most participants did not recognize the program's benefits and rated the

overall practicability to be rather bad.

In fact, almost all participants did not have to make use of the features the SOPO dia-

gram offers. When they had to author their example plans during evaluation and had to

define the temporal aspects of their plans, they either could not tell anything about the

required time, or they had a rather exact knowledge. Representation by SOPOs, where

one can visualize an uncertainty in beginning, end and duration, offers much more than

they actually needed.

61

One lesson learned from the evaluation was that for simple cases or tasks, a simple re-

presentation is needed, as much as for complex cases a more complex depiction is pro-

bably needed. Still, this one should be simple enough to be usable. To use Einstein's

dictum: everything should be made as simple as possible, but no simpler.

62

Chapter 7

Conclusion

7 Conclusion

This last chapter summarizes the main issues presented throughout this thesis, reflects

the results from the evaluation and gives an outlook for possible future developments.

7.1 Summary

The need to improve the quality of health care has led to a strong demand for clinical

protocols and computer systems that support both their creation and execution. Traditio-

nal ways for the representation of such protocols include free text, flowcharts, or decision

tables. However, most of them lack the means to fully capture both the complexity and

the temporal dimension of treatment plans.

In the Asgaard Project, the time-oriented, machine-readable language Asbru was deve-

loped to address these requirements. Asbru's time annotations allow a representation of

uncertainty in start, end, and duration of a time interval that represents a plan's tempo-

ral dimension. Within the user interface AsbruView, which supports the understanding

and manipulation of skeletal plans written in Asbru, a special glyph was developed to

visualize this uncertainty in time.

This thesis introduced an alternative representation of a plan's temporal aspects, which

we called SOPOView. It uses a two-dimensional diagram with three time axes - a vertical

axis for the starting time, a horizontal axis for the ending time, and a diagonal axis for

the duration - in order to visualize the plans' time annotations. Within the diagram, a

single point represents an occurrence that has an exact beginning, end, and duration.

Uncertainty in these three dimensions leads to a representation of a plan's time annota-

tion not as an occurrence, but as a set of possible occurrences (SOPO), depicted as a

colored region.

We presented our adaptations and enhancements to the original concept [Rit, 1986], that

were necessary in order to enable a proper depiction of an Asbru plan's properties, and

we described in detail the interaction mechanisms that the user has to define and change

a plan's time annotation, and to work with the diagram as a whole.

63

The final part of this work was the evaluation we conducted with eight physicians to as-

sess SOPOView's usability. We presented the results and the problems that had occurred

during this evaluation.

7.2 Thoughts on SOPOs

The representation of temporal information within a two-dimensional diagram is an un-

conventional one. Indeed, during evaluation, most participants had trouble with the ori-

entation in the diagram. They were rather used to a one-dimensional representation, as

is the case in LifeLines (e.g., [Plaisant et al., 1998]; see also section 3.1).

Much more, the depiction of plans' time annotations as colored regions within the dia-

gram led to some irritation and confusion. These SOPOs do not have a unique shape and

position, and can hardly be compared to glyphs, which essentially change only some of

their dimensions (e.g., their width) and can thus be recognized more easily for represen-

ting the same kind of information. SOPOs also change their appearance when the under-

lying time annotation changes. However, these changes not only comprise the width or

height of a SOPO, but also its distance from the diagonal axis and its shape. A SOPO

being depicted as a rectangle before may be depicted as a triangle or even as a hexagon

after the time annotation has changed. This is due to the fact that every single edge of

the SOPO corresponds to one parameter of the time annotation.

Additionally, a SOPO's width or height does not tell anything about the plan's duration,

which one might have concluded from a one-dimensional depiction where the width of a

timeline, for example, expresses the duration. In the diagram, the duration is indicated

by the distance between the SOPO and the diagonal axis, which is hard to understand

and remember in the beginning.

One might ask why we chose to use the concept of SOPOs for representing Asbru's time

annotations at all. SOPOs are a very powerful means of visualizing temporal uncertainty.

A SOPO's shape is directly derived from the time annotation's parameters, and linking

different SOPOs to each other enables the representation of temporal relations. On a ra-

ther small area on the screen, a lot of information can thus be presented.

