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Abstract—The dynamic network visualization design space consists of two major dimensions: network structural and temporal
representation. As more techniques are developed and published, a clear need for evaluation and experimental comparisons between
them emerges. Most studies explore the temporal dimension and diverse interaction techniques supporting the participants, focusing
on a single structural representation. Empirical evidence about performance and preference for different visualization approaches is
scattered over different studies, experimental settings, and tasks. This paper aims to comprehensively investigate the dynamic network
visualization design space in two evaluations. First, a controlled study assessing participants’ response times, accuracy, and
preferences for different combinations of network structural and temporal representations on typical dynamic network exploration tasks,
with and without the support of standard interaction methods. Second, the best-performing combinations from the first study are
enhanced based on participants’ feedback and evaluated in a heuristic-based qualitative study with visualization experts on a
real-world network. Our results highlight node-link with animation and playback controls as the best-performing combination and the
most preferred based on ratings. Matrices achieve similar performance to node-link in the first study but have considerably lower
scores in our second evaluation. Similarly, juxtaposition exhibits evident scalability issues in more realistic analysis contexts.

Index Terms—Human-centered computing–Visualization–Graph drawings, Empirical studies in visualization

✦

1 INTRODUCTION

A ‘‘graph” or “network” (the two terms will be used
interchangeably in this paper) is a data structure repre-

senting a set of nodes and their relationships, represented by
edges between them. Due to its flexibility and relevance to
several application domains, the problem of how to visually
represent such a structure has been attracting interest since
the 1960s [1]. With the turn of the millennium, Herman
et al. [2] first introduce a shift of perspective from “graph
drawing“ to “network visualization”, mentioning how the
latter deals with much larger graphs than before—a neces-
sary adaptation to the rise in size of scientifically interesting
networks. Around the same time, the increased availability
of time-dependent datasets contributed to the increase of
research interest in dynamic network visualization [3]. The
paradigm shift from static to dynamic data represented a
natural and necessary step forward to tackle the upcoming
challenges presented by large and fast-evolving datasets,
effectively anticipating and preparing for the advent of the
“Big Data” era. Thanks to its constant evolution and growth
for the last 20 years, dynamic network visualization is nowa-
days considered a mature and thriving field of research [3].

The visualization of a dynamic network can be consid-
ered, at its core, the problem of concurrently representing
the graph topology, that is the underlying network struc-
ture, along with the temporal facet [4]. Kerracher et al. [5]
introduce a design space for dynamic network visualiza-
tion techniques along these two dimensions: the network
structural representation (topology) and temporal encoding (dy-
namics). This two-dimensional design space is expressive
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enough to characterize the majority of existing dynamic
network visualization approaches.

There is extensive literature on studies designed to eval-
uate different graph representations for typical exploration
tasks on static networks (see, e.g., [6], [7]). Similar studies
have been conducted for dynamic approaches, however
they compare different temporal encodings for the same
structural representation (node-link diagrams for the most
part, see Section 2). This also comes as a consequence of
the limited number of dynamic network visualization ap-
proaches that have matrices as their base graph representa-
tion [3] (see, e.g., [8], [9]). Furthermore, existing user studies
in this context also incorporate simple interaction methods
to support the network exploration (see, e.g., [10], [11])
Empirical evidence about the performance and preference
for different dynamic network visualization approaches in
our design space is still scattered over different studies,
experimental settings, procedures, differnt interaction im-
plementations, and tasks. This has two consequences. On
the one hand, it makes it more difficult to assess and
compare the different techniques in our design space, even
on the same set of graph analysis tasks. On the other, it is not
straightforward to identify which aspects of such techniques
to select when building a network visualization system for
the analysis of a dynamic real-world dataset.

Our Contribution. In this paper, we contribute a two-
step evaluation to fill these gaps in the literature. First, we
design, conduct, and discuss the results of a user study
aimed at comparing different network structural representa-
tions, temporal encoding techniques, and interactions (Sec-
tion 5). Second, we refined a set of visualization approaches
based on the outcomes of the first study. We then evaluate
these in a heuristic-based qualitative study with visualiza-
tion experts to extract knowledge and obtain insights in a
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realistic analysis scenario (Section 6). Finally, we discuss the
findings and takeaways across both evaluations (Section 7)
and derive an overall conclusion (Section 8). We outline
the following contributions resulting from our two-step
evaluation:

• We assessed the accuracy, response times, and pref-
erence of node-link diagrams and adjacency matrices
for dynamic graph tasks and concluded that the for-
mer performs better for high-level tasks (overview,
estimation, higher-level structures), whereas the lat-
ter was more accurate for low-level tasks (identifying
nodes, edges, and timeslices).

