
A Scalable Visualization of
Set-Typed Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Martin Wortschack
Matrikelnummer 0627573

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag. Dr. Silvia Miksch
Mitwirkung: Dr. Dipl. Ing. Bilal Alsallakh

Wien, 31. März 2016
Martin Wortschack Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Scalable Visualization of
Set-Typed Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Martin Wortschack
Registration Number 0627573

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Mag. Dr. Silvia Miksch
Assistance: Dr. Dipl. Ing. Bilal Alsallakh

Vienna, 31st March, 2016
Martin Wortschack Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Martin Wortschack
Zieglergasse 14/2/1, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. März 2016
Martin Wortschack

v

Acknowledgements

First of all, I would like to thank my parents for their support during my studies. Their
advice and encouragement helped me a lot to successfully finish my thesis.

Furthermore I want to thank my advisors Silvia Miksch and Bilal Alsallakh for their
great assistance during my thesis. They not only supported me by providing scientific
input and by proof reading the thesis but also contributed with their ideas in the process
of developing a functional prototype.

Finally, special thanks go to my girlfriend Lena Richter for proof reading the thesis and
for participating in the evaluation and to Lukas Pacha and Mathias Frey who volunteered
for testing and evaluating the prototype and provided constructive feedback.

vii

Kurzfassung

Mengenbasierte Daten spielen in der Informationsvisualisierung eine wichtige Rolle. Sie
werden hauptsächlich genutzt, um Beziehungen zwischen Sets und Elementen zu reprä-
sentieren, wie zum Beispiel welche Länder (Sets) ein bestimmtes Produkt (Element)
exportieren, oder welchen Genres (Sets) ein Film (Element) angehört. Mengenbasierte
Daten kommen in unterschiedlicher Form vor und dienen als Datenmodell in verschiede-
nen Analyse-Szenarien.
Skalierbarkeit ist eine der größten Herausforderungen im Zusammenhang mit mengenba-
sierten Daten. Euler- und Venn-Diagramme zählen zu den bekanntesten Visualisierun-
gen in diesem Zusammenhang, da sie auf einfache Weise die grundlegenden Konzepte
der Mengenlehre abbilden. Trotz ihrer Beliebtheit und der weiten Verbreitung in unter-
schiedlichen wissenschaftlichen Feldern, sind diese Diagramme nicht in der Lage, mehr
als drei Sets darzustellen, ohne dabei enorm an Komplexität zuzulegen. Dadurch eignen
sie sich im Allgemeinen nicht, um Daten zu analysieren und zu visualisieren, die hunder-
te Sets beinhalten. Dies trifft jedoch auf eine Vielzahl von Daten aus der realen Welt zu.
Neben Euler- und Venn-Diagrammen wurden in der Vergangenheit etliche Visualisierun-
gen für mengenbasierte Daten entwickelt. Die meisten dieser Visualisierungen skalieren
allerdings entweder mit der Anzahl der Elemente oder mit der Anzahl der Sets.
Ziel dieser Arbeit ist die Entwicklung eines funktionellen Prototyps, der Skalierbarkeit
sowohl in der Anzahl der Elemente, als auch in der Anzahl der Sets bietet. Die vorgestell-
te Visualisierung, auch Scets1 genannt, nutzt verschiedene Methoden zur Aggregation
und stellt die aggregierten Daten in einer übersichtlichen Matrix dar. Weiters ermög-
licht diese Visualisierung Nutzern die Daten interaktiv zu untersuchen. Der entwickelte
Prototyp setzt auf moderne Web-Technologien. Mit Hilfe eines serverseitigen Backends
können große Datenmenge verarbeitet werden und einer Menge an Benutzern über eine
webbasierte Oberfläche zugänglich gemacht werden. Zwei Anwendungsfällen veranschau-
lichen, wie die Visualisierung genutzt werden kann, um Echtdaten zu untersuchen und
inwiefern der Nutzer dabei unterstützt wird, neue Erkenntnisse aus den visualisierten
Daten zu gewinnen.

1Der Prototyp ist verfügbar unter: http://scets.sybdev.com

ix

http://scets.sybdev.com

Abstract

In information visualization set-typed data refers to datasets that represent element-set
memberships, such as which countries (sets) produce a certain product (element), or
which genres (sets) a movie (element) belongs to. Set-typed data appears in various
forms and can serve as a data models in various data analysis scenarios.
One of the main challenges in the context of set-typed data visualization is scalability.
Traditionally, Euler and Venn diagrams count as two of the most popular set visualiza-
tions that depict the concepts from set theory. However, despite the widespread usage
of these diagrams across several scientific fields they lack the ability of visualizing more
than three sets without becoming too complex. This limits their applicability to data
analysis scenarios that involve hundreds of sets such as the world countries. Besides
Euler and Venn diagrams a variety of visualization techniques for set-typed data has
been developed over the past. Typically, existing techniques scale well with either an
increasing number of elements or an increasing number of sets.
The goal of this thesis is to develop a set visualization technique which offers high scala-
bility in both the number of sets and elements. The proposed technique, called Scets2,
employs different aggregations of set-type data, and uses a matrix layout to visualize the
aggregated information. Furthermore, it allows users to explore the aggregated infor-
mation interactively. The implemented prototype uses modern web technologies which
make the visualization both able to handle a large amount of data using server-side
backend, and accessible to a wide range of users using web-based frontend. Two differ-
ent use cases demonstrate how the proposed visualization technique helps to investigate
real-world data and enables users in an intuitive way to reveal several patterns which
could not be easily detected by other visualization techniques.

2The prototype is available at http://scets.sybdev.com

xi

http://scets.sybdev.com

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xiv

List of Tables xvi

List of Algorithms xvii

1 Introduction 1
1.1 Motivation and Problem Definition . 1
1.2 Research Questions . 4
1.3 Methodological Approach . 5
1.4 Structure of the Thesis . 6

2 Related Work 7
2.1 Euler and Venn Diagrams . 7
2.2 Aggregation-based set visualization techniques 9
2.3 Matrix-based set visualization techniques 13
2.4 Other Techniques . 18
2.5 Summary . 19

3 The Scets Visualization Technique 21
3.1 Visual Design . 22
3.2 Interaction Design . 30
3.3 Selecting and uploading data samples . 39
3.4 Task Support . 41

4 Implementation 43
4.1 Technology Fundamentals . 43
4.2 Project Structure . 47

xiii

4.3 Setup & Build Process . 48
4.4 Server & API . 49
4.5 Frontend . 50

5 Use Cases 55
5.1 Movie Genres . 55
5.2 Countries Exports . 59

6 Evaluation 65
6.1 InfoVis Evaluation Techniques . 65
6.2 Evaluation Method . 67
6.3 Results . 68

7 Discussion and Future Work 73
7.1 Discussion . 73
7.2 Future Work . 75

8 Summary and Conclusion 79

Appendix: User Tasks 81
Task 1 . 81
Task 2 . 81
Task 3 . 81
Task 4 . 82
Task 5 . 82
Task 6 . 82
Task 7 . 82
Task 8 . 83

Bibliography 85

List of Figures

1.1 A Venn diagram of employee skills . 3
1.2 A histogram of skills per employyee . 3

2.1 Euler diagram vs. Venn diagram . 8
2.2 Venn diagram for gene families . 8

xiv

2.3 Mosaic plot for mortality rates aboard the Titanic 10
2.4 Set O’Gram of labor supply . 10
2.5 Radial Sets . 11
2.6 UpSet’s set and element view . 12
2.7 Bar charts in UpSet . 13
2.8 UpSet’s element view . 13
2.9 Three views of ConSet . 14
2.10 Highlighted elements in OnSet . 15
2.11 Set operations in OnSet . 16
2.12 Interlinked views in AggreSet . 17
2.13 Several overlay techniques . 18
2.14 Different Node-link diagrams . 19

3.1 Design Triangle framework . 23
3.2 Conceptual design of the user interface . 24
3.3 Main components of the user interface . 29
3.4 Aggregate and subset legends . 29
3.5 Selection of subsets and aggregates . 32
3.6 Control panel . 34
3.7 Tooltips in the matrix view . 34
3.8 Interactive search . 35
3.9 Binning View . 36
3.10 Employee data visualized with different bins 37
3.11 Employees sorted by different criteria . 38
3.12 Color encoding of subsets . 39
3.13 Data Navigator . 40

4.1 Simple HTML document . 44
4.2 Example of CSS rule . 44
4.3 Blue SVG circle element . 45
4.4 Javascript sample code . 46
4.5 Javascript sample module . 50
4.6 UML diagram of Scets’ frontend components 51
4.7 Sequence diagram of the client/server communication 52

5.1 Visualization of 18 movie genres with 3883 movies 56
5.2 The ‘Drama’ genre . 57
5.3 Characteristics of several movie genres . 57
5.4 Sorted movie genres by quantity . 58
5.5 Visualization of countries exports data . 59
5.6 Characteristics of several countries . 60
5.7 Countries sorted by distinctiveness . 61
5.8 Selected results in the element view . 62
5.9 Binning settings and matrix view . 63

7.1 Visualization of 500 sets in Scets . 74
7.2 Visualization of 550 sets in Scets . 75
7.3 Mockup of revised binning view . 76
7.4 Aggregate tooltip misplacement . 77

List of Tables

1.1 Sample data for employee skills . 2

3.1 Equal-width binning . 26
3.2 Equal-frequency binning . 26
3.3 Elements of degree 4 in u_20 . 31
3.4 Elements of degree 4 in u_9 . 32
3.5 Classification of interaction techniques . 39
3.6 A sample CSV file in accepted format . 40

xvi

List of Algorithms

3.1 Binning Algorithm . 27

3.2 Compute Average Set Degree Algorithm . 37

xvii

CHAPTER 1
Introduction

1.1 Motivation and Problem Definition

Approximately 90% of all the data in the world has been generated over the last two
years [Sci]. As a result, the amount of information which is available to business analysts
and decision makers has increased tremendously during this period of time. However,
the ability to process and interpret this vast amount of data in a meaningful way has
only increased little. Reliable data is the prerequisite for making good decisions. But
without the ability to make sense of the available information even the most accurate
and reliable data is useless. Data visualization offers powerful means to make sense of
large amounts of data. The majority of human sense receptors reside in the eye making
vision a powerful input channel from the surrounding world. Colin Ware, one of the
leading experts in visual perception describes the importance of data visualization in
the following way [War13, p. xvi]:

“Why should we be interested in visualization? Because the human visual
system is a pattern seeker of enormous power and subtlety. The eye and the
visual cortex of the brain form a massively parallel processor that provides
the highest-bandwidth channel into human cognitive centers. At higher lev-
els of processing, perception and cognition are closely interrelated, which is
why the words understanding and seeing are synonymous. We know that
the visual system has its own rules. We can easily see patterns presented
in certain ways, but if they are presented in other ways, they become invisi-
ble. . . The more general point is that when data is presented in certain ways,
the patterns can be readily perceived. If we can understand how perception
works, our knowledge can be translated into rules for displaying information.
Following perception-based rules, we can present our data in such a way that

1

1. Introduction

the important and informative patterns stand out. If we disobey the rules,
our data will be incomprehensible or misleading.”

Using appropriate visual representation of data allows data analysts to gain an overview
of the data and to recognize patterns and correlations within the data that were unknown
before. Information visualization (InfoVis) is a sub-domain of data visualization that
focuses mainly on abstract data that has no inherent spatiality. Stuart Card defines in-
formation visualization as “. . . a set of technologies that use visual computing to amplify
human cognition with abstract information.” [Jac12, p. 546] Both data visualization
and in particular information visualization have become an important step in the data
analysis process. It is much easier to extract valuable information from visualized data
than from looking at the raw data. In addition, visualization gives answers faster and
helps to identify and understand cause-effect relationships. To better illustrate these
arguments, let’s take a look at the data in Table 1.1:

Skill Lisa Barbara Thomas
Project Management 1 0 1
Programming 1 1 0
Communication 0 1 1
Graphic Design 1 0 0
Administrative 1 1 0

Table 1.1: Example data containing skills of three employees

By looking at the raw data, one can tell that the table shows a skill matrix of three
persons Lisa, Barbara and Thomas. But what about answering specific questions such
as “Which is the most skilled employee, i.e., which person possesses the most skills?” or
“How many skills do Lisa and Barbara have in common?” In the example above there
are only five data rows which allows us to find answers to these questions in a fairly short
period of time. But when we have to deal with large data tables containing hundreds or
even thousands of records we cannot simply process the huge amount of information by
simply scanning the raw data. This is where visualization comes in handy.

Now let’s look at the visualized data. Both diagrams in Figure 1.1 and Figure 1.2
visualizes the sample data from Table 1.1 in a more readable form. They present data in
different ways allowing us to answer different questions. The first diagram (see Figure 1.1,
called a Venn diagram, depicts the three persons as circles and the skills as dots inside
these circles. The Venn diagram also reveals information which was not obvious in the
table: Lisa is the only person who can work as a Graphic Designer. The second diagram
(see Figure 1.2), a histogram, gives some indication of the frequency distribution of the
skills among the three persons. It shows that Lisa is the most skilled person in the group,
possessing four skills in total.

2

1.1. Motivation and Problem Definition

Figure 1.1: A Venn diagram visualizing set memberships for elements (i.e., the relation-
ship between employees (sets) and skills (elements).)

Figure 1.2: A histogram showing the distribution of skills for three employees.

3

1. Introduction

Data may be available in different form and often has to be pre-processed to be visualized.
In the context of this thesis I will focus on set-typed data. The concept of sets is well
known from mathematics. A set is defined as a collection of distinct elements. Set-typed
data is mainly used to represent element-set memberships. Sets are also frequently used
in a variety of scientific fields such as biology and computer science.

Let us take another look at the sample data in Figure 1.1. Employees are represented
as a columns (i.e., sets) and skills (i.e., attributes resp. elements) are represented as
rows resembling an adjacency matrix. In this example Boolean attributes are used to
specify which elements belong to a certain set. For example, Lisa possesses ’Project
Management’ skills but she does not have ’Graphic Design’ skills. Several techniques
for visualizing set-typed data have been developed. Examples include Euler and Venn
diagrams, Set O’Grams [FMH08] and Radial Sets [AAMH13]. A recent State of the
Art report by Alsallakh et al. [AMA+14] provides a comprehensive list of proposed set
visualization techniques. Most tools perform well as long as only a handful of sets has
to be visualized but they lack the ability of handling a large number of sets properly.
In the majority of cases the visualization becomes either too complex or there is too
little space to fit all relevant data. The Venn diagram shown in Figure 1.1 enables us
to quickly figure out the number of skills Lisa and Barbara have in common. As long
as only up to three sets have to be visualized, a Venn diagram is a good choice. But
as soon as four or more sets are involved, we have to use different shapes other than
circles to represent the involved sets. As a result of the diagram’s inherent limitation
in terms of the number of sets it can handle, the visualization soon gets very complex.
Scalability has become a key requirement for visualization tools when addressing real-
world problems. Thus, I developed a novel visualization technique, called Scets, which
is capable of handling a large number of sets. This technique focuses on scalability by
means of data abstraction and aggregation and scales well both in the number of sets
and in the number of elements. In order to address a large group of users, it is developed
as a web application.

1.2 Research Questions
The purpose of my research is to investigate new visualizations of set-typed data that are
scalable both with the number of sets and with the number of elements. According to a
recent survey on set visualization [AMA+14], aggregation-based visualization techniques
are suited to address scalability with the number of elements. The survey also proposes
that matrix-based techniques are suited to address scalability with the number of sets.

My research hypothesis is that aggregation-based and matrix-based techniques can be
combined to address the scalability with both sets and elements. In particular, I aim to
answer the following research questions.

• RQ1: How to represent aggregates of set elements using a matrix layout that
scales with the number of sets? Answering this question involves investigating

4

1.3. Methodological Approach

different alternatives for the visual design, and making use of interaction to aid
the understanding of visual representation and support set-based queries over the
elements.

• RQ2: Which scalability advantages with the number of sets do combined aggregation-
based and matrix-based representations have? Can they handle 100 sets, 500 sets,
1000 sets?

• RQ3: How intuitive and usable is a new visual representation of set-typed data,
and which real-world analysis scenarios can profit from it?

1.3 Methodological Approach
The methodological approach process comprises the following steps:

1. Research and Literature Review

• Analyzing the properties of existing solutions based on literature reviews and
usage examples. (State of the Art research)

• The main focus of this research are relevant visualization techniques for set-
typed data and the challenge of scalability in this regard.

2. Design

• Evaluation of available tools/technologies for prototype implementation.
• User interface mockups will be created during an iterative design process.
• The proposed design will focus on scalability by means of data abstraction

and aggregation.

3. Prototype Development

• A prototype will be implemented that solves the problem of scalability better
than existing comparable solutions.

• The prototype will be developed as a client-side web application built with
modern web technologies such as HTML5, CSS3 and Javascript.

• A high level of accessibility will be obtained as the visualization will be avail-
able to a large number of users who can easily run and test the prototype.

• The web-based implementation will also allow for covering several usage sce-
narios by uploading various data via the web browser.

4. Evaluation

• The implemented prototype will be used as the main evaluation method. Ex-
periments will be performed with the prototype to discuss feasibility and
optimality of the proposed solution.

