
8WLOL]LQJ 9LVXDO 0HWKRGV WR
*HQHUDWH 6\QWKHWLF 7LPH�2ULHQWHG

'DWD

',3/20$5%(,7

]XU (UODQJXQJ GHV DNDGHPLVFKHQ *UDGHV

'LSORP�,QJHQLHXU

LP 5DKPHQ GHV 6WXGLXPV

:LUWVFKDIWVLQIRUPDWLN

HLQJHUHLFKW YRQ

6WHIDQ :HLVHU
0DWULNHOQXPPHU �������

DQ GHU)DNXOWlW I�U ,QIRUPDWLN
GHU 7HFKQLVFKHQ 8QLYHUVLWlW :LHQ

%HWUHXXQJ
%HWUHXHU�LQ� 8QLY�3URI� 0DJ�UHU�VRF�RHF� 'U�UHU�VRF�RHF� 6LOYLD 0LNVFK
0LWZLUNXQJ� 0DJ� $OH[DQGHU 5LQG

:LHQ� ����������

BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB

8QWHUVFKULIW 9HUIDVVHU�LQ 8QWHUVFKULIW %HWUHXHU�LQ

7HFKQLVFKH 8QLYHUVLWlW :LHQ
.DUOVSODW] �� _ ���� :LHQ _ ������������� _ ZZZ�WXZLHQ�DW

8WLOL]LQJ 9LVXDO 0HWKRGV WR
*HQHUDWH 6\QWKHWLF 7LPH�2ULHQWHG

'DWD

0$67(5µ6 7+(6,6

VXEPLWWHG LQ SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI

'LSORP�,QJHQLHXU

LQ

%XVLQHVV ,QIRUPDWLFV

E\

6WHIDQ :HLVHU
5HJLVWUDWLRQ 1XPEHU �������

WR WKH)DFXOW\ RI ,QIRUPDWLFV
DW WKH 78 :LHQ

$GYLVRU� 8QLY�3URI� 0DJ�UHU�VRF�RHF� 'U�UHU�VRF�RHF� 6LOYLD 0LNVFK
$VVLVWDQFH� 0DJ� $OH[DQGHU 5LQG

9LHQQD� ��WK $SULO� ����

BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB

6LJQDWXUH RI $XWKRU 6LJQDWXUH RI $GYLVRU

7HFKQLVFKH 8QLYHUVLWlW :LHQ
.DUOVSODW] �� _ ���� :LHQ _ ������������� _ ZZZ�WXZLHQ�DW

Erklärung zur Verfassung der Arbeit

Stefan Weiser

Adelheid-Popp-Gasse 5/6/19, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I want to thank my supervisor Alexander Rind who supported me during the whole time. He

guided me through all necessary steps and gave me helpful feedback during the implementation

and the writing part. Additionally he took over the part for the expert inspection, which was

essential for the evaluation part.

Furthermore, I would like to thank my colleagues Lukas Mad and Alexander Jakovljevic who

participated in the user study. They spent their leisure time for the evaluation of the implemented

prototype.

Finally I want to mention my parents who supported me during my whole study, and my

wife who always was sympathetic about me.

iii

Abstract

The visualization of time-oriented data is an essential part for analysis, which is solved by soft-

ware applications in today’s digital age. The graphical preparation of time-oriented data is ad-

ditionally a difficult task, because time is a complex variable. Visualization techniques try to

prepare time-oriented data in a graphical way to identify specific patterns and structures. For the

development of such techniques sample data is required, which is used for testing and demon-

stration. Data can be obtained from various sources, in which real data is not always available,

e.g. due to legal issues. In such cases synthetic data can be used.

Synthetic data is produced by data generators. There exist several generator, in which most

are not specialized in time-oriented data. Even fewer generator are able to visualize the data

they generated. In order to close this gap this master thesis presents a software design, which is

able to generate time-oriented data in a visual way. Data will no longer be generated first and

then visualized, data is generated directly from visualization.

This master thesis describes a software design which is able to generate time-oriented data

with visual aspects. An additional aim is to provide a design, which is good enough for both

expert and non-expert, so they can work with a corresponding implementation. This design is

represented by a prototype, which is also used for the evaluation. An expert and two users, who

are not experts on time-oriented data, use the prototype and generate specific data sets.

v

Kurzfassung

Die Visualisierung zeitorientierter Daten ist ein wichtiger Bestandteil zur Analyse und Aufberei-

tung, um große Menge von Daten leichter zu erfassen und überblicken zu können. Die grafische

Aufbereitung zeitorientierter Daten ist zusätzlich eine schwierige Aufgabe, da die Zeit eine kom-

plexe Variable darstellt. Visualisierungs-Techniken versuchen zeitorientierte Daten graphisch

aufzubereiten, um spezifische Muster und Strukturen erkennen zu lassen. Für die Entwicklung

solcher Techniken sind Beispiel-Daten notwendig, um neu entwickelte Techniken zu testen, aber

auch präsentieren zu können. Hierfür können Daten aus verschiedenen Quellen bezogen werden,

wobei nicht für alle Szenarien reale Daten verfügbar sind, z.B. aus rechtlichen Gründen. In sol-

chen Fällen können künstliche Datensätze aushelfen.

Künstliche Daten werden von Daten-Generatoren erzeugt. Es gibt verschiedene solche Ge-

neratoren, wobei die meisten nicht auf zeitorientierte Daten spezialisiert sind. Noch weniger

Generatoren sind in der Lage die generierten Daten auch zu visualisieren. Um diese Lücke zu

schließen wird in dieser Diplomarbeit ein Software-Design präsentiert, welches in der Lage

ist, zeitorientierte Daten über visuelle Techniken erzeugen zu lassen. Daten werden nicht mehr

zuerst generiert und anschließend visuell präsentiert, die Daten werden direkt aus einer Visuali-

sierung erzeugt.

Diese Diplomarbeit beschreibt ein Software-Design, welches in der Lage ist zeitorientierte

Daten über Visualisierungstechniken zu generieren. Ein zusätzliches Ziel ist, dass das Design

sowohl für Experten/Expertinnen als auch für unerfahrene Benutzer/innen gut genug ist, sodass

diese mit einer entsprechenden Software-Implementierung arbeiten können. Das Design wird

durch Implementierung eines Prototypen evaluiert. Ein Experte und weitere zwei Benutzer/-

innen, welche keine Experten/Expertinnen für zeitorientierte Daten sind, haben den Prototypen

verwendet und spezifische Datensätze erzeugt.

vii

Contents

1 Introduction 1

1.1 General Introduction . 1

1.2 Background and Motivation . 2

1.3 Research Question . 2

1.3.1 Main Research Question . 2

1.3.2 Sub Research Question . 2

1.4 Research Methodology . 3

1.5 Structure of the Thesis . 3

2 State of the Art 5

2.1 Time and Time-Oriented Data . 5

2.1.1 Characterization of Time . 6

2.1.2 Time and computer systems . 6

2.1.3 The Relation between Time and Data 7

2.2 Visualization . 7

2.2.1 Visualization of Time . 10

2.2.2 Techniques . 10

2.2.3 Line & Cycle Plot . 12

2.2.4 Effects and Dynamic . 12

2.3 Frameworks and Libraries for Visualizing Time-Oriented Data 13

2.4 Generation of Data . 15

2.4.1 Test Data Sets . 15

2.5 Data Generators . 15

2.6 User Interface (UI) Design . 18

2.6.1 Guidelines in Usability . 18

2.6.2 GUI Design Patterns . 19

2.6.3 User-Centered Design (UCD) . 19

2.6.4 User Input via Sketching . 20

2.7 Evaluation . 20

2.7.1 User Study Techniques . 21

2.7.1.1 Contextual Field Research 21

2.7.1.2 Intensive Interviewing . 21

2.7.1.3 Usability Testing . 21

ix

2.7.1.4 Lag Sequential Analysis . 21

2.7.1.5 Expert Inspection . 21

2.7.1.6 Usage Scenarios . 22

2.7.2 Validation on a nested model by Tamara Munzner 22

2.8 Reflection . 22

3 Methodology 25

3.1 Requirement Analysis . 25

3.2 Software Design . 25

3.3 Implementation of a Prototype . 26

3.4 Evaluation . 26

3.4.1 User Study of the Prototype . 26

3.4.1.1 Tasks for Usability Test . 27

Task 1: Simple dataset for one year. 27

Task 2: Simple dataset for one year with drawing feature 27

Task 3: Seasonal trend on days of week 28

Task 4: Level of booking in combination with the temperature . 28

3.4.1.2 Interviews . 28

3.4.1.3 Usage Scenarios . 29

3.5 Summary . 29

4 Requirement Analysis for visual data generation 31

4.1 Generation of time-oriented data . 32

4.2 Visual approach for parameter definitions . 32

4.3 Usage of TimeBench library . 32

4.4 Usability . 33

4.5 Summary . 33

5 Design of a Data Generator using Visual Methods 35

5.1 Basic Structure . 35

5.2 Interaction with Visual Techniques . 37

5.3 Value Ranges . 37

5.3.1 Drawing of Value Ranges . 38

5.4 Variable Definition . 38

5.4.1 Linear time line . 40

5.4.2 Time cycle . 40

5.5 Generation process . 43

5.6 Representation of generated data . 43

5.7 Summary . 44

6 Design Evaluation 45

6.1 Usage Scenarios . 45

6.1.1 Preparation of the Scale Factor . 46

6.1.2 Drawing the Expected Trend . 47

x

6.1.3 Fine Tuning of the Value Ranges . 47

6.1.4 Export of the Generated Data Set . 48

6.1.5 Multiple Variables . 48

6.1.6 Usage of the Cycle Plot . 52

6.2 Expert Inspection . 54

6.2.1 Questions, Usability Issues and Problems 55

6.2.1.1 Clearness and the Goal . 55

6.2.1.2 Intuitiveness & Recognition 55

6.2.1.3 Simplicity . 55

6.2.1.4 Mouse Interactions . 56

6.2.1.5 Quick Result & Little Effort 56

6.2.1.6 Drawing . 56

6.2.1.7 Error Tolerance . 57

6.2.1.8 Usefulness & Efficiency . 57

6.2.2 Session state . 57

6.2.3 Quick Result . 58

6.2.4 Undo & Redo . 58

6.2.5 Text Fields for Upper and Lower Limit 58

6.2.6 Handling of Value Sectors in the Line Plot 58

6.2.7 Handling of Value Sectors in the Cycle Plot 59

6.2.8 Labeling and Formatting . 61

6.2.9 Value Precision . 61

6.2.10 Inconsistency . 62

6.2.11 Conclusion of the Expert . 62

6.3 User Study . 62

6.3.1 1. Participant: Student of Business Informatics 62

6.3.2 2. Participant: Professional Software Developer for an Insurance Company 70

6.3.3 Findings from the User Study . 78

6.3.3.1 Paint Functionality . 78

6.3.3.2 Value Ranges . 78

6.3.3.3 Cycle Plot . 80

6.3.3.4 Show and Hide Configuration Parts 81

6.3.3.5 Missing Help and Tool Tips 81

6.3.3.6 Handling of Multiple Variables 82

6.4 Discussion . 82

7 Conclusion 83

7.1 Main Research Question . 83

7.2 Sub Research Question . 84

7.3 Reflection . 85

8 Future Work 87

8.1 Additional Visualization Techniques . 87

8.2 Generative Data Models . 87

xi

8.3 Persist Data Configuration Settings . 88

8.4 Further Inspection of Drawing Feature . 88

8.5 Value Range Definition . 88

8.6 Plug-in Mechanism . 89

8.7 User Study with Larger Set of Experts and Non-Experts 89

Bibliography 91

xii

CHAPTER 1
Introduction

1.1 General Introduction

Time as a physical dimension has been researched for hundreds of years from many different

popular and less popular scientists. Albert Einstein (14. March 1879 in Ulm; † 18. April

1955 in Princeton, New Jersey), one of the most famous physicist, was working on time and its

properties. He studied this subject in detail and at the end he defined the theory of relativity [12].

This history shows the importance of time and its properties.

Time itself is much more complex than simple numbers. It has many different forms of

scale-factors (seconds in minutes, hours a day, etc.) and even such a scale-factor is not regular

(the number of days in a month). So time in combination with data (time-oriented data) requires

special treatment, because of the factor “time”.

The treatment with time-oriented data is not easy and requires software solutions, which are

able to analyze and visualize data and the aspect of time in an easy way. For this task software

applications and frameworks (e.g., TimeBench [54]) have been developed, which facilitate the

work with such data. The implementation of such software solutions dealing time-oriented data

is dependent to sample data, which is required for testing and demonstrating the features of the

software.

Sample data is essential in many different areas like software engineering, statistics or

medicine. It is possible to use real data, which gets collected from records of the real world.

But this kind of data could be expensive or cannot be used due to its secrecy. Additionally, it

could be possible that specific data constellations are not available, because they do not exist.

Theoretical scenarios cannot be analyzed with only real data.

Another way to get sample data is the generation of it. Synthetic data is produced by data

generators, which are often used for software development. Such data needs to be prepared in

standard formats, so that other applications are able to read and process the generated output.

Preparing such data by hand requires heavily much time, time which can be spent on higher

valuable tasks. An advanced solution for this problem is a data generator producing sample data,

which is able to deal with the aspect of time and to configure the input parameters graphically.

1

Without such a data generator the development of applications dealing with time-oriented

data slows down due to missing data for development and representation of the functionality. It

is not possible to test the functionalities of the software in detail. Errors and bugs will not be

found and the quality of software solutions is reduced. So it is essential that time-oriented data

is provided.

1.2 Background and Motivation

Many data generators for different fields exist and are able to produce sample data. It is possible

to receive such data from the internet or by applications. Often the input of the user is done via a

simple command shell. But it is also possible to define the input parameters on a graphical user

interface. A more advanced possibility is to define the input parameters graphically on a plot.

There already exist a variety of data generators, some of which have already graphical solu-

tions (see chapter 2.5). The user has the possibility to draw shapes and lines which the software

interprets as input for the generation process. Afterwards, the user can directly see the gener-

ated data visualized on the display. The feature sets of these generators contain graphical input

definition but they are not able to deal with time-oriented data and its specific characteristics.

Seasonal trends and time loops can not be defined quick and easy.

This master thesis close this gap and provide a software design which uses similar visual

feature sets to generate time-oriented data.

1.3 Research Question

This thesis defines a main research question and a sub research question.

1.3.1 Main Research Question

What is an appropriate solution to create synthetic time-oriented data by using visualization

techniques for input parametrization?

The answer of this research question will be given after the evaluation of the software design.

The software design requires an prototypical implementation, used for the evaluation phase. This

prototype will be a data generator with a graphical user interface. The generated data has a direct

link to the time, so this prototype will produce time-oriented data. The input parameters will be

defined graphically on a plot, i.e. the user is able to define value ranges directly on a graph.

1.3.2 Sub Research Question

What is an appropriate solution to draft a user interface design that experts and non-experts in

time-oriented data are able to work, independent to introduction and user manuals?

This question will be answered after the informal user study within the evaluation phase.

This user study contains of one expert on time-oriented data and two non-experts. Each person

gets a set of predefined tasks and should solve it without a detailed manual or workshop.

2

1.4 Research Methodology

The research questions are intended to be answered by doing the following tasks:

• Literature research of existing data generation approaches, especially using visualization

techniques and producing time-oriented data.

• Selection of valuable methods to evaluate the implemented prototype, so that the prede-

fined research questions can be answered.

• Implementation of the prototype, creating synthetic time-oriented data by using visualiza-

tion techniques for input parametrization.

• Evaluation of the implemented prototype by using predefined evaluation methods.

• Answering the two research questions based on done evaluation of the prototype.

1.5 Structure of the Thesis

After the introduction this master thesis starts with the state of the art, containing and present-

ing existing theories, solutions, and designs dealing with visualization of time-oriented data and

the generation of synthetic data. Afterwards, the methodology describes the techniques and

methods, which are used to research and answer the research questions. The next chapter de-

scribes the design of the data generator, which uses visual methods to generate time-oriented

data. Then the design evaluation describes the evaluations and its results, which are based on

an implemented prototype. At the end of this thesis both research questions are answered in the

conclusion. The potential future work of this master thesis is described in the last chapter.

3

CHAPTER 2
State of the Art

This section deals with previous work in the different fields of visualization of time-oriented

data and data generation. The first part describes time as physical size and time-oriented data.

After that I will give an introduction of data visualization, especially of time-oriented data.

Furthermore, I will describe other existing technical tools and frameworks for the visualization

of time-oriented data. Previous data generators will also be mentioned. At the end of this section

I will present guidelines and patterns for user interface design.

2.1 Time and Time-Oriented Data

Time is a complex variable and has been investigated for ages. For cultures around the world

time influenced their daily life (e.g. rainy or dry season, harvest time, etc.). Time is important

in many different fields of science, like philosophy, geology, mathematics or astronomy. The

variety of different disciplines, where time is investigated, describes the significance of time and

that time has an important status in our daily life.

Isaac Newton (25. December 1642 in Woolsthorpe-by-Colsterworth in Lincolnshire, † 20.

March 1726 in Kensington) was an important philosopher and described the time as an absolute

size. In his book ”The mathematical principles of natural philosophy“ [45] he characterized time

as follows:

Absolute, true, and mathematical time, of itself, and from its own nature flows

equably without regard to any thing external, and by another name is called dura-

tion: relative, apparent, and common time, is sensible and external (whether accu-

rate or unequable) measure of duration by the means of motion, which is commonly

used instead of true time; such as an hour, a day, a month, a year. (Quote from [45],

Definitions, p. 9)

In contrast to Isaac Newton the physicist Albert Einstein (14. March 1879 in Ulm; † 18.

April 1955 in Princeton, New Jersey) described the time as a relative size, depending on each

5

individual. His publications about the theory of relativity [12] are significant up to the present

time. On the base of Isaac Newton and Albert Einstein science continued investigating into the

research of time.

2.1.1 Characterization of Time

Time as a complex variable in our lifetime is demonstrated and recorded on many different

clocks and calendars. Many different forms of clocks and calendar systems exist. One of the

most important calendar systems is the Julian calendar, which has been defined by Gaius Iulius

Caesar. It was the defining calendar system in Roman times and is close to our present system.

The Gregorian calendar was introduced by Pope Gregory XIII in 1582 and superseded the Julian

calendar, which is still up to date in the presence [39]. Several common computer systems are

working with the Gregorian calendar (e.g. the class GregorianCalendar1 in the programming

language Java).

The present time calculation around the world is a complex calculation out of years, months,

days and further scale-factors. But time is not equal on each place on earth. We introduced

time zones to line up our time to day and night. The main time zone is the Greenwich Time

in London, the prime meridian. Today we use atomic clocks to define the exact time on earth.

We try to define the time in relation from the earth to the sun. Because of the situation that the

revolution around the sun and the earth axis is not absolutely regular and has small deviations,

corrections to the time are done. So our time adapts to the astronomic conditions of the earth

and the sun. The International Earth Rotation and Reference Systems Service (IERS) is able

to measure the rotation of the earth and its parameters and arranges time corrections in form of

leap seconds.

2.1.2 Time and computer systems

Data and applications often require specific time stamps for operations and saving data. Even

the communication between different computer systems requires an exact time measurement.

Operating systems, programming languages and applications use different commands to get the

current system time. Depending on the technical implementation, they are able to define the

time more ore less detailed.

The Unix Time [61] is a time format, which has been defined for the Unix operating system

in 1969. It continuously counts the seconds since January 1st, 1970, which is also called the

”Epoch“. The period since this point of time is called the ”POSIX time“ [64]. On a 32-bit

system the time is countable till January 19th, 2038. On this date an overflow will occur. So

a newer time system is needed for this event. The 64-bit technology would be a solution, but

requires a migration of existing 32-bit applications, which are still working with the old Unix

Time system.

Microsoft Windows has a different calculation of time to the Unix Time. It calculates the

system time as own type, which contains year, month, day of week, day, hour, minute, second

1http://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html

accessed 2019-11-04

6

and millisecond. Additionally there exists the ”Windows Time“, which counts the number of

milliseconds since the last start of the system. It is a relict for the compatibility to the old 16-bit

Windows systems. The ”File Time“ is a 64-bit value. It defines the number of 100-nanosecond

intervals since January 1, 1601 (UTC) [43].