7.3 Limitations

Learning how to efficiently use the diagram is not an affair of a few minutes. One has to

get used to this different (and still complex) kind of representation over time. During

64

evaluation, time was rather limited; therefore it was rather hard for the participants to

recognize the benefits that the diagram offers.

We did not develop SOPOView to be a cure-all to the various problems in visualizing

temporal uncertainty. In fact, some of Asbru's properties that need to be communicated

by the representation were not covered optimally, and should be summarized here:

First, the hierarchical decomposition of plans, indicated by colored background triangles,

turned out not to be of much help. The colors do not look the same as the ones for the

plans, and thus recognition suffered (in fact, we used the same color, but semitranspa-

rent). Having more than a few hierarchical levels, the diagram soon becomes pretty co-

lorful and does not enable faster reading and understanding. Especially with parallel

plans, recognition becomes nearly impossible at times.

Second, the current overlapping of SOPOs, e.g., that of parallel plans, is unusable. Ha-

ving more than just a few plans, which may in addition consist of sub-plans as well, one

cannot recognize their SOPOs and colors.

Third, the original concept of SOPOs was not meant to represent undefined parts, which

is possible in Asbru's time annotations. The current solution, and all the other proposi-

tions presented, is far from perfect, as we assume a value in order to be able to draw the

SOPO. However, the resulting depiction supposes a certain width of the interval, which

does not really exist.

Fourth, Asbru allows the definition of parts of a time annotation in different time units. In

our diagram, this proved to be inconvenient. For practical reasons, time annotation's

parameters should be defined in the same time unit.

Fifth, in the current implementation, single occurrences, i.e plans that have an exact be-

ginning, end, and duration, cannot be represented (in fact, they are invisible).

Especially this last point addresses the diagram's complexity, even when simple cases

are to be depicted. As mentioned at the end of the previous section, using the diagram

enables complex temporal aspects to be visualized (although still in a complex manner).

However, there is no reason to use a complex depiction for simple cases, such as single

occurrences. There, a timeline would be much easier and faster to read. In the following

last section, we will come back to this issue.

7.4 Future Work

The development and implementation of SOPOView was part of the evolution of the user

interface AsbruView, and thus cannot stand alone. In fact, some of the deficiencies and

65

limitations presented above result from the principle concepts used for representing As-

bru plans. For example, during evaluation, some users complained about the necessity of

defining intermediate plans that only provide a plan type for its sub-plans. In Asbru, it is

not possible to define a plan that consists of a first plan, followed by two plans in parallel.

Instead, the overall plan has to consist of two plans performed in sequence, where the

second plan itself consists of the two plans in parallel. Obviously, this intermediate plan

only helps to structure the overall plan, but has no other function. A future version of

AsbruView might use this hierarchical decomposition only internally. The user interface

could then allow more flexibility and could meet the users' needs in a more appropriate

way.

Regarding the further development of SOPOView, it is not quite clear how far the visua-

lization will be enhanced. We presented some challenges, e.g., a better representation of

undefined parts, or the depiction of single occurrences. Especially the issue of overlap-

ping SOPOs needs to be addressed in a future release. We already suggested the intro-

duction of a third dimension into the diagram for this purpose.

One clear result of the evaluation is that a single view addressing the temporal dimension

will definitely not solve all of the problems. Users' tasks and requirements are too diffe-

rent for one single representation to meet them all. SOPOs are a powerful means to vi-

sualize complex time annotations. However, when it comes to single occurrences, a time-

line would do the same and is probably much easier and faster to read.

A future version of AsbruView has to provide different means for the representation of

temporal aspects, depending on users' definitions and needs. SOPOs could be one of

them.

66

Appendix A

A.1 Questionnaires

On the next few pages, the questionnaires which we used during evaluation are shown:

One to be filled out before the test (Figure A.1), and one after the test (Figure A.2). The

reason we used two different questionnaires rather than a big one was that we wanted to

get to know the computer skills and familiarity with computer software of our participants

before the test (Questionnaire I). This way, we could decide how much we had to explain

during introduction of our software.

Questionnaire II, which was used for evaluating our prototype's usability, consists of

three parts. In Part I (SOPO-Diagram) and Part II (SOPOView as a whole), test-users had

to rate different aspects of the user interface on a scale between paired adjectives, re-

ferred to as a semantic differential. Additionally, Part II also provides some open ques-

tions. In Part III, test-users were asked to compare the SOPO-Diagram with the Tempo-

ral View due to some given criteria. Ideas for the questionnaires were taken from Ravden

and Johnson [1989], Shneiderman [1998] and Kosara [1999].