5

1. Introduction

• The evaluation will be based on usage scenarios and qualitative user feedback
in terms of usability and intuitiveness.

• Potential side-effects such as performance issues will also be examined in this
step.

1.4 Structure of the Thesis
The thesis is structured in as follows:

• Chapter 2 Related Work: This chapter provides an overview of work that is
related to this thesis. Important techniques within the context of this thesis will
be categorized into two categories and relevant examples for each category will be
explained in detail. Moreover the presented techniques will be analyzed in terms
of scalability.

• Chapter 3 The Scets Visualization Technique: This chapter starts off with
motivational aspects of set-typed data visualization and an explanation of the de-
sign requirements of the implemented visualization. Following this, the final user
interface design and its components are introduced. Finally, the most important
features and implementation details of the prototype, such as the binning algo-
rithm, the matrix layout in combination with its aggregation feature and the main
interaction possibilities will be introduced and explained in detail.

• Chapter 4 Implementation: At the beginning of chapter 4 the technologies and
frameworks used to build the prototype will be described briefly. Following this,
a detailed description about the project structure and the setup process is given.
This chapter is concluded with a technical documentation of the implemented
visualization prototype.

• Chapter 5 Use Cases: In this chapter I will describe some data sets that have
been used during the implementation phase to constantly test the current state of
the prototype. In addition, I will give some examples of patterns revealed in the
data.

• Chapter 6 Evaluation: This chapter deals with the evaluation of the prototype’s
usability and intuitiveness. Furthermore, I will reveal potential limitations of the
visualization and assess user feedback.

• Chapter 7 Discussion and Future Work: In this chapter I provide a summary
of the achieved results and discuss them in detail. Finally I will summarize some
ideas for further improvements and additional features which have been collected
during the implementation and evaluation phase of my thesis.

• Chapter 8 Summary and Conclusion: The thesis ends with a summary and
conclusion of the work and the obtained results.

6

CHAPTER 2
Related Work

The following chapter gives a compact overview of selected relevant techniques for set
visualization. I adopted the classification of techniques from a recent state of the art
report by Alsallakh et al. [AMA+14]. At the beginning of this chapter Euler and
Venn diagrams will be introduced as they provide the basis for most recent visualization
techniques. Within the context of this thesis I mainly focus on two visual categories:
aggregation-based and matrix-based visualization techniques. These categories are most
relevant for the implementation of a prototype and several techniques will be presented
and analyzed with regards to their scaling abilities in the following subsections. Other
techniques will be briefly described under the Subsection 2.4 at the end of this chapter.
The chapter is concluded with a summary.

2.1 Euler and Venn Diagrams
Euler and Venn diagrams are numbered among the most popular visualizations for set-
typed data. They provide a simple way to depict concepts from set theory, such as union,
intersection, subset, etc. In Euler diagrams sets are represented by geometric shapes
(e.g., circles, ellipses or any other closed path) and set intersections are represented by
overlapping shapes. Some Euler-based visualization techniques create areas whose size
is proportional to the number of containing elements, whereas other techniques simply
illustrate the intersections. Both, Euler and Venn diagrams look similar but there is one
major difference, as illustrated in Figure 3.13: Euler diagrams only show a region if it
contains elements, whereas Venn diagrams show regions for all possible combinations no
matter if the region contains elements or not. Thus, all Venn diagrams are also Euler
diagrams but not the other way around.

Euler and Venn diagrams are extensively used in biology (see Figure 2.2 as an example),
economics and computer science to name a few application domains. Both diagrams
cannot handle a large number of sets as the number of potential subsets and overlaps

7

2. Related Work

(a) (b)

Figure 2.1: Difference between Euler and Venn diagrams: (a) an Euler diagram shows
only the relationships that exist, (b) a Venn diagram shows all possible relationships,
even if some areas don’t contain any elements (areas labelled with ø)

grows exponentially with the number of sets which causes the visualization to become
very complex and confusing. Considering a system of m sets, the maximum number of
overlaps will be 2m. Thus, Venn diagrams typically represent two or three sets. Several
variants for Venn and Euler diagrams exist which try to overcome this limitation. The
number of representable sets varies and heavily depends on the curve shape. For example,
Venn diagrams that deploy ellipses instead of circles can visualize up to five overlapping
sets as shown in Figure 2.2.

Figure 2.2: Venn diagram showing unique and shared gene families between and among
four sequenced dicotyledonous species (B. rapa, A. thaliana, C. papaya and V. vinifera)
[WWW+11]

8

2.2. Aggregation-based set visualization techniques

2.2 Aggregation-based set visualization techniques

With an increasing number of elements it becomes more difficult to visualize set member-
ship of individual elements. The limited number of representable sets is one of the major
problems of Euler-based techniques as described in Section 2.1. Thus, these diagrams
are generally not suited for visualizing a large number of sets.

Aggregation-based visualization comprises techniques that try to obtain scalability by
omitting individual elements. Many techniques use abstraction in the sense that they
don’t show individual elements but rather express information in a summary form, i.e.,
through frequency representations of the data. Thereby multiple data elements are com-
bined into a single visual element and reduce the total number of data being displayed.
Detailed information on element level can be obtained through interaction. This makes
aggregation-based visualizatoin techniques highly scalable in the number of elements and
supports data analysis as it facilitates the investigation of data.

2.2.1 Mosaic Plots

Mosaic plots [Hof00] enable powerful visualization of multivariate categorical data. Whereas
bar charts are mainly used to display univariate data, mosaic plots enable users to exam-
ine relationships between multiple categorical variables. Typically a mosaic plot starts
with a single rectangle which is divided into two horizontal bars to represent the proba-
bilities of the first categorical variable. Then each bar is split horizontally into sections
based on the second variable. This partitioning process is repeated for each categori-
cal variable. Optional spaces between sections are conventional an increase the graph’s
readability. Figure 2.3 shows a mosaic plot for three categorical variables.

The more categorical variables have to be displayed, the more complex mosaic plots
become. Besides, there are several other problems that exist in mosaic plots. For
example, it is very difficult to compare the size of rectangles when their aspect ratios
vary extremely. Another common problem is that labels often overlap or cannot be
clearly associated with rectangles. The reason is that sections are both horizontally and
vertically subdivided.

2.2.2 Set O’Gram

A Set O’Gram is a type of interactive bar graph that looks similar to a histogram at a first
glance. Each bar represents a set and is divided into sections that correspond to elements
of different degree [FMH08]. An element’s degree is defined as the the number of sets it
belongs to. That means, starting from the bottom, the first block depicts the amount
of items having only one element. The second block represents data items appearing in
combination with exactly one other element (not more or less), and so on. A block’s
height is proportional to the number of elements within this section. Blocks within the

9

2. Related Work

Figure 2.3: A mosaic plot that visualizes mortality rates aboard the Titanic influenced
by three categorical variables: age, sex and passenger class.

same bar can be distinguished from each other by varying width. The bottommost block
of each bar consumes the full width. Each of the stacked blocks decreases in width by a
certain value. A striped bar background supports the comparison of block widths. This
already gives valuable information about the data. Wide blocks indicate elements of
lower degree, whereas narrow blocks indicate elements of higher degree, i.e., elements
that occur in combination with several other elements. Through user interaction set
overlaps become visible. By moving the mouse over a block not only the respective
block is highlighted but all corresponding blocks in other bars are highlighted too. This
enables the identification of the number of elements that belong exclusivley to one set
and the number of elements that occur in k other sets.

Figure 2.4: Set O’Gram [FMH08] of labor supply showing 6 categories

10

2.2. Aggregation-based set visualization techniques

2.2.3 Radial Sets

Radial Sets [AAMH13] is an aggregation-based visualization technique for analyzing
large overlapping sets that extends the basic idea of Set O’grams. In the main view
sets are arranged in a circular layout where each segment of the circle corresponds to
a particular set from a given input file. Elements in each set are divided into groups
according to their degree. This means that the outermost group within a set contains
elements that do not occur in any other set except for the given set itself (degree 1).
Going from the outside to the inside, the second group in a set contains elements that
exist in one other set (degree 2). The groups within a set are visualized as histograms,
i.e., the size of a given group is proportional to the number of elements within the given
group. (Figure 2.5) This makes radial sets highly scalable in the number of elements.

Figure 2.5: Radial Sets [AAMH13] arranges sets in a radial layout and represents ele-
ments as histograms within the respective circular segment.

Overlaps between two sets are displayed as links connecting the involved circular seg-
ments. Overlaps of higher degree are visualized with bubbles combined with arrow heads
forming hyperedges. Thick connecting arcs indicate large overlaps, whereas thin links
indicate small overlaps. The histogram bars can be colored according to an arbitrary
element attribute. In addition to the main view, summary views show detailed informa-
tion about sets, elements and overlaps. The summary views deploy further visualization
elements to enable task-driven analysis. Examples include a bar chart that depicts the
size of sets and a histogram of elements binned by degree. Through interaction elements
can be selected based on set memberships and attributes. Selected elements will be high-
lighted both in the main and the summary views. Hovering the mouse over a histogram
or a connection arc displays the number of elements in the corresponding histogram

11

2. Related Work

resp. overlap. As noted earlier, Radial Sets scale very well in the number of elements.
However, Radial Sets is limited to a small number of sets (20-30 [AMA+14]). For a
larger number of sets this technique does not scale well as the visualization becomes
very complex.

2.2.4 UpSet

UpSet [LGS+14] is an interactive tool for visualizing and analyzing set-typed data. In
fact, UpSet is not a pure aggregation-based visualization as it combines various concepts
from several visualization techniques. I’d rather prefer to classify UpSet as a hybrid
between aggregation-based and matrix-based technique. Yet it is listed under this section
just for the sake of convenience. UpSet’s main focus lies on the relationship between
multiple sets and on the general properties of a set. The layout is comprised of two
separate views: the set view and the element view. In the set view typical set operations,
such as intersections, are visualized in a matrix layout where each column represents a
set and each row represents a set combination. Hence UpSet can also be classified as
a matrix-based visualization technique. Rows can be compared to overlapping areas in
a Venn diagram. Sets involved in an intersection are represented as filled dots in the
corresponding cell.

Figure 2.6: UpSet [LGS+14] showing the relationship between sets. The layout is split
into set and element view.

Additional columns in the matrix layout provide more detailed information about the
aggregates. One example are bars which are used to encode the cardinality of an inter-
section. As seen in Figure 2.7(b) there are four elements which are fruits and are also
delicious. The length of a bar is proportional to the number of elements the intersection

12

2.3. Matrix-based set visualization techniques

contains. Another example are box plots which are used to show summaries of element
attributes. This allows analysts to address several attribute-related tasks.

(a) (b)

Figure 2.7: UpSet [LGS+14] uses bar charts to visualize cardinality of intersections

UpSet’s performance depends on a number of factors, such as the maximum non-empty
degree of the intersections and the number of elements and sets. [LGS+14] Several perfor-
mance optimization techniques have already been implemented to avoid memory leaks.
While it scales very well in the number of elements (up to 50.000 elements [LGS+14]), its
main scalability issue remains a large number of sets. As sets are arranged side by side
in a tabular layout the available display space is limited. Figure 2.8 shows 42 selected
sets which requires the user to horizontally scroll in order to investigate the remaining
columns.

Figure 2.8: UpSet’s [LGS+14] element view with 42 sets selected

2.3 Matrix-based set visualization techniques
Matrix-based set visualization methods are typically used to show relationships between
sets and elements with the help of a flexible grid layout. Rows and columns represent
items and values in each cell and show relationships. Such approaches allow decent
scalability in both the number of elements and sets. However, these approaches are often

13

2. Related Work

limited in the number of presentable set relations as stated in the survey by Alsallakh
et al. [AMA+14]

2.3.1 ConSet

ConSet [KLS07] is an interactive visualization tool that supports users in exploring
relationships among multiple sets. ConSet uses a permutation matrix and map sets and
elements to rows and columns respectively. A gray-filled cell indicates a set-element
membership. Each set is identified by a unique color. Due to the limited number of
distinctive colors only 32 sets can be visualized. Besides reordering of rows and columns,
the matrix view also facilitates aggregation of elements or sets. Aggregated elements
are visualized in form of little bar charts in a separate row. In addition to the matrix
view, two detail views (Dynamic Control view and Diagram Ordering view) exist where
set and element information is displayed and where users can investigate relationships
among up to three selected sets. Set relationships are visualized both as a Venn diagram
and as a Fan diagram which is a novel diagram that enables comparison of two or three
sets without any inconsistencies that may exist in Venn diagrams.

Figure 2.9: ConSet is composed of three views: (a) Permutation Matrix (b) Dynamic
Control view enables the filtering of sets and elements (c) Diagram Ordering view shows
the top 10 ranked diagrams of two or three sets by a selected ranking criterion [KLS07]

2.3.2 OnSet

OnSet [SMDS14] is a visualization technique for large scale binary set data. OnSet
represents each set as a large rectangle. Elements of a given set are shown as pixels on
the grid inside the rectangle. Each set is represented by the total number of elements, not

14

2.3. Matrix-based set visualization techniques

just by the elements it contains. An elements position is unique across all sets. Assuming
there are three sets each of which contains eight unique elements which only appear in
one set. This makes a total of 24 distinct elements. Each set would be composed of 24
pixels forming a grid. Elements which don’t occur in a set are depicted as blank pixels.
Through interaction element-set memberships can be easily identified. By hovering over
an element its name will be displayed and its position will be highlighted in every set it
belongs to as shown in Figure 2.10.

Figure 2.10: Elements get highlighted in every set by hovering over a pixel.

OnSet supports three basic set operations: complement (logical NOT), union (logical
AND) and intersection (logical OR). By clicking on the "NOT" label on the upper edge
of a set, the corresponding set’s complement will be shown (see Figure 2.11(a)). Clicking
the label again will display the basic set again. Set operations that involve multiple sets
can be simulated via drag and drop operations. When a set is directly moved on top
of another set, a new set will be generated, called a MultiLayer. By default a logical
AND operation is applied resulting in the union of the two involved sets as shown in
Figure 2.11(b). In addition a logical OR operation is supported which enables users
to create intersections of multiple sets. The applied operation is labelled on top of
the created MultiLayer. Users can switch between the two operations (AND, OR) by
clicking on the corresponding label. Besides, the number and names of the involved sets
are shown at the bottom of the MultiLayer.

15

2. Related Work

(a) (b)

Figure 2.11: Set operations in OnSet [SMDS14]: (a) complement of a set, (b) intersection
of 2 sets

Links between sets, so-called similarity bands, can be displayed to represent set overlaps.
The thickness of the links is proportional to the similarity metric. Hovering over such a
link will highlight all elements which occur in both sets. Sets which are not connected by
the band fade out. OnSet can easily process and visualize sets with hundreds of elements.
Since no aggregation is used to reduce the number of visible elements, scalability is
affected when both the number of sets and elements increases.

2.3.3 AggreSet

AggreSet [YEB16] is a data exploration technique for set-typed data. It mainly focuses
on scalable set exploration. Like UpSet [LGS+14], it can be classified as a hybrid visual-
ization technique. AggreSet uses a matrix-based visualization for set relations in order to
improve scalability. Moreover, it employs aggregation to achieve scalability in the num-
ber of elements. It is designed as a multi-view visualization technique which uses linked
visualizations to support rich, contextual data exploration. Therefore, aggregations for
each data dimension are created, such as sets, set-degrees and set-pair intersections.

16

2.3. Matrix-based set visualization techniques

The element count per aggregate for set-pair intersections is visualized in a scrollable
and zoomable set-matrix which enables users to explore relations between different sets
through interaction. Histogram views visualize the element count per aggregate for set
lists, set-degrees and other attributes. AggreSet provides various opportunities for in-
teraction to support users in exploring data. One of its key features, is the so-called
‘result-preview’, a linked brushing feature. By hovering over an aggregate glyph in one
view, it is highlighted in every other aggregate view. Besides, the visualization tech-
nique allows users to filter elements of a selected aggregate by clicking. Three different
filter modes are available in the set list: union (logical OR), intersection (logical AND)
and complement (logical NOT). Furthermore, users can compare selections by locking
an aggregate and moving the mouse over different aggregations. AggreSet inserts black
‘compare-lines’ on top of the ‘results-preview’ in order to support exploration.

Figure 2.12: AggreSet [YEB16] is composed of multiple linked views (including an ag-
gregate matrix and histograms) which visualize aggregates in various ways.

As for scalability, AggreSet scales well in the number of elements and is able to handle
100.000+ aggregated elements. [YEB16] However, it is limited to 50+ [YEB16] sets
which can be attributed to the space-consuming matrix-view. Even though the matrix
view supports zooming out and panning which allows showing more data and exploring
areas outside the viewport, scaling to hundreds of sets is not feasible.

17

2. Related Work

2.4 Other Techniques

Several additional techniques for visualizing set-typed data are mentioned in the com-
prehensive State-of-the-Art Report by Bilal Alsallakh, et al. [AMA+14] This section will
give a brief overview of selected techniques which are less relevant in the context of this
thesis however.