• Our study shows the influence that interaction tech-
niques have on response times and accuracy re-
gardless of the network’s structural representation.
Providing interactions significantly increases the re-
sponse times, however, at the same time increasing
the accuracy of the responses.

• The study results suggest that animation and ani-
mation with playback significantly outperformed the
other techniques in our design space consistently.

• Our results show that node-link diagrams are the
most preferred structural representation, as well as
the one associated with the highest accuracy and
lowest response times from both studies.

A preliminary version of this research has been pre-
sented at the International Symposium on Graph Draw-
ing and Network Visualization (GD) 2022, selected by the
Program Chairs and invited for publication in TVCG. This
extended journal version contains revised writing and ex-
periment description, a new qualitative evaluation, and a
discussion of takeaways from both studies.

2 RELATED WORK

We outline recent related studies conducted along the two
dimensions of the design space introduced by Kerracher et
al. [5].

Structural Representations. In graph drawing literature,
several studies assess the readability, task performance, and
effects of aesthetic criteria on human cognition of different
graph structural encodings (e.g., [7], [11], [12], [13], [14],
[15], [16], [17]). Okoe et al. [7], [11] conduct comparative
evaluations between node-link and matrix representations
on a large scale (∼ 800 participants). Their results show
that node-link diagrams better support memorability and
connectivity tasks. Matrices have quicker and more accurate
results for tasks that involve finding common neighbors and
group tasks (i.e., involving clusters). Concurrently, Ren et
al. [14] conduct a large-scale study (∼ 600 participants)
comparing the readability of node-link diagrams against
two different sorting variants of matrix representations on
small to medium social networks (∼ 50 nodes). Their find-
ings do not differ significantly from the ones by Okoe et
al. [11], suggesting that node-link provided a better implicit
understanding of the network, with lower response times
and higher accuracy than matrices. However, the gap be-
tween the two tended to reduce as the size of the graph in-
creased. Abdelaal et al. [18] conduct a crowd-sourced study
(∼ 150 participants) where bipartite layouts are compared

with node-link and matrix-based representations on their
performance on overview tasks for large graphs (∼ 500
nodes) and detail task for smaller ones. Their findings
suggest that matrices are the most reliable across all tasks,
also providing evidence of the positive effect of bipartite
networks in exposing the network structure.

Temporal Encodings. One of the most studied problems
concerning dynamic network visualization, is the ability
of participants to retain a “mental map” of the graph
while investigating its evolution [10], [19], [20], [21], [22].
Archambault and Purchase investigate the effect of drawing
stability on the node-link graph representation coupled with
animation and small multiples [10], [21]. Drawing stabil-
ity proved to have a positive effect on task performance,
with animation able to improve over the timeline in low-
stability scenarios. Ghani et al. [23] investigate the percep-
tion of different visual graph metrics on animated node-
link diagrams. Results suggest that animation speed and
target separation have the most impact on performance for
event sequencing tasks. Linhares et al. [24] compare four
different approaches for visualization of dynamic networks,
namely the Massive Sequence View [25] (timeline-based),
the Temporal Activity Map [26], and animated node-link
and matrix diagrams. While all techniques reached satisfac-
tory results, the animated node-link was the favorite choice
of the participants. Even though matrix-based approaches
are included in this study, it does not exhaustively cover
all the possible combinations of our design space. Filipov et
al. [27] conduct an exploratory study comparing different
combinations of structural and temporal representations.
The results suggest that tasks with matrices were completed
quicker and more accurately, the participants preferred ma-
trices with superimposition, and juxtaposition was among
the least preferred approaches. However, these results com-
paring matrix-based approaches with node-link diagrams
and their temporal encodings require further confirmation
and formal statistical analysis. Overall, related literature
shows that the perception of different temporal encodings
has been mainly investigated on node-link diagrams, with
few papers focusing on the other combinations of structural
and temporal encodings. In this sense, our paper constitutes
an effort in understanding whether the differences between
node-link and matrix representations still hold in a dynamic
scenario, what is the efficacy of the temporal representa-
tions, and how effective (and how important) is it to include
interactions when designing such approaches.

3 DYNAMIC GRAPH VISUALIZATION

We refer to a dynamic graph Γ as a sequence of individual
graphs each one representing its state at a specific point in
time: Γ = (G1, G2, ..., Gk); we denote the individual Gx

as a dynamic graph timeslice. We now briefly describe the
different structural and temporal encodings, detailing their
implementation in our experiments.