Other operating systems, programming languages and applications have their own functions

and structure for the definition of the current time. The epoch and range of the different time for-

mats vary and provide different functions and exactness (seconds, milliseconds, nanoseconds).

In the following the complexity for calculations of time varies, due to their technical implemen-

tation.

2.1.3 The Relation between Time and Data

Industry and science are collecting data for calculations and research. The more data is available

the more accurate predictions can be taken. In most cases the time is an essential size. Even the

time, when data was measured and collected, is recognized. With the help of such time-oriented

data it is possible to note historical records and to analyze these historical data sets. Out of the

results of the analysis it is possible to get new knowledge and to make decisions based on the

found knowledge.

As presented by Aigner et al. [4] the definition of time in data is different to the physical

dimension of time. It is not required that an exact time stamp is saved in combination with a

specific data set. It could be enough to save the exact date (year, month, day) without the exact

time or only a year or a century. Sometimes it is of interest not to save a point of time, but a

period. As it can be seen the context and the model, where time is used, is decisive. So it is

necessary that the model is best fitting to the data content and that the time as variable or param-

eter has a good scaling factor. Time can be categorized into different sections and subsections,

which provide different views, scaling-factors and other properties. These categorizations help

to distinguish between interesting and not interesting aspects of the time, as it is required for the

context and the model.

Figure 2.1 provides a detailed overview of a classification, as mentioned above. Explaining

all displayed types of classification would go beyond the scope. The most interesting parts for

this work are the factors arrangement and the number of variables.

• Arrangement distinguishes between linear and cyclic time. Linear time is easy and can be

visualized with a simple timeline. In contrast a cyclic time defines a reoccurring loop of

the time, e.g. a week or a month.

• Different variables can be observed along the time. Their correlation and dependence to

each other are of interest.

2.2 Visualization

Visualization is the graphical representation of any kind of data and phenomena. Especially the

visualization of data is essential and provides the possibility to get an overview and to identify

7

Figure 2.1: Design aspects of time-oriented data [4]

8

patterns out of huge sets of data. Early forms of visualizations have been done by hand, while

nowadays computers and software solutions are responsible for a modern and clear graphical

view of a given data set. Depending on the field and the topic different software solutions are

used. Card et al. described the field of Information Visualization as follows:

The use of computer-supported, interactive, visual representations of data to

amplify cognition. (Quote from [16], p. 6)

The term ”Computer-Support“ points to the further evolution of information visualization.

Computers are situated in the center and the development of faster and better hardware and

software also leads to new visualization techniques. While at the beginning of the computer age

hardware has been expensive and large, the visualization of information was very expensive.

The possibilities of visualization were limited to the technology stack of the time. With the

evolution of the hard- and software the opportunities increased and new visualization techniques

were introduced.

The topic ”Information visualization“ aroused the interest of many people, so a community

of scientists evolved, which specialize in this topic. IEEE InfoVis (IEEE Information Visualiza-

tion) is an international conference and was initialized in 1999 in San Francisco, California. This

conference takes place every year and is the most important meeting for experts on information

visualization.

Different visualization techniques are necessary to display data graphically in an appropriate

way. Depending on the requirements for the visualization different techniques do exist, which

all have advantages and disadvantages, depending on the requirement and the needs. A whole

list and description of all existing visualization techniques is impossible and will go beyond this

thesis. The book of Robert L. Harris [26] provides an overview of the most important techniques,

e.g. Point Plot, Line Plot. Depending on the context further techniques do exist.

Visualization techniques could also be categorized by their dimensions. 2D is a common

and simple way for the representation of data in a graphical way. More complex visualization

techniques are rendered in 3D. With the additional dimension more data can be displayed on

one chart or graph. 4D models are hard to imagine for people but are an adequate instrument to

visualize e.g. the time. In the paper of Zollmann et al. [75] a visualization concept is presented,

which uses techniques to get an overview of 4D data on different levels of detail. Another

example for 4D visualizations are the ”4D Space-Time Techniques“ [67], which also use the

time as the fourth dimension to visualize changes on MRI (Magnetic Resonance Imaging) and

dynamic SPECT (Single Photon Emission Computed Tomography). The visualization of real-

time data is also an area of application, where four dimensions gets used. As example, Bista

and Pack [11] describe a 4D visualization system, which takes multiple large scale simulation

outputs and loads them into an existing 4D environment.

Many dimensions do not indicate a good visualization technique. Sometimes a simple 2D

technique provides enough information and need not to be rendered in a costly 3D technique.

Sedlmair et al. [59] provide an empirical study on Scatterplots and Dimension Reduction Tech-

niques. They found out that 3D need not to be a good choice for cluster verification, because a

3D perspective could hide class structures and requires higher interactions costs, but do not add

a significant benefit.

9

2.2.1 Visualization of Time

The visualization of time-oriented data is a subsection of the big topic ”Visualization“. During

centuries research and industry have been collecting data, how significant numbers have been

changing over time and capital and income has been rising and falling. So the requirement on

tools for analysis and visualization increases, especially to depict the aspect of time.

However, visualizing time-related data is more than ordering them along an axis.

(Quote from [23], p. 310)

This quote illustrates that the visualization of time is not as easy as it seems initially. Silva

and Catarci mentioned that most visualization techniques on time are done through interactive

2D timelines. More advanced approaches are done via 3D techniques. In their paper [23] they

give an overview of many different visualization techniques of linear time-oriented data.

The timeline as a visualization technique is the easiest form. The time is displaced on a

single axis and continues in one direction. It is commonly used in many different fields e.g.,

for time schedules or project plans. Despite of its simplicity the timeline is commonly used

and also new visualization forms of timelines are designed. Craig and Roa-Seiler [20] present

an innovative form of a timeline, where the timeline is vertically oriented (against the classical

horizontal form). It is used to analyze human-computer dialogue data. Figure 2.2 shows the

simple prototype of this form of a timeline. Another variant of a timeline is the Perspective

Wall [41], where the timeline is presented as a 3D wall. The user is able to scroll to a specific

sector, receives a detailed view he/she is interested in and also has an overview about the timeline

in the past and the future.

Calendars are an old instrument to note events of any type (birthday, meeting, astronomic

events, etc.). It is used to note future, past, and reoccurring events, depending on the context.

With the use of electronic media visual calendars have been designed. Many different designs

for calendar visualizations [8, 21, 42, 47, 69, 71, 74] exist and provide functionalities on event

handling, scaling, planning and group synchronization.

2.2.2 Techniques

Time can be visualized in many different ways. Depending on the scaling factor and the con-

text, different visualization techniques provide different advantages and a good balance between

overview and detail. Because of the huge amount of different visualization techniques on time-

oriented data only a rough overview can be given in the following section. In the book of Aigner

et al. [4] many different forms and techniques are listed, which have been invented and designed.

Such a list is also accessible in the internet, which is called the ”TimeViz Browser“ [65]. This

list is not complete due to the situation that many new visualization techniques have been pre-

sented and more will follow. They also provide a categorization for techniques, which is defined

as follows:

• Data

– Frame of Reference - abstract vs. spatial

10

Figure 2.2: The Dialogue Explorer prototype interface with a vertical timeline [20]

– Variables - univariate vs. multivariate

• Time

– Arrangement - linear vs. cyclic

– Time Primitives - instant vs interval

• Visualization

– Mapping - static vs. dynamic

– Dimensionality - 2D vs. 3D

In the following section the examples of different visualization techniques are all referenced

from Aigner et al. [54]:

The Frame of Reference defines, if a variable considers a reference to specific area. Spatial

oriented visualization techniques mostly use geographic maps, e.g. Icons on Maps, Value Flow

Map. Techniques based on abstract data are not using maps, e.g. Line and Cycle Plots.

The number of displayed Variables differ between the techniques. While some techniques

only provide the possibility to display one variable (e.g. Point Plot, Line Plot), other ones make

11

it possible to show multiple variables with several data values at the same time (e.g. Spiral

Graph, Spiral Display).

The Arrangement distinguishes between linear time lines and a time cycles. Linear time

lines represent some kind of time beam with a continuing time line, e.g. Timeline, Gantt Chart.

Time Cycles show reoccurring time intervals, e.g. SpiraClock.

Time Primitives are divided into time-points (e.g. Cycle Plot) defining a single point on a

time axis and time-intervals (e.g. DateLens).

In a static Mapping (e.g. Time Tree) time is mapped to space, where the presentation is not

changing over time. In contrast a dynamic mapping maps time to time, where visualizations can

change over time (e.g. TimeRider).

The Dimensionality defines the amount of dimensions, which are used for visualizations.

Examples for two dimensional visualization techniques are Point and Line Plots. Three dimen-

sional visualization techniques are the Worms Plots or the 3D ThemeRiver. In 4D visualization

techniques the time is often presented as the fourth dimension and there does not exist a time-

line or something else. Such visualizations are working with dynamic mappings, as mentioned

before. In the paper of Zollmann et al. [75] an approach of 4D visualization on time-oriented

data is presented.

Visualization techniques are also used by analytic software solutions, like Falcon [2]. Fal-

con uses different visualization techniques to analyze and explore large time-oriented data sets,

finding errors and problems in the logs of 3D printers.

As the Line Plot and the Cycle Plot are essential for this thesis I will describe these two

visualization techniques in more detail:

2.2.3 Line & Cycle Plot

The line plot [26] is one of the most common forms to visualize time-series data. Line plots

are similar to point plots and connect the single points with lines. A line plot is an ideal way

for presenting trends. Many different forms of line plots have been created and provide different

extensions and subtypes, which provide additional information and advantages for specific tasks.

A subtype of a line plot is the cycle plot [17], which is able to illustrate seasonal trends.

Single trends get visualized as small line plots, which are presenting e.g., the values on each

Monday. So you can see the value changes and the trend for this single day. Additionally you

can see the whole trend e.g., of the month. Figure 2.3 gives an example of a cycle plot, where

you can see the trends for each day of the week. You can also identify a weekly pattern with a

peak on Wednesday.

The line and cycle plot are essential for this master thesis as they are used for the prototype

implementation.

2.2.4 Effects and Dynamic

Visual effects and dynamic provide additional visualization possibilities compared to static tech-

niques.

Simone Kriglstein et al. [37] give an overview of animated visualization techniques of time-

oriented data, where the time is illustrated in form of animations. They identified that both, static

12

Figure 2.3: Cycle Plot showing a seasonal trend over weekdays, sample illustration taken from

Aigner et.al [54]

and animated visualization techniques, have their advantages for different use cases. While

animations for small data sets are more powerful, static visualizations techniques have their

benefit on big data sets. The possibility to edit the speed of animations and the availability of

circular animations are always beneficial.

Sometimes it is of interest to draw user’s attention to specific elements of visualization tech-

niques. Such forms of highlighting can be visualized in form of coloring or sizing. Deadeye [36]

achieves this by showing each eye the same image, except the element to highlight. The element

to highlight is only rendered for one eye . This technique has the advantage that existing images

and graphs stay nearly untouched and reduce the probability of misinterpretations.

2.3 Frameworks and Libraries for Visualizing Time-Oriented

Data

The combination of visualization techniques and time-oriented data requires software-frameworks,

which provide a technical base for efficient implementations. They help developers to focus on

the main task. The base for new features begins at the operating system, the developer is imple-

menting on. Furthermore, he/she needs a programming language, a graphical library, a model

framework, sample data and other components for the development. To list all essential prereq-

uisites is dependent on the context and the innovation, which get developed.

For a data generator, which generates time-oriented data with visual methods, several pre-

requisites are essential:

• Model framework to store time-oriented data and calculate with them.

• Graphic library to use visual techniques.

13

Time-oriented data is usually combined in a tuple, where time is combined with the data

of context. Such tuples can be easily displayed in simple tables. Such data can also be stored

in relational databases. A uniform data framework for time-oriented data provides TimeBench

[54]. This software framework is able to deal with the different properties and characteristics

of time (e.g. granularities, instances vs. intervals). It is the only software-framework, which is

specialist in modeling time-oriented data in an efficient way and is able to provide a base for a

software solution dealing with time-oriented data.

The visualization of data requires more than knowledge about data visualization. Visual-

ization tools and frameworks require advanced programming and graphic programming skills,

combined with detailed knowledge in mathematics and statistic. Solving a visualization prob-

lem with a technical solution is a task for more than only one expert. Advanced software tools

may close the technical gap. Prefuse [27] is a software library written in Java, which provides

an open and extendable framework for information visualization. While most software solutions

are specific on its context, Prefuse is independent and can be modified and customized. Similar

to Prefuse is the InfoVis toolkit of Fekete [22]. These software solutions are available for Java

Swing applications and provide multiple visualization solutions.

The JavaScript InfoVis Toolkit by Belmonte [9] is a framework, which is written in JavaScript2

and available for the web. This solution provides similar usable visualization graphs to the Info-

Vis toolkit of Fekete [22]. This toolkit can also be integrated into several software solutions of

different libraries and programming languages, if a browser widget 3 is available.

Another JavaScript based web library is D3 (Data-Driven Documents) [14]. This library

is able to bind different kind of data to a Document Object Model which is then transformed

into several forms of textual or graphical representations. The high amount of more than 100

references and projects based on this library illustrates the cardinality and universality of this

software product. Especially for this master thesis implementations and examples dealing with

time-oriented data are available (e.g. [7], [6], [52]).

Based on D3 a declarative language in form of a visualization grammar was established

as Vega [57]. Vega uses JSON4 to describe graphical visualizations and appearance on a low-

level grammar, using simple graphical elements (e.g. axes, legends. etc.). A further stage of

expansion represents Vega-Light [56], which uses high-level grammar dealing with interactions.

Another framework build on Vega and Vega-Light is Altair [33], a library written on Python5 for

declarative statistical visualizations.

Another graphical approach to visualization with JavaScript provides Protovis [13]. This

software has been finalized in June 2011 and is no longer under active development.

In the web you can find several commercial and non-commercial visualization tools as

finished applications or web-applications (e.g. Visual.ly [1], Tableau Public [62], Datawrap-

per [25], Many Eyes [30] (discontinued by IBM 2015)).

2Scripting language used in web browsers and applications for interactive interactions
3Widget in GUI-libraries to interpret HTML, CSS and JavaScript
4JavaScript Object Notation, a commonly used data format for browser-server communications
5Programming language, https://www.python.org/, Accessed: 2019-09-07

14

2.4 Generation of Data

Data generators are often required for software tests and demonstrations, if no real data is avail-

able due to its secrecy. Sometimes real data does not provide specific data structures, which are

of interest. Data generators are used in any fields of software development and are essential for

good test coverage. Often such data generators are specified on the used context. E.g. in the ar-

ticle of Renata Georgia Raidou et al. [53] synthetic data sets are used to demonstrate a prototype

with a new technique improving the display of parallel coordinate plots.

Data generators exist in several different forms. You can use rich clients, which are directly

installed on a personal computer, or generate data from web applications, which are available

in the World Wide Web (e.g. generatedata.com [35]). Often the input of the user is done via a

simple command shell, like in the programming language R [63]. More comfortable generators

provide a user interface, where you can directly specify types and ranges.

2.4.1 Test Data Sets

The generation of synthetic data is often done for testing functionalities and techniques. So test

data sets should provide specific data constellations, where patterns and other phenomena in

data are identifiable. Bergeron et al. [10] give an overview of test data sets for the evaluation of

data visualization techniques. Scientific data can be characterized by their data types (nominal,

ordinal, metric). For test data generation three aspects are important which should be recognized

for the generation process:

1. Constraints: The amount of data values and dimensions of a data set.

2. Parameters: The distribution and the correlation between the data values and the dimen-

sions.

3. Cluster regions: The position of cluster regions and their properties.

As the generation of reliable test data sets requires statistical properties, like data distribution

and correlation, the book ”Einführung in die Stochastik“ [72] provides the statistical base. In

this book you can find the most common data distributions (e.g. binominal, Poisson, Gaussian),

their statistical properties and formulas.

2.5 Data Generators

There exist three different data generators, which use visual methods for the input definition. The

first one is from Albuquerque et al. [5]; a data generator for high-dimensional data sets, which

represents the generated data in different graphical plots. The user is able to see the generated

output directly on a chart, which is advantageous for identifying a usable data set. Additionally

the user can use a painting tool to directly create cluster patterns, as shown in Figure 2.4.

The most modern data generators display the configuration and the outcome of the genera-

tion process in one view, i.e. so you can immediately see what you have generated out of your

configuration settings. Bremm et al. present such a tool for the generation of multivariate data:

15

Figure 2.4: Creating a cluster pattern with the painting tool [5]

PCDC [15]. You can see an example of their prototype in Figure 2.5, where the generated output

is visualized with a multi line plot. This generator with visual aspects provides a colorful user

interface, where each variable is displayed with its own color. The course of each variable is

graphically presented and can be edited directly on the plot. Direct editing results in changes of

the output. Furthermore, you can define the data distribution individually for each value range.

Next to predefined distributions you can also customize user drawn distributions.

Another visual data generator has been designed by Wang et al. SketchPadN−D [73], which

is able to generate synthetic data with the use of visual methods. The user defines the input

parameters on simple charts and the output gets immediately visualized. Especially the custom

drawing features on a drawing board provide direct user interaction without the need of many

standard or custom widgets. SketchpadN−D provides two visualization paradigms:

• Parallel coordinates

• Sketching on Scatterplots

Parallel coordinates are visualized with a multi line bar, similar to PCDC [15]. The user

is able to define the number of dimensions, the number of generated samples per cluster, the

correlation per cluster, coloring and other input. Additionally the user can directly draw areas

where the output should be generated, as shown in Figure 2.6.

SketchPadN−D also supports direct manipulation on scatterplots. Figure 2.7 shows the user

interface, which gets used to generate data on a scatterplot. The user initially draws a 2D dis-

tribution into a shape and receives a simple scatterplot, which then can be directly edited. It is

possible to clean and delete parts of the generated output by rubbing it out, like a rubber on a

piece of paper. The produced scatterplot can then be displayed in different views; rotating on

the different axis or change the view to a multi line plot.

All three referenced data generator with visual methods represent excellent design and prod-

ucts of software development. They introduce visualization aspects into a tool, which generates

data and does not only display datasets.

16

Figure 2.5: Sample view of PCDC with multiple variables [15]

Figure 2.6: Drawing principle of SketchPadN−D [73]

17

Figure 2.7: Scatterplot sketching interface of SketchPadN−D [73]

2.6 User Interface (UI) Design

For publishing and describing a design study of a software solution, the topic of ”UI Design“

is an essential part. Innovative software solutions, which should solve specific problems or

support specific tasks, often provide a Graphical User Interface (GUI), where you are able to

interact with keyboard, mouse, a touch screen or combinations of them. The acceptance by the

user has high priority; otherwise the software solution does not get used. Even if the GUI has

urgent weaknesses the software itself needs not to be useless or a maldevelopment. But it is

possible that due to pitfalls in the UI design the success of software is greatly reduced.

2.6.1 Guidelines in Usability

Johnson wrote a book [34], which is a simple guide to understanding UI design rules. It contains

and describes several design principles with simple figurative examples, good and bad ones. He

also mentions that it is not easy to match all described principles in detail. The designer has to

make many tradeoffs, but must find a good balance. Furthermore, he compares design guidelines

to laws, as described in the following quote:

Just as a set of laws is best applied and interpreted by lawyers and judges who

are well versed in the laws, a set of user-interface design guidelines is best applied

and interpreted by people who understand the basis for the guidelines and have

learned from experience in applying them. (Quote from [34], Introduction xii)

18

Figure 2.8: Icon as GUI design pattern [28]

As described by Johnson, sometimes it is not possible to find a perfect design, which matches

all the design principles he described. To make tradeoffs seem to be unsatisfactory in specific

cases. Obeidat and Salim [51] describe UI guidelines with adaptation techniques, which should

solve usability problems. Each user is different and interprets the usability of a UI design dif-

ferently. This difference of interpretation has its origin from the characteristics of each user, e.g.

sex, education, profession, skills, culture etc.

Obeidat and Salim [51] solve such design problems with adaptive systems, which adapt the

system behavior depending to the user. Therefore, they collected UI guidelines of Nielsen [46]

and Shneiderman & Plaisant [60].