2.4.1 Overlays

Overlays focus on depicting set memberships by extending existing visualizations that
provide specific context information. Region-based overlay techniques such as Bubble
Sets [CPC09] draw colored areas for each set containing all elements that belong to it.
These transparent areas are placed on top of an existing visualization. Figure-2.13(a)
shows countries represented as circles arranged on a scatterplot. Countries that belong
to the same continent are connected by hyperedges of different color. This way outliers
can be easily identified. Line-based overlay techniques enable better distinction between
the overlay visualization and the underlying base visualization by using lines instead of
colored areas to represent set memberships. Glyphs and icons provide another option to
represent set memberships in terms of overlays. Glyphs represent one or more variables
of a data set through symbols or icons. Consequently they are often used to visualize
multivariate data. Usually glyphs are geometric objects and the variables that have to
represented are encoded by different properties of the glyph, such as color or size.

(a) (b) (c)

Figure 2.13: Overlay techniques: (a) Region-based overlay with Bubble Sets [CPC09],
(b) Line-based overlay with LineSets [ARRC11], (c) color-coded glyphs [zon]

2.4.2 Node-link diagrams

The group of node-link diagrams includes several techniques to visualize the relations
between elements and sets. These relations can be modelled as edges of a bipartite graph

18

2.5. Summary

[AMA+14]. Examples include Jigsaw [SGL08] Anchored Maps [Mis06] and PivotPaths
[DRRD12].

(a) (b) (c)

Figure 2.14: Node-link diagrams: (a) Jigsaw [SGL08], (b) Anchored Maps [Mis06], (c)
PivotPaths [DRRD12]

2.5 Summary

In this chapter selected relevant techniques for set visualization have been described in
detail. First, Venn and Euler diagrams were introduced. Then existing techniques have
been categorized into aggregation-based and matrix-based visualization techniques as
proposed by Alsallakh et al. [AMA+14].

Venn and Euler diagrams are based on the set theory and are commonly used to depict
relationships between sets. Typically circles or ovals are used in both diagrams to repre-
sent inclusion exclusion and intersections, although other shapes such as polygons can
be used as well. As for the number of elements, Euler-based diagrams are capable of
visualizing up to hundreds of elements. The number of representable sets varies between
3 (for circles) and up to 10+ (for polygons) depending on the shape. In general, such
diagrams don’t scale well to a large number of elements. Overlapping sets eventually
lead to drawability issues and to visual complexity of such diagrams. As a result, distin-
guishing overlapping sets becomes a very difficult task.

Aggregation-based visualizations obtain scalability by combining multiple data elements
into a single visual element. Typically, techniques that utilize aggregation of elements
can handle a large number (thousands) of elements. However, usually such techniques
lack the ability of scaling with an increasing number of sets. As an example, Mosaic
plots [Hof00] only scale up to about 4 sets. Radial Sets [AAMH13] (20-30 sets) and Set
O’Grams [FMH08] (about 50 sets) perform slightly better but still don’t scale well to a
large number of sets due to their visual complexity. UpSet [LGS+14], which supports
tens of thousands of elements, lacks the ability to visualize more than about 20 sets

19

2. Related Work

without requiring the user to scroll horizontally.

Matrix-based visualization methods allow scalability in the number of sets by arranging
sets in a flexible grid. These approaches are often limited in the number of presentable
set relations [AMA+14].
In ConSet [KLS07] set-element memberships are visualized in a permutation matrix
where each element is represented in a column and each set is represented in a row and
encoded by a unique color. Since elements are not aggregated, the matrix view is not
scalable by the number of elements. Thus, approximately up to 100 elements can be
visualized. Due to the limited number of distinctive colors the number of representable
sets is limited to 32.
OnSet [SMDS14] represents each set as a so-called PixelLayer and only scales to a small
number of sets (approximately 20). This is largely because the size of a PixelLayer is de-
termined by the number of elements and as a result the size of each PixelLayer increases
with an increasing number of elements.
AggreSet is able to handle 100.000+ aggregated elements [YEB16]. Nevertheless, due to
it’s space-consuming matrix view, AggreSet’s scalability in the number of sets is limited
to 50-100 sets.

It can be concluded, that existing techniques don’t provide high scalability in both the
number of sets and the number of elements. This is attributable to various causes, such
as visual complexity, limited space, etc. In order to overcome these limitations, this work
proposes a novel visualization technique that scales up to thousands of elements and to
hundreds of sets by combining several benefits from aggregation-based and matrix-based
techniques.

20

CHAPTER 3
The Scets1 Visualization

Technique

The primary goal of data visualization is to convey information to users efficiently with
the help of graphical representation. Visualizations are intended to make complex data
understandable. However, this is not always the case. Often times visualizations are
rather confusing and misleading than helpful. Moreover, most existing visualization
techniques for set-typed data lack the ability to scale well with an increasing number of
sets and elements respectively as mentioned earlier in Chapter 1.1. Typically, the result
is either a remarkable performance loss or the visualization gets very complex which
makes it hard for humans to reveal patterns and answer specific questions about the
visualized data. Thus, one of the key requirements of Scets is the possibility to process
and visualize data that involves hundreds of sets and thousands of elements. Scets is an
interactive, hybrid visualization technique that employs features from both aggregation-
based and matrix-based visualization techniques in order to improve scalability. Besides
scalability in both the number of sets and the number of elements, additional design
requirements include the following:

• Interactivity: The prototype has to be developed as a dynamic visualization that
empowers users to explore the visualized data in different ways.

• Intuitiveness: The user interface and moreover the visualization itself as well as the
used graphical metaphors have to be intuitive. This implies that the visualization
should not be misleading and should convey the information in the most intuitive
way.

1The acronym is formed from SCalable sET viSualization. An online version is available for testing:
http://scets.sybdev.com

21

http://scets.sybdev.com

3. The Scets Visualization Technique

• Accessibility: A high level of accessibility should be obtained. This is achieved as
the visualization will be running in any modern web browser irrespectively of the
installed operating system making the visualization available to a large number of
users who can easily run and test the prototype.

• Performance: Even with large amounts of visualized data, the prototype has to
achieve a short response time to avoid affecting the usability negatively.

3.1 Visual Design
The ‘Design Triangle’ (see Figure 3.1) proposed by Miksch and Aigner [MA14] formed
the basis for the iterative design process which eventually led to the final design mockup
as shown in Figure 3.2. This framework helped to identify three main questions: First,
what kind of data has to be visualized, secondly which type of users are working with
the visualization and finally what kind of tasks do they typically perform. Consequently,
the following requirements could be identified:

• Data: set-typed, binary data in any application domains (e.g. biology or eco-
nomics). For example, the data could be a skill matrix of employees. In general,
Scets is especially designed to handle data comprising hundreds of sets, defined
over tens of thousands of elements.

• Users: domain exports in any field working with set-typed data, such as HR man-
agers who analyze employees skill data.

• Tasks: The analysis tasks listed below are should be supported.

– T1: Analyze the distribution of elements per set according to their degrees,
i.e., the number of sets they belong to.

– T2: Identify elements in a set which are unique to it or are shared with as
many sets as possible.

– T3: Compare sets in terms of their distinctiveness and find the most and least
distinctive set. A set’s distinctiveness is defined in Section 3.2.7.

– T4: Analyze which elements of a set are shared between other sets and detect
the portion of elements appearing in other sets.

– T5: Find all sets which contain a specific element.

Based on the above specification of data, users and tasks, suitable visual representations
and interaction methods could be developed. The main focus of the created mockup
was on the design of a combination of aggregation-based and matrix-based visualization
in order to represent set-typed data and achieve the desired scalability. Based on the
identified requirements above a mockup of the user interface was created. The final user
interface is composed of three main components:

22

3.1. Visual Design

Figure 3.1: The Design Triangle framework: Data - Users - Tasks

1. Control Panel: The control panel is located on the top side of the user interface (UI)
and contains control elements for sorting sets, opening the binning view, expanding
and collapsing rows and removing the active selection.

2. Matrix View: The matrix view is the visualization’s key component. It is where
the data is depicted by using the visual metaphor. Elements are aggregated by
degree and represented as colored circles arranged in a grid.

3. Element View: Next to the matrix view, the element view is situated. It consists of
a table that displays detailed information about elements included in the current
selection. This includes the name and the degree of each element as well list of
sets it belongs to.

In the following I will introduce the basic idea behind Scets and furthermore describe
how the design evolved during several iterations.

3.1.1 Visualizing the Sets: The Matrix View

The visual design of Scets is based on a simple idea: Sets and element degrees are
visualized in a matrix layout where rows represent degrees and columns represent sets.
Single sets are visualized as rectangles as shown in Figure 3.3 (1). Each rectangle is
eighteen pixels wide in total, with a one pixel outline to distinguish neighboring sets.
Sets are arranged next to each other and are separated by a two pixel space. The entire
available screen width is used to fit as many sets as possible. As soon as a set no longer
fits into a single row a new so called ‘set group’ is created in a new row, as can be seen
in Figure 3.3 (4). Set groups contain multiple sets and are positioned one below the
other. Whereas a set’s width is defined by a fixed value, a set’s height is determined by

23

3. The Scets Visualization Technique

Figure 3.2: Conceptual design of the user interface

the number of visible elements within its content area. This visual metaphor allows for
intuitive element-set membership visualization. Labels above each set display its name
as it appears in the raw data set.

One of the main characteristics of effective information visualization systems is the abil-
ity to display results in a meaningful, not overwhelming way. Therefore, techniques that
group data and visualize condensed results are necessary. This is where data aggrega-
tion comes into play. In general, data aggregation can be any process which displays a
summarized form of priorly gathered information. Data aggregation is an essential part
of Scets’ visualization technique as it is the key prerequisite and enabling factor for
scalability.

Like Radial Sets [AAMH13] and Set O’Grams [FMH08], Scets uses basic aggregation in
order to group elements based on their degree. Once again, an element’s degree denotes
the number of sets it belongs to. For example, two elements X and Y appear in exactly
three sets. Consequently, both elements are of degree three and will be grouped. It is
important to note, that elements X and Y don’t necessarily have to appear in the same
sets. The only thing that matters in this regard is the total number of sets where they

24

3.1. Visual Design

are featured. Elements grouped by degree are represented as colored circle glyphs within
a set. In the context of this thesis these circle glyphs are called subsets. Subsets are
arranged in rows placed one above the other within a set, i.e., starting with degree one
on top, followed by degree two right below and so on. Empty subsets are not displayed,
leaving a blank space between other subsets. The bottommost subset represents the
highest degree.
A subset’s quantity is color-encoded. For this reason, a color scale is used to map each
quantity value to a predefined range of possible colors. This means, that darkened cir-
cles indicate a high number of elements, whereas light colors denote a small number of
elements. To support users in identifying a subset’s total number of elements, a color
legend is displayed above the matrix view.

Scets pursues the goal of high scalability in both the number of sets and the number
of elements. Thus, it is designed for a large number of sets and elements. This implies
that with an increasing number of sets there will be a high possibility of large degrees,
i.e., in the order of 50 or 100. By visualizing each element degree in a separate row, the
visualization will soon become very complex, especially if there is a need for multiple set
groups due to the large number of sets. With hundreds of sets the number of degrees can
be large which results in many rows. Moreover, the probability of degrees having zero
elements is very high. Hence, there was a strong need for improving the basic approach
by introducing advanced 2nd-level data aggregation which is explained in the upcoming
section.

3.1.2 Advanced Aggregation

Grouping elements by degree reduces the number of displayed elements effectively but
this method does not necessarily lead to the desired scalability. In order to ensure better
scalability and solve the visual problem of increasing set height due to a large number of
visible rows as explained in the previous section, data binning is used as an additional
aggregation method. The term binning refers to grouping N data values into less than N
groups. Data binning is especially well known from fields such as statistics, image pro-
cessing, etc. A common example of binning in the context of information visualization
is a histogram. As an example, to construct a histogram from people’s ages, individual
data items get arranged into intervals first. Subsequently, those groups, also called bins,
can be visualized instead of each individual age. In the context of this work binning
describes the procedure of combining a group of degrees, i.e., a group of succeeding rows
in the matrix, into a single row, denoted as bin. Thus, the overall number of rows dis-
played at a time is reduced and a higher abstraction level is achieved. Broadly speaking,
binning is defined as the mapping from an input, i.e., different levels of degrees, to an
output, i.e., aggregated degrees.

In general, one has to differentiate between primitive Equal-width binning and data-
driven Equal-frequency binning algorithms. Both, the Equal-width binning and the

25

3. The Scets Visualization Technique

Equal-frequency binning are unsupervised methods as they don’t take the class infor-
mation into account. Besides, both methods require that the number of total bins is
specified manually. Determining the number of desired bins k often results from a trade-
off between abstracting to a very low level for a small number of bins and ending up
with empty bins in case of a high number of bins. Hence, Scets offers users the possi-
bility to define the number of bins and the bin ranges manually according to what the
data represents and which bins are useful. This feature is described in greater detail in
Section 3.2.6.

An Equal-width binning algorithm simply divides the data into k intervals of equal size
without taking the distribution of data into account. Thus, the bin width is computed
by (max − min)/k where max is the maximum value and min is the minimum value
in a given dataset. As an example, bins of a histogram generally have same width, ir-
respective of the number of elements contained. Often the Equal-width binning works
fairly well but in some cases most of the data is placed within just a few bins whereas
the remaining bins contain hardly any data. This holds especially true for data distribu-
tions which are far away from a uniform distribution. To avoid such unequal distribution
among bins Equal-frequency binning can be used which divides the data into k groups,
each of which contains approximately the same number of values. Consider the sample
data [0, 4, 12, 16, 17, 18, 24, 26, 28]. Table 3.1 and Table 3.2 compare the bin values and
intervals computed by the two algorithms.

Values Interval
Bin 1 0, 4 [-, 10)
Bin 2 12, 16, 17, 18 [10, 20)
Bin 3 24, 26, 28 [20, +)

Table 3.1: Equal-width binning

Values Interval
Bin 1 0, 4, 12 [-, 14)
Bin 2 16, 17, 18 [14, 21)
Bin 3 24, 26, 28 [21, +)

Table 3.2: Equal-frequency binning

Scets utilizes a data-driven binning algorithm. Generally, this approach follows the
idea of a histogram equalization, a signal-processing technique which aims to obtain
equal distribution of elements among a given number of bins k. First, a histogram H
is computed that shows the number of elements per degree. Then the number of ele-
ments placed in each bin is determined by dividing the total number of elements by the
number of desired bins. Following this, the lower and upper bound for each of the k
bins are computed. Thereby the algorithm ensures that each bin contains roughly the
same amount of elements by trying to iteratively fit elements of the successive degree
into the current bin. If the current bin has reached a certain threshold, a new bin is
created and filled with elements from the degree. This procedure is repeated until all
elements from the histogram H are allocated to the k bins. Since the binning algorithm
strongly depends on the distribution of the data the computed bins might need further
adjustments. Thus, users can change the binning settings manually at any time in the

26

3.1. Visual Design

‘Binning Settings’ menu. However, bin customization is not part of this section but is
covered in Section 3.2.6.

Algorithm 3.1 shows an implementation of the binning algorithm in pseudocode with
the following variables:

• H : a histogram of degrees

• k: the number of desired bins (k = 5 by default)

• n: the total number of elements

• s: the number of elements per bin which is defined as s = n/k

• binSize: the total number of elements of the current bin

Algorithm 3.1: Binning Algorithm
1 ind←− 0;
2 leftElements←− n;
3 for bin← 0 to bin < k do
4 start[bin]← ind;
5 binSize← H[ind];
6 s← leftElements/(k − bin);
88 while ind < n− 1&&(binSize + H[ind + 1]) ≤ s do
9 ind← ind + 1;

10 binSize← binSize + H[ind];
11 end
12 end[bin]← ind;
13 leftElements← leftElements− binSize;
14 ind← ind + 1;
15 end

To account for the fact that each element in bin k is present k times in the visualization
(i.e., in k different sets), the size of bin k is multiplied with its degree k. For this reason,
there are two histograms computed in Scets. The first histogram is used in the Binning
View (see Section 3.2.6) to simply show the number of elements per degree and to support
users in making meaningful adjustments to the bin settings. The second histogram is
used as an input parameter H for the binning algorithm (see Algorithm 3.1). In this
case the k multiplier is applied to each bin, that is to say the total number of elements in
the second degree is multiplied by two, the total number of elements in the third degree
is multiplied by three, and so on. This ensures that Scets will be more balanced in the
distribution of dark colors. Without applying the multiplier, the color distribution in the

27

3. The Scets Visualization Technique

visualization would be distorted as density of color might appear mostly in high-degree
rows. For example, an item of degree 100 counts one time in the algorithm and in the
binning view histogram, but shows up 100 times in the matrix view.

3.1.3 The Final Design

With the introduction of advanced aggregation (see Section 3.1.2) which groups degrees
into bins, further enhancements to the basic design apply. These additional features are
described in the following.