3.1 Network Structural Representations
The structural dimension focuses on the challenges of laying
out a graph to visually present the relationships between
elements in an understandable, accurate, and usable man-
ner [5].
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Fig. 1: Network structural and temporal encodings: Juxtaposition (A,D), Superimposition(B,E), and Animation with
Playback Controls (C,F)

Node-Link (NL) diagrams present the relational struc-
ture of the graph using lines to connect the entities that are
depicted using circles, whose coordinates on the plane are
computed using specialized algorithms. In our study, we
compute the NL layouts using the force-directed implemen-
tation of d3js [28] by aggregating all the available timeslices
into one graph for which a drawing is computed. This pro-
cess of aggregation [29] is simple to implement and provides
a stable layout throughout the sequence of timeslices, at the
expense of the quality of individual layouts. In this paper,
we assume to have the complete time sequence available,
therefore the drawing can be computed based on both past
and future timeslices (an offline drawing approach [30]). This
is opposed to an online scenario where the layout can be
computed only based on past timeslices (e.g., when dealing
with streaming data). We refer to the following for a broader
discussion on dynamic network layout algorithms [3], [31],
[32], [33], [34], [35], [36], [37], [38].

Adjacency Matrices (M) visualize the network as an
n × n table. A non-zero value in the cell indicates the
presence of an edge between the nodes identified by the
corresponding row and column. In our study, we order the
rows and columns lexicographical according to the node’s
label. This ordering would appear immediately familiar
to the user without the need for further onboarding, and
has been used in previous studies [15]. More advanced
reordering methods exist [39], however, matrix reordering is
still under-investigated in a dynamic context and we include
this aspect in our secondary study design.

3.2 Network Temporal Encodings

In dynamic networks, the temporal dimension plays an
important role in the analysis process and requires special
attention to enable effective exploration and a better under-
standing of the behavior of the network [40].

Superimposition (SI) encodes the temporal dimension
of the network in the same screen space by overlaying the
timeslices (see, e.g., [33], [37]) or making use of explicit
encoding (see., e.g., [41], [42]). In our study, we represent
the temporal information in SI using colorblind-friendly
color palettes [43]. In NL, we generate multiple parallel
edges between the nodes, one for each timeslice where
the edge is present, and color-code them individually. In
M we subdivide each cell uniformly into rectangles, each
representing the existence of that edge during that timeslice,
which is colored similarly (see Figure 1 B-E).

Juxtaposition (JP) represents the graph’s temporal dy-
namics as distinct layouts, each with dedicated screen space,
similar to the small multiples approach by Tufte [44] (see
Figure 1A,D). In our study, we generate one diagram per
timeslice and arrange them adjacent to each other.

Animation with Playback Control (ANC) uses a time
slider to control the state of the animation and move to
any of the available timeslices in no particular order (see
Figure 1-C,F). The transition always happens between the
start and end time slice that is selected, intermediate ones
are not considered. This enables a more fine and controlled
exploration and analysis compared to animation, where
speed and time progression are typically fixed.

Auto Animation (AN) depicts the change of the graph
over time as smooth transitions between subsequent times-
lices. Differently from ANC, with AN it is not possible to
skip forward or navigate backward in time and it automati-
cally goes over each of the timeslices in a sequence.

4 EVALUATION PROCESS

In order to understand the effect on performance and pref-
erence that different combinations of network structural
and temporal encoding have on graph temporal tasks, we
construct a two-step evaluation process.
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T# Low-level High-level
T1 At which time step is

the relationship between
{source} and {target}
introduced for the first
time?

At which time step does the
clique between {nodes}
appear for the first time?

T2 Sum up the changes (ad-
ditions and removals) of
{node}’s degree across all
time steps.

Calculate the change of
the clique’s size between
{nodes} across all time
steps.

T3 At which time step does the
node {node} have its high-
est degree?

Consider the set of nodes
{nodes}. Find the size of
the largest maximal clique
across all the time steps be-
tween the given nodes.

TABLE 1: The test questions (trials), per task (rows) and
entity type (columns).

In our first study (see Section 5), we opt for a controlled
user study which would exhaust all possible combinations
of our design space on the same predefined set of tasks.
We also evaluate the impact of simple interactions by intro-
ducing their presence as a study condition. We perform a
complete statistical analysis of the quantitative results of the
study (i.e., response times and error rates), which we use to
test our research hypotheses.