2.6.2 GUI Design Patterns

UI Guidelines try to describe Do’s and Don’ts in UI Design. More concrete definitions are

situated in GUI Design Patterns, which are composed of summary, utility and examples (e.g.

Figure 2.8). Hirata and Yamaoka [28] collect 81 patterns and categorize them into seven groups

with a cluster analysis. Furthermore, they divide these patterns into four layers. The World Wide

Web also provides libraries of UI Design Patterns (e.g. UI-Patterns.com [68], Welie.com [70],

Quince [31]).

2.6.3 User-Centered Design (UCD)

User-Centered Design is a design process where the end-user is integrated and can influence the

software product before and during the implementation. The user is involved in this process to

improve the usability and to achieve a high acceptance on the user side.

Abras et al. [3] summarized history and information and gives a good overview of UCD.

The origin of this design process comes from Donald Norman [49]. In his book ”The Design of

Everyday Things“ [48] he describes four basic suggestions of a good design:

• Make it easy to determine what actions are possible at any moment.

19

• Make things visible, including the conceptual model of the system, the alternative actions,

and the results of actions.

• Make it easy to evaluate the current state of the system.

• Follow natural mappings between intentions and the required actions; between actions

and the resulting effect; and between the information that is visible and the interpretation

of the system state. (p. 188) [48]

These suggestions are as important as they have been in 1988, where the user is the midpoint

of the software design. The user should be able to learn and use such a design with a minimum

of effort.

To involve the user into the design is not an easy job and requires high financial and human

resources, as described by Abras et al. [3]. So it is not possible that each software solution gets

developed with the pattern of UCD.

The user is not the only one, who is touched with a software solution. People, who are

working or communicating with the user, are also involved. Tasks and workflows are dependent

to the used software. As you can see involving all affected parties is a difficult task and requires

high effort in time, financial resources and organization. It is necessary to strike a balance

between UCD and profitability.

2.6.4 User Input via Sketching

Many user interfaces only deal with simple user input by keyboard and mouse, e.g. typing

characters or clicking or dragging buttons and items. A less common user input technique is free-

hand drawing of figures which are interpreted by the software. AxiSketcher [38] is a prototype

which is able to define axes on scatterplots by free-hand drawn lines and curves. Bahador et

al. [55] studied 12 different graphical input encodings where users are forced to interact directly

on graphical elements instead of manipulating graphs via sliders. Potential future user input

interactions may be found in the virtual reality where users are able to interact in a 3D area.

In [19] a first formal user study was done where graphs and networks are visualized on virtual

reality platforms. There user where not able to directly interact with the 3D models but started

to gesticulate on the 3D visualizations.

Free-hand drawings, gesticulations and other forms of input extend the well known input

possibilities and can also be used for data generation.

2.7 Evaluation

Evaluation techniques are an essential part of this master thesis. The research question asks for

a data generator on time-oriented data, which should be intuitive for experts and non-experts

in time-oriented data. Evaluating the prototype and its usability is done in form of user studies.

There exist different techniques, how a user study can be established. Sunny Consolvo et al. [18]

describes the following techniques:

20

2.7.1 User Study Techniques

2.7.1.1 Contextual Field Research

This technique gathers qualitative data. The participants are observed during their common

activities. There does not exist a lab-environment. The research is done in the normal user’s

environment. This has the advantage that the participants of the user study are not influenced by

an unfamiliar environment. Additionally they are not acting with samples; they are doing their

real activities.

2.7.1.2 Intensive Interviewing

Doing intensive interviews on the people, who participate in the user study, is a very efficient

technique for a user study. The participants answer on specific questions and out of the given

answers a set of qualitative data should be emerged. This technique has the advantage that it

need not to be done in the user’s environment and no specific technical equipment is necessary

(expect a camera or a sound recorder). Furthermore, the interviews could be individual for each

participant. On the other side doing interviews is a time consuming task and requires much time

by the participants and by the interviewer. Additionally it is not easy to stay neutral, because the

participants should not be influenced in any case.

2.7.1.3 Usability Testing

Usability tests are a common technique for a user study and provide empirical data very easily.

This technique has the advantage of low costs of time and effort and provides much data in

a very short time. A usability test can be done in a lab-environment, where the users can be

observed easily. Disadvantageous of this technique is the artificial examples, which may lead

the participants to alter the normal behavior. Furthermore, good usability tests are no guarantee

that a design or a prototype will be successful in practice.

2.7.1.4 Lag Sequential Analysis

The Lag Sequential Analysis is a technique, where the user tests are done during their normal

activities. In contrast to the Contextual Field Research they are working with the software and

hardware, which should be tested. This kind of user study provides very good quantitative data

about the usage and the effectiveness. The disadvantage of this technique is the very expensive

methodology. The environment has to be prepared for the user study and cannot be done in

a lab-environment. And the evaluation of the gathered data requires much time. As there are

no predefined tasks or questions, the result of data is a surprise and the interpretation may be

difficult.

2.7.1.5 Expert Inspection

Reviews by domain experts provide qualitative information about the usability. Tory, M. and

Moller, T. [66] identified that reviews by expert are a good possibility to review early prototypes.

Experts can identify critical problems very early. This has the advantage that major problems

21

can be identified and fixed with little effort and very fast. But it is also mentioned that expert

reviews should not be used exclusively. Expert reviews can only complement user studies but

not replace them.

2.7.1.6 Usage Scenarios

Another evaluation method is defined by usage scenarios. This technique is based on the re-

searchers themselves. They describe “how they used a new visualization approach to solve/improve

upon a certain problem without a (strong) involvement of domain experts“. (Quote from ”A

Systematic Review on the Practice of Evaluating Visualization“, Evaluation Scenarios, p. 2822)

[32].

2.7.2 Validation on a nested model by Tamara Munzner

Tamara Munzner [44] provides a specific nested model for visualization design and validation.

Her model is divided into four layers, as presented in Figure 2.9. The upper levels delivers the

input for the lower levels. When mistakes in upper levels occur they also affect lower levels.

• The top layer focuses the domain itself. It is necessary that the target audience is able to

understand design and planning, e.g. the common vocabulary of a domain must be used,

as expected by the audience.

• The second layer covers the data and operation abstraction design. The layer should pro-

duce descriptions of predefined operations and data types. This also covers the transfor-

mation of raw data into predefined data types and forms.

• The third layer concentrates on encoding and interaction designs. The interaction between

the design and the user is focused. The design is not usable if the end users are not able to

interact with it or do not understand its behavior.

• The fourth and last layer concentrates on technical problems, like efficiency of algorithms

or memory consumption. Algorithms may be implemented in a bad way, so at the end the

design does not work as expected because of technical issues. This layer is not of major

interest for this master thesis. By the way efficiency and technical problems should always

be avoided (even in the protoype) but are not the major criteria for this thesis.

2.8 Reflection

The current state of the art provides a huge list of available visualization techniques. Aigner et

al. [4] provide a good overview by summarizing and categorizing them. Especially, the line and

cycle plot are of interest for this master thesis, used within the implemented prototype. Different

software libraries dealing and handling time-oriented data are available. TimeBench [54] is the

chosen one, used for modeling time-oriented data in the prototype. A small set of visual data

generators are available but no one focuses on handling time-oriented data in a professional

22

Figure 2.9: Model of visualization creation with four layers [44]

manner. Therefore, the prototype should close this gap. Evaluation techniques are used to

answer the defined research questions and should help to analyze the implementation results for

this master thesis. Intensive interviewing, expert inspection and usage scenarios are in focus of

the evaluation phase.

The next chapter describes the methodology; the implementation of a prototype and it’s

evaluation.

23

CHAPTER 3
Methodology

The methodology of this master thesis splits up into 5 parts: The first part consists of a require-

ment analysis, a description of requirements and expectations of a software design. The second

part consists of the software design itself, generation visual time-oriented data by using visual

methods. The third part is the implementation of the software design, producing an executable

prototype. The fourth part deals with the evaluation of the implemented prototype. The evalua-

tion is composed of usage scenarios, expert inspections, and usability tests. In the last part the

results of the evaluation are elaborated. The evaluation and its results are presented in Chapter

5.

3.1 Requirement Analysis

A new software design is initialized by a requirement analysis. The analysis describe the ne-

cessity of a software and functional and non functional requirements. Commercial requirement

analysis expect a detailed specification book, describing all relevant detail of design and imple-

mentation. This master thesis concentrates on a new design approach. Therefore, the require-

ment analysis concentrates on an innovative software design approach, less on technical details

and subtleties.

3.2 Software Design

Generating time-oriented data by using visual methods requires a well structured and predefined

software design. Therefore, it is necessary to predefine a generic design of a data generator

consisting of several technical and functional artifacts. Technical decisions are essential for

the setup and build of the prototype but only have low importance for the evaluation phase.

Functional decisions are more interesting as they define the used visualization methods, the

generation process, parameter definitions, etc. At the end of the initial phase the software design

is ready to be implemented in form of a prototype.

25

3.3 Implementation of a Prototype

To receive an answer to the research questions a prototype was implemented, based on the soft-

ware design of the initial phase of this master thesis. This prototype demonstrates an innovative

design, where visual techniques, the time and the generation of synthetic data are combined

into one software solution. The user input for the generation process is done by directly edit-

ing visualization methods, in case of this master thesis line and cycle plots. Line and cycle

plots are common visualization techniques for time-oriented data and the easiest ones for user

input. Therefore, these techniques should show the feasibility of the design. The generation of

synthetic data is established by generating CSV1 files, which contains the generated data.

3.4 Evaluation

Within this master thesis a set of different evaluation techniques is used, which are applied on

the implemented prototype.

Intensive interviewing will be part of the user study on the implemented prototype. The

people should give feedback to the design and should show strengths and weaknesses after test-

ing and interacting with the implemented prototype. The participants may provide additional or

new design aspects, which have not been recognized during the design time. Such an input by

participants provides additional possibilities for improvement and redesign.

Usability tests are required and part of the user study. In [29] Holzinger divides usability

enineering methods into inspection and test methods. Inspection methods are used during the

design and implementation phase of a software. Test methods are done by the end users. The

evaluation of this master thesis uses “Aloud Thinking”, where the participants are enforced to

think loudly while using the software, and “Questionaires”, interviewing the participants af-

terwards. Predefined tasks have to be solved by each participant. A larger set of ten or more

participants exceeds the operating expenses for this master thesis. So only a small set of three

people will participate, one expert on time-oriented data and two non-experts with advanced IT

knowledge.

As this master thesis is supervised by Alexander Rind, he is the expert for reviewing the

implemented prototype and will participate in the expert inspection.

Usage scenarios are another part of the evaluation phase. They are a possibility to get eval-

uation results in a quick manner. The researcher is represented by the author itself.

3.4.1 User Study of the Prototype

The user study of the implemented prototype consists of a usability test and interviews. For

the usability test the participants have to solve artificial tasks. Speed and correctness of the

tasks are not the core targets of this evaluation, because these aims may produce stress, which

may influence their mind. The participants are encouraged to “Think loudly”. It is of interest

to identify their thoughts and ideas, which occur during the user study. Their statements are

recorded for the evaluation and provide additional information for the interviews, which are done

1File format for saving comma-separated values as plain text.

26

after the user study. Interviews are the second part of the user study and should give information,

which parts of the prototypical design are intuitive and which parts require redesign or does not

provide good usability. After all they have the possibility to mention their ideas; what is missing

and which parts they would have designed in another way.

The participants consist of one expert in time-oriented data and two people with advanced

skills in the IT. The expert additionally gives an expert review, which should point out the major

problems for the domain of time-oriented data. Usability tests of users without technical skills

are not done, as it is expected that they will have individual or technical problems and do not

show real usability problems. They would represent outliers. The handling with outliers is diffi-

cult, but single user problems should not be reflected as actual usability problems, as described

by Følstad et al. [24].

3.4.1.1 Tasks for Usability Test

CSV files are expected as output during the usability tests, which contain a set of time-oriented

data, generated with the implemented prototype. These files represent the results produced by

using the prototype. Out of these files it is possible to evaluate, if the participants were able to

produce specific constellations of sample data. The predefined tasks describe which properties

the output should have. It is expected that the exported CSV files are similar to real world

scenarios, as artificial data should not be distinguishable to real world data.

The usability tests should cover all important designs and functionalities, which are provided

by the prototype. So the tasks also contain specific hints and subtasks, so that specific features

get used in specific scenarios. But these hints and subtasks must not be too detailed to avoid easy

cooking recipes. If the tasks are too detailed, the participants need not to think and experiment.

An adequate balance between specification and latitude is required to receive useful results.

Task 1: Simple dataset for one year. “Generate a weekly dataset for 2013. You want to

provide sample dataset for the level of bookings for a place on an Austrian lake. In the summer

months the peak times have 50,000 tourists. The level of booking is rising in spring and falling

in autumn. In winter the level is lowest with 500 tourists, except in December with 5,000.”

This task contains a simple example for a dataset over the whole year. The difficulties for

the users lie in setting the weekly interval and defining the time and variable scale. Five markers

for the definition of the dataset would be the ideal definition. The participants have to define the

time scale, the value scale and the value interval.

Task 2: Simple dataset for one year with drawing feature “Repeat the first task and use the

drawing feature to define the markers. ”

This task should hint the user to the drawing functionality, where the markers can be defined

by drawing a line of the average trend. The user should be able to compare two different ways

of using different features for the same task. It is expected that using the drawing functionality

is much faster and more intuitive than defining the markers manually. The quality of the result

is expected to be equal to the first task.

27

Task 3: Seasonal trend on days of week “Generate a daily dataset for 2013. You again

generate datasets for the same place in Austria. Now it is of interest to have a seasonal trend

on the days of week. From Tuesday to Thursday is the lowest number of tourists. On Monday

and Friday the amount of tourists is 10 % higher than from Tuesday to Thursday, because many

people enjoy an extended weekend. On Saturday and on Sunday the amount of tourists is 30 %

higher than during the week. In the summer months the peak times have 50,000 tourists. In the

winter months the level is lowest with 500 tourists, except in December with 5.000.”

This task requires the usage of the cycle plot, where the participants are able to define sea-

sonal trends. Because of the situation that the users already should have used the drawing fea-

ture, it is expected that they use it for this task again. The difficulty for the user is situated in the

combination of the seasonal and the general trend.

Task 4: Level of booking in combination with the temperature “Repeat the second task.

Additionally introduce the general trend of the temperature as a second variable.”.

This task introduces the feature of multiple variables. Now the participants have to handle

more variables, which should illustrate the handling with multiple variables. As the configura-

tion possibilities are active for the currently selected variable, the user has to handle the switch

between different variables. As multiple variables make the scenario more complex, it is ex-

pected that the participants require more time to solve this task.

3.4.1.2 Interviews

The second part of the user study consists of interviews of the participants, after they did the

usability tests. The interviews are individual to the people, but contain similar questions, which

should be answered from each participant.

The first question asks for the difference between the first and the second task. It is of in-

terest, which technique is more efficient or more intuitive. Which technique do they prefer? It

is expected that the user prefer the direct drawing feature, because it should require less interac-

tions of the users for the same task. Each interviewed person should also give information about

the usability: which problems occurred and what can be improved.

The second question asks for the representation of the cycle plot. As the cycle plot is a

specific visualization technique for time-oriented data, it is expected that the experts on time-

oriented data do not have problems in understanding this feature. In contrast to the group of

experts, I expect that non-experts will need time to understand the cycle plot and the combination

with the normal plot. The experience with the cycle plot is of high interest, as this form of

visualization has never been used for the generation of data. The interesting sub question asks if

this feature provides essential benefits or if it is more confusing.

The third question asks for the handling with multiple variables. As each additional variable

makes a task more complex, the user should give information about his/her experience. This

question asks mainly for problems when handling with more than one variable. It is expected

that the users will have different understandings, how the handling of multiple features should

work.

The last question asks for the general experience with the prototype. It is expected that

nearly all participants will have ideas for additional required features. Much more interesting

28

are general problems, which occur during the usability tests. The users should give hints, which

aspects of the design are good and intuitive, but furthermore, which parts of the design require

changes. The input of these questions is material for future work.

3.4.1.3 Usage Scenarios

After all the designer and author describe specific usage scenarios, how and where such a soft-

ware design can be used. These scenarios should point out the potential benefits of the design

and how it improves the development of visualization techniques for time-oriented data. Such

scenarios should define the advantageous in combination of using conventional sources of sam-

ple data. Such sources are real world scenarios, synthetic data from other generators or manually

produced examples.

3.5 Summary

The core topics of this master thesis consists of an initial software design where end users are

able to generate synthetic time-oriented data by using visual methods and the evaluation phase,

evaluating the design based on an implemented prototype. After the evaluation phase the prede-

fined research questions are answered based on the final results.

The next chapter describes the requirement analysis and how the analysis is coupled to the

predefined research questions.

29

CHAPTER 4
Requirement Analysis for visual data

generation

Software design traditionally begins with a requirement analysis and specification. [40] mentions

that the initial definition of system requirements is an essential part, most time the hardest part of

the whole project. A requirement analysis describes functional and non functional requirements,

e.g.

• Functionalities

• Participating domains

• Infrastructure

• Techniques and system environments

• Scalability

• Fail-safety

• Performance

This listed items represent only a small subset what requirement analysis and especially a spec-

ification book must contain. On the initial analysis of requirements several stackholders of

management, technicians and end users participate on this process of definition. Therefore, the

definition of a specification book often requires a long time and often consumes more time than

expected. The invested time on a detailed specification book should focus to a common under-

standing what a software should do and how it should work.

This master thesis describes an innovative software design approach on a data generator

using visual methods for the generation process. The following stackholders are involved within

the software design, it’s evaluation and its documentation within this thesis:

31

• Supervisors: Alexander Rind and Silvia Miksch

• Developer and designer of the software approach, author of this master thesis: Stefan

Weiser

• Participants of the user study: Lukas Mad and Alexander Jakovljevic

As this master thesis do not focus on an industrial finished software solution this requirement

analysis is much shorter and more informal. Financial and time oriented budget are not of

interest as no sponsors or customers do exist. The main focus on this software approach is

to answer the predefined research questions. The following sections describe the established

requirements and expectations to the software design.

4.1 Generation of time-oriented data

The supervisor Alexander Rind mentions that no adequate approaches for generation of time-

oriented data exist on the market. Many different data generators are available for many different

types of data and combinations of it. Therefore, an approach is required which provides the

possibility to generator data focusing on the specific characteristics of time. The necessity of

such a data generator is to test and implement new visualization techniques dealing with time-

oriented data. Adequate and meaningful tests and showcases require larger sets of data and even

specific characteristics and data constellations.

It is expected that a design and its prototypical implementation is able to fill this gap.

4.2 Visual approach for parameter definitions

Instead of simply plotting data in form of a text based format or visualizing it on some kind

of diagram it is expected to use a visual approach for parameter definitions. Alexander Rind is

asking if direct interaction on visualization techniques is more intuitive than using simple con-

trols for parameter definitions. Drawing and wiping techniques conquered the world of mobile

devices (smartphones, tables, etc.) and can also be used for the data generation process.

It is expected to draw the trend of time-oriented data directly on diagrams. Then, the gen-

erator interprets and generates data in any kind of table-oriented form and also visualizes the

results directly on the diagrams.

4.3 Usage of TimeBench library

TimeBench [54] is an open source project dealing with algorithms on time-oriented data and

its visualization. This project was initialized by the supervisors and could directly be used

for an initial prototypical implementation. It provides the necessary data structures and visual

approaches but is not mandatory for the software design itself.

This project is available on GitHub1.

1https://github.com/ieg-vienna/TimeBench accessed 2019-11-02

32

4.4 Usability

The supervisor Alexander Rind is interested into the question if the visual approach for param-

eter definitions is intuitive. Therefore, the usability of the software design should be tested and

evaluated. It is expected that a visual approach is more user-friendly than traditional designs of

data generators, using classic controls for input definitions. The second research question should

be answered after the evaluation, based on user study of the implemented prototype.

4.5 Summary

Out of the requirement analysis the predefined research questions have been established. As this

thesis is focusing on research, identifying and evaluating a new software approach, the list of

functional and non functional requirements is not very long. Even when non functional require-

ments are not established explicitly it is expected that the software design and the implemented

prototype do not show urgent issues on stability, scalability and performance. Otherwise the

evaluation phase (especially the user study) may be negatively affected because of technical

issues.