In the matrix view bins are represented as rows which can comprise multiple degrees. As
shown in Figure 3.3 (3) bins are marked with a range shown in square brackets indicating
the first and last degree included. Elements that belong to the same bin are aggregated.
The so called ‘aggregates’ are represented as colored circles placed inside the dedicated
set. Aggregates look like subsets at first glance. Nevertheless, aggregates can be distin-
guished from subsets based on their color which is explained in greater detail later in
this section. Typically a set holds multiple aggregates, more precisely one aggregate for
each bin. Aggregates at the same level in different sets belong to the same bin.
Right next to a bin’s label a little toggle icon is placed which enables users to expand
resp. collapse the corresponding bin (see Figure 3.3 (3)). Each set group comprises all
bins. This allows expanding resp. collapsing a particular bin in every set group when
clicking on toggle icon. Aggregates can be selected by clicking on them. This expands
the related bin and displays all subsets of the clicked aggregate. More details on selection
possibilities and expanding bins can be found in Section 3.2.

Usually an aggregate comprises several subsets, strictly speaking one for each degree
included in the corresponding bin. As an example, the aggregate of bin [3-4] in the set
u_12 shown in Figure 3.3 (2) contains two subsets, one for degree 3 and one for degree
4. They are shown when the respective bin is expanded. Just like aggregates, subsets
can also be selected. A selected subset is marked blue. The portion of elements which
is included in other subsets than the selected one, is visualized as a blue arc around the
corresponding subset. Elements which are included in the selected subset are displayed in
a table in the element view. Section 3.2.1 describes this interaction method extensively.

Aggregate quantities differ from subset quantities for the simple reason that the sum
is bigger than the individual values. To allow better differentiation between aggregates
and subsets in the UI, two different color scales are employed as shown in Figure 3.4.
Without using separate color scales, the lowest color grade of the main color scale would
be assigned to most inner bins. As a result, the user interface shows separate legends
for aggregates and subsets respectively. Whereas the aggregate legend is always visible,
the subset legend only appears when at least one bin is expanded. As soon as all bins
are collapsed, the subset legend is hidden. Moreover, Scets provides the possibility of

28

3.1. Visual Design

Figure 3.3: The implemented user interface and its main components: (1) a set with its
name label, (2) aggregate [3-4] and subsets for degrees 3 and 4, (3) bin label and toggle
button to expand/collapse the bin, (4) the second set group including sets from ‘u_36’
up to ‘u_70’, (5) the control panel, (6) the legend container including one legend for
aggregates and one subsets, (7) the data table which shows detailed information about
selected elements, (8) the search input field to perform dynamic queries, (9) the data
navigator allows to switch back and forth between uploaded data sets

altering the color encoding of subsets depending on whether subset quantities of collapsed
bins should be considered or not. This feature is described in detail in Section 3.2.8.

(a) (b)

Figure 3.4: Legends support users in identifying the quantities for (a) aggregates and
(b) subsets.

29

3. The Scets Visualization Technique

3.2 Interaction Design
Dix et al. [DE98] have given a very general definition of the term ‘interaction’ by de-
scribing it as ‘The communication between user and the system’. According to Few
[Few09] the effectiveness of information visualization depends on both, accurate visual
representation and the ability of interaction. In general, interactive visualizations are
more effective for solving complex tasks than static images. Fixed images are a good
choice when there is no need for multiple views showing different perspectives on the
same information.

Many dynamic visualizations have been developed under Ben Shneiderman’s Visual
Information-Seeking Mantra: ‘overview first, zoom and filter, details on demand’ [Shn96].
Applications which have been designed and developed in accordance with these guide-
lines, typically provide an overview of the data as well as the possibility to drill down into
details. This way, users are given the control of changing the perspective and adjusting
the visualization according to their needs. “An interactive visualization that offers an
overview of the data alongside tools for ‘drilling down’ into the details may successfully
fulfill many roles at once, addressing the different concerns of different audiences, from
those new to the subject matter to those already deeply familiar with the data.” [Mur13,
p. 3]

Interaction is a user-centered process and as such, it is important to understand user
behavior and user intents. Therefore Yi et al. [YKSJ07] have categorized interaction
based on user intents and introduced the following seven categories of user interaction
as a result of their study:

• Select: mark something as interesting

• Explore: show me something else

• Reconfigure: show me a different arrangement

• Encode: show me a different representation

• Abstract/Elaborate: show me more or less details

• Filter : show me something conditionally

• Connect: show me related items

Additionally, the category Undo/Redo is not only mentioned in the study, but is also
relevant in the context of this thesis. Techniques falling within this category enable users
to go to a pre-existing system state.

30

3.2. Interaction Design

Scets applies several established interaction techniques in order to support users in
exploring and analyzing data. In this section the main interaction concepts used in
Scets are described in detail. At the end of this section the applied techniques are
classified according to the seven interaction categories as proposed by Yi et al.

3.2.1 Selection possibilities

Selection techniques enable users to mark items of interest. These techniques are often
referred to as ‘Brushing’. Voigt [Voi02] defined brushing as “. . . selecting a subset of
the data items with an input device (mouse)”. This way, users can visually distinguish
items of interest from other parts and keep track of selected items even in large data
sets. A typical use case for brushing in Scets is the selection of aggregates and subsets
in expanded bins. By clicking on an aggregate resp. subset in the visualization, this
item is marked. Items which are not part of the selection will be displayed with reduced
opacity. Thereby relevant parts of the data are highlighted and can be easily isolated.
The ‘Remove selection’ button in the control panel (see Figure 3.6) enables users to
undo a selection and to go back to the default state where no items are selected. Closely
linked to selection techniques are so-called ‘Connect’ interactions which are mainly used
to highlight relationships between data items. In Scets this technique is used to visual-
ize the portion of elements appearing in other subsets of the same bin by showing a blue
circular arc that surrounds the related subset. The combined use of selection techniques
and connect interactions enables users to reveal patterns and associations in the data.

Consider the following example: The subset with degree 4 in set ‘u_20’ (referred to as
A) contains one element, called ‘t_1350’. Table 3.3 displays all elements included in set
‘u_20’ along with a list of sets each of those elements is included in. It can be noted,
that one of the listed sets in Table 3.3 is set ‘u_9’ (also referred to as B). Elements
belonging to B are listed in Table 3.4. By comparing both tables, one can identify,
that B contains six elements, out of which one (namely ‘t_1350’) is also included in
A. Thus, the intersection of A and B is defined as A ∩ B = {t_1350}. Assuming that
the user has selected A, then the ratio of B which belongs to the selection is therefore
equal to the formula |A∩B|/|A| = 1/6. Hence, the colored circular arc framing ‘u_9’ is
1/6 of the subset’s perimeter. By moving the mouse over B while A is still selected, the
tooltip displays the percentage of the selected elements included in B (see Figure 3.7(d)).

name degree sets
t_1350 4 u_9, u_20, u_120, u_121

Table 3.3: List of elements included in subset u_20 of degree 4

31

3. The Scets Visualization Technique

name degree sets
t_1410 4 u_9, u_54, u_79, u_113
t_1350 4 u_9, u_20, u_120, u_121
t_1290 4 u_9, u_51, u_74, u_147
t_1270 4 u_9, u_38, u_74, u_138
t_1190 4 u_9, u_32, u_52, u_74
t_221 4 u_9, u_31, u_50, u_147

Table 3.4: List of elements included in subset u_9 of degree 4

(a)

(b)

Figure 3.5: Selection possibilities: (a) a selected subset of degree 4 in set ‘u_52’, (b)
a selected aggregate ([3-4]) in set ‘u_52’. Selected items are displayed as blue circles.
Circular arcs depict the portion of elements shared between a particular subset and the
selected item.

32

3.2. Interaction Design

3.2.2 Expand and collapse bins

By providing the possibility to expand and collapse bins, the level of detail can be
adjusted. Yi et al. categorize such techniques as ‘Abstract/Elaborate’ [YKSJ07] which
give users the ability to change the level of abstraction. Techniques from this category are
aligned to the ‘Details on Demand’ technique which is part of Ben Shneiderman’s Visual
Information Seeking Mantra. In Scets users are allowed to change the representation
from a compact overview down to details on degree level. A little toggle button is
placed next to each bin. Small icons inside the buttons indicate the current state of the
corresponding bin. Each bin can be in one of the following two states:

• collapsed: The bin is currently in a collapsed state and the toggle button displays
a (+) icon. Clicking the button will result in expanding the bin. As for the labels,
only the bin label is displayed, showing start and end degree of the given bin. As
for visualized items, only aggregates are displayed inside sets.

• expanded: The bin is currently expanded and the toggle button displays a (-) icon.
A button click will trigger the collapsing of the bin. Below the bin label, each
degree level of the expanded bin is labelled. Also, for each degree level a subset is
displayed right below the related aggregate inside every set.

By default, all bins are in a collapsed state. As the user clicks on the toggle button
the bin’s state instantly changes. This is visualized by a smooth animation which shifts
degree labels and subsets up (resp. down) depending on whether bins get expanded or
collapsed. It is important to note, that not only the bin of a particular set group is
expanded (resp. collapsed), but also bins across all set groups are affected by a state
change caused through a click event. Figure 3.3 (2) shows an example of an expanded
aggregate and the subsets included. Additionally, the buttons ‘Expand all bins’ and
‘Collapse all bins’ located in the control panel (see Figure 3.6) can be used to conveniently
trigger a state change for all existing bins. This is especially useful when the user wants
to jump back and forth between the abstracted overview showing only collapsed bins
and the detail view where all bins are expanded.

3.2.3 Control Panel

As described in Section 3.1 the control panel is a major component of the user interface.
It serves as a common container for several control elements (see Figure 3.6) which are
part of interaction operations introduced in this section.

3.2.4 Tooltips

Tooltips are another typical technique from the category of ‘Details on Demand’ opera-
tions. As such, tooltips provide additional information without changing the view. Due
to limited screen space it is often impossible to visualize every detail. Consequently, the
visualization provides a basic overview of the data and enables users to request more

33

3. The Scets Visualization Technique

Figure 3.6: The control panel consists of five buttons (from left to right): change the
sort methods for sets, open the binning settings view, expand all bins, collapse all bins,
remove an active selection

details through interaction, such as a mouse-over. In Scets tooltips are frequently used,
e.g., when the user moves the mouse cursor over an aggregate or a subset details about
the component are brought up. This way additional information is displayed without
changing the representational context. Figure 3.7 shows several components and the
tooltips as a user hovers over the item. Once the user moves the cursor away from the
object, the tooltip disappears immediately.

(a) (b)

(c) (d)

Figure 3.7: Tooltips for several components: (a) hovering over a set label displays the
set’s name along with the number of elements included as well as its distinctiveness, (b)
a tooltip gives indication about the total number of elements included in an aggregate,
including all subsets that belong to this aggregate, (c) another tooltip that displays the
number of elements included in a particular subset, (d) a tooltip for a selection that
shows both the total amount and the ratio of selected elements

3.2.5 Filter

Filtering allows users to separate out irrelevant items. Yi et al. define ‘Filtering’ as a
basic interaction technique that enables users “. . . to change the set of data items being
presented based on some specific conditions. In this type of interaction, users specify a
range or condition, so that only data items meeting those criteria are presented. Data
items outside of the range or not satisfying the condition are hidden from the display or
shown differently, but the actual data usually remain unchanged so that whenever users

34

3.2. Interaction Design

reset the criteria, the hidden or differently shown data items can be recovered.” [YKSJ07]

Scets employs an interactive search through dynamic queries. This implies that queries
in the form of user inputs continuously update the data which is visualized. By means
of instantaneous visual updates, users receive direct feedback about how the system
responds to their actions. Users can perform a search query by typing a desired term
into the search bar located right above the data table. As the user types, the query is
executed almost in real time and possible matches are highlighted in the matrix view as
shown in Figure 3.8. This so-called ‘incremental search’ is a well-established user inter-
action pattern in computer science. In order to prevent the matrix view from constantly
getting updated while the user is still typing, the update is performed with a delay of
500 milliseconds. Thereby not only possible flickering due to repeatedly updating the
results can be avoided but also the computational overhead can be reduced by avoiding
expensive operations.

Figure 3.8: Interactive search: Items matching the search term ‘t_1350’ get instantly
highlighted in the matrix view.

3.2.6 Binning View

As opposed to the binning algorithm described in Section 3.1.2, which determines the
default bin settings, the ‘Binning View’ allows users to manually configure bins. By
clicking on the button ‘Binning Settings’ located in the control panel (see Figure 3.6) a
new modal window appears on top of the main view.

The binning view is separated into two sections. On the left-hand side a histogram of
elements binned by their degree is displayed. Bins created by the binning algorithm are
displayed on the right-hand side of the histogram. The purpose of the histogram is to

35

3. The Scets Visualization Technique

support users in finding answers to questions such as What should be the total number of
bins? or What are the individual bin ranges? The possibility to change binning settings
enables users to change the grouping of elements and provides a different perspective onto
the data. Thus, this technique falls under the category of ‘Reconfiguration’. [YKSJ07]
Both the total number of bins and the range of each bin can be manually changed by the
user through interaction. When the number of bins is changed, the range input fields
for individual bins are updated automatically showing the computed bin ranges. Once
the user confirms her changes by clicking the ‘Save Changes’ button, basic validation
is performed to ensure that bins are not overlapping each other. As soon as validation
is finished and no errors occur, the modal window disappears and the matrix view is
re-rendered with the updated bins. Figure 3.10 shows how the visualization changes
when the total number of bins is changed from five to three.

Figure 3.9: The Binning View: It is composed of a degree histogram and control elements
to modify bins

36

3.2. Interaction Design

(a) (b)

Figure 3.10: Employee data visualized with (a) five bins and with (b) three bins.

3.2.7 Sorting

By default sets are displayed in the order as they appear in the uploaded data set. In
some cases users might want to rearrange sets based on various criteria to get a different
perspective on the data. Therefore the order of sets can be changed by the user. Like
changing the binning settings (see Section 3.2.6), sorting of sets can be categorized as
‘Reconfiguration’ [YKSJ07]. The sort dropdown menu is located in the control panel
(see Figure 3.6) and enables users to switch between one of the following options:

• Default: This is the default sort method, i.e., sets are sorted according to the order
in the CSV file.

• Name: Sets are sorted alphabetically by name.

• Quantity: Sets are sorted by the total number of elements in descending order.

• Distinctiveness: Sets are sorted by their distinctiveness in descending order.

A set’s distinctiveness is computed based on the average degree of the set elements. Algo-
rithm 3.2 shows an implementation of the algorithm for one particular set in pseudocode.
High distinctiveness indicates that a given set contains elements of low degree on aver-
age, i.e., elements which have few or no memberships with other sets. By contrast, a
low distinctiveness value implies that the average element degree in this set is high.

Algorithm 3.2: Compute Average Set Degree Algorithm
1 sum←− 0;
2 for i← 0 to i < aggregates.length do
3 subsets← aggregates[i];
55 for j ← 0 to j < subsets.length do
6 sum← sum + subset.count ∗ subset.degree;
7 end
8 end
9 returnsum/set.size;

37

3. The Scets Visualization Technique

Once the sort method is changed by the user, the view is re-rendered and depicts sets in
updated order. Figure 3.11 shows how the visualization changes when the sort method
is switched from default sorting to sorting by quantity.

(a) (b)

Figure 3.11: Ten sets from the employee data set sorted (a) by default and (b) by
quantity

3.2.8 Subset Color Encoding

By enabling users to alter the color encoding of subsets, Scets offers an intuitive way of
changing the visual representation of the data. Yi et al. [YKSJ07] classify this technique
as ‘Encode’. “Since color encoding is changed instantly and dynamically, users can
experiment with various color encoding schemes to find the most suitable one.” [YKSJ07]
As already described earlier, Scets employs two different color scales to encode quantity:
one for aggregates and one for subsets. By default, the subset legend includes the entire
range of possible values (i.e., the total numbers of elements per subset). This implies
that even quantities of subsets which are located in collapsed bins are included. Thus,
a checkbox labelled ‘include expanded bins only’ is displayed right below the subset
legend which enables users to alter the color encoding of subsets. By activating the
checkbox the color scale will be computed based on subset quantities of expanded bins
only. This is very useful as the information conveyed by color “. . . are directly related
to how users understand relationships and distributions of the data items.” [YKSJ07]
In this case, it supports users in identifying the most populous subsets by considering
expanded bins only rather than taking the entire range of possible subset quantities into
account. Figure 3.12 illustrates the difference in the color encoding: With an unselected
checkbox (Figure 3.12(a)) subsets in ‘Nigeria’ are not as prominent as if the checkbox
was ticked (Figure 3.12(b)).

3.2.9 Classification of techniques

Table 3.5 shows a matrix of interaction techniques and categories introduced by Yi et
al. Interaction techniques are represented as rows, categories are displayed as columns.
A checkmark in a cell indicates that a given technique falls into a certain category. Two
things are important to note: First, Scets makes use of all types of tasks in Yi et al.’s
taxonomy. Second, as shown in the table, most techniques belong to multiple categories.
The reason is, that most of the techniques used in Scets simply cannot be sorted into

38

3.3. Selecting and uploading data samples

(a) (b)

Figure 3.12: Color encoding of subsets: (a) all bins are considered, (b) only expanded
bins are included

Categories
Se

le
ct

Ex
pl

or
e

R
ec

on
fig

ur
e

En
co

de

A
bs

tr
ac

t/
El

ab
or

at
e

Fi
lte

r

C
on

ne
ct

U
nd

o/
R

ed
o

Selection Possibilities 3 3 3

Expand & Collapse Bins 3 3 3

Tooltips 3 3

Filter 3 3 3

Te
ch

ni
qu

es

Binning Settings 3

Sorting 3

Subset Color Encoding 3 3

Table 3.5: Implemented techniques and their classification

a separate category as they usually apply operations from several interaction categories.
As an example, selecting subsets resp. aggregates in Scets falls on one hand under the
‘Select’ category but also under the ‘Connect’ category since relationships between data
items are revealed. On the other hand removing a selection using the related button in
the control panel is a typical example for an operation from the ‘Undo/Redo’ category.