Figures A.1 and A.2 show the original German questionnaires used for our evaluation;

the English translation is attached afterwards (Figures A.3 and A.4). They were not used

during evaluation.

67

Fragebogen I. Vor dem Test.

Bitte Zutreffendes ankreuzen!

(1) Wie of verwenden Sie einen Computer?

Beruflich: � Täglich Privat: � Täglich
� Mehrmals wöchentlich � Mehrmals wöchentlich
� Gelegentlich � Gelegentlich
� Nie � Nie

(2) Wie würden Sie Ihre Computerkenntnisse einstufen?
� Sehr gut � Gering
� Gut � Sehr gering
� Mittel

(3) Mit welchen der folgenden Eingabegeräte sind Sie vertraut?
(Mehrfachnennungen möglich)
� Tastatur � Touchscreen
� Maus � Sonstige, nämlich:
� Trackball

(4) Mit welchen der folgenden Softwaresysteme sind Sie vertraut?
(Mehrfachnennungen möglich)
� Textverarbeitung (zB MS Word)
� Tabellenkalkulation (zB MS Excel)
� Projektplaner (zB MS Project)
� Zeichenprogramme (zB MS PowerPoint, Corel Draw)
� Windows Explorer
� Internet Browser (zB Internet Explorer, Netscape Navigator)
� Andere, nämlich:

(5) Spielt der Faktor Zeit bei Ihrer Arbeit bzw bei Behandlungen in Ihrem Bereich
eine wesentliche Rolle (zB zeitkritische Aktivitäten)?
� Ja
� Nein

(6) Verwenden Sie in irgend einer Form klinische Protokolle/Leitlinien bei Ihrer Ar-
beit?

� Ja:

Wie werden diese Protokolle/Leitlinien bisher dargestellt:

Wie zufrieden sind Sie mit den bisherigen Darstellungen?
� Sehr zufrieden � Wenig zufrieden
� Zufrieden � Gar nicht zufrieden
� Mittel

� Nein:

Erwarten Sie Vorteile oder Verbesserungen durch die Verwendung von
Protokollen/Leitlinien?
� Ja
� Nein

Vielen Dank!

Figure A.1: Questionnaire I. Before the test. (German original).

68

Fragebogen II. Nach dem Test.

Teil I: SOPO-Diagramm

Bitte kreisen Sie die Nummern ein, wobei jeweils "1" dem Begriff links davon zugeordnet
ist und "5" dem Begriff rechts. Keine Angabe = kA.

1. Wie verständlich ist für Sie die Darstellung der zeitlichen Informationen von Plänen oder Proto-
kollen mittels SOPOs?

Sehr verständlich 1 2 3 4 5 unverständlich kA

2. Für wie übersichtlich halten Sie die Darstellung der zeitlichen Informationen von Plänen oder
Protokollen mittels SOPOs?

Sehr übersichtlich 1 2 3 4 5 unübersichtlich kA

3. Für wie geeignet halten Sie die Darstellung der zeitlichen Informationen von Plänen oder Proto-
kollen mittels SOPOs?

Sehr geeignet 1 2 3 4 5 nicht geeignet kA

4. Für wie hilfreich halten Sie die Verwendung von Farben zur Unterscheidung der Pläne?

Sehr hilfreich 1 2 3 4 5 nicht hilfreich kA

5. Wie gut wird Ihrer Meinung nach die Darstellung der Struktur (hierarchische Zusammensetzung)
von Plänen oder Protokollen durch Hintergrundfarben verdeutlicht?

Sehr gut verdeutlicht 1 2 3 4 5 sehr schlecht verdeutlicht kA

6. Für wie gut halten Sie die Farbüberlagerungen bei überlappenden SOPOs (vor allem bei paralle-
len Plänen)?

Sehr gut 1 2 3 4 5 sehr schlecht kA

7. Wie gut werden Ihrer Meinung nach die zeitlichen Zusammenhänge/Abhängigkeiten zwischen
Plänen verdeutlicht? (zB ob Pläne sequentiell oder parallel ablaufen)

Sehr gut verdeutlicht 1 2 3 4 5 sehr schlecht verdeutlicht kA

8. Für wie aussagekräftig halten Sie die Darstellung optionaler Pläne?

Sehr aussagekräftig 1 2 3 4 5 nicht aussagekräftig kA

Figure A.2: Questionnaire II. After the test. (German original).