The next topic describes the software design in detail.

33

CHAPTER 5
Design of a Data Generator using

Visual Methods

This design combines three elements, which are used. The generation of synthetic data repre-

sents the first and most essential part, as it delivers the output. The second part defines that

the output contains of time-oriented data. The third element of this design deals with visual

methods. The design is presented in form of an implemented prototype, as it illustrates design

decisions more clearly.

The prototype is developed in Java1 and uses Swing2 for the implementation of the user

interface. This decision is based on the technical implementation of TimeBench [54], which

is also implemented in Java and uses Swing components. As TimeBench gets used for the

prototype, Java and Swing provides a good technical base for an ideal compatibility. TimeBench

delivers the visual methods for the presentation of time-oriented data. All visual output of the

prototype is based on technical implementations of TimeBench.

As this design also deals with good usability, it was planned to provide a design with a

minimum amount of interactions by the user. Too many steps for configuration and other stuff

should be avoided. The user should be able to achieve fast results with an interesting and useful

data set.

5.1 Basic Structure

The basic structure of the design contains of a menu, a toolbar, configuration parts and the visu-

alization part. The most important part is the visualization part, where charts and the graphical

output are represented. The other elements, which are not that important (but necessary), should

require as little space as possible to provide more space for the visualization. Figure 5.1 shows

the partition of the different elements and how they are arranged.

1http://www.java.com accessed 2019-11-04
2http://www.java-tutorial.org/swing.html accessed 2019-11-04

35

Figure 5.1: Basic Structure: on top a menu and toolbar, above the configuration parts followed

by the visualization

As many possibilities for the configuration will be necessary and helpful, the configuration

parts may become too many. A system of fading in and out is required, so that different config-

uration parts can be made visible and invisible. This provides the advantage that the user can

reduce its display to the necessary elements and fade out these one, which are not required in

the situation. This feature provides a possibility of user specific configuration, as described by

Obeidat and Sali [51]. Other software solutions provide a similar system, e.g. Eclipse3. This

platform divides its user interface into views and perspectives, which are individualized to spe-

cific tasks. Furthermore, the user herself or himself is able to configure the organization of views

on his/her own, which is saved when closing and reopening the application.

In the prototype the visibility of the configuration parts is configurable in the menu or the

toolbar of the application. For each part a toggle button and menu is added, which controls one

specific part. If the number of parts does become too many in the future, menu and toolbar

buttons become impractical and should be replaced by a more dynamic system (e.g., search

function for fading in). The prototype provides a small set of configuration parts:

• The time scale defines the horizontal area as timeline, which is visible on the plot. Zoom-

ing in and out takes places in the specified time scale. If values occur outside of this area,

these values do not disappear, as they are simply not in the visible area.

3http://www.eclipse.org accessed 2019-11-04

36

• The value scale defines the vertical area and defines an axis for decimal values. The

functionality is equal to them of the time scale.

• The variables and their properties can be configured in a single part. Each variable has

a unique name and color. Variables can be added, removed and set to visible or invisible.

The current shown variable is the active one. The drawing functionality and creating value

ranges refers always to the active variable.

• The distribution is definable in one part. The prototype provides the uniform and the

standard normal distribution, which are used for the generation of random values.

• The part of the value properties defines the distance between the values. The prototype

provides intervals for hours, days, weeks and years.

• The cycle plot configuration provides the possibility to switch between the view of a

simple line plot and a cycle plot. The cycle interval defines the period of a cycle. The

prototype provides the following intervals: weekdays, weeks of the month and quarters of

a year.

• The value sector configuration provides the possibility to configure value sectors. When

selecting a value sector the current upper and lower limit are displayed and can be edited.

This provides the possibility to define value ranges in detail. When using the drawing

functionality the number of created value sectors can be defined. For each drawn line the

specified amount of sectors is created.

5.2 Interaction with Visual Techniques

This design is focused on the usage of visual techniques for producing synthetic data. This

design uses single line plots and cycle plots for defining data sets and representing the output on

the same chart. The value ranges must be definable by the user, so that the desired output can

be produced. On the other side the output itself should be presented in form of a simple line or

cycle plot. As it can be seen there must be a separation between in- and output elements.

5.3 Value Ranges

Value ranges define the area where the values of sample data are defined. The user is able to

define as much value ranges has need. But it is not necessary to define a range for each value

point. This would not provide any benefit, as the user cannot define ranges for 200 values or

more. The design requires at least two value ranges, one for the start and one for the end. The

points between this value ranges are calculated by interpolation, as it can be seen in Figure 5.2.

The trend of the values runs against all defined value ranges, till the last one is reached.

A value range can be moved and re-sized by Drag and Drop4. The value sector configuration

provides an additional possibility to re-size a selected sector, when exact upper and lower limits

are required.

4Method to move elements on a user interface with a mouse

37

Figure 5.2: Value Interpolation

5.3.1 Drawing of Value Ranges

When a bigger set of value ranges is required for a more complex scenario, defining them with

Drag and Drop is awkward and requires too much time. Such an example can be a sine wave,

which could not be configured with only two value ranges. In such a case the value ranges can

be drawn on the line plot.

Drawing a set of value ranges provides the possibility to create an unlimited set of value

ranges with two mouse clicks. The drawing functionality can be enabled by a button in the tool

or menu bar. Then the user has the possibility to draw a line on the plot, like in a graphical

program (e.g. Microsoft Paint). The drawn line defines the trend. Figure 5.3 illustrates this

process. The first step shows the beginning of drawing a specific trend. By continuing drawing

the trend gets defined where the values will be created. The second step shows the finished

drawn line, how the trend should look like. The third and last step shows the automatic created

value ranges, which occur immediately after the finishing drawing. The position and order of

the value ranges represent the trend. Afterwards they can be edited manually, if the user wants

to alter them.

5.4 Variable Definition

For more complex sets of time-oriented data, more than one variable can be handled. The

variables can be handled in the variable part, where all settings for variables can be done and are

displayed. A variable has to be unique, which is achieved with a unique name, defined by the

user. The name of the variable is also essential for the output, when the data set is exported to

a CSV-file. For differentiation of the variables on the plot each variable also requires a unique

color. A unique color is required to clearly distinguish between variables on the plot.

Variables can be added and removed. At least one variable is required, so it is not possible

to remove the last existing variable. To handle multiple variables on one plot, it must be clear,

which one is currently active and can be edited on the plot. Adding new value ranges or using

the drawing functionality can only be done on the currently active variable. Other variables

38

Figure 5.3: Drawing of Value Ranges

39

are only editable, if the are the current active one. This is a quite simple strategy, but has to

be recognized when working with this software design. Switching between all variables is quite

easy and fast, but it is recommended working on one variable and nearly finish the configuration,

before continuing with another one.

A huge set of value ranges from multiple variables can lead to an overloaded plot with too

many value ranges and too many colors. Figure 5.4 illustrates the problem with four different

variables. For each variable all value ranges can be faded out. This provides the possibility to

do fine adjustments on one specific variable, without getting disturbed by an overloaded plot.

The prototype provides the possibility to fade out all value ranges of all variables, which can be

useful to visualize only the generated values without the associated value ranges.

There may be some situations, where variables with greatly different scale factors exist,

e.g. the first variable is situated between -10 and +10, the second variable has values between

-1000 and +1000. As variables should be generated on one and the same plot, the visualization

together becomes a bit tricky. The normal representation is not sufficient, independent to the

configuration of the scaling factor of the plot. One variable is always out of sight. One possibility

is that the user has to make sure that the variables are representable on one plot, as solved in the

prototype. Another possibility is to provide a technical solution. The statistical normalization is

a solution to transform values of any scale factor to a common scale, so that all variables can be

visualized together.

The variable definition provides many possibilities for more detailed variable configuration,

e.g. show and hide the output, the legend of the values or the average trend in form of a line.

The prototype provides a small set of configuration possibilities, but illustrates the main concept

of handling multiple variables.

5.4.1 Linear time line

Generating values on a linear time line is the basic concept of this software design. The linear

time line of this design has no starting point or end point. It only shows a small section of the

whole time. As the time is an unlimited variable, the line plot must be able to scale in any

direction of the time, forward and backward.

The same behavior has the axis of the values. The line plot is able to scale in both directions

without any restrictions.

5.4.2 Time cycle

As specific units of the time are repeating itself (e.g. a day, a week, a whole year) events and

trends occur in a similar form each cycle again. Such seasonal events have a regular form, which

is repeating again and again. Additionally to the seasonal trend there also exists a general trend,

which shows changes over several cycles.

The visualization of such time cycles requires a specific technique for visualization. As the

visualization should also be used for the generation process of time-oriented data, the cycle plot

represents an easy technique, which is a specific form of a normal line plot. Depending to the

unit of time the cycle has a given amount of time points, e.g. the months of a year or the days of

a week.

40

Figure 5.4: Handling with Multiple Variables

41

Figure 5.5: The same dataset as cycle plot (top) and line plot (bottom)

For the software design of the data generator the cycle plot provides similar functionality to

the simple line plot. In contrast the cycle plot has predefined time points for the value ranges,

because for each time cycle one value range is required for each unit. An example could be

a seasonal trend over the weeks for a whole year, where the amount of Mondays of the years

defines the amount of value ranges. As existing in the simple line plot it is also possible to use

the drawing functionality to define the trend of one unit.

An interesting feature is the switch between the cycle plot and the simple line plot. When

generating data for a seasonal trend, the results are also visualized on the line plot. Figure 5.5

shows the same dataset, on top in form of a cycle plot on the weeks of a month, on the bottom

as line plot. As it can be seen the different techniques of visualization produce different pictures

and are focusing on different aspects of the data.

42

5.5 Generation process

The generation of time-oriented data requires a defined set of value ranges. Without the defini-

tion of any value ranges, the definition is unclear as the value ranges define time and possible

values.

For the simple line plot the first and the last value range define the starting point and the end

point of time for the generation of a data set. So the simplest set consists of at least two value

ranges. This rule is applied to all variables of a data set, so each variable requires at least two

value ranges.

When using a cycle plot the starting and the end point of time are defined by the defined time

scale. For each interval all existing time points between the starting and the end point represent

a value range, even if they are not predefined. A simple example represents a cycle interval on

weekdays. If we have a starting time of 2014-01-01 and an end time of 2014-02-28, we have to

identify all Mondays, which occur in this period. These are the 6th, the 13th, the 20th and the

27th of January and the 3rd, the 10th, the 17th and the 24th of February. This is also done for

all other days of the week. If the user does not define a value range of point of time, the vertical

defined scale gets used as value range. So the cycle plot needs no predefined value ranges, as

they are computed from the time scale and (if not defined by the user) from the value scale.

Value ranges define the range of possible values for a specific point of time. It contains a

lower limit with the minimum value and an upper limit with the maximum value. The generator

uses a random number generator to create a random value between the defined limits. Further-

more, it is also possible to define a distribution. The distribution provides the possibility to

modify the probability of values within the value range. When using a uniform distribution, the

probability of all possible values is the same. When using the normal distribution e.g., within

the values 0 and 100, the probability of 50 is much higher than 10 or 90. So the generated values

are dependent from the defined value range and the defined distribution.

As it is not comfortable to define each time point manually, values should be generated in

a defined interval. The amount of generated values in a given time range can be defined by

specifying the interval of generated values, e.g. in the time range of one week with a value

interval of an hour we produce 168 values, one value for each hour of the week. The prototype

provides the possibility to generate values every hour, day, week or year. There are many more

possibilities to define intervals. The implemented prototype only deals with a regular interval,

but it may be possible that also an irregular interval is of interest.

The generation itself should be very fast. Depending to the amount of values, which have

to be calculated, the process could be represented in form of a process bar. A process bar gives

direct feedback of the generation and the required time. Furthermore, the generation should not

block or freeze the whole program, when calculating a large set of values. Values should be

generated and added to the output continuously, without hindering the user.

5.6 Representation of generated data

After the generation process the generated data set is visualized directly on the plot, where it has

been defined by the user. So the plot displays the input (value ranges) and the output at the same

43

time. It may be of interest to visualize only the output, so the value ranges can be hidden.

The raw data are also represented on a simple table and can be exported as CSV file. De-

pending to the use case different export formats are possible, as the generated data set should be

used for any visualization techniques.

5.7 Summary

The generator design describes the basic structure and functionalities how users will be able to

generate time-oriented data with visual methods. Configuration parts are used to set paramteres

like scale factor, time lines usw. The visualization parts represents the most interesting part

and presents data graphically and also provides the possibility to edit plots with input for the

generation process.

The evaluation of the design requires an executable prototype which will be implemented in

form of a standalone Java program. The prototype is ready for usage and is used in the evaluation

phase, described in the next chapter.

44

CHAPTER 6
Design Evaluation

The evaluation of the software design consists of three different parts: The first part describe us-

age scenarios, for which the software design could be a useful and efficient solution. The second

part contains an expert inspection, where an expert of time-oriented data gives detailed feedback

to design details. The last part is the user study, where two participants solve predefined tasks.

These people are no experts in time-oriented data, but have adequate knowledge in information

technology and software development.

6.1 Usage Scenarios

The generation of time-oriented synthetic data provides many potential usage scenarios, where

sample data of a generator can be used. Especially when developing new visualization methods

and techniques, there is often the problem that no useful data sets are available for presentation

and demonstration. Privacy issues are a common problem. The interesting data sets do exist,

but they are not allowed to be used for research. And the second problem is that useful data sets

may not exist, because specific scenarios or data constellations never happened or are unknown.

All these cases are a potential field for using a data generator.

For the user study there are four prepared tasks, which should be solved by the participants.

These tasks represent potential situations, where the generation of time-oriented data is useful.

All tasks are fictional situations for a hotel next to a lake somewhere in Austria. In the winter we

have an average temperature of approximately 0◦C, while in the summer months 30◦C or more

are possible. Austrian lakes are popular holiday locations in the summer, because of the warm

temperature and the possibility to swim. In the winter months lakes are not a frequented holiday

destination. These rough framework conditions are given for the participants, as the results

should meet realistic data sets. We are interested in data sets, which represent the booking

situation and the amount of hotel guests over the year. In the summer months is high season,

while in the winter they can only count few guests. Only in December the level of booking is a

bit higher because of Christmas and New Year.

A description of usage scenarios for evaluation is available in chapter 2.7.1.6.

45

6.1.1 Preparation of the Scale Factor

For preparing the generation of the data sets the scale factor has to be configured. At peak times

the level of booking counts 50,000 guests. So we have to define the visible range of values

between 0 and 60,000. It is advisable to define the visible range larger than the upper and lower

limits, as the survey is getting better and the whole data set can be visualized on the screen. For

defining the range of the values the configuration part “Value Scale” should be used. The plot

provides feedback in form of the vertical labels. There it can be seen that the upper value is set

to 60,000.

When the vertical value range is defined, the horizontal scale has to be configured. The task

asks for a data set of the year 2013. So the start time is set to the January 1, 2013 and the end

time to December 31, 2013. These initial steps define the visible area of the plot. This part of

configuration can be done anytime during work, as data does not get lost. Changing the scale

only results in a change of the visible area.

The defined scale factors can be seen on the plot by looking at the labeling. The vertical

value axis provides a legend on the left side of the plot. The horizontal time axis shows the

current visible start and end point bottom to the plot, as it can be seen on Figure 6.1. The time

axis does not show the predefined end point. The plot can be scrolled by using the mouse wheel

to enlarge or reduce the zoom factor. When scrolling to the minimum zoom factor the predefined

start and end date can be seen in the status line of the time axis.

Figure 6.1: Prototype showing the line plot with defined scale factors

The configuration of the scale factor requires four input values, two for each axis. The scale

46

factor does not influence the output of the generated data set directly, but the user gets influenced

in the definition of the general conditions for the generation, as he/she can only see the defined

scale factor. Values outside of the displayed view are calculated, but are not perceived by the

user. So the perspective should be chosen, so that the whole area of interest is visible.

6.1.2 Drawing the Expected Trend

The drawing functionality provides a quick and easy way to draw the desired trend. We expect

that the curve starts at approximately 500 guests in January and continues rising. In the summer

months an amount of 50,000 tourists is reached. The high season may start at June and ends

in August. So the curve rises to 50,000 in June and stays on this level till August. Then the

level of booking drops till October to 500 people again and stays on this level. In the middle of

December the level of booking rises again to 5,000 and stays till the end of the year, because of

Christmas and New Year.

When drawing the desired trend on the plot, the drawn line is displayed on the plot. Around

this line value ranges are created. These value ranges indicate the area of potential values, which

are generated randomly. The amount of such value ranges can be configured in the configuration

part “Value Sector Configuration”. There exists a spinner, where the amount of generated ranges

can be defined, when using the drawing functionality. For the given example approximately ten

ranges could be useful. It is also possible to use more, depending how detailed the curve of

values should be. Drawing the trend has not to be done with one single line. It is possible to

interrupt the line and continue at the same or at another position again.

After finishing drawing the result looks like in Figure 6.2. The curve is inaccurate and does

not fit exactly to the value as required. Fine tuning is done in the next step.

6.1.3 Fine Tuning of the Value Ranges

The defined value ranges are all equal. The lower limits of some ranges have a negative value,

what does not make sense, as the values represent the amount of customers in a hotel. The

minimum value must not be lower than 0.

For fine tuning of the value ranges it is possible to resize the ranges with the mouse by

drag and drop. Using the mouse for defining the lower and upper limit provides an easy way

to achieve the desired output. For more accurate results the configuration part “Value Sector

Configuration” provides the possibility to manually define the limits with native text fields. The

text fields show the limits of the current selected value range. By altering the text fields the limits

of the value ranges get changed, which is directly visualized on the plot.

It is not required to use all generated value ranges, created by drawing. They can be removed

by selecting and remove them with the context menu, opened with the right mouse. In the

following Figures 6.3 and 6.4 eight value ranges are used for generation. At the end it has

to be defined, which interval should exist between the values. This can be done by using the

configuration part “Value Properties”. There exists a combo box, which offers some possibilities

for an interval. The interval of an hour is not an adequate choice, as we would receive too

many values, which would overload the line plot. The interval of a day is shown in Figure 6.3,

compared to an interval of a week in Figure 6.4. Using an interval of a day also produces many

47

Figure 6.2: Prototype showing the generated value ranges after drawing the trend

values. A better choice is the usage of a week as an interval, as the visualization is much more

clearly. The interval of a year makes no sense, as the generated values are only placed within

one year.

If we want to have a more detailed view, we zoom to the desired section. Zooming can be

done by using the mouse wheel. In Figure 6.5 we have a more detailed view of the same data set

with a value interval of a day. When the amount of values gets too high, zooming to a specific

section provides more clearly view.

6.1.4 Export of the Generated Data Set

Each generated data set gets stored, independent how often and how many data sets have been

created. The tab “Table & History” has a list of all data sets. Each data set is represented by the

time, when it was created. On the right side, there is an overview of the generated values in form

of a table. Exporting a data set can be done by clicking on the button “Export CSV”.

6.1.5 Multiple Variables

When using multiple variables for one data set there could be the situation of different scale

factors. Different scale factors may be a problem for the visualization as it is not possible to find

a common view for all variables. This problem occurs in the fourth task, which the participants

should solve. The fourth task is based on the first and second task and adds the temperature as

48

Figure 6.3: Generated values with an interval of a day

Figure 6.4: Generated values with an interval of a week

49

Figure 6.5: Detailed view by using the zoom

a second variable. The level of booking has a upper limit of 50,000 while the temperature in

Austria normally does not exceed 40 degree. Furthermore, the temperature could fall below 0

degree, which is not possible for the level of booking. The level of booking could not be lower

than 0.

The current prototype does not support a common scaling for different variables, so the user

is responsible to find a solution. A possible solution is the normalization of the values. All

values of both variables are between zero and one. The trend stays the same. To receive the real

values at the end the user has to convert the values with a meaningful factor. This solution gets

used for solving the fourth task.

The horizontal scale is the same as in the first and second task, so it starts on January 1, 2013

and ends on December 31, 2013. The vertical scale has a lower limit of zero and an upper limit

of one as we use a normalized scale factor.