3.3 Selecting and uploading data samples

When starting the application, first of all a dialog is shown providing two options: Users
can either pick a sample file from a list of existing data sets located on the server or
upload a new data set. The component that acts as the application’s entry point and
provides the interface between user and server is called the ‘Data Navigator’.

39

3. The Scets Visualization Technique

(a) (b)

Figure 3.13: The ‘Data Navigator’ component enables users to either (a) select a sample
file or (b) to upload a new file.

In the default view a list of sample files (see Figure 3.13(a)) is displayed. This list in-
cludes both predefined test data as well as uploaded files by the user. By clicking on the
link ‘or upload a file’ the upload window appears. The following form requires users to
select two files from the local file system: A data file in CSV format and a description file
in JSON format. The description file contains meta information about the related data
set, such as the file’s author and title, the separator (can be any character, e.g., comma
or space), etc. An additional ‘set’ property is used to define a lower and upper bound
and thereby limit the range of the binary data. This allows to exactly specify which
parts of the data file have to be visualized and which parts are additional information.

skill u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_10
t_1 1 0 0 1 0 1 0 0 0 1
t_2 1 1 0 0 0 1 1 1 1 1
t_3 1 1 1 0 1 0 1 0 0 1
t_4 1 1 0 1 1 0 1 1 1 1
t_5 1 1 1 0 0 1 1 1 1 0
t_6 0 0 1 1 1 1 1 1 0 1
t_7 0 1 0 0 0 0 0 1 0 0
t_8 1 0 1 1 1 1 1 1 0 1
t_9 1 0 0 1 0 0 0 1 1 1

Table 3.6: A CSV sample in correct format. Employees (u_1, u_2, . . . , u_10) are
encoded as columns. Skills (t_1, t_2, . . . , t_9) are represented as rows.

Currently, an uploaded file has to strictly follow a given convention: Sets have to be

40

3.4. Task Support

represented as columns, whereas elements resp. attributes need to be indicated as rows.
Table 3.6 shows a sample CSV file. Files formatted in a different way will lead to an
error during the upload process since the parser only supports the named convention.

3.4 Task Support
To conclude this chapter, I will briefly describe how Scets can be used to support users
in solving the tasks specified in Section 3.1.

Users can analyze the distribution of elements per set according to their degrees (task
T1) by exploring expanded bins in the matrix view. A subset’s color gives indication
about its quantity. Interaction is required to determine the exact number of elements
per subset and the number of sets they belong to. Hovering over the subset displays the
information in a tooltip, clicking on the subset shows the included elements along with
a list of sets they belong to in the element view.

Task 2 (T2) can be achieved by investigating a set’s first resp. last degree in the matrix
view. Tooltips display the number of elements shared with X-1 other elements as the
user moves the mouse over a subset of degree X.

Sets can be compared by distinctiveness in the matrix view (task T3). Therefore sets
can be sorted by distinctiveness via the sort menu. This way the most competitive
country will be in first place and the least competitive country will be in last place.
Hovering over a set’s name label, a tooltip is displayed showing it’s distinctiveness along
with additional information. Moreover, a set’s color gradient gives indication about its
distinctiveness, i.e., a gradient from dark to light suggests high distinctiveness, whereas
light to dark indicates low distinctiveness.

By selecting an aggregate or subset in the matrix view, all elements included in the
selection are listed in the element view. In addition, the portion of elements appearing
in other sets is displayed in the matrix view as blue arcs. This way users can analyze
which elements of the corresponding set are shared between other sets (task T4).

Finding all sets which contain a specific element (task T5) can be achieved by using
the search input. As users type an element’s name, the matrix view is updated immedi-
ately and all subsets which contain the given element are highlighted. Furthermore, the
element view lists all elements which match the search criteria.

41

CHAPTER 4
Implementation

4.1 Technology Fundamentals

The combination of Javascript, CSS and SVG establishes a very powerful toolset for
prototype development. Javascript is one of today’s most popular languages that runs
on every modern web browser. Hence Javascript applications typically don’t require a
complicated setup process to be executed and therefore can be accessed by a large number
of users. This section gives a brief introduction to the main concepts and technologies
that are used to build a web-based prototype.

4.1.1 HTML

The Hypertext Markup Language (HTML) is the most relevant markup language for
describing the structure and semantic of web pages. HTML is a set of elements each of
which describes different document content. It enables the specification of a semantic
structure and gives meaning to the content. However, it does not represent the docu-
ment’s structure visually. Therefore CSS is being used (see Chapter 4.1.2). Most HTML
elements consist of an opening and an end tag with arbitrary content in between. El-
ement attributes provide additional information about an element and are defined as
key/value pairs in the opening tag. Nested elements can be used to create hierarchies
within the document. Figure 4.1 shows a sample HTML document.

43

4. Implementation

Figure 4.1: A very simple HTML document

4.1.2 CSS

Cascading Style Sheets (CSS) is a stylesheet language which represents the document
structure visually. It describes how HTML elements have to be displayed on the screen.
A CSS rule is made up of a selector and a declaration block (see Figure 4.2).

Figure 4.2: A CSS rule consists of a selector and a declaration block.

Source: http://www.w3schools.com/css/css_syntax.asp

The selector refers to either a single HTML element or a set of elements on which to
operate on. One or more declarations constitute the declaration block. Each declaration
is given by a property name and a value separated by a colon. There are different ways
to apply CSS rules to a HTML document:

• Attaching inline styles

• Embedding CSS in the HTML document by using the <style> tag

• Referencing an external CSS stylesheet from the HTML document with the <link>
tag

44

http://www.w3schools.com/css/css_syntax.asp

4.1. Technology Fundamentals

Figure 4.3: A blue SVG circle element with a 2 pixel gray border

By creating an external file that contains the style definitions, one can easily change
the look of a document by just replacing that file. Following this approach, one also
achieves separation of concerns, which is a popular design principle in computer science.
This implies the separation of the document structure, i.e., the HTML code, from the
definition of content presentation style, i.e., CSS code.

4.1.3 SVG

Scalable Vector Graphics (SVG) is a text-based image format that uses the XML (Ex-
tensible Markup Language) format to define graphics. Thus, all elements must have
a closing tag. SVG is mainly used to define two-dimensional vector-based graphics for
the Web. Compared to a bitmap, a vector-based image does not consist of single pixels
but rather of objects that can be modified in size without any loss of quality. This
characteristic makes vector graphics so special. SVG code can be included directly in
any HTML document or it can be dynamically created and injected into the Document
Object Model (DOM) by using Javascript. SVG provides some pre-defined shapes, such
as rectangles, circles, polygons, lines, etc. An example of a SVG circle element can be
seen in Figure 4.3.

4.1.4 Javascript & d3.js

JavaScript is a cross-platform, object-oriented scripting language and is often referred to
as the “language of the web”. Whereas HTML and CSS are used to define the content
resp. specify the layout of HTML documents, Javascript enables the implementation of
interactive web applications. This section will neither be an introduction into Javascript
nor describe language-specific features as this would go beyond the scope of the thesis.
However, as the prototype is written in Javascript it is worth mentioning the basic char-
acteristics of the language at this point. Javascript enables user interaction and is used
in many fields of application, such as dynamic manipulation of the DOM or client-side
form validation just to name a few. Similar to CSS, JavaScript can be included in a
HTML document in different ways: Either include a script directly in HTML between
the <script> tag (see Figure 4.4) or reference an external script from the <head> of a
document.

D3 (Data Driven Documents) [BOH11] is a Javascript library for creating web-based
data visualizations. It was created by Mike Bostock, Vadim Ogievetsky and Jeff Heer in

45

4. Implementation

Figure 4.4: A Javascript code snippet included directly in HTML

2011 as the successor of the Protovis [BH09] library. D3 heavily relies on the three core
technologies HTML, CSS and SVG which were introduced earlier in this chapter.

“A huge benefit of how D3 exposes the designer directly to the web page is
that the existing technology in the browser can be leveraged without having
to create a whole new plotting language. This appears both when selecting
elements, which is performed using CSS selectors (users of JQuery will find
many of the idioms underlying D3 very familiar), and when styling elements,
which is performed using normal CSS. This allows the designer to use the ex-
isting tools that have been developed for web design – most notably Firefox’s
Firebug and Chrome’s Developer Tools.” [Dew12, p. 2]

The D3 library allows users to bind data to the any kind of DOM elements and apply
transformation to the document based on the data. In detail, d3 performs the following
four steps: [Mur13, p. 7]

1. Loading data from a source (e.g., from a CSV or JSON file) into the browser

2. Binding data to elements, by creating new ones and updating or removing existing
ones

3. Transforming these elements depending on the bound data

4. Performing smooth transitions on elements

D3 covers a wide range of usage scenarios, starting from creating static data tables up
to building very sophisticated interactive visualizations. For example, D3 can be used to
load a large dataset and create an animated bar chart where each bar is represented as
an SVG rectangle and a bar’s height being scaled to map from the corresponding value
in the data set into pixels. The most important feature is reusability in the sense that
D3 is not a typical charting library that comes with pre-build charts but rather provides
the necessary tools for creating almost any kind of desired visualization. However, in
some cases there is no need for the specificity offered by D3 and other libraries resp.
frameworks prove to be more useful. Many alternatives to D3 exist, including Google
Charts, Highcharts, Processing.js and Raphaël for example.

46

4.2. Project Structure

4.1.5 Node.js

“Node.js is a platform built on Chrome’s JavaScript runtime for easily build-
ing fast, scalable network applications. Node.js uses an event-driven, non-
blocking I/O model that makes it lightweight and efficient, perfect for data-
intensive real-time applications that run across distributed devices.” [nod]

In simple terms, Node.js enables developers to build scalable network applications writ-
ten in Javascript on the server-side. It was created in 2009 by Ryan Dahl as an Open
Source command line tool. One of Node’s key features is its event-loop via Javascript
callbacks that is used to implement the non-blocking I/O. Typically Node.js is partic-
ularly suitable for creating streaming based real-time services, chat applications and
in situations where client-side code should also be reused on the server-side and vice
versa. In the context of this thesis Node.js serves as the main backend technology for
implementing a HTTP server.

4.2 Project Structure
Scets is a web application written entirely in Javascript. The source code can be found
on the Github repository https://github.com/mawo87/scets/. There is also a
web demo of the most recent version which is available under http://scets.sybdev.
com/index.html. This is simplest and most comfortable way to start the application
as it requires no local setup.

In general, the application is composed of the following two main components:

• Backend which serves existing sample files, parses uploaded data and delivers
parsed data as JSON (Javascript Object Notation) to the client.

• Frontend that visualizes the parsed data in the web browser and enables user
interaction.

The project is structured as follows:

/: The project root including configuration files and the index.html

/backend: Contains the server.js file which implements the Node.js server and a
subfolder for backend modules

/data: All example files along with their description files are located here

/dist: The distribution folder which contains the Javascript files and the compiled
CSS files. This folder should be copied to the local web server.

47

https://github.com/mawo87/scets/
http://scets.sybdev.com/index.html
http://scets.sybdev.com/index.html

4. Implementation

/doc: The documentation folder which contains documentation files generated by
JSDoc and apiDoc.

/js: The Javascript source files which will be copied to the distribution folder later
during the build process.

/node_modules: A place for external libraries

/sass: All SASS files are located under this directory.

4.3 Setup & Build Process

Scets can also be installed locally. This requires a few simple steps which will be
described in the following. Several dependencies are installed as packages via npm,
the Node Package Manager [npm]. Therefore Node.js is required which can easily be
installed by following the instructions on https://nodejs.org/. Once Node.js is
installed, the best way to install all the dependencies, is by running the command npm
install from the project’s root directory. This way all the required packages will be
installed in the node_modules folder.
To get the application up and running locally one has to setup two simple HTTP servers.
The first server will run the application’s backend code written in Node.js. The second
server will be a static file server that serves up all of the necessary resources to the
browser, such as HTML, CSS and Javascript files. For this purpose any web server, e.g.
Apache, can be used. Once setup is completed, the dist folder along with the index.html
file has to be copied from the repository to the root directory of the static web server.
The Node.js server can be started by running node server.js from the backend directory.
Additionally, one can edit the config.js located under backend/modules in order to make
setting adjustments such as changing the server port of the Node.js server or setting the
address of the local web server. By entering the address of the just set up server (default
http://localhost:8005/) in the browser, the application should start up.
Another possibility of setting up a local web server is by using gulp.js[gul]. Gulp is a build
system built on Node.js that can be used to automate certain development tasks, such
as compiling SASS to CSS, minifying files, etc. Bringing gulp into use not only allows
a straightforward setup process of a web server, but also facilitates the development
process a lot. The project comes with a gulpfile.js where several tasks are already defined
and can be used by running gulp TASKNAME from within the project folder where
TASKNAME has to be replaced by one of the following tasks:

• connect: Starts a webserver on port 8005. It also supports live reload, i.e., file
changes will be reflected in the browser immediately.

• sass: Compiles SASS to CSS files and copies the output to a distribution folder

• js: Copies Javascript files from a source folder to a destination folder

48

https://nodejs.org/

4.4. Server & API

• default: Runs the tasks ‘connect’, ‘watch’, ‘sass’ and ‘js’ in sequence

• jsdoc: Runs JSDoc from the command line and generates the documentation
for the frontend code. Configuration options are specified in jsdoc located in the
projects root directory.

• apidoc: Generates the API documentation. The configuration file apidoc in the
projects root directory includes several configuration options.

4.4 Server & API
As already noted earlier in this chapter, the parsing and data processing is done on
the application’s server-side whereas the frontend component is mainly responsible for
visualizing the data and for providing an interface that allows users to interact with the
visualization. The server implements the following API calls:

GET /examples: Requests a list of existing samples, including both predefined
and uploaded samples. An array of files is returned.

GET /example?file=filePath: Requests a particular sample file given by the
file parameter. The server responds with the parsed file content.

POST /upload: Uploads a sample file together with its description file to the
server. The file path is returned.

The API is also deployed to Heroko [her], which is a platform as a service (PaaS) that
enables developers to build and run their applications in the cloud. In this case Heroku
is configured in such a way that deployments happen automatically whenever something
changes in the git repository. Furthermore, the API is running on https://scets.
herokuapp.com/api/ and as such it is publicly available.
Detailed documentation of the API is available under doc/backend. The tool ApiDoc
[api] is used to generate the documentation from annotations in the backend source
code.

49

https://scets.herokuapp.com/api/
https://scets.herokuapp.com/api/

4. Implementation

4.5 Frontend

4.5.1 The Module Pattern

Scets makes use of Javascript’s module pattern which is a commonly used design pat-
tern that helps avoiding the pollution of the global namespace and supports readability
and maintainability of the application’s code. As a result, a new namespace called scets
is defined on the window object. Both, classes, methods and shared data are added to
this namespace. Figure 4.5 shows an example of how modules are organized in Scets.
In this example ‘methodC’ stays private whereas the ‘methodA’ and ‘methodB’ will be
exposed as public methods and hence will be available within the scets namespace un-
der ‘scets.myPublicMethodA’ resp. ‘scets.myPublicMethodB’. By adding new methods
to the application, the module pattern should be used in order to avoid collisions with
other objects or variables in the global namespace. This is especially important when
dealing with third party libraries.

Figure 4.5: An example of a module in Scets with two private properties, one private
method and two public methods.

4.5.2 Components

The UML class diagram in Figure 4.6 shows all existing classes of the frontend and lists
their attributes and methods. In addition to these classes a utility module exists that
implements helper methods used by several other components. In this section the inter-

50

4.5. Frontend

Figure 4.6: UML diagram showing the main components of the Scets’ frontend

action of components depicted in the UML diagram will be described briefly.

There is only one HTML file called ‘index.html’ which includes all relevant Javascript
and CSS files. The file app.js is the application’s entry point. On the one hand it sets up
the data object on the scets namespace. On the other hand it waits until the document
has finished loading (i.e., the DOM is fully loaded) and then creates a new instance of
the Data Navigator which initially requests a list of available sample files from the
Scets API and then renders the result in a dropdown list. Now either a sample file
can be selected or a new file can be uploaded. In any case the server parses the CSV

51

4. Implementation

Figure 4.7: The sequence diagram of the client/server communication

file which is either a file selected from the dropdown list or an uploaded file and then
returns the parsed file in JSON format. (see Figure 4.7)

On the client-side the Data Navigator’s onLoadedCallback method gets executed. At this
point the server’s response gets processed and all custom data objects (i.e., Sets and
Elements) will be created and added to the global namespace. Additionally the default
bins get initialized with the help of the utility methods initBins and classifyBinData.
From this point sets, elements and bins are accessible from within application’s names-
pace.