69

9. Für wie aussagekräftig halten Sie die Darstellung von nicht definierten zeitlichen Informationen?
(strichlierte Ränder der SOPOs)

Sehr aussagekräftig 1 2 3 4 5 nicht aussagekräftig kA

10. Für wie gut halten Sie die Darstellung der zeitlichen Informationen bei markierten Plänen (An-
zeige der Informationen an den Achsen bzw im Diagramm)?

Sehr gut 1 2 3 4 5 sehr schlecht kA

11. Für wie gut halten Sie die direkten Manipulationsmöglichkeiten der SOPOs? (Verschieben von
SOPOs, Ränder ziehen)

Sehr gut 1 2 3 4 5 sehr schlecht kA

12. Für wie gut halten Sie den Editor zum Verändern der zeitlichen Informationen von Plänen?
Sehr gut 1 2 3 4 5 sehr schlecht kA

13. Für wie einfach halten Sie insgesamt das Verändern der zeitlichen Informationen von Plänen
oder Protokollen?

Sehr einfach 1 2 3 4 5 sehr schwierig kA

14. Wie beurteilen Sie die Navigationsmöglichkeiten (Scrolling) im SOPO-Diagramm?

Sehr praktisch 1 2 3 4 5 unpraktisch kA

15. Wie beurteilen Sie die Möglichkeit, im Diagramm zu zoomen?

Sehr praktisch 1 2 3 4 5 unpraktisch kA

Teil II: SOPOView gesamt

16. Erhöht die Baumansicht (Bereich links vom SOPO-Diagramm) die Verständlichkeit der Struktur
bzw hierarchischen Zusammensetzung von Plänen oder Protokollen?

Auf jeden Fall 1 2 3 4 5 keinesfalls kA

17. Erhöht die Baumansicht die Verständlichkeit der zeitlichen Zusammenhänge/Abhängigkeiten
von Plänen oder Protokollen (zB ob Pläne sequentiell oder parallel ablaufen)?

Auf jeden Fall 1 2 3 4 5 keinesfalls kA

Figure A.2: (Continued).

70

18. Könnten Sie sich vorstellen, Ihre Protokolle (und da vor allem die zeitlichen Informationen) mit
SOPOView darzustellen?

Auf jeden Fall 1 2 3 4 5 keinesfalls kA

19. Wie würde der Einsatz von SOPOView Ihre Arbeit mit Protokollen beeinflussen?

erleichtern 1 2 3 4 5 erschweren kA

Was hat Ihnen an SOPOView besonders gut gefallen? Warum?

Was hat Ihnen an SOPOView gar nicht gefallen? Warum?

Gibt es irgend etwas in der Darstellung oder in der Funktionalität, das Sie für missverständlich oder
irreführend betrachten?

Welche Veränderungen würden Sie durchführen, um SOPOView aus Benutzersicht aus zu verbes-
sern?

Fällt Ihnen sonst noch etwas (positives wie negatives) zu SOPOView ein?

Figure A.2: (Continued).

71

Teil III: Vergleich SOPODiagramm - TemporalView

Geben Sie bei den folgenden Aussagen jeweils an, für welche der beiden Darstellungen
der zeitlichen Aspekte (SOPODiagramm oder TemporalView) diese eher zutreffen bzw ob
beide Ansichten gleich gut sind. Keine Angabe = kA.

SOPO- Temporal- beide
Diagramm View gleich gut kA

Bessere Darstellung der Struktur (hierarchische
Zusammensetzung) von Plänen � � � �

Bessere Darstellung der zeitlichen Zusammen-
hänge/Abhängigkeiten zwischen Plänen (zB ob
Pläne sequentiell oder parallel ablaufen) � � � �

Bessere Darstellung nicht definierter zeitlicher
Informationen von Plänen � � � �

Überblicksmässig besseres/schnelleres Ablesen
der zeitlichen Informationen von Plänen � � � �

Besseres/schnelleres Ablesen der zeitlichen
Informationen einzelner Pläne � � � �

Insgesamt übersichtlichere Darstellung der
zeitlichen Informationen von Plänen � � � �

Welche Ansicht halten Sie insgesamt für die
Darstellung der zeitlichen Informationen von
Plänen für geeigneter? � � � �

Vielen Dank!