After defining the scale factors the trends are drawn. The first variable defines the booking

level and has the same trend as in the first and second task. Because of the situation that we

only have normalized values we have to estimate the values, but the trend stays the same. Then

the second variable is added. The temperature has its peak times from June to August and the

lowest values in January and February.

After defining all value sectors the generator displays the plot similar to Figure 6.6. This

figure shows the mix of both variables. The booking level gets represented in red, while the

temperature is represented in blue. After generation of the data set both variables are visualized

on the plot, including the value sectors which belong to the variables, as presented in Figure

6.7. Figure 6.7 shows the problem when using multiple variables. The value sectors disturb the

overview of the generated values, so it is recommended to hide all value sectors, as shown in

Figure 6.8. Now we have an overview of both trends, the booking level and the temperature.

50

Figure 6.6: Defined value sectors with the booking level in red and the temperature in blue

Figure 6.7: Generated values and the value sectors on one picture, which flood the line plot with

colors

51

Figure 6.8: Generated values showing their trends, combined on one line plot

6.1.6 Usage of the Cycle Plot

Using the cycle plot for generation of time-oriented data provide the additional possibility to

generate a cyclic set of data. The prototype provides three different forms of cycles:

• A week with all seven days of the week.

• The weeks of a month. The implementation of the prototype assumes four weeks in a

month for an easier calculation.

• The four quarters of a year.

The precondition of using the cycle plot feature is an adequate time scale. It makes to sense to

use a cycle interval of a week, if the time scale is only set to a week or less. The prototype does

not check the meaningfulness for the cycle plot in combination with the time scale. The user is

responsible to use the features in a meaningful way.

The third task of the user evaluation is similar to the first and second task, but asks to use the

cycle plot for the generation of the data. We have a seasonal trend on the days of week. First it is

required to enable the cycle plot view, which can be done by enabling the checkbox in the cycle

plot configuration. The cycle interval is set to the days of the week. Then the software shows

line plots for each day of the week, which should represent the view of a cycle plot, as shown

in Figure 6.9. Bottom to each plot the responsible day of the week is labeled. On top the time

scale is set from the beginning of January to the end of December 2013.

52

Figure 6.9: Enabled cycle plot view with a line plot for each day of the week

We have to notice that the plot for each day of the week represents the whole year 2013. So

it is necessary to draw the general trend seven times. For Monday and Friday the general trend

should be 10 %, on Saturday and Sunday 30 % higher. So it is required to consider the different

values depended to the days of the week.

The generated amount of values is calculated out of the defined settings of time scale and

the cycle interval. In case of a seasonal trend on the days of a week for each day a value gets

generated. In case of the whole year 2013 the result consists of 365 values, one value for each

day.

The usage of the cycle plot for data generation requires much space, as it is necessary to

display seven line plots next to each other. The more space is available on the screen, the easier

the value ranges can be defined. In case of the third task two screens are advantageous, as each

line plot then receives more than 500 pixels when using two screens with 1980 pixels each.

Figure 6.10 illustrates the necessity of more screens for this scenario.

Figure 6.10 shows the result of the generated data set. Each day of the week shows similar

output of the generated values. Saturday and Sunday contain higher values compared to the rest

of the week. Now it is of interest to switch to the simple line plot, which combines all values on

one plot. Figure 6.11 shows a trend with much more irregularities compared to Figure 6.4. The

higher values on the weekend cause this result.

53

Figure 6.10: Cycle plot view using 3960 pixel on 2 screens

Figure 6.11: Line plot combining the values from the generation of the cycle plot

6.2 Expert Inspection

The expert inspection of the prototype is done by Alexander Rind, supervisor of this master

thesis. He evaluates the prototype and its design against guidelines and usability and looks for

problems, which are mainly identified by experts in time-oriented data. It is expected that he

finds design issues, especially from the expert view, and points to other or better solution, how

specific design problems could be solved. Technical details, problems and improvements are not

in focus, as the prototype should only illustrate a design.

The following enumeration contains questions concerning the usability and potential prob-

lems, evaluated in the prototype. The expert is not asked to answer these questions in detail.

They should support the expert during the inspection, so that several essential aspects are recog-

nized.

54

A description of expert inspections for evaluation is available in chapter 2.7.1.5.

6.2.1 Questions, Usability Issues and Problems

6.2.1.1 Clearness and the Goal

An important part of the design is situated in the clearness. It is asked that the user can identify

what the software is used for. The user has to identify the goal and how the achieve a meaningful

result.

• Is the basic structure and the layout understandable, so that the user can identify all essen-

tial parts and functionalities?

• Are there any labels and descriptions missing or unclear for any parts or widgets?

• Can the basic structure and functionalities by identified very fast, so that the user knows

what to do?

6.2.1.2 Intuitiveness & Recognition

The user experience provides the possibility to identify repetitive patterns, which are equal or

similar in many different software solutions and designs. Because of previous experience with

other software solutions the user should be able to identify the structure and many patterns very

early, without the need of any documentation.

• Does the user identify well-known patterns of software solutions?

• Does the prototype contain individual solutions, which are not common on the software

design? If so, are these individual solutions justified?

• Are there any unusual features of the prototype, which should be solved in another way?

6.2.1.3 Simplicity

Simple software designs do not require much documentation, as the user cannot do it wrong.

Low complexity avoids many mistakes and error, which may occur during run-time. Software

should provide automatic solutions for specific problems, as simple as possible?

• Does the prototype contain any features, which are more complicated than necessary?

• How good is solved the reduction of complexity to generate time-oriented data?

• Which aspects of the prototype can be simplified?

• How much documentation and experiments are necessary to get into the software and its

design?

• How much redundancy of features does exist in the application and how disturbing or

helpful is it?

55

6.2.1.4 Mouse Interactions

The mouse as a simple tool for doing inputs solves many problems. It simulates the movements

of the hand directly on the screen and the user can touch elements (as long as there is no touch

screen available).

• How handy are mouse interactions on the plots?

• Are there any essential mouse interactions missing or disturbing?

• Does the direct feedback of the application provide enough information for the user to

identify, what is happening at the moment?

• Are there any features solved with the mouse, which are faster or more comfortable with

the keyboard?

6.2.1.5 Quick Result & Little Effort

The user should be able to achieve quick results with a minimum of effort. If using the software

requires too much time, it may be easier and even faster to define sample data by hand.

• How fast it is possible to achieve meaningful results?

• How much effort is necessary to define and generate a specific set of time-oriented data?

6.2.1.6 Drawing

As the prototype uses a drawing feature to define the trend of a set of time-oriented data, it is of

interest that the user is able to use this feature quick and easy. This software design is no graphic

program, but uses graphical aspects to define and to visualize data sets.

• Is it easy to identify the drawing feature very quickly?

• Does drawing a trend produce a meaningful result?

• Does drawing a trend accelerate the definition of a data set, so that the output can be

achieved faster?

• How handy is the drawing feature on the simple line plot?

• How handy is the drawing feature on the cycle plot?

56

6.2.1.7 Error Tolerance

Errors and mistakes can occur quite often. Sometimes the user does not use the application, as

designed and errors may occur. Exactness is required by the application, but the user as human

is not infallible. The application should help the user to use and interact in a correctly way.

Incorrect input should be avoided.

• How good does the prototype prevent the user from incorrect input?

• Are there too strong restrictions, so that the user is restricted in his/her possibilities?

• Does the feedback by the prototype provide enough information for the user to identify

incorrect usage?

6.2.1.8 Usefulness & Efficiency

The most important question asks for the usefulness and the efficiency of the software. If the

software is not useful for the desired purpose, it is the death of any software solution. Software

should help and accelerate the user to solve specific tasks.

• How is the overall impression of the software design?

• Is the principle of the design understandable?

• Does the software design accelerate or simplify the generation of time-oriented data?

• Are there any parts of the design, which fail and are not usable in their current state? If

so, are these problems solvable so that they become useful?

• Which parts of the design are most helpful and satisfy their purpose best?

The expert and supervisor Alexander Rind tested and evaluated the prototype on 25.02.2015,

without the presence of the author. At first he started to experiment with the user interface. After

getting involved with the prototype he did the predefined tasks of Chapter 3.2, which are also

solved by non-experts in the user evaluation. The work with the prototype was recorded with

a screen recorder. Next to the work on the tasks he also provided videos with bugs, errors and

other critical problems he identified during the evaluation.

6.2.2 Session state

The expert described that the prototype does not persist the state of the user session and its

settings. Every time when the prototype is restarted, all controls and settings are reset to the

default settings. It is asked to save and reload the state, so it is possible to continue with the

software at the same state, as it has been closed last time.

Many applications provide the possibility to keep the settings of the user interface even after

closing and restarting. It is much easier for the user to reenter work, if after restart the application

looks like as it has never been closed.

57

6.2.3 Quick Result

The property of creating a quick result is not clearly fulfilled, as it is not possible to create any

output after starting the prototype. The user has to predefine at least two value sectors, before

it is possible to produce some output. The expert did not know how to interpret it, because he

did not get any response by the software. The scenario is not a bug or other kind of an error.

The user should receive some kind of response; otherwise he stays unclear about the state of the

program. An error message is better than no message.

6.2.4 Undo & Redo

Applications often provide the functionality to undo or redo the last operation. Often the user

executes something he did not want to and reverts the last operation. Sometimes he changes

his/her mind and executed the operation again; he redid the operation.

The prototype does not provide such functionalities, as more effort would have been re-

quired for implementation. Nevertheless “undo” and “redo” would be practical functionalities,

as cleaning the whole plot may occur very fast. The expert recommended to use reconfirmation

dialogs for critical operations (e.g. cleaning the plot), if no “undo” and “redo” is available.

6.2.5 Text Fields for Upper and Lower Limit

The horizontal and vertical scale of the plots is defined by text fields, where it is possible to

define the upper and the lower limit. The input of the text fields only makes sense, if the lower

limit is lower than the upper limit. To guarantee a valid input, the last edited text field changes its

background color to red to indicate that the input is not valid and has to be changed. Additionally

it is not possible to leave the text field, as the program does not allow setting the focus anywhere

else, if the input is not valid.

The expert claimed about freezing the focus to the text field, if the input is not valid. When

he wanted to change the general limits down or up he has to make sure to edit the correct text

field, dependent to the direction of change. When he wanted to change the general limit up,

the upper limit should be changed first. Otherwise it is possible that the lower limit exceeds the

upper limit, which is not allowed. He started with the wrong text field and was not able to define

the limit he wants to. So he had to define a valid value, then change the limit of the other text

field and finally define the value, he wanted to define first.

Freezing the focus to a given control, if it is not valid, is a way to guarantee the consistency

of the input fields. This works fine as long as the input field is not dependent to any other inputs

fields. So this behavior is not advantageous for the text fields defining the upper and lower limit.

If any input fields are dependent to each other, all of them should be editable. Freezing the focus

is not necessary. It would be enough, if it is not possible to generate data. This would have the

same effect and does not restrict the user in his/her possibilities.

6.2.6 Handling of Value Sectors in the Line Plot

The handling of the value sectors has some weaknesses. Generating a sector manually is done

with the right mouse button. The sector always appears vertically centered on the plot, indepen-

58

dent to the position of the mouse. It only notifies the horizontal position of the mouse. It would

be more intuitive if the mouse position is also essential for the vertical position.

The width of the value sector is implemented in a static way and has always the same width.

Guessing the correct with is not possible. Instead a user friendly behavior could be reached by

saving the width of the last created value sector and then create the next one with the same width.

It is possible to remove all value ranges with only one click, but the plot stays as long as a

new generation process is started. The expert asked to remove the plot but keep the value sectors.

This feature is not necessary, as it does not prevent the user from operation. On the other side

the user wants to keep the plot clean and is interested in removing all unnecessary visual details,

e.g. the last created plot.

Drawing the value sector is an easy way to produce a quick result. The prototype generates

value sectors based on a user drawn line, but may produce clusters of value sectors. Based on

the mouse speed the distance between the value sectors varies. This problem is illustrated in

Figure 6.12. The expert started at March 2nd to draw. At March 3rd he continued drawing very

slowly, at March 4th he accelerates the mouse speed. At the end he received a clustered output

of value sectors on March 4th, as shown in Figure 6.12. The value sectors should be created in

a regular distance, which is expected by the user.

Figure 6.12: Clustered Value sectors after drawing during the expert inspection

6.2.7 Handling of Value Sectors in the Cycle Plot

The usage of value sectors in the cycle plot is different to the line plot, as for each values a value

sector is reserved. So creating value sectors as in the line plot does not work identically. The

expert claimed about the different behavior. He cannot create line plots manually and has to

59

use the drawing feature. Furthermore, when drawing the trend on the cycle plot, it is possible

to miss sectors on the left and on the right side. The user does not see the missed sectors and

so receives an unexpected result after generation. This problem is illustrated in Figure 6.13.

The expert initially starts a generation of values to identify the horizontal position of the values.

Then he tries to generate value sectors manually, but fails, because this is not possible in the

prototype. Instead he draws the trend to receive them. Furthermore, drawing on the cycle plot

view removes all existing value sectors, existing before. This may unexpectedly remove the

user’s previous work.

Figure 6.13: Value sector problem in the cycle plot view during the expert inspection

The value sectors in the cycle plot are fixed and cannot be repositioned horizontally. So it

would be advantageous if their position would always be visible. The value sectors should also

be producible without the drawing feature. These problems may be solved by always displaying

value sectors, which are not removable. The user has still the possibility to make them invisible,

if he does not want to see them.

The implementation of the prototype expects that the user defines the trend for each part of

the cycle, e.g. the trend for each day of the week. The expert recommended that it should be

possible to take over the settings from one part to another, or even define the trend for all parts.

Then it is much easier to adapt the trend for each part of the cycle plot. Also the output is more

regular and the user has not to take care of creating similar trends for each part.

The handling of value sectors in the cycle plot has some weaknesses and is not as good as in

the line plot. Even the difference to the behavior in the line plot is the biggest point of criticism,

because the expert expected the usability to be nearly equal. Such differences should be avoided,

60

as it improves the recognition of functionalities.

6.2.8 Labeling and Formatting

Choosing meaningful names and labels are very helpful for the users, when working with new

software. The best case is reached, if the wording in the prototype is good enough so that no

additional help or documentation is required. This is not always possible, as complex or extraor-

dinary functionalities cannot be explained in a view words. On the other side the complexity

could be the problem and should be reduced by redesigning the functionality.

The expert identified a few labeling problems in the prototype. The labels “Value Properties”

and “Interval” are confusing and do not describe their functionality detailed enough. The expert

related the term “value” to the variables, the term “interval” to some interval data. “Value Prop-

erties” contain configuration possibilities for the generated output, in the case of the prototype

the interval between the single generated values (e.g. hour, day, week, etc.). He would define

the functionality with “Temporal Granularity”. All in all this case of labeling problem requires

a better description.

The spinner control “Number of Drawing” is unclear. This spinner is responsible to define

the number of created value sectors, when drawing the trend. For each drawn line the specified

amount of value sectors is created. The expert did not identify this functionality. If the expert was

not able to interpret its meaning, the chosen term was totally incomprehensible. A meaningful

link to the value sectors is missing, so the user is not able to understand its meaning. On the

other side it is questionable, if this feature is useful or required anyway, as the expert was not

looking for this feature.

The used formats in the history are not a good choice, because the chosen formats are too

complex. The overview is suffering, which can be improved by using simple formats. A more

advanced solution could be the possibility to provide several formats and let the user chose

his/her favorite, as offered by Microsoft Excel.1 This would also help if the user has individual

preferences, e.g. the expert required seconds in the data list.

The prototype uses different time and date formats in different areas, which may confuse the

user. The expert advises to use a general easy format and not to mix up different formats.

6.2.9 Value Precision

The time point of the generated values is dependent to the first point, which gets generated. The

following values have an exact regular distance to each other (e.g. a day, an hour, etc.). The

first value is a random hit and has no dependence to the granularity. When generating values for

each day, the value for a day should be at the beginning, so at 00:00. This has the advantage of

reduced noise in the data, because all units smaller than the granularity are not of interest and

should not be displayed. The time formats stay simple and are easy to read.

1Commercial spreadsheet application developed by Microsoft

61

6.2.10 Inconsistency

Inconsistency is a disagreeable behavior, which confuses the user and makes an application

unnecessarily complex. The prototype contains a few inconsistencies:

The behavior of the button for activating the drawing feature is different between the cycle

and the line plot. On the line plot the button unselects after drawing, while in the cycle plot

the button stays selected. The expert did not expect a different behavior. He executed drawing

actions on the cycle plot he did not want to, because the buttons stayed selected, in contrast to

the line plot.

Resetting the plot works differently in the cycle plot and the line plot. While in the line

plot the generated values and the value sectors are removed, in the cycle plot the value sectors

remain.

In the line plot the interval combo box defines the distances between the values. In the cycle

plot this combo box has no effect, as the distance is defined by the cycle interval. This is an

unnecessary introduction of additional controls. Both combo boxes should be merged together,

because they are responsible for the same value (defining the distance between the values).

6.2.11 Conclusion of the Expert

The summarizing feedback of the expert (Mag. Alexander Rind) describes the design and the

implemented prototype as good functional and intuitive. He experimented with the prototype

on his own and also tried to solve the predefined task, which are used for the user study. The

tasks contain some challenging details, which show the limits of the prototype and its design.

An essential problem is situated in the interaction with multiple variables with different scale

factors. The user is responsible for matching scale factors, which are visualizable.

The expert also identified some realistic improvement opportunities, from which the design

and the prototype would benefit. One critical point of interest is the consistency within the

application. Inconsistencies provide different behavior and representation, which can be unified.

6.3 User Study

For this user study only two people participate. Both have an adequate knowledge of information

technology and work in the area of software development. They represent two non experts, as

they have no experience with time-oriented data.

Descriptions of user studies and intensive interviewing for evaluation are available in chapter

2.7.1.6 and 2.7.1.2.

6.3.1 1. Participant: Student of Business Informatics

The first participant Lukas Mad is studying business informatics at the business university of

Vienna. He has finished his bachelor study and continues with the master study. He worked as a

trainee for an insurance company in the department for software development for eight months

and has good knowledge in the development of Java applications. As he never worked with

62

Figure 6.14: Context menu of the plot, which is required for adding new value ranges

time-oriented data at the university or professionally, he has no experience with time-oriented

data and its specific characteristics.

Before the user study started, he received basic information about the topic of time-oriented

data. He got the information that the prototype is a data generator and should produce sets of

time-oriented data. He took this time to read and understand the tasks he should solve with the

prototype and was asked to think loudly, which should give more information about his mind

and intention during the work. It was planned that he do not receive too much information about

the design, the prototype and other details of the product itself, as this could influence the first

touch with the software design.

1. Task: A Simple Dataset

The first task was to define a simple dataset for one year, as described in chapter 3.2. This

first task should give the participant the possibility to become familiar with the prototype and

its design. I expected that the participant requires the most time for the first task, as he had to

identify the functionalities and the behavior of the prototype. “Learning by doing” is a common

way to become familiar with new software. As people in the information technology often try to

learn using software by simply using it, I expected that the participant would identify the basic

functionalities within ten minutes.

Producing initial Output After the first approaches I identified that the participant had prob-

lems producing any output. As the prototype requires at least two value ranges, which define

the start and the end of the data generation, he was surprised that he was not able to produce

any output quickly. The design is based on the definition of value ranges. As long as he did not

identify, how to define them, he was not able to produce any output. He required the hint that he

had to use the mouse wheel and the right mouse button on the line plot.

As the user did not identify the possibility to add a value range, he was not able to pro-

duce any output. Furthermore, the information that at least two value ranges are required was

missing. In this case additional hints by the software would be helpful. The requirement of

the value ranges and the minimum amount for an output have to be communicated to the user

anyway. Additionally, value ranges should also be addable without the right mouse button. The

63

Figure 6.15: Configuration parts for defining the horizontal time scale and the vertical value

scale

participant gave me the advice that the right mouse button is not the first action, when he gets

familiar with any new software. Menu or toolbar buttons could be helpful. Another possibility

to help the user is the usage of tooltips or other small popups, which advices the user how to use

the software. Figure 6.14 shows the popup menu of the prototype, when using the right mouse

button clicked on the plot. The participant did not expect that the right mouse button has such a

high priority.