The Renderer is the most essential class as it connects all other components. As
soon as the client receives the response from the API a new instance of the Renderer

52

4.5. Frontend

is created. First, several initialization tasks are performed such as setting up the UI
controls and the legend. At the same time the aggregated data per bin is also generated.
Next the render method is called. This the place where the data driven document is
created with the help of d3. At first the aggregated data hast to be divided into smaller
chunks each of which belongs to one set group. For each set group a SVG group element
is created and the related data chunk gets bound via d3’s data() method. Subsequently
sets and aggregates are created and event handlers are attached. Finally labels for both
sets and bins are created for every rendered set group.

Furthermore the Renderer creates instances for the Binning View and the Table. The
‘Binning View’ opens in a modal window when the user clicks on the button ‘Binning Set-
tings’. At this point the Bin Configurator gets initialized with the bins from the global
data object. Whenever the user modifies the number of bins through the UI, the initBins
method is called once again and the binning algorithm computes the bins and their data.

Once the user clicks on an aggregate or a subset in the UI, a new Selection is cre-
ated with the Renderer’s createSelection method. The Selection instance holds an array
of selected elements and the selection type, which can be either ‘subset’, ‘aggregate’ or
‘search’. If an aggregate is selected, the aggregate as well as its row index will be saved
additionally. If a subset is selected, the subset will be set on the Selection instance. The
Selection is primarily used as a global storage which can be referenced from anywhere
else in the source code. Besides creating a new Selection instance, the createSelection
also takes care of updating the content displayed in the ‘Table’. The Table shows infor-
mation about the current selection, e.g, the name and degree of elements included in the
selection. This information gets updated automatically by the Table’s update method
when the selection is changed or removed.

Further documentation of frontend components is created with JSDoc [jsd] and is lo-
cated in the doc/frontend folder on Github. This folder contains a separate HTML file
for each class and describes its methods in detail.

53

4. Implementation

4.5.3 Third Party Libraries

Several third party libraries are used to facilitate the development of the web application.
As already noted in Section 4.3 all dependencies are located in the node_modules folder
after being installed via npm. In the following a comprehensive list of libraries in place
is given.

• Bootstrap [boo]: Bootstrap is a responsive CSS and Javascript framework. It
simplifies the implementation of a grid layout and helps to arrange UI elements.

• colorbrewer [col]: This small library provides predefined color schemes based on
http://colorbrewer2.org.

• csv-parse [csv]: A parser for converting CSV text input into arrays or objects

• d3.js: d3.js provides the basis for the visualization. More information about the
library is provided in Section 4.1.4.

• d3-tip [d3t]: A very lightweight tooltip library built on d3.js

• Express [exp]: A framework for building web applications in Node.js

• fontawesome [fon]: A popular toolkit for scalable vector icons

• JQuery [jqua]: JQuery is mainly used for DOM manipulation and for selecting
elements.

• JQuery Form [jqub]: A JQuery plugin that allows to perform AJAX requests
on submitting HTML forms. It is used to build the upload form and avoid a page
refresh.

• jsdoc [jsd]: An API documentation generator for Javascript

• multer [mul]: A Node.js middleware that handles file uploading

• Underscore.js [und]: A utility library that provides a lot of useful helper functions

• Velocity.js [vel]: A JQuery plugin for high performance animations

In addition, several gulp plugins are installed as modules which are mainly used for the
build process and for running a local web server.

54

http://colorbrewer2.org

CHAPTER 5
Use Cases

“The best data visualizations are ones that expose something new about the underlying
patterns and relationships contained within the data. Understanding those relationships
- and so being able to observe them is key to good decision-making” [ACD12, p. 65]

In this chapter, two case studies are described which evaluate the effectiveness of the
Scets technique when employed on large data sets. These case studies use data sets
from two different domains and illustrate how the novel visualization technique supports
data exploration and can be used to gain in-depth insights. In the first case study a
movie data set is explored. In the second, exports from several countries are examined.

5.1 Movie Genres
The dataset in this use case represents a demo sample from the MovieLens website
collected by GroupLens Research [Gro]. It comprises various multi-value (set-typed)
attributes such as name, release date, genre and rating. These attributes describe set-
element memberships, such as movies per genre. Overall, the dataset comprises 18 genres
(sets) and 3883 movies (elements). By employing the Scets technique to visualize the
data, some interesting findings were gained.

As an example, by looking at the bin ranges (in fact the range of the last bin) one will
discover that the maximum degree is five. Given that and the default number of bins
(which is also five), each bin includes exactly one subset. This implies that there are
no movies which belong to more than five genres. Also, as the number of default bins
coincidentally equals to the maximum degree, there is no need to expand bins in this
use case since the information content of aggregates and subsets will be the same.
In general, across all genres only a small number of movies belongs to five genres. This

55

5. Use Cases

can be determined by comparing an aggregate’s color with the color scale for aggregates.
Hovering over the last aggregate circle in each set gives information about the number
of elements comprised. By comparing these numbers one will find out that among all
genres the ‘Action’ genre includes most movies (seven in total) with degree five. These
insights are displayed in Figure 5.1.

Figure 5.1: Visualization of 18 movie genres with 3883 movies. (1) The upper range
of the last bin indicates the maximum degree. (2) 7 ‘Action’ movies belong to four
other genres (five genres in total including ‘Action’ itself). (3) There are no ‘Animation’
movies.

In general, tooltips can expose a lot of useful information. For example, by moving the
mouse over various genres, they can be compared with regard to their total number
of movies. Thereby the genre having the most movies can be identified: As shown in
Figure 5.2, ‘Drama’ includes 1603 movies in total of which 843 elements belong to the
subset of degree 1, i.e., they don’t appear in any other genre.

Another interesting finding which does not require any user interaction and can be
immediately discovered by looking at the visualized data, is that the ‘Animation’ genre
does not include any movies. This genre is displayed as an empty set (see Figure 5.1
(3)), i.e., it does neither contain aggregates nor subsets.

The case study also revealed interesting data characteristics which were not visible in
the raw data. Documentaries rarely belong to another genre and if they do, then at most
to one other genre. This characteristics is reflected in the visualization in form of empty
space in the set as shown in Figure 5.3 (1). By investigating the ‘Documentary’ genre,
one will find two aggregate circles, one for the first bin, and one for the second bin. The
topmost circle is darkened and depicts movies which are exclusive to the ‘Documentary’
genre. The aggregate below represents elements which belong to exactly one other

56

5.1. Movie Genres

Figure 5.2: (1) The ‘Drama’ genre includes with 1603 elements the most movies. (2)
The subset for degree 1 represents 843 elements which is about 50% of the total number
of elements in this genre.

genre. Compared to the color of the first aggregate, this circle is lighter, meaning that
the aggregate contains less elements than the first aggregate. There are no more colored
circles from the second aggregate onwards leaving some blank space. Thus, it can be
concluded that ‘Documentary’ movies don’t belong to more than one other genre.

Figure 5.3: (1) ‘Documentaries’ belong at most to one other genre. (2) ‘Fantasy’ movies
typically belong to two additional genres. (3) The legend helps to distinguish aggregates
in terms of the total number of elements. (4) ‘War’ movies mostly belong to one or two
other genres.

57

5. Use Cases

Colored aggregates along with the legend support users in identifying bins which con-
tain either a very large number of elements or little elements. For instance, the ‘Fantasy’
genre mostly comes as addition to two other genres, and rarely alone. This is because
aggregate circles in the ‘Fantasy’ set are mainly brightly colored except for the third
aggregate from top (see Figure 5.3 (2)). This one is much darker and indicates a larger
number of elements included. By comparing the aggregate’s color with the legend one
will notice that the number of comprised elements is somewhere between 36 and 49 (see
Figure 5.3 (3)).
In this context, it may be also noted that the ‘War’ genre rarely comes alone. Figure 5.3
(4) shows that ‘War’ movies mostly appear in one or two other genres.

Furthermore, sorting sets by quantity does not only confirm the previous finding that
the ‘Drama’ set includes the most elements but also highlights another interesting char-
acteristics: The genres ‘Drama’, ‘Comedy’, ‘Action’ and ‘Thriller’ are likely to come
alone and along with one or two other genres. This is illustrated in Figure 5.4 (1) and
(2).

Figure 5.4: (1) Sorting sets by quantity reveals unknown patterns, such as that genres
like ‘Drama’, ‘Comedy’, ‘Action’ and ‘Thriller’ mostly appear with one or two other
genres (2). Aggregate’s color decreases in intensity in the ‘Western’ genre from bin to
bin (3).

It is also noticeable, that the ‘Western’ genre has decreasing numbers of elements per bin,
i.e., most elements are placed in the first bin whereas the fewest elements are contained
in the last bin. Figure 5.4 (3) shows how the the color intensity decreases from the
aggregate representing the first bin to the one depicting the last bin.

58

5.2. Countries Exports

5.2 Countries Exports

In this use case economic data is investigated by visualizing international trade statistics
on exports and imports by countries from the year 2010 [Com]. The dataset comprises
194 countries (sets) and 1354 different export goods (elements). By comparing these
numbers with the use case from Section 5.1 one will notice that now about ten times
more sets are used. However, the total number of elements in this dataset corresponds
to approximately one-third of the total number of elements from the first use case. This
difference is also reflected in the visualization: Sets don’t fit into one single row anymore.
As a result set groups are automatically generated (see Figure 5.5).

Figure 5.5: 194 countries visualized in 4 set groups (1) - (4).

Since the original dataset did not fulfill the criteria for the supported file structure men-
tioned in Chapter 3.3, it had to be preprocessed beforehand. In this step, rows and
columns were transposed because sets wer represented as rows and elements as columns
in the original file. Furthermore, a uniform separator had to be defined and invalid sepa-
rators were recursively replaced throughout the entire file. Whereas most of these tasks
can be automated with the help of certain algorithms, in some cases manual adjustment
is still necessary.

One of the first findings users can gain about the data is the quantity of exports per
country. The visualization reveals at a glance how many elements a set comprises com-
pared to others based on the color encoding. In this particular case, Germany, Spain and
Italy for example export a larger number of elements in contrast to Congo or Comoros.

59

5. Use Cases

It also shows that there are 18 countries which don’t export any items at all, i.e., they
are shown as empty sets. These include Botswana, Ghana, Lesotho, Mayotte, Namibia,
Sierra Leone, Swaziland, South Africa, India, Aruba, Ecuador, Mexico, Puerto Rico,
Virgin Islands U.S., Luxembourg and South Sudan. The result is shown in Figure 5.6
(3). In this context, two other findings can be gained, namely that Italy exports the
most products (578) and Austria is ranked 7th in terms of total exports as shown in
Figure 5.6 (1) and (2).

The results listed above could also be detected from a simple bar chart that shows the
total number of products per country. If only this information has to be visualized a
bar chart might be even more suitable since it uses a bar’s length to visually encode the
quantity which is known to be significantly more accurate than color encoding which is
used in Scets. However, the main advantage of Scets over a simple visualizations is
its detailed overview which enables users to both perform basic tasks and to gain deeper
insights. This implies, that on the one hand users can still identify the largest set and
empty sets aided by the ranking feature and on the other hand they can use the same
view to dig deeper and inspect the data more precisely which is a unique feature basic
visualizations don’t have.

Figure 5.6: (1) Italy exports 578 products in total and is ranked first. (2) Austria ranks
in seventh place. (3) Sorting by quantity reveals 18 countries which don’t export any
products. (4) The maximum degree is 75.

By taking a closer look at the bins and their ranges, one will notice that the maximum
degree is 75. Thus, there is at least one good which is exported by 75 different coun-
tries. It also implies that there is no good which is exported by more than 75 different

60

5.2. Countries Exports

countries (see Figure 5.6 (4)). As the user expands the last bin she will notice that all
subsets in the last row (degree 75) are brightly colored, i.e., they contain relatively few
elements and hence only a few elements are exported by 75 countries.

Another very interesting insight with this dataset which is worth reporting is the com-
parison of countries based on their distinctiveness. As described earlier in Section 3.2.7,
a set’s distinctiveness is given by its average degree across all bins. In the context of
this dataset distinctiveness indicates whether a country’s economy is more competitive
compared to other countries which means that it produces products that only a small
number of other countries produces. As an example, those countries in Figure 5.7 shown
in blue tend to produce more distinctive products than non-distinctive products. This
is characterized by the transition from dark on top to light at the bottom of the set.
On the other hand, countries shown in red produce less of the distinctive products than
of non-distinctive products. In this case the transition is from bright on top to dark
at the bottom of a set. Thus, the majority of products produced by these countries
are non-distinctive. Therefore it can be concluded, that their economies might be less
competitive. Especially this example demonstrates the effectiveness of the visualiza-
tion technique as these findings were neither visible in the raw data nor could be easily
revealed by existing visualization techniques listed in Chapter 2.

Figure 5.7: Countries sorted by distinctiveness. (1) Sets highlighted in blue are examples
for countries which produce more distinctive products by comparison. (2) By contrast,
sets in red show countries that produce more non-distinctive products.

Furthermore, it is noticeable that Japan and Indonesia are the only two countries which
export unique products, i.e., goods which are not exported by any other country. In the

61

5. Use Cases

matrix layout this characteristic is shown as a subset of degree 1 in the corresponding
sets. Figure 5.8 displays details about the product which is only exported by Japan and
Indonesia respectively.

(a)

(b)

Figure 5.8: Element view showing the product’s name which is only exported by (a)
Japan and (b) Indonesia respectively.

Experimenting with different bin ranges often helps to gain deeper insights into the data.
As an example, China produces most products of degree < 5, i.e, that four or less other
countries produce. This gives China competitive and negotiation advantages over these
products in comparison to products which are produced by many countries.
In order to reveal this pattern, several steps are necessary. First an additional bin which
ranges from degree one to degree five is added manually through the binning view. In
this respect the range for the second bin is changed to 6-19. Figure 5.5 shows the
modified binning settings. Following this, in the matrix view bins 1-5 are expanded
which displays the legend for subsets. Now, the checkbox ‘include expanded bins only’
is ticked. Sorting the data by ‘Distinctiveness’ ranks China among the most distinctive
countries. The result is shown in Figure 5.9(b).

62

5.2. Countries Exports

(a)

(b)

Figure 5.9: Modified binning settings are shown in (a). (b) (1) highlights China’s degree
5 in the matrix view with subsets colored according to the active setting (b) (2).

63

CHAPTER 6
Evaluation

In this chapter the evaluation method which was used for evaluating the prototype is
described in detail.
Section 6.1 provides a brief summary of evaluation methods for information visualization
techniques based on literature research. Following this, a description of the evaluation
method which has been used in Section 6.2 is given. The chapter is concluded with the
results obtained from the evaluation phase in Section 6.3.

6.1 InfoVis Evaluation Techniques

As information visualization is increasingly adopted in different domains, there’s also a
strong need for comparing and evaluating existing tools. In general, evaluation methods
for information visualization aim at providing proof for the effectiveness of such tech-
niques. Literature research has shown that several different methods and approaches for
evaluating information visualization techniques exist. However, since evaluation is not
the main focus of this thesis I will only give a brief overview of the state of the art in
this section.

Plaisant et. al. [Pla04] categorized current evaluation practices into four classes.

• Controlled experiments comparing design elements

• Usability evaluation

• Controlled experiments comparing two or more tools

• Case studies of tools in realistic settings

65

6. Evaluation

Plaisant also described challenges in the context of information visualization, such as im-
proving user testing. In this context, she mentioned that users often need to look at the
same data from different perspectives over a long time. For example, biologists might
want to analyze the data set for months trusting that they will find certain patterns
[Pla04].

Different criteria can be evaluated for systems that use visual representation, such as
functionality, effectiveness, efficiency, usability and usefulness. [Maz09] However, the
evaluation process can be limited to a subset of this list, depending on the visualiza-
tion’s type and the available resources. “Not having their own evaluation methodology,
systems that use visual representations have adopted techniques from human-computer
interaction. These techniques, which have been in use for years, can essentially be sub-
divided into two categories: analytic evaluations and empirical evaluations.” [Maz09, p.
128]
Analytical methods, such as heuristic evaluation and cognitive walkthrough are typically
carried out by experts to test whether a system complies with a set of defined heuris-
tics. These types of evaluation don’t involve users and are often applied in the initial
design phase or on an early prototype in order to identify major usability issues. Em-
pirical methods on the other hand require users to participate. Depending on the type
of collected data, such experiments can be categorized into quantitative and qualitative
studies.
Controlled experiments are one example for quantitative studies which focus on the ver-
ification of hypotheses. Such methods are often used to evaluate the effectiveness and
efficiency of a visual representation. [Maz09] For example, the efficiency of a prototype
has to be evaluated under the hypothesis that the prototype’s efficiency is higher than
a legacy system’s efficiency. Therefore, a group of test users is split into two groups.
One group is asked to perform a set of given tasks by using a legacy system, whereas
the second group is asked to solve the same tasks by using the system to be evaluated.
Finally, the time required by each of the two groups to solve the tasks is measured and
compared in order to confirm or refute the hypothesis. Typically such methods require a
high amount of resources. Qualitative methods such as user tests, interviews and focus
groups enable the evaluation of a representation’s usefulness and require a smaller group
of participants compared to quantitative methods.