Figure A.2: (Continued).

72

Questionnaire I. Before the test.

Please check the appropriate answers!

(7) How often do you use a computer?

For work: � Daily At home: � Daily
� Several times a week � Several times a week
� Every now and then � Every now and then
� Never � Never

(8) How would you rate your computer skills?
� Very good � Low
� Good � Very low
� Satisfactory

(9) Which of the following input devices are you familiar with?
(Multiple answers possible)
� Keyboard � Touchscreen
� Mouse � Others:
� Trackball

(10) Which of the following software systems are you familiar with?
(Multiple answers possible)
� Word Processor (e.g., MS Word)
� Spread Sheet (e.g., MS Excel)
� Project Planner (e.g., MS Project)
� Drawing Program (e.g., MS PowerPoint, Corel Draw)
� Windows Explorer
� Internet Browser (e.g., Internet Explorer, Netscape Navigator)
� Others:

(11) Does time play a major role at your work or at treatments in your domain (e.g.,
time-critical activities)?
� Yes
� No

(12) Do you use clinical protocols or guidelines for your work?

� Yes:

How are these protocols and guidelines represented:

How satisfied are you with these representations?
� Very satisfied � Little satisfied
� Satisfied � Not satisfied
� Medium

� No:

Do you expect advantages or improvements from using protocols or
guidelines?
� Yes
� No

Thank you!

Figure A.3: Questionnaire I. Before the test. (English translation).

73

Questionnaire II. After the test.

Part I: SOPO-Diagram

Please circle the numbers, whereas "1" refers to the word on the left and "5" to the word
on the right. Not Applicable = NA.

1. How intelligible is the representation of temporal information of plans or protocols with SOPOs?

Very intelligible 1 2 3 4 5 unintelligible NA

2. How clearly arranged is the representation of temporal information of plans or protocols with
SOPOs?

Very clearly arranged 1 2 3 4 5 Badly arranged NA

3. How useful is the representation of temporal information of plans or protocols with SOPOs?

Very useful 1 2 3 4 5 Not useful NA

4. How helpful is the use of colors for the distinction of plans?

Very helpful 1 2 3 4 5 Not helpful NA

5. How does the use of background colors make the structure (hierarchical decomposition) of plans
or protocols clear?

Very good 1 2 3 4 5 Very bad NA

6. How good in your opinion is the solution of using transparent colors with overlapping SOPOs (in
particular with parallel plans)?

Very good 1 2 3 4 5 Very bad NA

7. How well are temporal dependencies clarified (e.g., whether plans are sequential or parallel)?

Very good 1 2 3 4 5 Very bad NA

8. How good is the representation of optional plans?

Very good 1 2 3 4 5 Very bad NA

Figure A.4: Questionnaire II. After the test. (English translation).

74

9. How good is the representation of undefined temporal information? (dashed edges of SOPOs)

Very good 1 2 3 4 5 Very bad NA

10. How good is the representation of temporal information with marked plans (information shown
along the axes and within the diagram)?

Very good 1 2 3 4 5 Very bad NA

11. How good are the possibilities of direct manipulation of SOPOs (moving of SOPOs, dragging of
edges)?

Very good 1 2 3 4 5 Very bad NA

12. How useful is the editor in order to change the temporal informaion of plans?

Very useful 1 2 3 4 5 Not useful NA

13. How easy is it to change temporal information of plans in general?

Very easy 1 2 3 4 5 Very difficult NA

14. How would you rate the possibilities of navigation (scrolling) within the SOPO-Diagram?

Very practical 1 2 3 4 5 Not practical NA

15. How do you rate the possibility to zoom in the diagram?

Very practical 1 2 3 4 5 Not practical NA

Part II: SOPOView as a whole

16. Does the tree view (part of the screen left to the SOPO-Diagram) make the structure (hierar-
chical decomposition) of plans or protocols easier to understand?