Scaling The plot provides the possibility to define the scale factor for the horizontal time axis

and the vertical value axis. When dealing with different scaling factors it is necessary to define

the visible area. This can be done by using the configuration parts for the time scale and the

value scale. I expected the participant to define the visible area. The participant identified the

configuration parts, but he did not exactly know what they define or how to use them. Figure

6.15 shows these parts of the prototype, where the horizontal time scale and the vertical value

scale can be defined. In his first intention he mixed the definition of the visible area with the

definition of value sectors. I had to give him the advice that these two configuration parts are

only responsible for the visible area. This problem illustrated that the user is not able to combine

these two configuration parts with the panel itself. On the one side more applicable naming and

labeling is required, on the other side the definition of the visible area should also be possible in

a different way.

The participant expected to use the mouse for defining the scaling factor of the visible area.

He identified the possibility to scroll the horizontal time line by pushing and holding the left

mouse button. But he also expected this possibility for the vertical axis. Also the mouse wheel

for zooming the visible area was intuitive. Consequently he tried to use the keyboard in com-

bination with the mouse to identify additional scaling functionalities. A common combination

is CTRL and the mouse wheel, which he tried to use, but the prototype did not provide such

functionality for this combination of keyboard and mouse. Many familiar applications use this

combination for scaling and zooming, e.g. in Microsoft Word this combination alters the zoom

factor, in Mozilla Firefox the font size changes. The participant expected this behavior of the

prototype, as the mouse is used for scrolling on the plot.

The problems of the participant illustrates that the common concept for using scaling and

scrolling should be used, as users expect a similar behavior to common applications, e.g. Mi-

crosoft Word or Mozilla Firefox. In such a case the configuration parts would not be as important

as in the prototype, but provide a possibility to define a more detailed configuration of the scal-

ing.

64

Figure 6.16: Configuration part for defining variables

Variables vs. Value Ranges This software design provides the possibilities to define multiple

variables, which can be displayed on one single plot. The definition of the variables can be done

through a configuration part, as shown in Figure 6.16, where new variables can be added and

their properties can be defined. For each variable multiple value ranges can be defined, where

the generated values should be positioned.

The participant had a problem to distinguish between these two basic elements of the soft-

ware design. In his first intention he created for each value range a new variable, as he mixed up

these two concepts. I had to explain the difference; otherwise he would have run into a wrong

direction and would have never received any output. As each variable requires two value ranges

to produce some output, he would have never received any feedback, because he would have

created multiple variables with one single value range.

In this case a differentiation is required between the definition of the variables and the value

ranges. Similar to the problem of getting an initial output, the user requires feedback that each

variable requires at least two value ranges. There are many possibilities to solve this problem.

One potential solution could be a warning, when the user tries to start a generation, where a

variable has not enough value ranges.

The Value Interval The value intervals define the interval of the generated value points. De-

pending to that interval a different amount of values is generated, e.g. when defining an interval

of one hour, each hour a new value is generated. This is independent to the defined value ranges.

Only the first and the last value range define where the generation starts and where it ends.

The participant was looking for such functionality, as he achieved his first useful result.

He had the problem to understand the labeling. This problem illustrates that the wording of

the labels is not good enough. Furthermore, the user should receive hints and explanations for

specific terms, if they are not clear. This can be implemented by using tooltips.

Summary of the 1. Task The participant required 21 minutes to solve the first task. As this

should also have been an introduction into the design and the prototype, the main concepts and

principles of this software design have been identified by the user. He was surprised to work

only on a single plot. He expected the generation process starting from a table to a graphical

output, but identified the other way around. He additionally mentioned that this is not a negative

aspect, as working direct on the plot accelerates the pre-generation process. On the other side he

expects from a software product that it provides a short introduction of its usage.

Some critical problems were identified. Producing a quick initial output was not that easy.

A user wants to receive a fast result, when experimenting with new software. The fast result was

65

Figure 6.17: Defining the number of generated value ranges as unused input field in the proto-

type

prevented from at least two required value ranges. Another critical problem is the handling of

scrolling and scaling, which does not work equal to other familiar software solutions. As it was

not the aim to break a proven concept, these functionalities should be adapted to the common

functionality.

Another critical problem is situated in the naming and labeling of some features. The user

did not identify the controls and configuration possibilities with their intended functionality.

As the user is no expert of time-oriented data, he is also not familiar with specific terms and

expressions. Nevertheless this problem could be solved by providing tooltips and other helpful

hints, which are provided by the software itself. Then it should be much easier for a new user to

get familiar with the design.

2. Task: A Simple Dataset With Drawing Feature

The second task was to repeat the first by using the drawing feature, provided by the software.

The drawing feature provides the possibility to draw a trend directly on the plot, like a pencil on

a peace of paper. As the drawing feature is the most interesting part of this software design, the

expectations on the usability and the feedback by the user are very high.

Identifying the Drawing Feature The participant did not identify the drawing feature by

solving the first task. He received the hint through the second task. His first action after start

was looking for a button in the menu or toolbar. There he was able to identify this feature very

fast, as it is represented by a simple pencil. The pencil as a symbol is many common programs

(e.g. Microsoft Word, Microsoft Paint, GIMP) and is always used to draw something freehand.

So the recognition of the symbol is given.

He understood the drawing feature very fast, as he was able to draw a line from left to right.

He started to experiment and identified that drawing the line was only possible from left to right.

When trying to draw a line the other way round no line is visualized. A time axis is commonly

ongoing from left to the right. He commented this restriction as helpful as it prevents the user

from creating something useless. The output is always useful.

Configuration of the Generated Value Sectors The prototype provides the possibility to de-

fine the amount of value sectors, which gets generated when drawing a line with the drawing

feature. The default amount is set to 20, which should provide an adequate amount for the most

use cases, as shown in Figure 6.17 from the prototype.

66

The participant did not identify how to regulate the amount of created value sectors, but he

even did not ask for such functionality. He did not modify much after drawing and was happy

with the result. After finishing the second task I gave the advice that it is possible to define the

amount of generated value sectors. He answered that there was no need to alter the amount,

because the default configuration was enough for the use cases. He also mentioned that it is

much more comfortable to draw a view lines and then delete some value ranges again if they are

not required.

This case illustrates that the possibility to configure the amount of generated value sectors

is not required by the user. This shows that there is also the situation of having unnecessary

features which are not used by the user. He identified another way which is more comfortable

than the predefined feature.

Problem of the Value Interval On the other side the value interval is also essential when

using the drawing feature. He had problems to identify the configuration part again, where it is

possible to adjust the interval between the values. As the user had the same problem again one

task later, this seems to lead to the conclusion that defining the value interval has to be solved

someway else. The recognition of the symbol in the toolbar and the configuration part itself is

not sufficient.

Summary of the 2. Task As the participant required six minutes to solve the second task; this

illustrates the good recognition for identifying the tool and its functionalities. He did not have

any problems to use the drawing functionality and understood the principle and its details very

fast. He also started to experiment and did not require any advice or other hints. The task was

solved very quickly.

He gave the information that the drawing functionality is a quite fast and comfortable feature.

As it is a bit uncommon to draw a simple line on a line plot and receiving an output immediately,

the understanding is very good and intuitive. Furthermore, it provides the possibility to draw the

basic trend and fine tune the generated value ranges afterwards.

3. Task: Seasonal Trend by Using the Cycle Plot

This task included the usage of a cycle plot, as the generation of a seasonal trend was required.

The user was asked to generate a data set, where the values differ between the days of the week.

Problems Understanding the Cycle Plot The biggest problem was situated in understanding

the behavior and functionality of the cycle plot. As the cycle plot is a specific visualization

technique for time-oriented data, it is hard to understand without introduction. As the participant

did not have any experience with time-oriented data, he also did not know the cycle plot and its

specific properties. As I expected the participant had problems to understand and interpret the

visualization. Furthermore, he was asked to generate data by using the cycle plot visualization,

which provides more complexity than understanding a simple cycle plot without interactions.

He was confused and did not know how to use it, even if he knows the principles of the software

design and its characteristics.

67

I had to explain the concept of the cycle plot in detail, that he was able to use the cycle

plot functionality of the prototype. This demonstrated that a cycle plot is a more complex vi-

sualization technique and requires previous knowledge of this technique. It would have been

advantageous if the user would have received an introduction to the cycle plot. People without

knowledge about the cycle plot are not able to use the technique in combination with the design,

as they cannot identify the structure and functionality.

Missing Legend of the Time Axis Additionally the user claimed about the missing legend of

the time axis. The time axis was faded out to receive more space for the visualization. Further-

more, the day of week already represented a legend for each part of the cycle plot. For better

understanding the time axis should not get faded out.

Not enough Space for Interaction Multiple plots leads to another problem. As there exist

seven days of the week we need seven small line plots, positioned next to each other to represent

a cycle plot. The small plots for each day of the week are very small. Although the user was

working with a wide-screen monitor, there was not enough space for comfortable interactions.

The usage of the drawing functionality was very inaccurate and did not produce a good result

for the third task.

For using the cycle plot, more than one monitor is required for comfortable interactions. The

program gets expanded to two or more screens and each plot receives enough space.

Switching between Cycle and Line Plot The design provides the possibility to switch the

view between the cycle plot and the line plot very quickly. The participant had no problems to

do so and it was clear that both techniques of visualization should represent the same set of data.

The synchronization between the techniques was a bit confusing for the participant. He

generated data with the cycle plot and identified the generated data set in the simple line plot

again. But when generating data with the simple line plot, he did not see anything on the cycle

plot. This was identified as a missing part of the design, as there is no logical problem to

represent the data from the line plot also on the cycle plot.

Only the synchronization of the value ranges could not be mapped 1:1. When generation

data on the line plot with any amount of value ranges, they could not mapped exactly on the

cycle plot. The cycle plot only allows value ranges for specific time points, e.g. when using

a cycle plot on the days of a week, the part for the Mondays only allows value ranges for a

Monday. Consequently value ranges from a simple line plot need to be only on Mondays. This

synchronization problem could be solved by interpolation. The software has to calculate the

value range for each Monday a represent it on the cycle plot. Then the synchronization of both

visualization techniques would be more clearly and the user does not get confused about any

missing representation.

Summary of the 3. Task The user required more than ten minutes to solve the task in an ap-

propriate way. The cycle plot, its characteristics and functionalities were difficult to understand,

as he had no experience with it. Another problem was situated in the incomplete synchronization

68

between the cycle plot and the line plot. Switching from the simple line plot to the cycle plot did

not visualize the data, when generated data on the line plot.

As it can be seen the topic of the cycle plot is much more difficult. The user requires basic

knowledge about the visualization technique, as he is not able to deal with the technique without

any experience.

4. Task: Interaction with Multiple Variables

For the last task the user had to use multiple variables on the single line plot. I expected that

switching between the different variables would not be very easy for the user. But the participant

did not have any problems. He was able to create an additional variable for the temperature and

identified how to manage both on one single line plot. The concept of the current active variable

seems to be intuitive, as he switched between the variables without any hints or help.

Different Value Ranges of the Variables As the software design does not provide any func-

tionality to normalize the values of different variables; the user is responsible to deal with it. The

participant understood the problem and mentioned that the normalization of the values would be

a nice feature for future work. As the prototype did not recognize it, the participant used the con-

figuration possibilities to configure each variable and its trend. Because of the drawing feature,

this problem stays unproblematic for him.

Feedback and Impressions by the Participant

The participant was very impressed about the drawing functionality of the software design. It

is currently an uncommon way to define a trend, but is much more intuitive than working with

bars, widgets or other common stuff. When working with such a data generator for time-oriented

data, he prefers to use the drawing functionality in each situation, as it makes it possible to create

much data in a very short time.

The cycle plot is a specific visualization technique for time-oriented data. As this is a context

specific part of the software design, only people involved into the context are able to use that

feature. The participant was not an expert on time-oriented data and had problems to identify

the concept and its functionalities, as he did not know the cycle plot before.

When getting touched with any new software, the participant expects tooltips, hints for other

form of help, which leads the user to the correct usage. The prototype provided tooltips, but

they were sometimes not sufficient. Especially each configuration part should have quick infor-

mation, what can be configured and what impacts each widget has to the plot. Short labels are

often not enough so that a user does not exactly know how to use that part of the software.

At the end the participant is convinced about the software design. He thinks that the gen-

eration of synthetic time-oriented data becomes much easier with such a tool. The weaknesses

and problems, which have been identified, are solvable and most of them are technical issues.

The concept of the design shows the potential and the possibilities, when spending more time

and effort into the conception and technical implementation. He did not identify conceptional

pitfalls and classifies the problems as mistakes during the implementation or simply missing

functionality.

69

6.3.2 2. Participant: Professional Software Developer for an Insurance

Company

The second participant Alexander Jakovljevic has an education for software development and

works as software developer for an insurance company in Austria. He has good knowledge about

Java applications and has much experience with the development of rich client applications,

especially in Java and SWT. He has no experience in time-oriented data. As he never studied on

a university or similar form of education, he has no academic graduation. So he will focus on

software usability, as it is expected and developed in the private sector.

Before starting with the user study he asked for basic information about the prototype, the

context of the topic and the aim of this study. He got the information that the software, he should

test, is a prototype for the visual generation of time-oriented data. Furthermore, I explained the

term what time-oriented data is and that this prototype should be able to produce synthetic

data. The use case for such a software design is situated in the problem that real data is not

available due to privacy issues or such data is just not available. To receive adequate samples for

visualization techniques, the generation of sample data is of interest.

1. Task: A Simple Dataset

During the first task the participant tried to get familiar with the context and the prototype. He

started to experiment with the software and tried to understand the different functionalities, the

prototype provides. While getting familiar with time-oriented data, he wanted to understand

more about time-oriented data and how this topic is connected to this software design.

While testing several features of the prototype, he identified configuration possibilities, he

did not understand immediately. For example he experimented with the switch between simple

line plot and the cycle plot. I did not want to tell him too many details before solving the task,

so I only gave him the information that he will identify most functionality when working on the

later tasks. As the user should identify most features and functionalities on his own, he only

received basic information but no specific details to the prototype itself.

Drawing Functionality as the Point of Start He identified the drawing functionality very

early, because of the familiar symbol in the task bar: a pencil. The pencil is a well-known

symbol for drawing features in many common software products, e.g. Microsoft Paint2, GIMP3

as shown in Figure 6.18. These products are common image processing tools and are used for

private and for commercial tasks. He did not need any help to identify the functionality of this

feature and was able to create value ranges within a few minutes. I expected that the user would

identify the drawing functionality in the second task, but he started to work with it, while he did

not notice the possibility to add and configure value ranges manually. I did not interrupt him, as

it is an interesting situation for this user study.

2https://support.microsoft.com/de-at/help/4027344/windows-10-get-microsoft-paint

accessed 2019-11-04
3http://www.gimp.org/ accessed 2019-11-04

70

Figure 6.18: Pencil in the toolbar of GIMP

This effect illustrates that a familiar symbol with an expected behavior of the software is

essential. The user is familiar with a specific set of symbols and can map its meaning to a

correct utilization. He did not need any hints or other forms of help.

Meaning of Value Ranges He continued experimenting but could not match the meaning of

the value ranges, which were created by the drawing functionality. He identified to move and

re-size them, but was not sure of their functionality and their meaning. In this case I had to

explain him what these value ranges mean and how he can use them to generate synthetic data.

I noticed that it was not clear for him that the value ranges mark the upper and the lower limit

for the value generation.

Their importance for the prototype and the software design became clearer, when he started

to generate some data the first time. He saw that the line of generated random values is positioned

inside the value ranges, so he recognized their relevance for the design.

The Value Interval For the initial generated value set he defined an interval between the values

of one hour over one year. As an interval of one hour is the default value, he did not know that

he has to define the interval for this task. This resulted to a set of more than 8,000 values. He

71

was looking for the possibility to configure the interval between the values, but could not find

the configuration part for it. So I had to give him the advice to the correct configuration part.

This situation illustrates that the labeling and the used icon were not enough to detect this

feature by the user without any help. The participant mentioned that he was looking for exactly

that functionality but he was not able to identify it based on the label or icon. In this case a better

labeling and choice of icon is required to improve that situation.

Scrolling on the Line Plot While solving the first task he identified the different mouse fea-

tures on the line plot. He was able to scroll and zoom on the plot with the mouse. He gave a good

rating for zooming with the mouse wheel and the possibility to use drag and drop for scrolling.

The first impression was very good, as he had no problems to interact with the plot. Afterwards

he mentioned a few weaknesses:

When zooming with the mouse wheel he identified that the plot expanded only to the right,

not on both sides. This was unusual for him, as he expect that both sides are expanding from

the position of the mouse cursor. This is a specific implementation detail and a mistake in the

implemented prototype but very important information for the handling of plot.

Value Points and Value Ranges While solving the first task he mentioned that he would

expect the possibility to define an exact value, not only a range. I gave him the advice that this

is possible by re-sizing the value range to one single point. This would solve the problem for the

given situation but is not comfortable enough for that use case. Using a single value point could

be a common use case in many situations and should be considered.

Summary of the 1. Task At the end the user required 18 minutes to solve the first task.

As expected the first task was also used for getting familiar with the software design and the

prototype. Initially he started to experiment with different functionalities and tried to identify a

huge set of features within a short time. Surprisingly he identified the drawing functionality very

soon and started to use it. The possibility of manual defining value ranges was not as essential

at the beginning. He identified that possibility afterward.

He described the first encounter with the prototype very good and was impressed about the

possibilities. Especially the drawing functionality was a very interesting feature and seduced

him to experiment and play with it. He mentioned that drawing a trend is much easier than

trying to configure it with widgets and other controls. Drawing should be the main feature,

while the manual configuration should be used for fine tuning.

2. Task: A Simple Dataset With Drawing Feature (already solved)

Because of the situation that the participant identified the drawing functionality in the first task,

there was nothing to do for the second task. As mentioned before this is the best case, as the

user identified the feature without any advice.

The user identified the restriction that it is not possible to draw a line from right to left, only

from left to right. He did not expect this behavior but mentioned that this restriction is useful

in that case. The time is visualized horizontally. It is common that a time line starts on the left

72

side and continues to the right side. So there is no necessity to draw a line the other way round.

The participant prefers the restriction only drawing from the left to the right because the line

continues only into the logical correct direction. As the user has no possibility to create any

strange input, the drawn line stays always clear.

3. Task: Seasonal Trend by Using the Cycle Plot

When starting with the third task the user was looking for the cycle functionality and identi-

fied the required configuration part, which is necessary for this task. Switching between the

simple line plot and the cycle plot was intuitive for the user and it was clear for him that both

visualizations should display the same content in a different way.

Understanding the Cycle Plot The main problem using the cycle plot is situated in the miss-

ing know-how of the participant. As he has never worked with time-oriented data and did not

know how a cycle plot works, he had problems to use it. He simply saw seven small plots, one

for each day of the week but he did not know how data gets visualized on these plots. The cor-

relation between all plots and the simple line plot was not clear and made it impossible for him

to use it correctly. I gave him more detailed information about the cycle plot and its properties,

how a cycle plot is working and what it visualizes.

After giving him some contextual information about the cycle plot I additionally had to

explain how to use the cycle plot on the prototype. He expected to define the general trend on

the simple line plot and then adapt the trend in the cycle plot. I gave him the information that he

only has to work on the cycle plot view; the simple line plot only visualizes the overall output of

the generation process. After a longer introduction he was able to create a seasonal trend with

the drawing feature.

He gave me the information that using the drawing feature for the cycle plot is not as com-

fortable as in the line plot. The available space for each part of the cycle plot is not enough. This

leads to the problem that drawing an exact line is not very easy and the error rate and inaccuracy

is rising. Furthermore, the trends for each day of the week are not as similar as desired. In the

following the overall output is not as good as expected and the user has to fine tune on the cycle

plot very often.

The user expected to use the line plot for defining the general trend and switch to the cycle

plot view. Then it would be much easier to configure the seasonal deviation, as the user has only

to adapt some parts. Furthermore, the connection between the line plot and the cycle plot would

be more clearly, as a cycle plot is produced out of a line plot. He does not have to think so much,

because the gets presented a possible solution without any hints. Adapting is much easier than

recreating everything.