Lewis [Lew82] introduced a very popular approach for the evaluation of visualization
techniques, called the ‘Thinking Aloud’ method. The basic idea of this method is to
ask users to share their thoughts as they perform a set of tasks. All expressed thoughts,
including feelings, expectations or questions which might arise as the users work, are
recorded or noted by an observer. The recordings and notes are analyzed afterwards in
order to get a better understanding of the system’s usability.

Based on the analysis of over 800 papers in the field of information visualization of
which 361 include evaluations, Lam et. al. [LBI+12] identified seven different evaluation

66

6.2. Evaluation Method

scenarios. These scenarios are categorized into scenarios for understanding data analy-
sis processes and those which evaluate the visualizations themselves. In addition, the
authors provide a list of evaluation questions and identified popular goals and outputs
for each of those scenarios.

It can be summarized, that various methods for evaluating information visualization
techniques and systems exist. Deciding which evaluation method to use depends on
various factors, such as the stage of development, the quality of available test data, the
number of test users, etc. Thus, there is no general solution to the problem of choosing a
suitable evaluation method. Instead, each case has to be individually analyzed in order
to find the most appropriate evaluation method.

6.2 Evaluation Method
Since this work is mainly focused on solving the problem of scalability with the help of
a novel visualization technique for set-typed data, an extended empirical evaluation of
the prototype would go beyond the scope of the thesis. Thus, I decided to conduct a
rather compact study which involves only a small number of test candidates. The goal
of the conducted user test is the gathering of qualitative data and feedback regarding
the usability and understandability of the used design elements and visual metaphors.

6.2.1 Evaluation Process

The evaluation process can be split up into the following steps:

• Introduction: The test person is introduced to the topic and the test procedure.

• User test: The test person can explore the user interface and has to solve a list
of defined tasks.

• Final interview: The test person is asked about his overall impression and in
particular about potential issues and improvement ideas.

At first the user receives a brief introduction into information visualization in general
and particularly visualization of set-typed data. In addition, the user learns about the
motivational aspects of this work and the problem description. This introduction also
includes a very concise summary of previous work in this field and the goal of this thesis.
The user is also informed about the purpose of the evaluation and his role during the
test procedure. Subsequently he is familiarized with the prototype’s user interface.

In the next step the actual user test is performed. During this phase the screen and
audio are recorded. A list of tasks (see appendix) is given to the test subject. While the
user tries to solve each of these tasks the ‘Thinking Aloud’ method is applied, i.e., the
test person is asked to share his thoughts and impressions during the test. The order in

67

6. Evaluation

which the tasks are completed is irrelevant since the tasks are independent of each other.
Besides, there are no time constraints for solving the tasks which allows the test subject
to take as much time as needed.

Finally a short interview is conducted whose aim is to question the user about his over-
all impression of the prototype. Moreover the test subject is asked about improvement
ideas and any problems the user might have discovered during the evaluation process.

6.2.2 Equipment and Test Data

All tests were performed on the same notebook running Mac OS 10.11.3 as operating
system. As testing environment Chrome version 47.0 was used. In the interest of read-
ability the notebook was connected to a 24 inch external monitor. For screen capturing
QuickTime Player version 10.4 was used. Audio was recorded with a smart phone.

In order to be able to test the developed prototype’s effectiveness and its intuitiveness,
preferably test data from real world scenarios should be used. For all tasks listed in the
appendix the Countries Exports [Com] dataset which has been introduced in Section 5.2
has been used. This dataset comprises both a large number of elements and sets and it
is best suited to demonstrate Scets’ effectiveness among the available datasets.

6.3 Results

As the developed prototype does not focus on a particular domain, the test users do
not necessarily have to be domain experts either. However, test subjects who have ba-
sic knowledge of mathematics and understanding for usability of software interfaces are
well-suited. Thus, I decided to select three persons from my personal environment.

The first test subject (S1) was a male 29-year-old computer science student who has
been working as a software developer for several years and is well-experienced in the
field of visualizations. Both, his educational background and his professional experience
qualified him as a suitable test subject.
The second test subject (S2) was a male 35-year-old former software developer who is
working as an IT project manager today. He holds a degree in business administration
with specialization in business informatics and has developed and evaluated various vi-
sualizations during his professional career.
The third test subject (S3) was a female 28-year-old management student working as
competitor and market analyst for an international insurance company. She has basic
experience with visualizations which she mostly gained during her studies.

68

6.3. Results

The total time spent on the evaluation was about 60 minutes per person, of which
approximately 20 minutes were spent on the introduction and a quick demonstration of
the prototype’s user interface. The actual user test took about 40 minutes.

6.3.1 User Test

Following the introduction, each test subject was asked to solve eight tasks in order to
evaluate the usability of the prototype as well as the understandability of the visual
metaphors and encodings in use. The user test has shown, that the overall usability is
very good and most of the tasks could have been solved within reasonable time. The
results as well as minor usability issues which could have been identified during the test
are discussed in the following.

In the first task the user simply had to identify the highest element degree of the set
Nigeria. The primary goal of this task was to verify if the user has understood the
visual metaphor of sets, aggregates and subsets as well as the encoding of quantity. By
expanding the last bin and trying to identify the bottommost subset in the relevant set,
S1’s approach was absolutely correct. However, he could not identify the correct subset
which would have been the subset of degree 68. Instead, the user’s answer was 62. This
wrong answer was very likely due to color encoding. Since the relevant subset includes
only a single element, it is brightly colored. This and a set’s light background color make
it hard for users to identify such subsets without moving the mouse over. In addition,
sometimes subset tooltip’s don’t show up immediately since the mouse is not exactly
placed over a subset or moved away too fast.
Test subject S2 expanded the last bin and could quickly identify degree 68 by hovering
over the corresponding subset. However, he also pointed out that bright subsets are
hard to identify.
At first, user S3 had some problems understanding this task as she was not familiar with
the used terminology (sets, elements, degrees, etc.). After a more detailed explanation,
she understood the visual metaphor and could solve this task by herself.

Another problem occurred during the second task, which required the user to identify at
least one product which is exported by exactly five countries. Again, S1 approached the
task in the correct way as he expanded the first bin and searched for subsets of degree
5. As he moved the mouse away from the bin labels, he lost track of the relevant row
for a moment and had to start over by placing the mouse to the correct degree label
again. In the end he managed to solve this task by identifying one product of degree 5
as he received the necessary information from tooltips while he moved the mouse along
subsets.
First S2 expanded the first bin and tried to find an element of degree 5 in Austria. He
noted that Austria does not contain such a subset and moved on until he found a set
which contained the requested subset. By selecting the corresponding subset he identi-
fied the element ‘206-Cobalt ores and concentrates’. S3 could solve this task instantly

69

6. Evaluation

without any issues and came to the same conclusion as test subject S2 by selecting the
subset of degree 5 in the Congo.
It can be concluded that tooltips offer an intuitive way to provide additional information.

When asked to identify the set which contains the most unique elements, the task had
to be explained more detailed as the meaning of the term ‘most unique elements’ was
not clear to the first test subject (S1). Test subjects S2 and S3 also had difficulties in
understanding the term ‘most unique elements’ as they confused it with a set’s distinc-
tiveness. After rephrasing this task, all test subjects could quickly solve this task by
identifying Japan as the correct answer.

Identifying all sets that include the element ‘616-Tin pipes or tubes and pipe fittings’
as well as the element’s degree was quickly achieved by the three test subjects. All of
them instantly used the search input field to solve this task which proves that they fully
understood the purpose of this user interface element. S1 and S2 identified the sets that
were searched for by means of the element view, S3 used the matrix view in order to
identify the highlighted set names.

Task 5 which was originally intended to be solved by using the bin configurator in order
to change the bin settings, was approached in a different way by all test users. Instead
of creating a new bin [5-5] which would have visually isolated the target degree, the test
subjects did not modify the default bins but used the overview in combination with the
expanding bin feature to explore the data. It seemed that the test subjects were not
aware of the binning view and its purpose as this feature might not have been explained
in greater depth in the beginning. Another reason for not using the binning view might
be that the users decided to rather resort to well-known practices which have proved
to be successful in previous tasks than trying a different approach. Nevertheless, this
task was solved by all test subjects. While users S1 and S2 identified United States
and Sweden, S3 reported United States and United Kingdom as the result. One in-
teresting observation made during this task was that S1 independently recognized the
visual metaphor of blue colored arcs which represents the portion of elements shared
between a subset and the current selection. He pointed this understanding out as he
drilled down into the expanded bin and investigated the data by selecting several subsets.
This shows that the used visual metaphor was intuitively understood by the test subject.

The final three tasks were used to check if the test user had understood the concept of
distinctiveness. Furthermore, these tasks also test if the sorting feature can be applied
correctly by the user. The user test has shown that the concept of distinctiveness,
i.e., the meaning of the color gradient, as well as the related sort method seemed to
be well understood by all test subjects as they were able to quickly identify the most
competitive country and compare two countries in terms of distinctiveness. Also, the
three test persons were able to dig deeper and find out how many products exported

70

6.3. Results

by the most competitive country are also shared with less than 15 other countries. In
this regard it is noteworthy to mention that S3 calculated the sum of all bins instead of
hovering over the set’s name label. In the last task which required the user to identify
the least competitive country and report the number of elements shared with 19 other
sets, S1 and S3 were also able to identify and exclude empty sets immediately and
named Guinea as the solution to this task. S2 first reported South Sudan as the least
competitive country. Later he realized with the help of tooltips that this country does
not export any goods at all. Eventually, S2 reported Guinea as the least competitive
country with 31 exported products in a total.

6.3.2 Interview

The concluding interview was conducted after the user finished all tasks. First, the test
subjects were asked about their overall impression of the prototype. All subjects stated
that they were very pleased with the user interface and they noted that the used visual
encodings are intuitive and understandable. Moreover test subjects S1 and S3 remarked
that a more detailed introduction would have helped to avoid any misunderstanding. As
an example, S1 mentioned that he sometimes confused the expression ‘shared with 4
other sets’ with degree 4 instead of degree 5. S3 stated that she was a little over-
whelmed with the used terminology in the beginning due to her lack of experience in
that field.

Next the test subjects were asked about their opinion concerning the advantages of the
developed prototype and any usability issues they might have discovered during the user
test. S1 and S3 pointed out that the visual representation of sets and elements was very
suitable. Furthermore, S3 noted that the interaction methods such as tooltips and the
possibility of expanding bins were very intuitive. Besides, S1 and S2 were impressed by
the number of sets which were visualized in the test data and they could think of even
a larger number of sets being depicted without compromising on usability.
As for usability issues, all three test subjects brought up that some colors were too bright,
in particular those which encode a small amount of elements. Especially when brightly
colored subsets are displayed on a set’s white background recognizing these subsets may
be problematic. As a result, S1 suggested to either change a set’s background color or
to use darker colors for quantity encoding in order to increase the contrast. S2 came
up with a similar suggestion but recommended to change a set’s background color only
when the user moves the cursor over it.

Finally the test users were asked if they could think of any ideas to improve the usability
of the system. One improvement idea S1 reported is to implement a so called ‘sticky
header’. This means that the elements located in the control panel always remain in
view at the top of the page even when the user scrolls down. Thus, users can always
access the control elements without having to scroll all the way back up to the top to
select a different filter method or remove the current selection for instance. This is a

71

6. Evaluation

common practice in web development which improves user experience a lot. In addition,
S1 noted that the sort menu could also be improved in the sense that the label always
states the selected sort method instead of a static text. As an example, when switching to
alphabetical sorting, the text would change to ‘Name (A-Z)’. This way, users will always
be aware of the active sort method. S2 did not report any additional improvement ideas
besides changing a set’s background color. S3 noted that she would have preferred full
set names to be displayed instead of abbreviations.

6.3.3 Summary

The evaluation has shown that the prototype’s user interface and the visual represen-
tation of element-set memberships was intuitive and comprehensible. Even though the
users were no domain experts, they quickly got a main understanding of the visual map-
pings and the main concepts. After a brief introduction all test subjects were able to
successfully solve all of the given tasks.
The test subjects S1 and S3 especially liked the overview and the possibility to view
data in greater detail by expanding bins. In addition, the different sort methods as well
as tooltips were used extensively by all test users for solving several tasks which suggests
that these interaction possibilities were well understandable. Both the user test and the
concluding interview have shown that encoding quantity by using colors seemed very
intuitive. However, all test users considered subsets which encode low quantity being
colored too brightly as they don’t stand out from a set’s background clearly. This makes
it harder for users to identify those subsets. Moreover, the purpose of the bin configu-
rator seemed not quite obvious to all test users as they didn’t make use of this feature
and maintained the default bin configuration instead. This can be attributed to the
short introduction which did not cover this topic in sufficient detail. Besides, the test
subjects reported a few minor usability issues and provided valuable input for further
improvements.

72

CHAPTER 7
Discussion and Future Work

7.1 Discussion
The developed prototype and the evaluation have shown that a visualization technique
which combines features from both matrix-based and aggregation-based approaches is on
the one hand very suitable for representing aggregates of set elements and on the other
hand scales well with an increasing number of elements and sets respectively (research
question RQ1 of Section 1.2). By applying Ben Shneiderman’s information seeking
mantra, the visualization offers an abstracted overview but also enables users to drill
down into details. The employed interaction possibilities support users in obtaining in-
depth insights into the data in order to reveal previously unrecognized patterns. With
the help of two different aggregation methods, the desired scalability in both the number
of elements and sets could have been obtained. Therefore the main research question was
answered by providing a novel visualization for set-typed data which solves scalability
issues with an increasing number of sets (resp. elements) by combining matrix-based
and aggregation-based techniques.

The possible number of sets which can be visualized with the novel visualization tech-
nique (research question RQ2) can be determined with the help of the provided usage
scenarios and the evaluation. The ‘countries exports’ data set which was used both in one
of the usage scenarios (see Section 5.2) and for the evaluation comprises approximately
200 sets and 1350 elements. By applying advanced aggregation from Section 3.1.2 and
arranging sets in a grid layout, the visualization technique could achieve the desired
scalability as the system could easily process and visualize the data.
Moreover, the system was also tested with an input file comprising 500 sets. Due to
the flexible matrix view and the dynamic formation of set groups this dataset could also
be visualized successfully. The result of this test is displayed in Figure 7.1. However,
with an increasing number of sets, the initial loading takes longer and does not increase

73

7. Discussion and Future Work

linearly. As an example, the loading time for 500 sets was approximately 65 seconds
compared to 19 seconds for 300 sets. Since there was no data available which involved
more than 500 sets, a data set including 550 sets was generated manually by duplication.
Loading this data set led to the web browser running out of memory. After about four
minutes the data was successfully loaded and visualized as shown in Figure 7.2. Despite
the large number of sets interaction such as expanding bins and selecting items was
possible without restriction.
Summing the above, tests have shown that data sets including up to 500 sets can be
loaded within a reasonable timeframe. Performance becomes the bottleneck when deal-
ing with datasets which include more than 500 sets. The main cause and possible
improvements are described in Section 7.2. Apart from this, no further limiting factors
could be identified. Depending on the user’s screen size and the number of depicted sets,
vertical scrolling is inevitable at some point. Nevertheless, the number of bins can be
reduced manually anytime. As a result, the overview becomes more compact but the
level of detail decreases in turn.

Figure 7.1: 500 sets visualized in Scets

Considering the evaluation, the introduced design and the employed visual mappings
turned out to be intuitive and understandable (research question RQ3). The test sub-
jects got intuitively familiar with the user interface and could easily solve all tasks.
Furthermore, they easily understood the grouping of elements by degree as well as the
aggregation of degrees into bins. The novel visual representation of set-typed data is
especially useful as it enables users to get a detailed overview of the data and to perform

74

7.2. Future Work

Figure 7.2: 550 sets visualized in Scets

basic tasks but also to inspect the data in greater detail in the same view. Moreover, the
ranking feature and an interactive element search support users in the investigation pro-
cess. Thus, the developed technique is a suitable approach for visualizing and analyzing
set-typed data. However, some minor usability issues could be identified during the user
test and the conducted interview, which provide opportunities for further improvements
(see Section 7.2).
The usage scenarios described in Chapter 5 have demonstrated how the visualization can
be used in order to visualize and explore real-world data. In Section 5.2 the visualization
technique has proved to be useful when economic data which includes a large number of
sets needs to be visualized and analyzed. In this regard, the distinctiveness ratio which
corresponds to the average degree of a given set turned out to be very valuable as it
helped to learn more about the data, such as which countries are more competitive than
others and what are the unique products they export.

7.2 Future Work

During research and the evaluation of the prototype several suggestions were offered up
for improving the prototype. These ideas are listed in the following:

75

7. Discussion and Future Work

• Manual binning view: The binning view allows users to modify the total number
of bins and their ranges. For now users can change these settings through text
inputs. As a UI improvement, range sliders can be used instead of input fields.
The idea is to display slides vertically aligned to the bars of the degree histogram.
Each slider corresponds to a particular bin and ranges from the first degree bar
to the last degree bar of a given bin. This indicates a relationship between the
degree histogram and the bin ranges and clearly visualizes which degrees belong
to a particular bin. By increasing the total number of bins, a new bin could be
added at the end. Decreasing the number of bins would remove the last bin. As an
alternative, control elements for adding and removing bins could be added between
range sliders. Figure 7.3 shows a mockup of the revised binning view.