Absolutely 1 2 3 4 5 Not at all NA

17. Does the tree view make the temporal dependencies of plans or protocols easier to understand
(e.g., whether plans are sequential or parallel)?

Absolutely 1 2 3 4 5 Not at all NA

Figure A.4: (Continued).

75

18. Can you imagine to represent your protocols (and in particular the temporal information) with
SOPOView?

Absolutely 1 2 3 4 5 Not at all NA

19. How would the use of SOPOView change your work with protocols?

It would make it easier 1 2 3 4 5 It would make it harder NA

What are the best aspects of SOPOView? Why?

What are the worst aspects of SOPOView? Why?

Are there any parts of the viewing which you found confusing or difficult to fully understand?

What changes would you make to SOPOView in order to make it better from the user's point of
view?

Is there anything else about SOPOView (positive or negative) you would like to add?

Figure A.4: (Continued).

76

Part III: Comparison SOPODiagram - TemporalView

Please check where the given statements are more appropriate (SOPODiagram or Tem-
poralView) or whether both views are equal. Not Applicable = NA.

SOPO- Temporal-
Diagramm View Equal NA

Better representation of the structure (hier-
archical decomposition) of plans � � � �

Better representation of temporal relations
between plans (e.g., whether plans are sequential
or parallel) � � � �

Better representation of undefined temporal
information of plans � � � �

Better and faster reading of temporal
information of plans (general view) � � � �

Better and faster reading of temporal
information of a single plan � � � �

More clearly arranged representation of
temporal information of plans � � � �

Which view do you rate better suited for the
representation of temporal information of plans? � � � �

Thank you!

Figure A.4: (Continued).

77

Appendix B

B.1 Evaluation: Numerical Results

In the following, the results of Questionnaire II will be presented. Figure B.1 summarizes

the results from the questions of Part I (SOPO diagram) and Part II (SOPOView; without

open questions) of the questionnaire. Since our sample (eight practicing physicians) was

not big enough to draw any statistical conclusions, we only present the average ratings.

The results of the comparison between the SOPO diagram and the Temporal View are

given in Figure B.2.

78

Figure B.1: Numerical results from Questionnaire II, Part I and II. The numbers along the

vertical axis denote the questions (see Figures A.2 and A.4 respectively). The horizontal

axis denotes the range for the ratings (1 = the best, 5 = the worst rating). The numbers

in the diagram represent the average ratings.

79

Questions SOPO-
Diagram

Temporal
View

Equal NA

Better representation of the structure (hierarchical de-
composition) of plans 2 4 2 -

Better representation of temporal relations between
plans (e.g., whether plans are sequential or parallel) - 7 - 1

Better representation of undefined temporal information
of plans 2 2 3 1

Better and faster reading of temporal information of
plans (general view) - 7 - 1

Better and faster reading of temporal information of a
single plan 4 4 - -

More clearly arranged representation of temporal infor-
mation of plans 2 4 - 2

Which view do you rate better suited for the representa-
tion of temporal information of plans? - 4 1 3

Figure B.2: Results of the comparison SOPOView vs. Temporal View, showing the number

of participants who selected either the one or the other view as better, or both to be

equal, regarding the given questions. NA = not applicable. (see also Part III of the Que-

stionnaire II, Figures A.2 or A.4).

80

Bibliography

[Allen, 1983] J. F. Allen. Maintaining Knowledge about Temporal Inter-

vals. Communications of the ACM, 26(11), pages 832-

843, 1983.

[Barnes and Barnett, 1995] M. Barnes and G. Barnett. An architecture for a distribu-

ted guideline server. In Proceedings of the 19th Annual

Symposium on Computer Applications in Medical Care

(SCAMC-95), R. A. Miller ed., Hanley & Belfus, Philadel-

phia, p. 233-237, 1995.

[Boehm, 1988] Barry Boehm. The spiral model of software development

and enhancement. IEEE Computer, 21(5), 61-72, 1988.

[Bui et al., 1999] Alex A.T. Bui, Denise R. Aberle, Jonathan G. Goldin, Mi-

chael F. McNitt-Gray, Alfonso F. Cardenas, Eric Kleerup,

and Osman Ratib. TimeLine: A Multimedia, Problem-

centric Visualization of Patient Records. In Proceedings of

the 1999 American Medical Informatic Association Annual

Symposium, 1999.