Display Another problem is the generated amount of value ranges. For the third task the user

had to generate data for a whole year, with a cycle plot for the days of the week. At the end each

part of the cycle plot displayed 52 value ranges. These are too many and leads to the problem

that the user has no overview. He only sees a cluster of value ranges, as shown in Figure 6.19.

This illustrates those specific constellations result to a non optimal solution. If the amount of

73

Figure 6.19: Cycle plot view with too many value ranges

value ranges is too high, the graphical visualization is not useful any more. The more interesting

part is the trend and the generated values. When showing too many value ranges, the user cannot

identify the value any more.

“Undo” and “Redo” Sometimes the user cleaned the whole plot, but did not want to do that.

Then he had the problem that he removed the entire configuration on the plot and has to restart

again. He asked for a “Undo” button, which undo’s his last step. In that case I identified that the

concept of “Undo” and “Redo” should be available. Most common software solutions provide

such functionality, as users often do things, which they did not want to do. If the user does not

have such a possibility, he has to undo it by hand or repeat the whole task again.

Summary of the 3. Task The participant required 15 minutes to solve the third task. Because

of problems in understanding the context and functionality of the cycle plot, he had problems

to produce the result, as requested in the description. He misinterpreted the functionality of the

cycle plot and showed up that in specific situations the usage of value ranges does not lead to an

acceptable result.

Because of the problems with the cycle plot, I identified the necessity of a redesign for the

handling of the cycle plot. The user is not able to understand the functionality out of the work

and there may be situations where good usability is available.

74

4. Task: Interaction with Multiple Variables

The last task provided the challenge to use two variables on one plot. Only using more variables

is not the difficult part. The tricky part is situated in the scale of both variables. The scaling

factor is very different between both variables. The first variable requires a maximum value of

50,000 while the second variable has an upper limit of approximately 40. As the prototype does

not provide any functionality or other support to handle this problem, the user is responsible for

it.

Different Scale Factors The participant had problems to find a solution for this problem, as he

saw that the prototype did not provide any functionality as solution. As the participant has never

visited a university or other higher education, he had no idea how he could solve this task. I

gave him the advice that the problem could be solved in two different ways. The first possibility

is to define a common scale for all variables and then scale up with a factor for each variable.

The other possibility is to use the scaling possibility of the prototype to receive an adequate view

for each variable. In this case the user has to work iteratively for each variable. Mixing up and

working on both variables at the same time would be impractical.

The user claimed about the missing possibility to handle the scale problem for multiple

variables. He is of the opinion that the design should be intelligent enough to support the user

for this interaction, as it is an essential core feature. When working with multiple variables, the

user also requires the possibility to handle the problem of a common scale factor. Otherwise the

usage of multiple variables is not very attractive.

Another disadvantage of the missing tooling support is the view itself. Because of the very

different scale factors only one variable is visualized in an acceptable manner. Either the one or

the other variable is not visible and so the visualization suffers because of the missing tooling

support. This gets visualized in Figure 6.20 and Figure 6.21. Both figures visualize the same

data set, which would have been a possible solution for the fourth task. In Figure 6.20 we can

see all values, but the blue variable representing the temperature is too small. We can only see

a big line at the bottom, but no details. On the other side Figure 6.21 presents the worst case.

In this scene we can only see the blue variable, but not the red one, which should represent the

amount of tourists.

The only solution in that case is to define a common scale factor for both variables, where

the values can only be situated between zero and one. The user has to scale up the generated

values with a factor by hand for the given variable. This cannot be visualized by the prototype at

this time. For the future the design should provide a feature, which is able to deal with different

scale factors. Furthermore, the line plot should also display the values for each point, so it is

possible to identify the exact value.

Summary of the 4. Task The participant interpreted the last feature of multiple variables as

unfinished, because the tooling support is not enough for the requirement of generating values of

multiple variables with multiple scaling factors. This would be a common scenario and should

be solved by the software itself, so the user receives fast feedback and a usable result. He is of

the opinion that it is not reasonable that the user has to calculate manually the exact values, as

75

Figure 6.20: Scaling problem, where the values with an upper limit of 45 are not visible

Figure 6.21: Scaling problem, where the very high values vare not visible

76

this is an automatic task which could be solved by the software. Humans tend to make mistakes,

which could be avoided by an automatic solution.

Feedback and Impressions by the Participant

The participant gave all in all a positive feedback after the user study. He identified several

interesting and useful features, which are not a common practice for generating synthetic data.

The fact that he was not able to identify and understand all feature after a short time of intro-

duction was caused by his missing know-how of time-oriented data. Especially the cycle plot is

a tricky visual technique, which is unknown for non experts. Most people, who are not dealing

with time-oriented data, are more familiar with the simple line plot. The simple line plot can be

understood by a wide range of people. The cycle plot is a special technique and requires specific

know-how.

The most impressive feature of the prototype was the drawing functionality, which provides

the possibility to simply draw a trend. It is a very simple and fast way to achieve an interesting

result and makes it possible to configure complex trends. The conventional way of defining the

trend with simple widgets and input values can be very exhausting. When using an implemen-

tation of this software design it is preferred to use the pencil for drawing.

The possibility of including more than one variable is very important, but requires addi-

tional tooling. The solution of handling variables with different scale factors must not lie in

the responsibility of the user, as humans tend to make mistakes. As calculating the scale factor

for each variable, there can happen several mistakes. These mistakes could be avoided by the

software itself. Furthermore, the visualization suffers due to mistakes by the user. Because of

the situation that the visual output need not to provide a good overview with multiple variables,

the importance of better tooling becomes more illustrated.

The situation of many configuration possibilities was solved by showing and hiding the

different parts above the plot. Many other problems solved this problem by using dialogs. Mi-

crosoft Word uses menu and toolbar items, which opens a simple dialog. When using dialogs

there is no problem of too little space, as it is the situation in the prototype. As the configuration

should be applied initially to the plot of this design, a dialog must not be modal. 4 Then it is

possible to configure and work on the plot simultaneously, so that it is not required to close the

dialog.

For a better usability the software should provide more tool tips. There is often the situation

that the user requires additional information for a field, text box or a whole panel. Short labels

often do not provide enough information to understand its functionality. Furthermore, each

configuration part could provide a button for getting help or additional information. It is not

required to provide a global documentation of the whole software (as documentation is not read

very often by many users). Small hints and help texts would help the user to get familiar with

most functionality.

All in all the participant liked the prototype and was convinced that the design has much

potential. Most of the identified problems can be solved by adding additional features and new

4A modal window is positioned to the front. The main window cannot be used, as long as the modal window is

open.

77

functionality. Spending more time into the implementation and essential requirements could

result into a valuable product.

6.3.3 Findings from the User Study

Concluding out of the user evaluation both user mentioned positive and negative aspects, which

were identified during the evaluation.

6.3.3.1 Paint Functionality

The most impressive feature of this software design is the drawing functionality, which provides

the possibility to simply draw a trend on a line plot and then receive sample data. Both partic-

ipants had no problems to understand the meaning and the possibilities, which are provided by

this feature. The second user identified this feature very early and started to use it before it was

required. The reason was situated in the chosen icon. A pencil is a common icon in many other

software solutions and all these solutions use this icon to indicate something to draw, depending

to the task. Especially graphic programs provide a pencil to draw something freehand, with the

same usage like in the prototype. So the recognition of the used image was sufficient and did

not require further description.

Because of the situation that drawing a line is only possible from left to right, both users

were surprised about this limitation. Often users are annoyed about restrictions, but not in this

case. Drawing a line on a time line is normally done from left to right, as in the prototype.

The other way round is illogical and not intuitive. How should a line be interpreted if it does

not continue to the right? So both participants mentioned that this limitation does not hinder

the usability. Instead it leads the user to the correct usage. So this situation illustrates that this

limitation is useful and perhaps necessary.

After drawing a line on the line plot value ranges are created. Value ranges are the base

for the generation process, as they define lower and upper limits for possible values. The users

did not expect them after drawing the trend. On the other side they had no information what

else they would have expected. This illustrated the situation when using new or unknown user

interface functionality. They were not sure about the behavior and mentioned that they would

need further experience in creating sample data. So it stays unclear if this behavior is a positive

or negative aspect. In that case a larger set of participants would have been needed. Long-time

evaluations would also bring more information into this situation, because then the users would

have experience and may identify benefits or weaknesses.

6.3.3.2 Value Ranges

The usage of value ranges are the core concept for defining the trend for the generation of time-

oriented data. They can be added manually by menu items or automatically by drawing the

trend. The forms of the value ranges are similar to box plot.5 A box plot divides its data into

its quartiles, as illustrated in Figure 6.22. It shows the highest and the lowest value with a short

horizontal line, equal to the value ranges of this design. But the recognition was not given, as

5Diagram for grouping numerical data into quartiles

78

Figure 6.22: Box plot

Figure 6.23: Global value range as alternative for single value ranges

both participants did not know what they illustrate. Even after the first generation of data they

were not sure how to interpret them. This problem could lie in the situation that both do not

have much experience in statistics. As box plots are often used in statistics, statisticians and

people working with statistic would have better recognized the value ranges in their meaning.

Furthermore, these people would expect real box plots.

Because of the bad recognition of the meaning, there is the question, if another presentation

for the upper and the lower limit would have been more useful. Another possibility would have

been displaying the limits over the whole plot, as illustrated in Figure 6.23. Instead of several

single value ranges, a global value range is displayed. This global range has the advantage that

the borders are always visible and the space between single value ranges does not stay undefined

on the plot. On the other side additional content is placed on the plot and may overload the line

plot much faster.

The prototype requires at least two defined value ranges for generation, because it requires

79

a start and an end point of time. Both participants understood this behavior and interpreted

it as logical. On the other side the first participant had problems to generate anything in the

first task. He was surprised that nothing happens with only one single value range. When he

identified the situation, he did not claim about the requirement but about a missing hint. In this

situation it would have been better if the user gets informed that two value ranges are required.

As both users said that the requirements of two value ranges are understandable, this need not

to be changed and only requires some hints. This would not occur with a global value range, as

illustrated in Figure 6.23. There we always have a start and an end point and the user would not

stumble over this problem.

Another problem was illustrated in Figure 6.19. There we can see that to many value ranges

overload the plot. The user has to hide all value ranges to see the generated output. In this

situation also the global value range would be a possible solution.

Summarizing the problems of the value ranges it seems that another form of visualizing

upper and lower limits for the generation would have been better. The global value range could

solve the problems, which occurred with the single value ranges. This has to be evaluated in

future work. There would be the question, if the single value ranges or a global value range is

preferred for the configuration of upper and lower limits on a line plot.

6.3.3.3 Cycle Plot

The cycle plot is a special technique to visualize time-oriented data. This form of technique

has the advantage that a trend for a given interval can be visualized. By example a trend for a

specific day of the week is visualized in detail and provides the possibility to identify patterns

and other interesting details, which cannot be identified with a line plot.

Experts of time-oriented data are familiar with this visualization technique. But people

without knowledge about this technique have problems to get familiar with. This was shown by

the user study, as both participants had problems to identify the functionality and the meaning

of the visualization. Both users mentioned that they would need more information about this

visualization technique. Even samples would have been nice but they would have required

much time, till they understand this technique. People, who are not involve into the context of

time-oriented data and the cycle plot, are not able to interact with this technique. They require

detail hints, examples and documentation, which explains all details.

As expected before both participants were not able to use the cycle plot to generate data by

using the prototype. They mentioned that they had not enough information about the context

and how this technique works, what is presented and how to interpret the visualization. This

leads to the conclusion that the cycle plot is not usable to non-experts of time-oriented data. The

interaction for the data generation is another complex step, too much for laymans in this context.

Another weakness for the cycle plot was the missing connection to the simple line plot, when

changing from line plot view to cycle plot view. Both participants expected that they would see

something, the generated data displayed on the simple line plot and translated to the cycle plot.

If this link would have been existing, the functionality of the cycle plot would haven been a bit

more transparent. Nevertheless the cycle plot must always display the same data as presented

in the simple line plot. There must not be any difference. It should not matter if you change

80

the view from line plot to cycle plot or the other way round. Both ways must work and has to

visualize always the same data in a different form and technique.

The weakness of synchronization is also a problem when introducing additional visualization

techniques in the future. All visualization techniques have to show the same data. Chancing to

different visualizations is the interesting part of this design and provides many possibilities.

6.3.3.4 Show and Hide Configuration Parts

The prototype provided the possibility to show and hide configuration parts, which are required

for the configuration of the generation process. These configuration parts should not require

much space, as the plots and the visualization techniques should get as much space as possible

all the time. So I tried to keep all configuration parts very small.

Reducing the required space of all parts to a minimum leaded to the problem that there was

not much space to arrange controls and information in many different ways. Because of this

problem the labels were not sufficient to explain the meaning of all controls. The naming was

too short or too inaccurate, so the users had problems to understand how to use the configuration

parts and what they really do.

Other software solutions solved this problem by using dialog windows, where the user is

able to configure all details. Using dialog windows has the advantage that you need not to keep

it as small as possible. There is the possibility to provide extended labeling and more detailed

naming, so the user can identify the meaning and the functionality more easily. Additionally the

user is able to move the window where he/she wants to. The position is not limited as when

using a fixed position somewhere on the main screen.

The usage of dialog windows seem to be a better solution for this software design, because

the visualization receives much more space and it is not necessary to keep the configuration as

small as possible. The only necessity is to fade in the dialog windows. This can be done by

using menu or toolbar items. Most software applications provide a menu and a toolbar, where

each item triggers an action or opens a dialog.

6.3.3.5 Missing Help and Tool Tips

The users claimed of missing help and tool tips. They often had the problem that they did not

know the exact behavior and functionality of some features. Some tool tips were available but

often not sufficient. In this case they only had the possibility to try out the features. Users always

try out unknown features, but with additional documentation and help content the functionality

becomes much more clearly and does not require much time to experiment.

The prototype provided tool tips for many components, but most time they did not provide

enough information. Such tool tips must provide enough information for the user. In the case of

the prototype the tool tips are very short, apparently too short. The tool tips should provide more

information. Longer phrases or even whole sentences are possible and should be considered,

before the tool tips do not provide enough help.

All configuration parts contain a specific set of common functionalities and summarize them

with a short term. The name of some parts was not concise enough, so the user did not know

the meaning and the functionalities provided. The user mentioned that they would expect a kind

81

of help button, which provides additional help and information. Furthermore, each part should

also have a short description. This description should be placed on top of each part and should

contain an explanation and its contained features.

6.3.3.6 Handling of Multiple Variables

The prototype provide the possibility to handle multiple variables. There is always one selected

variable, which can be edited. When editing other variables, they have to be selected. The

current selected variable is always displayed by the variable configuration part.

Both participants had no problems to handle multiple variables. The system of one selected

variable seems to be intuitive, as they had no problems to switch between the variables. They

mentioned that displaying the currently selected variable is important. The prototype provided

enough feedback to the user.

The handling of variables with different scale factors is not supported by the prototype. The

second participant claimed about the missing feature. He said that the handling with multiple

features is only useful, if the software is able to manage different scale factors for each variable.

The user should not have to make manual calculations. Humans are making mistakes and these

mistakes can be avoided by the software. Manual calculations require much time, which can be

reduced by tooling.

Another problem of the different scale factors is situated in the visualization. The common

visualization of variables with different scale factors makes no scene, if there is always a variable

which is not visible. The correlation between variables can only be visualized, if the variables

have a common upper and lower limit on the display.

Concluding the handling of a common scale factor is required and should be provided in

future work. In this case each variable requires an upper and a lower limit. The prototype

has one upper and lower limit for all variables. So when adding a common scale factor to this

software design, the value limits must be defined for each variable. The common scale factor

has to be calculated by the software. Then the visualization should be able to provide a good

overview of all variables, even if there are extremely different value limits.

6.4 Discussion

The evaluation of the implemented prototype contains of three parts: an expert inspection, a

user evaluation of two non-experts and usage scenarios. For all parts of the evaluation a set of

predefined tasks was available, which should be solved by the users. While the usage scenario

only describes the way of usage for the given tasks, the user study and the expert inspection

provide further details on usability and intuitiveness. Answers on the main and the sub research

questions are expected.

82

CHAPTER 7
Conclusion

7.1 Main Research Question

What is an appropriate solution to create synthetic time-oriented data by using visualization

techniques for input parametrization?

The main research asks for a software design, combining visual techniques, the aspect of

time and the generation of synthetic data within one solution. The appropriate solution is repre-

sented by the implemented prototype, representing a possible approach and software implemen-

tation. It is implemented in Java, uses the visualization framework TimeBench [54] to visualize

data and uses the Java Random Engine to generate data, in this case time-oriented data. The

design is not dependent to a specific library, programming language or system. The prototype

represents a functional implementation, based in the design.

The simplest form to generate time-oriented data with visual techniques is to define the

trend manually on a plot. The prototype provides value ranges to define the borders for possible

values. The user positions them directly on the plot, defines the minimum and the maximum

value and then generates some random values, which are in the range. A range also contains

a distribution, which define the probability for the values within the range. The expert and the

non-experts required time to identify the exact behavior of that feature in the prototype, but had

no problems after some time.

Another possibility to define value ranges was provided by mouse interactions. The proto-

type offers a drawing functionality to draw the trend in form of a line. The exact generated values

are all positioned around to the drawn line. The prototype interprets the drawn line in form of

generated value ranges, which can then be edited manually. The expert and the non-experts

appreciated that possibility, as it provides the possibility to create fast results.

The most common plot for time-oriented data is a line plot, which is easy to understand

even for non-experts of time-oriented data. When using a different visualization technique,

the non-experts had problems to understand the visualization technique, as they did not know

the meaning. The prototype provides the possibility to generate time-oriented data on a cycle

83

plot. The non-experts were not able to interpret this technique correctly and required additional

information and explanations. The expert already knew this technique.

It is conceivable that further visualization techniques for time-oriented data can be used

for the generation of time-oriented data. Depending to the properties and complexity of each

technique non-experts would have problems to understand the technique and even work with it.

Experts would probably not have this problem, if they already know a technique.

As it can be seen two major components define, how a software solution for visual data

generator on time-oriented data can be designed:

• The definition of the input, how borders and limitations are defined.

• The used techniques to visualize data graphically.

Each combination of input definition and visualization technique are conceivable for a soft-

ware solution.

7.2 Sub Research Question

What is an appropriate solution to draft a user interface design that experts and non-experts in

time-oriented data are able to work, independent to introduction and user manuals?

The sub research question deals with the usability of the software design. The usability is

an indicator for the quality of a software solution and was measured against the implemented

prototype in form of a user study and an expert inspection. For non-experts the user study is of

interest, while the expert inspection provides answers on the expert’s view.

During the expert inspection the supervisor Alexander Rind experimented with the imple-

mented prototype and solved the predefined tasks, which were defined for the inspection and

the user study. He identified weaknesses in the technical implementation, where exceptions

occurred during run-time and inconsistencies could be identified. These problems were not of

major interest, as they are based on technical problems and implementation faults.

The non-experts did not claim about major technical problems or inconsistencies. They in-

terpreted the implementation of the prototype as useful and did not have problems to understand

the principle of the design.

The concept of using value sectors for the manual definition of a trend is an adequate solution

for simple tasks. Experts and non-experts understood its usage after some time. Non-experts had

initial difficulties, as they did not identify the principle of a box plot. For inexperienced users

in time-oriented data and visualization techniques some better labeling or a short description

would have been required for more clarity in the prototype.

Experts and non-experts identified in the drawing concept a good solution for achieving

quick results. It is easy to use and intuitive, even for non-experts. For the further processing

of the drawing functionality there exist different possibilities and each user may have another

preference. For simplicity the prototype only converts the drawn line into a set of value sectors.

The simple line plot is easy to understand for all parties and does not require further detailed

explanations. In contrast the cycle plot is hard to understand for non-experts, as they do not

84

know this specific visualization technique for time-oriented data. Detailed labeling and hints are

required so that non-experts are able to get involved into the matter of the cycle plot.