Figure 7.3: A mockup of the revised binning view uses range sliders instead of text input
fields.

• Performance: At the moment there is one main bottleneck in terms of perfor-
mance, which is the createFullGrid method. This method creates a grid, i.e., a
two-dimensional array, with each cell containing an array of elements. This way,
grid data can be tied to DOM elements in the further course of the visualization
process. Due to nested loops, performance is adversely affected. As an example, it
takes about 13 seconds in total to load and visualize the country exports dataset
from Section 5.2. Of this, approximately 11 seconds are required by the createFull-
Grid method. One way to improve performance would be to avoid the computation
of objects and use simple IDs instead. When binding data to DOM elements a map
of IDs to objects could be used instead.

• Tooltips: Tooltips are used in many scenarios since they are very intuitive way
to display additional information as described in Section 3.2.4. One of the main

76

7.2. Future Work

challenges when using tooltips is to determine its placement. In Scets tooltips are
always placed above the triggering element. This is especially problematic when
the corresponding element is located close to the screen border and the tooltip
displays a lot of information. Thus, parts of the tooltip won’t be visible as they
are cut off. To avoid this, tooltip position needs to be determined based on the
tooltip’s width and the element’s location. The tooltip in Figure 7.4 would be
better placed on the right-hand side of the corresponding aggregate. This way, the
entire content can be displayed.

Figure 7.4: An aggregate’s tooltip extends beyond the edge of the screen.

• File parser: As already noted in Section 3.3 there are some restrictions regarding
the file structure when a CSV files is uploaded and parsed. Currently only files are
supported which have sets represented as columns and elements as rows. Ideally
this restriction should be removed. An additional setting in the description file
could be added which indicates how sets and elements are arranged in the CSV
file. Thereby the preprocessing task of transposing the matrix won’t be necessary
anymore which increases usability and reduces the overhead of using third party
tools or scripts.

• Element view: By extending the data table in the element view with the possi-
bility to sort by each column users will be able to rearrange elements in the table.
In contrast to sorting of sets which is described in Section 3.2.7, this interaction
method enables users to sort elements of the current selection. Like sorting of sets,
it can also be classified as ‘Reconfiguration’ [YKSJ07]. A best practice method is
to highlight the selected column name and to add little arrows next to the column
title which indicate the sort direction, i.e., ascending or descending. Clicking on
a column title changes to sort method. Multiple clicks on the same column title
toggle between ascending and descending.

77

CHAPTER 8
Summary and Conclusion

In information visualization (InfoVis) set-typed data is mainly used to represent mem-
berships between sets and elements. Existing visualization techniques often face the
problem of scalability, i.e., they only scale to a small number of sets. The goal of this
work was to develop a visualization for set-typed data which scales well with both a large
number of sets and and large number of elements. This required investigating different
alternatives for the visual design and finding suitable visual mappings and encodings in
order to represent information in a meaningful way.

The desired scalability could be achieved by applying data aggregation methods and
by using a flexible matrix layout to visualize aggregated information. Data aggregation
turned out to be a very effective data reduction method for set-typed data. This is espe-
cially useful when large amounts of data need to be visualized. Thus, two aggregation
methods were used. First, individual elements are grouped based on their degree. Con-
sequently, data binning is used to reduce the number of depicted elements by grouping
degrees into bins.
The developed prototype1 consists of two interlinked views, the matrix view and the
element view. In the matrix view sets are arranged next to each other in a flexible grid
layout. A set contains one or more aggregates which are placed in bins. Each bin can
be expanded which displays the subsets located in the corresponding aggregate. Color
scales encodes the total number of elements placed in a subset resp. aggregate.
By applying the ‘Overview first, details on demand’ approach users are offered an ag-
gregated overview and can retrieved detailed information through user interaction. The
employed interaction possibilities, such as tooltips, enable users to explore the aggre-
gated information interactively and learn more about the data. By selecting aggregates
and subsets users can highlight specific items and distinguish data of interest from other

1The prototype is available at http://scets.sybdev.com

79

http://scets.sybdev.com

8. Summary and Conclusion

parts which get visually isolated. In addition to the matrix view, an element view was
implemented which shows detailed information about selected elements, such as name,
degree and the sets they belong to.
The prototype has been developed entirely with the help of modern web technologies,
including Javascript and the d3 framework. This makes it accessible to a large group of
users. In this regard it could be observed that client-side memory becomes a limiting
factor when the number of sets reaches a certain threshold which is expected to be at
around 500+ sets. This limitation leaves room for improvements in the future.

Two usage scenarios have demonstrated how the visualization can be used to visualize
real-world data and how it helped to reveal formerly unknown patterns. Furthermore,
an evaluation was performed which aimed at gathering qualitative data and identifying
possible usability issues. The user test has shown that the user interface was intuitive
and the used visual mappings and encodings were clearly understandable. Moreover, the
concluding interview also identified further improvement possibilities, such as revising
the color scale and implementing a control panel which always remains on top of the
page.

80

Appendix: User Tasks

This appendix lists the tasks, which were performed during the evaluation phase de-
scribed in Section 6.

Task 1

Task Description Identify the highest element degree in Nigeria.
Preconditions Countries exports data is loaded. The matrix view including

all sets, the element view and the control panel are rendered.
Result The user identifies the element degree by hovering over the bot-

tommost subset in this set.

Task 2

Task Description Identify at least one product which is exported by five countries
in total.

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user identifies a product of degree five.

Task 3

Task Description Find the set which has the most unique elements.
Preconditions Countries exports data is loaded. The matrix view including

all sets, the element view and the control panel are rendered.
Result The user identifies the set which has the most elements in subset

degree 1.

81

Task 4

Task Description Identify all sets, which include the element 616-Tin pipes or
tubes and pipe fittings and identify the element’s degree.

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user identifies all sets which include the element 616-Tin
pipes or tubes and pipe fittings as well as the element’s degree
by retrieving the information from the element table.

Task 5

Task Description Identify at least two sets which have more than two elements
shared with four other sets.

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user identifies subsets of two or more sets which have more
than two elements shared with four other sets and also reports
the number of elements for each of these subsets.

Task 6

Task Description Compare Japan and Austria in terms of their distinctiveness
and find out which country is more competitive than the other.

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user states whether Japan or Austria is more competitive.

Task 7

Task Description Determine the total number of products the most competitive
country exports. Also, identify how many of these are shared
with less than 15 other countries.

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user reports the overall number of products which is ex-
ported by the most competitive country. Moreover, the user
reports how many elements are shared with less than 15 other
countries.

82

Task 8

Task Description Report the number of elements of the least competitive country
shared with exactly 19 other sets

Preconditions Countries exports data is loaded. The matrix view including
all sets, the element view and the control panel are rendered.

Result The user identifies the least competitive country and the num-
ber of elements in this set shared with exactly 19 other sets.

83

Bibliography

[AAMH13] Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser. Radial
sets: Interactive visual analysis of large overlapping sets. IEEE Transac-
tions on Visualization and Computer Graphics, 19(12):2496–2505, 2013.

[ACD12] Julie Steele Alistair Croll and Mike Loukides. Edd Dumbill. Planning for
Big Data. O’Reilly, 2012.

[AMA+14] Bilal Alsallakh, Luana Micallef, Wolfgang Aigner, Helwig Hauser, Silvia
Miksch, and Peter Rodgers. Visualizing sets and set-typed data: state-of-
the-art and future challenges. In Eurographics Conference on Visualization,
2014.

[api] apidoc. http://apidocjs.com/. Accessed: 2016-03-13.

[ARRC11] B. Alper, N.H. Riche, G. Ramos, and Mary Czerwinski. Design study of
linesets, a novel set visualization technique. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2259–2267, Dec 2011.

[BH09] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for visu-
alization. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis),
2009.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven
documents. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis),
2011.

[boo] Bootstrap. http://www.getbootstrap.com. Accessed: 2016-03-13.

[col] Colorbrewer. http://github.com/mbostock/d3/tree/master/lib/colorbrewer.
Accessed: 2016-03-13.

[Com] Comtrade. Exports of countries by products. Accessed: 2016-03-13.

[CPC09] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set rela-
tions with isocontours over existing visualizations. Visualization and Com-
puter Graphics, IEEE Transactions on, 15(6):1009–1016, Nov 2009.

85

[csv] csv-parse. http://csv.adaltas.com/parse/. Accessed: 2016-03-13.

[d3t] d3-tip. http://github.com/Caged/d3-tip. Accessed: 2016-03-13.

[DE98] Alan Dix and Geoffrey Ellis. Starting simple: Adding value to static visu-
alisation through simple interaction. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces, AVI ’98, pages 124–134, New York,
NY, USA, 1998. ACM.

[Dew12] Mike Dewar. Getting Started with D3. O’Reilly, 2012.

[DRRD12] Marian Dörk, Nathalie Henry Riche, Gonzalo Ramos, and Susan Dumais.
Pivotpaths: Strolling through faceted information spaces. IEEE Transac-
tions on Visualization and Computer Graphics, 18(12):2709–2718, 2012.

[exp] Express.js. http://expressjs.com/. Accessed: 2016-03-13.

[Few09] Stephen Few. Now You See It: Simple Visualization Techniques for Quan-
titative Analysis. Analytics Press, USA, 1st edition, 2009.

[FMH08] Wolfgang Freiler, Krešimir Matković, and Helwig Hauser. Interactive vi-
sual analysis of set-typed data. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1340–1347, 2008.

[fon] Fontawesome. http://fortawesome.github.io/Font-Awesome/. Accessed:
2016-03-13.

[Gro] GroupLens. Movielens 100k data set. Accessed: 2016-03-13.

[gul] Gulp.js. http://gulpjs.com.

[her] Heroku. http://www.heroku.com/. Accessed: 2016-03-13.

[Hof00] Heike Hofmann. Exploring categorical data: interactive mosaic plots.
Metrika, 51(1):11–26, 2000.

[Jac12] Julie A. Jacko. Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies, and Emerging Applications, Third Edition. CRC
Press, Inc., Boca Raton, FL, USA, 3rd edition, 2012.

[jqua] Jquery. http://www.jquery.com. Accessed: 2016-03-13.

[jqub] Jquery form plugin. http://malsup.com/jquery/form/. Accessed: 2016-03-
13.

[jsd] Jsdoc. http://usejsdoc.org/. Accessed: 2016-03-13.

[KLS07] Bohyoung Kim, Bongshin Lee, and Jinwook Seo. Visualizing set concor-
dance with permutation matrices and fan diagrams. In Interacting with
Computers, 2007.

86

[LBI+12] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale. Empirical
studies in information visualization: Seven scenarios. IEEE Transactions
on Visualization and Computer Graphics, 18(9):1520–1536, 2012.

[Lew82] Clayton Lewis. Using the" thinking-aloud" method in cognitive interface
design. IBM TJ Watson Research Center, 1982.

[LGS+14] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and
Hanspeter Pfister. Upset: Visualization of intersecting sets. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12), 2014.

[MA14] Silvia Miksch and Wolfgang Aigner. A matter of time: Applying a data-
users-tasks design triangle to visual analytics of time-oriented data. Com-
puters & Graphics, Special Section on Visual Analytics, 38(C):286–290,
2014.

[Maz09] Riccardo Mazza. Introduction to Information Visualization. Springer Pub-
lishing Company, Incorporated, 1 edition, 2009.

[Mis06] Kazuo Misue. Drawing bipartite graphs as anchored maps. In Asia-Pacific
Symposium on Information Visualisation (APVIS) (2006), pages 169–177.
Australian Computer Society, Inc., 2006.

[mul] multer. http://github.com/expressjs/multer. Accessed: 2016-03-13.

[Mur13] Scott Murray. Interactive Data Visualization for the Web. O’Reilly, 2013.

[nod] Node.js. http://nodejs.org. Accessed: 2016-03-13.

[npm] npm. http://www.npmjs.com/. Accessed: 2016-03-13.

[Pla04] Catherine Plaisant. The challenge of information visualization evaluation.
In Proceedings of the Working Conference on Advanced Visual Interfaces,
AVI ’04, pages 109–116, New York, NY, USA, 2004. ACM.

[Sci] ScienceDaily. Big data, for better or worse: 90
of world’s data generated over last two years.
http://www.sciencedaily.com/releases/2013/05/130522085217.htm. Ac-
cessed: 2016-03-13.

[SGL08] John Stasko, Carsten Görg, and Zhicheng Liu. Jigsaw: Supporting inves-
tigative analysis through interactive visualization. Information Visualiza-
tion, 7(2):118–132, April 2008.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, VL ’96, pages 336–343, Washington, DC, USA, 1996.
IEEE Computer Society.

87

[SMDS14] R. Sadana, T. Major, A. Dove, and J. Stasko. Onset: A visualization tech-
nique for large-scale binary set data. Visualization and Computer Graphics,
IEEE Transactions on, 20(12):1993–2002, Dec 2014.

[und] Underscore.js. http://underscorejs.org. Accessed: 2016-03-13.

[vel] Velocity.js. http://julian.com/research/velocity. Accessed: 2016-03-13.

[Voi02] Robert Voigt. An Extended Scatterplot Matrix and Case Studies in Infor-
mation Visualization. Diplomarbeit, 2002.

[War13] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers Inc., 3 edition, 2013.

[WWW+11] Xiaowu Wang, Hanzhong Wang, Jun Wang, Rifei Sun, Jian Wu, Shengyi
Liu, Yinqi Bai, Jeong-Hwan Mun, Ian Bancroft, Feng Cheng, Sanwen
Huang, Xixiang Li, Wei Hua, Junyi Wang, Xiyin Wang, Michael Freel-
ing, J Chris Pires, Andrew H Paterson, Boulos Chalhoub, Bo Wang, Alice
Hayward, Andrew G Sharpe, Beom-Seok Park, Bernd Weisshaar, Binghang
Liu, Bo Li, Bo Liu, Chaobo Tong, Chi Song, Christopher Duran, Chunfang
Peng, Chunyu Geng, Chushin Koh, Chuyu Lin, David Edwards, Desheng
Mu, Di Shen, Eleni Soumpourou, Fei Li, Fiona Fraser, Gavin Conant, Gilles
Lassalle, Graham J King, Guusje Bonnema, Haibao Tang, Haiping Wang,
Harry Belcram, Heling Zhou, Hideki Hirakawa, Hiroshi Abe, Hui Guo, Hui
Wang, Huizhe Jin, Isobel A P Parkin, Jacqueline Batley, Jeong-Sun Kim,
Jeremy Just, Jianwen Li, Jiaohui Xu, Jie Deng, Jin A Kim, Jingping Li,
Jingyin Yu, Jinling Meng, Jinpeng Wang, Jiumeng Min, Julie Poulain, Kat-
sunori Hatakeyama, Kui Wu, Li Wang, Lu Fang, Martin Trick, Matthew G
Links, Meixia Zhao, Mina Jin, Nirala Ramchiary, Nizar Drou, Paul J Berk-
man, Qingle Cai, Quanfei Huang, Ruiqiang Li, Satoshi Tabata, Shifeng
Cheng, Shu Zhang, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong
Sun, Soo-Jin Kwon, Su-Ryun Choi, Tae-Ho Lee, Wei Fan, Xiang Zhao,
Xu Tan, Xun Xu, Yan Wang, Yang Qiu, Ye Yin, Yingrui Li, Yongchen Du,
Yongcui Liao, Yongpyo Lim, Yoshihiro Narusaka, Yupeng Wang, Zhenyi
Wang, Zhenyu Li, Zhiwen Wang, Zhiyong Xiong, and Zhonghua Zhang.
The genome of the mesopolyploid crop species brassica rapa. Nat Genet,
43(10):1035–1039, 10 2011.

[YEB16] M. A. Yalcin, N. Elmqvist, and B. B. Bederson. Aggreset: Rich and scal-
able set exploration using visualizations of element aggregations. IEEE
Transactions on Visualization and Computer Graphics, 22(1):688–697, Jan
2016.

[YKSJ07] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie Jacko. Toward a deeper
understanding of the role of interaction in information visualization. IEEE

88

Transactions on Visualization and Computer Graphics, 13(6):1224–1231,
November 2007.

[zon] Zonu. http://www.zonu.com/images/0X0/2009-11-19-11185/The-
languages-of-Europe.png. Accessed: 2016-03-13.

89

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation and Problem Definition
	Research Questions
	Methodological Approach
	Structure of the Thesis

	Related Work
	Euler and Venn Diagrams
	Aggregation-based set visualization techniques
	Matrix-based set visualization techniques
	Other Techniques
	Summary

	The Scets Visualization Technique
	Visual Design
	Interaction Design
	Selecting and uploading data samples
	Task Support

	Implementation
	Technology Fundamentals
	Project Structure
	Setup & Build Process
	Server & API
	Frontend

	Use Cases
	Movie Genres
	Countries Exports

	Evaluation
	InfoVis Evaluation Techniques
	Evaluation Method
	Results

	Discussion and Future Work
	Discussion
	Future Work

	Summary and Conclusion
	Appendix: User Tasks
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8

	Bibliography