[Checkland and Scholes, 1990] P. Checkland and J. Scholes. Soft Systems Methodology

in Action. John Wiley & Sons, Chichester, 1990.

[Duftschmid, 1999] Georg Duftschmid. Knowledge-based Verification of Clini-

cal Guidelines by Detection of Anomalies. PhD Thesis, Vi-

enna University of Technology, Vienna, 1999.

[Eason and Harker, 1989] K. D. Eason and S. Harker. An Open Systems Approach

to Task Analysis. Internal Report, HUSAT Research Cen-

tre, Loughborough University of Technology, 1989.

81

[Friedland and Iwasaki, 1985] Peter E. Friedland and Yumi Iwasaki. The Concept and

Implementation of Skeletal Plans. Journal of Automated

Reasoning 1(2):161-208, 1985.

[Hix and Hartson, 1993] Deborah Hix and H. Rex Hartson. Developing User In-

terfaces: Ensuring Usability Through Product and

Process. John Wiley, New York, 1993.

[Hripcsak et al., 1994] G. Hripcsak, P. Ludemann, T. A. Pryor, O. B. Wigertz,

and P. D. Clayton. Rationale for the Arden Syntax. Com-

puters and Biomedical Research, 27, p. 291-324, 1994.

[Lindwarm et al., 1998] D. Lindwarm, A. Rose, C. Plaisant, K. Norman. Viewing

personal history records: A comparison of tabular format

and graphical presentation using LifeLines. Behaviour

and Information Technology, 1998.

[Karam, 1994] Gerald M. Karam. Visualization using timelines. In

Proceedings of the 1994 International Symposium on

Software Testing and Analysis, Seattle, WA, 1994.

[Kosara, 1999] Robert Kosara. Metaphors of Movement - A User Inter-

face for Manipulating Time-Oriented, Skeletal Plans. Ma-

ster's Thesis, Vienna University of Technology, 1999.

[Kosara and Miksch, 1999] Robert Kosara and Silvia Miksch. Visualization

Techniques for Time-Oriented, Skeletal Plans in Medical

Therapy Planning. In Werner Horn, Yuval Shahar, Greger

Lindberg, Steen Andreassen, and Jeremy Wyatt, editors,

Artificial Intelligence in Medicine: Proceedings of the

Joint European Conference on Artificial Intelligence in

Medicine and Medical Decision Making (AIMDM'99).

Springer-Verlag, Berlin, 1999.

[Miksch, 1999] Silvia Miksch. Plan Management in the Medical Domain.

AI Communications, 12(4), 1999.

82

[Miksch et al., 1997] Silvia Miksch, Yuval Shahar, and Peter Johnson. Asbru: A

Task-Specific, Intention-Based, and Time-Oriented Lan-

guage for Representing Skeletal Plans. In E. Motta, F. v.

Harmelen, C. Pierret-Golbreich, I. Filby, and N.

Wijngaards, editors, 7th Workshop on Knowledge Engi-

neering: Methods & Languages (KEML-97). Milton Key-

nes, UK, 1997.

[Mullet and Sano, 1995] Kevin Mullet and Darrell Sano. Designing Visual Interfa-

ces. Communication Oriented Techniques. SunSoft Press,

Prentice Hall, 1995.

[Musen et al., 1992] M. Musen, C. Carlson, L. Fagan, S. Deresinskim, E.

Shortliffe. T-HELPER: Automated Support for Communi-

ty-based Clinical Research. In Proceedings of the 16th

Annual Symposium on Computer Applications in Medical

Care (SCAMC-92), pages 719-723, 1992.

[Musen et al., 1996] Mark A. Musen, Samson W. Tu, Amar K. Das, and Yuval

Shahar. EON: A component-based approach to automa-

tion of protocol-directed therapy. In Journal of the Ame-

rican Medical Informatics Association (JAMIA), pages

367-388, 1996.

[Negroponte, 1995] Nicholas Negroponte. Being Digital. Alfred A. Knopf, New

York, 1995.

[Nielsen, 1993] Jakob Nielsen. Usability Engineering. Academic Press,

Inc., 1993.