All in all, an implementation of a software design is dependent to a good naming and la-

beling, so that users are able to understand functionalities in the correct way. In some cases

labels and names are not sufficient for the user. Then additional material in form of quick tips or

examples (e.g. tutorials) would be helpful. A the end, the expert and the non-experts identified

weaknesses and not blocking issues within the design approach. So, the appropriate solution is

represented by the implemented prototype, showing strengths and weaknesses in desired design

decisions.

7.3 Reflection

After answering the main and sub research question there still exist open issues and tasks which

would be interesting to be solved and done. They can be done as part of future work and will be

described shortly in the next chapter.

85

CHAPTER 8
Future Work

The implemented prototype of this master thesis provides a small subset of possibilities, how

time-oriented data sets can be generated. It only uses two different visualization techniques and

is limited to basic configuration possibilities.

8.1 Additional Visualization Techniques

Such a generator may provide additional visualization techniques, which can be used for the

generation of synthetic data. There exist a mass of different techniques for time-oriented data,

which may be used for an implementation of such a data generator. Chapter 2.2 of this master

thesis provides an overview of different visualization techniques. A generator should be able

to switch between each available technique and should visualize the same data set. Therewith

not only the generation of synthetic data would be of interest, also different techniques are of

interest to visualize and identify patterns in the data set. Relationships and structures can be

found and the data set can also be edited to experiment on its properties.

8.2 Generative Data Models

Instead of inventing time-oriented data by using drag-and-drop and drawing features it would be

interesting to use generative data models, as described in [58] and [50]. The definition of models

is sometimes easier and less time-consuming than manual definitions of generation settings,

especially when data models are already defined and well-known. Data sets representing the

same generative data model can provide data scaling in any dimensions and can be used to

benchmark the scalability of software dealing with time-oriented data. Christoph Schulz et al.

say:

Abstract and formal descriptions are more compact, easier to transfer, and thus

leverage availability for experiments, while usually also being more tangible and

thus beneficial for analysis. (Quote from [58], p. 1)

87

The data generator can interpret given generative data models in form of equations. Fixed

parameters or variables can be defined and the generator calculates endless number of data sets

matching the given generative data model.

8.3 Persist Data Configuration Settings

The prototype of this master thesis does not provide the possibility to persist configuration set-

tings for later purpose. The user has to repeat all adjustments in the software and loses much

time. Storing user settings is a pleasant feature for users and provides the possibility of individ-

ualization.

Next to the user configuration settings the settings of the input parameters for the data gener-

ation could also be stored. The prototype of this master thesis is not able to persist the generation

settings, which may be very interesting. The repetitive generation of similar data sets could be

supported, as the user is able to close the application, start it again and continue his work without

difference. Such exportable input definitions could also be interesting for sharing the settings

instead of the generated data sets.

8.4 Further Inspection of Drawing Feature

The drawing feature received positive feedback from the user study and the expert inspection.

The participants used the mouse for drawing the trend and were able to receive fast results.

Manual adjustments were used for fine-tuning the input parameters.

The prototype of the master thesis provided only one way of using a drawing board for

the input definition (drawing a trend in form of a line). It is also conceivable that other input

parameters could be defined by using the mouse. For example the trend could be split into a

general and the periodic trend, where the user has to draw two different lines. The distribution

could be drawn in form of a probability density function, as it could be done in PCDC [15]. Or

the correlation between two variables could be drawn on a chart.

The usability and effectiveness of such drawing features should be evaluated in more detail.

The evaluation of this master thesis shows that a small set of users prefer the possibility to draw

the input, instead of defining it manually. A larger set of participants is required to receive a

more meaningful result in form of statistical evaluations. Further investigations in any form of

direct drawing functionalities are of interest and could provide new innovative software designs.

8.5 Value Range Definition

The prototype used value range definitions to define the upper and lower limits for generating

values. Such a value range looks similar to a box plot without the upper and lower quartile.

From the usability point of view the usage of box plot similar range definitions are not very clear

for non-experts. Other forms of value ranges may improve the situation and could be evaluated

in future work.

88

One possibility is the usage of real box plots. Box plots contain basic information of the

value distribution. When using real box plots, including the median, upper and lower quartile,

the user has a visual feedback of the distribution directly on the plot.

Another way to solve the value range definition is the usage of a universal value range, as

demonstrated in Figure 6.23. The borders of the range are visible for the whole area and the user

is able to alter the borders, e.g. by dragging the border with the mouse to another position.

A design of such a generator may offer more than only one way of value range definition.

The user can choose between different techniques. More techniques offer more possibilities to

all users and the starting problems for the non-experts could be reduced.

The advantages and disadvantages of different value range definitions could also be in-

spected by another work. Such a work lists all known value range techniques, describes its

benefits and weaknesses and evaluates, which technique is preferred for which tasks and usage

scenarios.

8.6 Plug-in Mechanism

A software design for a data generator on time-oriented data has a great variety of possible fea-

tures. Different visualization techniques, import and export of data or drawing the trend for the

generation contains a huge set of possibilities. Such a data generator could be extendable by

adding new features in form of plug-ins. Such plug-ins could introduce new visualization tech-

niques, analytical algorithms or other useful additions. Such a generator requires an extendable

design, which could be solved in future work.

A possible solution could be the usage of OSGi,1 a technology to modularize Java applica-

tions. The Java development platform Eclipse2 uses OSGi to support the development of OSGi

based applications. An extendable data generator on time-oriented data could be based on the

Eclipse platform and could then be the base for new visualization techniques and other techni-

cal innovations. The visualization framework TimeBench [54] uses Swing as GUI technology,

while Eclipse is based on the Standard Widget Toolkit (SWT). A combination of Eclipse and

TimeBench is nevertheless possible, as SWT is able to use Swing components.

8.7 User Study with Larger Set of Experts and Non-Experts

This master thesis evaluated the implemented prototype with only one expert and two non-

experts. An evaluation with a larger set would have required higher effort, which would have

exceed the scope of this thesis. A large inspection on an advanced prototype should be done.

A larger inspection involving a higher set of participants (i.e. ten or more participants)

containing experts in time-oriented data and non-experts can be done. The larger amount of

participants provides the possibility to do a statistical evaluation, e.g. accuracy and speed of

solving predefined tasks. Different usage and handling of the prototype between experts and

1http://www.osgi.org/Main/HomePage accessed 2019-11-04
2http://www.eclipse.org accessed 2019-11-04

89

non-experts could be evaluated and identified. Evaluations on specific design details (e.g. feed-

back of drawing feature, usage of value sector, etc.) could be done and summarized by future

work.

90

Bibliography

[1] Visual.ly. http://visual.ly/. Accessed: 2019-11-04.

[2] Chad A. Steed, William Halsey, Ryan Dehoff, Sean L. Yoder, Vicent Paquit, and Sarah

Powers. Falcon: Visual analysis of large, irregularly sampled, and multivariate time series

data in additive manufacturing. Computers & Graphics, 63:50–64, 02 2017.

[3] Chadia Abras, Diane Maloney-Krichmar, and Jenny Preece. User-centered design. William

Sims Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage

Publications, 37(4):445–56, 2004.

[4] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. Visualiza-

tion of Time-Oriented Data. Springer, 2011.

[5] G. Albuquerque, T. Lowe, and M. Magnor. Synthetic generation of high-dimensional

datasets. IEEE Transactions on Visualization and Computer Graphics, 17(12):2317–2324,

2011.

[6] Animated Data, Brighton, UK. F1 timeline. https://charts.animateddata.

co.uk/f1/. Accessed: 2019-11-04.

[7] Machine Learning Visualization Lab at Decisive Analytics Corporation. D3 timeseries

with brush. http://mlvl.github.io/timeseries/. Accessed: 2019-11-04.

[8] David Beard, Murugappan Palaniappan, Alan Humm, David Banks, Anil Nair, and Yen-

Ping Shan. A visual calendar for scheduling group meetings. In Proceedings of the 1990

ACM conference on Computer-supported cooperative work, CSCW ’90, pages 279–290,

New York, NY, USA, 1990. ACM.

[9] Nicolas Garcia Belmonte. Javascript infovis toolkit. http://philogb.github.io/

jit/. Accessed: 2019-11-04.

[10] R. Daniel Bergeron, Daniel A. Keim, and Ronald M. Pickett. Test data sets for evaluating

data visualization techniques. In Georges G. Grinstein and Haim Levkowitz, editors, Per-

ceptual Issues in Visualization, IFIP Series on Computer Graphics, pages 9–21. Springer,

1995.

91

[11] S. Bista and M.L. Pack. Real-time massive data simulation visualization. In Technologies

for Homeland Security, 2008 IEEE Conference on, pages 543–548, 2008.

[12] Max Born. Die Relativitätstheorie Einsteins. Springer, 7. edition, 2003.

[13] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. IEEE Transactions

on Visualization and Computer Graphics, 15(6):1121–1128, 2009.

[14] Mike Bostock. Data-driven documents. http://d3js.org/. Accessed: 2019-11-04.

[15] Sebastian Bremm, Tatiana von Landesberger, Thomas Heß, and Dieter W. Fellner. PCDC

- on the highway to data - a tool for the fast generation of large synthetic data sets. In

EuroVA International Workshop on Visual Analytics, 2012.

[16] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. Readings in Information Visual-

ization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1999.

[17] William S. Cleveland. Visualizing Data. Hobart Press, 1993.

[18] Sunny Consolvo, Larry Arnstein, and B. Robert Franza. User study techniques in the

design and evaluation of a ubicomp environment. In Proceedings of the 4th International

Conference on Ubiquitous Computing, UbiComp ’02, pages 73–90, London, UK, 2002.

Springer-Verlag.

[19] M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriott, and B. H. Thomas. Immersive

collaborative analysis of network connectivity: Cave-style or head-mounted display? IEEE

Transactions on Visualization and Computer Graphics, 23(1):441–450, Jan 2017.

[20] P. Craig and N. Roa-Seiler. A vertical timeline visualization for the exploratory analysis of

dialogue data. In Information Visualisation (IV), 2012 16th International Conference on,

pages 68–73, 2012.

[21] B. Engin, M. Cetinkaya, E. Ayiter, M. Germen, and S. Balcisoy. Maestro: Design chal-

lenges for a group calendar. In Information Visualisation, 2008. IV ’08. 12th International

Conference, pages 491–496, 2008.

[22] Jean-Daniel Fekete. The infovis toolkit. In Proceedings of the IEEE Symposium on Infor-

mation Visualization, INFOVIS ’04, pages 167–174, Washington, DC, USA, 2004. IEEE

Computer Society.

[23] S. Fernandes Silva and T. Catarci. Visualization of linear time-oriented data: a survey.

In Web Information Systems Engineering, 2000. Proceedings of the First International

Conference on, volume 1, pages 310–319, 2000.

[24] Asbjørn Følstad, Effie Lai-Chong Law, and Kasper Hornbæk. Outliers in usability testing:

How to treat usability problems found for only one test participant? In Proceedings of the

7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design,

NordiCHI ’12, pages 257–260, New York, NY, USA, 2012. ACM.

92

[25] Datawrapper GmbH. Datawrapper. https://www.datawrapper.de/. Accessed:

2019-11-04.

[26] Robert L. Harris. Information Graphics: A Comprehensive Illustrated Reference. Oxford

University Press, Inc., New York, NY, USA, 1999.

[27] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive

information visualization. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’05, pages 421–430, New York, NY, USA, 2005. ACM.

[28] Ichiro Hirata and Toshiki Yamaoka. A logical design method for user interface using gui

design patterns. In Masaaki Kurosu, editor, Human-Computer Interaction. Human-Centred

Design Approaches, Methods, Tools, and Environments, volume 8004 of Lecture Notes in

Computer Science, pages 361–370. Springer Berlin Heidelberg, 2013.

[29] Andreas Holzinger. Usability engineering methods for software developers. Commun.

ACM, 48:71–74, 01 2005.

[30] IBM. Many eyes. https://www.boostlabs.com/

ibms-many-eyes-online-data-visualization-tool/. Accessed: 2019-

11-04.

[31] Inc. Infragistics. Quince. http://quince.infragistics.com/. Accessed: 2013-

11-10.

[32] T. Isenberg, P. Isenberg, Jian Chen, M. Sedlmair, and T. Möller. A systematic review

on the practice of evaluating visualization. Visualization and Computer Graphics, IEEE

Transactions on, 19(12):2818–2827, Dec 2013.

[33] Scott Sievert Jake Vanderplas. Altair. https://altair-viz.github.io/. Ac-

cessed: 2019-11-04.

[34] Jeff Johnson. Designing with the Mind in Mind: Simple Guide to Understanding User

Interface Design Rules. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2010.

[35] Benjamin Keen. generatedata.com. http://www.generatedata.com/. Accessed:

2019-11-04.

[36] Andrey Krekhov and Jens C. Kruger. Deadeye: A novel preattentive visualization tech-

nique based on dichoptic presentation. IEEE Transactions on Visualization and Computer

Graphics, 25:936–945, 2018.

[37] S. Kriglstein, M. Pohl, and C. Stachl. Animation for time-oriented data: An overview of

empirical research. In 2012 16th International Conference on Information Visualisation,

pages 30–35, July 2012.

93

[38] B. C. Kwon, H. Kim, E. Wall, J. Choo, H. Park, and A. Endert. AxiSketcher: Interactive

nonlinear axis mapping of visualizations through user drawings. IEEE Transactions on

Visualization and Computer Graphics, 23(1):221–230, Jan 2017.

[39] H. Lenz. Universalgeschichte der Zeit. Marixverlag, 2013.

[40] G. A. Lewis, E. Morris, P. Place, S. Simanta, and D. B. Smith. Requirements engineering

for systems of systems. In 2009 3rd Annual IEEE Systems Conference, pages 247–252,

March 2009.

[41] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective wall: detail

and context smoothly integrated. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’91, pages 173–176, New York, NY, USA, 1991.

ACM.

[42] Jock D. Mackinlay, George G. Robertson, and Robert DeLine. Developing calendar visu-

alizers for the information visualizer. In Proceedings of the 7th annual ACM symposium on

User interface software and technology, UIST ’94, pages 109–118, New York, NY, USA,

1994. ACM.

[43] Microsoft. About time. http://msdn.microsoft.com/en-us/library/

windows/desktop/ms724186/. Accessed: 2019-11-04.

[44] T. Munzner. A nested model for visualization design and validation. Visualization and

Computer Graphics, IEEE Transactions on, 15(6):921–928, Nov 2009.

[45] Sir Isaac Newton. The mathematical principles of natural philosophy. Knight & Compton,

Middle Street, Cloth Fair, 1. edition, 1803.

[46] Jakob Nielsen. Usability inspection methods. In Conference Companion on Human Fac-

tors in Computing Systems, CHI ’94, pages 413–414, New York, NY, USA, 1994. ACM.

[47] Y. Nomura, S. Mihara, and H. Taniguchi. Implementation of a practical calendaring system

conforming with ambiguous pattern of recurring tasks. In Advanced Information Network-

ing and Applications Workshops (WAINA), 2012 26th International Conference on, pages

1011–1016, 2012.

[48] D.A. Norman. The Psychology of Everyday Things. Basic Books, 1988.

[49] Donald A. Norman and Stephen W. Draper. User Centered System Design; New Perspec-

tives on Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,

1986.

[50] Ronald J. Nowling and Jay Vyas. A domain-driven, generative data model for big pet

store. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing,

pages 49–55, 2014.

94

[51] M.Z.A. Obeidat and S.S. Salim. Integrating user interface design guidelines with adapta-

tion techniques to solve usability problems. In Advanced Computer Theory and Engineer-

ing (ICACTE), 2010 3rd International Conference on, volume 1, pages V1–280–V1–284,

2010.

[52] Maruf Rahman. Time series chart(irregular interval) with shared x-axis and zoom. http:

//bl.ocks.org/marufbd/7191340. Accessed: 2019-11-04.

[53] R. G. Raidou, M. Eisemann, M. Breeuwer, E. Eisemann, and A. Vilanova. Orientation-

enhanced parallel coordinate plots. IEEE Transactions on Visualization and Computer

Graphics, 22(1):589–598, Jan 2016.

[54] Alexander Rind, Tim Lammarsch, Wolfgang Aigner, Bilal Alsallakh, and Silvia Miksch.

TimeBench: A data model and software library for visual analytics of time-oriented data.

IEEE Transactions on Visualization and Computer Graphics, 19(12):2247–2256, 2013.

[55] B. Saket, A. Srinivasan, E. D. Ragan, and A. Endert. Evaluating interactive graphical en-

codings for data visualization. IEEE Transactions on Visualization and Computer Graph-

ics, 24(3):1316–1330, March 2018.

[56] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A grammar

of interactive graphics. IEEE Transactions on Visualization and Computer Graphics,

23(1):341–350, Jan 2017.

[57] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A streaming

dataflow architecture for declarative interactive visualization. IEEE Transactions on Vi-

sualization and Computer Graphics, 22(1):659–668, Jan 2016.

[58] Christoph Schulz, Arlind Nocaj, Mennatallah El-Assady, Steffen Frey, Marcel Hlawatsch,

Michael Hund, Grzegorz Karch, Rudolf Netzel, Christin Schätzle, Miriam Butt, Daniel A.

Keim, Thomas Ertl, Ulrik Brandes, and Daniel Weiskopf. Generative data models for

validation and evaluation of visualization techniques. In Proceedings of the Sixth Workshop

on Beyond Time and Errors on Novel Evaluation Methods for Visualization, BELIV ’16,

pages 112–124, New York, NY, USA, 2016. ACM.

[59] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot and dimension

reduction technique choices. Visualization and Computer Graphics, IEEE Transactions

on, 19(12):2634–2643, 2013.

[60] Ben Shneiderman. Designing the user interface: strategies for effective human-computer

interaction. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[61] Benjamin Sintay. Unix time stamp. http://www.unixtimestamp.com/. Accessed:

2019-11-04.

[62] Tableau Software. Tableau public. http://www.tableausoftware.com/

public/community. Accessed: 2019-11-04.

95

[63] R Project Contribution Team. The R project. http://www.r-project.org/. Ac-

cessed: 2019-11-04.

[64] The IEEE and The Open Group. Portable operating system interface. IEEE Std 1003.1,

2001.

[65] Christian Tominski and Wolfgang Aigner. The timeviz browser. http://survey.

timeviz.net/. Accessed: 2019-11-04.

[66] M. Tory and T. Möller. Evaluating visualizations: do expert reviews work? Computer

Graphics and Applications, IEEE, 25(5):8–11, Sept 2005.

[67] M. Tory, N. Rober, T. Möller, A. Celler, and M.S. Atkins. 4d space-time techniques: a

medical imaging case study. In Visualization, 2001. VIS ’01. Proceedings, pages 473–592,

2001.

[68] Anders Toxboe. UI patterns. http://ui-patterns.com/. Accessed: 2019-11-04.

[69] I. Tsuda, K. Uchino, and I. Matsui. WorkWare: WWW-based chronological document

organizer. In Computer Human Interaction, 1998. Proceedings. 3rd Asia Pacific, pages

380–385, 1998.

[70] Martijn van Welie. Welie.com. http://welie.com/. Accessed: 2019-11-04.

[71] J.J. van Wijk and E.R. Van Selow. Cluster and calendar based visualization of time series

data. In Information Visualization, 1999. (Info Vis ’99) Proceedings. 1999 IEEE Sympo-

sium on, pages 4–9, 140, 1999.

[72] Reinhard Viertl. Einführung in die Stochastik. Springer, 3rd edition, 2003.

[73] Bing Wang, Puripant Ruchikachorn, and Klaus Mueller. Sketchpadn-d: Wydiwyg sculpt-

ing and editing in high-dimensional space. Visualization and Computer Graphics, IEEE

Transactions on, 19(12):2060–2069, 2013.

[74] S. Yuan, A. Tabard, and W. Mackay. Streamliner: A general-purpose interactive course-

visualization tool. In Knowledge Acquisition and Modeling Workshop, 2008. KAM Work-

shop 2008. IEEE International Symposium on, pages 915–919, 2008.

[75] S. Zollmann, D. Kalkofen, C. Hoppe, S. Kluckner, H. Bischof, and G. Reitmayr. Interactive

4d overview and detail visualization in augmented reality. In Mixed and Augmented Reality

(ISMAR), 2012 IEEE International Symposium on, pages 167–176, 2012.

96