[Ohno-Machado et al., 1998] L. Ohno-Machado, J. Gennari, S. Murphy, N. Jain, S. Tu,

D. Oliver, E. Pattison-Gordon, R. Greenes, E. Shortliffe,

G. Barnett. The GuideLine Interchange Format: A Model

for Representing Guidelines. Journal of the American Me-

dical Informatics Association, 5(4), p. 357-372, 1998.

83

[Plaisant and Shneiderman, 1997]

Catherine Plaisant and Ben Shneiderman. An Information

Architecture to Support the Visualization of Personal Hi-

stories. Technical Research Report. University of Mary-

land, 1997.

[Plaisant et al., 1996] Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff,

and Ben Shneiderman. LifeLines: Visualizing Personal Hi-

stories. In Proceedings of CHI '96 Conference: Human

Factors in Computing Systems, ACM, pages 221-227,

New York, 1996.

[Plaisant et al., 1998] Catherine Plaisant, Richard Mushlin, Aaron Snyder, Jia Li,

Dan Heller and Ben Shneiderman. LifeLines: Using Vi-

sualization to Enhance Navigation and Analysis of Patient

Records. In Proceedings of the 1998 American Medical

Informatic Association Annual Fall Symposium, pages

76-80, 1998.

[Preece, 1994] Jenny Preece, editor. Human-computer interaction. Addi-

son-Wesley, 1994.

[Ravden and Johnson, 1989] Susannah Ravden and Graham Johnson. Evaluating Usa-

bility of Human-Computer Interfaces: a practical method.

Ellis Horwood Books in Information Technology, 1989.

[Rit, 1986] Jean-Francois Rit. Propagating temporal constraints for

scheduling. In Proceedings of the Fifth National Confe-

rence on Artificial Intelligence, pages 383-388. Morgan

Kaufman Publishers, Inc., 1986.

[Shahar, 1994] Yuval Shahar. A Knowledge-based Method for Temporal

Abstraction of Clinical Data. PhD Thesis, Stanford Univer-

sity, Stanford, 1994.

[Shahar and Musen, 1993] Yuval Shahar and Mark A. Musen. RÉSUMÉ: A temporal-

abstraction system for patient monitoring. Computers

and Biomedical Research 26(3): 255-273, 1993.

84

[Shahar et al., 1998] Yuval Shahar, Silvia Miksch, and Peter Johnson. The As-

gaard Project: A Task-Specific Framework for the Appli-

cation and Critiquing of Time-Oriented Clinical Guideli-

nes. Artificial Intelligence in Medicine, 14:29-51, 1998.

[Sherman et al., 1995] E. Sherman, G. Hripcsak, J. Starren, R. Jender, P.

Clayton. Using Intermediate States to Improve the Abi-

lity of the Arden Syntax to Implement Care Plans and

Reuse Knowledge. In Proceedings of the Annual Sympo-

sium on Computer Applications in Medical Care (SCAMC-

95), R. M. Gardner ed., Hanley & Belfus, New Orleans,

Louisiana, p. 238-242, 1995.

[Shneiderman, 1998] Ben Shneiderman. Designing the User Interface: Strate-

gies for Effective Human-Computer-Interaction. Addison-

Wesley Longman, 3rd edition, 1998.

[Sommerville, 1992] Ian Sommerville. Software Engineering. 4th Edition. Ad-

dison-Wesley, 1992.

[Stoufflet et al., 1996] P. Stoufflet, L. Ohno-Machado, S. Deibel, D. Lee, R.

Greenes. GEODE-CM: A state-transition framework for

clinical management. In Proceedings of the 20th Annual

Symposium on Computer Applications in Medical Care

(SCAMC-96), Hanley & Belfus, Philadelphia, 924, 1996.

[Thimbleby, 1990] Harold Thimbleby. User Interface Design. ACM Press,

New York, 1990.

[Tu and Musen, 1996] S. Tu and M. Musen. The EON Model of Intervention

Protocols and Guidelines. In Proceedings of the 1996

AMIA Annual Fall Symposium (formerly SCAMC), J. J.

Cimino, ed., Washington DC., Hanley & Belfus, Inc., Me-

dical Publishers, Philadelphia, pp. 587-591, 1996.

[Tufte, 1983] Edward R. Tufte. The Visual Display of Quantitative In-

formation. Graphics Press, Cheshire, Connecticut, 1983.