In the second study (see Section 6), we move beyond
low-level benchmarks for predefined tasks and investigate
how our proposed visualizations can be used to gain in-
sights about a real-world dataset [45], also addressing some
of the most important limitations that we identified in our
first user study. We aim at exploring the capabilities of
the techniques in the understanding of data and insight
generation, by performing a heuristic evaluation meant to
determine and compare the “value” of each visualization
following the methodology proposed by Wall et al. [46].
We refine our initial selection of techniques by considering
the results of the statistical tests as well as other qualitative
information from the previous study (i.e., users’ feedback
and preferences) narrowing them down to two temporal
encodings for both structural representations in our design
space, for a total of four techniques (out of the initial
16). Moreover, we consider the feedback to enhance the
interactions available for each of the techniques, simulating
the use of more advanced visualization tools in the context
of a real analysis scenario.

In the following sections, we present both studies in
detail, discussing the study design, results, and limitations.
We summarize the lessons learned in Section 7.

5 STUDY 1: USER EVALUATION

In this section we present the structure of our first study,
describe the study design, including our tasks, research
hypotheses, stimuli, and procedure.

Tasks. The tasks used in our experiment are available in
Table 1. We picked one task for each category of temporal
feature in the taxonomy proposed by Ahn et al. [47], namely,
Individual Temporal Features (T1), Rate of changes (T2), and
Shape of changes (T3). We selected the most common tasks
referenced in the taxonomy and included in our experiment
these tasks for both low- (nodes and edges) and higher-level
(cliques) entities.

H # Research Hypothesis
H1 M have lower response times and higher accuracy for all

tasks compared to NL diagrams, regardless of the temporal
encoding.

H2 From all temporal encoding techniques, SI has the lowest
response times and highest accuracy, regardless of the struc-
tural representation.

H3 Providing interaction techniques increases the response
times but not the accuracy.

H4 M have lower response times and higher accuracy for tasks
on low-level entities and NL diagrams have lower response
times and higher accuracy for tasks on higher-level entities,
regardless of the temporal encoding.

H5 The combination M+SI results in the lowest response times
and highest accuracy compared to other combinations of
network structural and temporal encoding.

TABLE 2: The research hypotheses that were evaluated in
our experiments.

Research Hypotheses. We base our research hypotheses
on the proposed tasks and we report them in Table 2. The
research hypotheses H1, H2, H4, and H5 are derived from
the observations and results of our previous exploratory
study [27] (see also Section 2). While the focus of this exper-
iment is centered around the visual encoding combinations
within our design space, H3 is intended to investigate the
effects of common interaction techniques in this context. We
conjecture that these increase response times over visual
inspection alone without a significant impact on accuracy.
This research hypothesis is determined empirically from
previous work [27] where participants performed tasks on
dynamic network visualizations within a similar design
space as the one in this paper without the support of in-
teraction methods. We assume that providing interactivity
would have an impact on the response times, due to the
time needed for the users to accept and then adopt it.
Similarly, based on prior observations, we also assume that
the benefit of providing interactions will not be associated
with a significant increase in the accuracy of the tasks. In
H4 we conjecture that following the evolution of a cluster
or clique is more difficult with M compared to NL. This
assumption is derived from the results of our previous
study where participants focused on low-level tasks (i.e.,
individual nodes and their temporal features [47]). Since in
this study, the participants must track several elements at
once, we expect this would be easier to achieve with NL as
the nodes are drawn closer together, compared to M.

5.1 Interactions

The interactions we implement are meant to support net-
work exploration. The following apply regardless of the
temporal encoding: (i) zooming and panning (both for M
and NL); (ii) hovering over a M cell highlights its corre-
sponding row (from the left) and column (from the top);
(iii) in NL, nodes can be moved by dragging in order to
de-clutter some denser areas of the drawing. Moreover, for
AN only and regardless of the structural representation, the
time between consecutive timeslices can be increased (7 sec
maximum) or decreased (1 sec minimum). This selection
should not favor any specific combination of structural and
temporal encoding techniques over the others. Zooming,
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panning, and node rearrangement are commonly available
in graph exploration software, like Gephi [48]. M mouse-
over was also used by Okoe et al. [11]. AN speed could
also be manipulated in the study by Archambault and
Purchase [20].

5.2 Experiment Setting

Stimuli. We generated 24 different scale-free random [49]
graphs (35 ≤ |V | ≤ 45, 46 ≤ |E| ≤ 71) with the NetworkX
python library [50], [51]. We chose this category of networks
as they resemble real-world data examples of scientific
interest (e.g., the world-wide-web, authors’ co-citation net-
works [52]). We augmented each graph with 4 timeslices as
follows. A single timeslice was created from the input graph
by randomly deleting edges; the process is repeated for each
of the 4 required. Then, they are arranged to form a sequence
(in no particular order), so that we simulate the temporal
dynamics of edge addition/removal. Finally, we split the
datasets into two different types: 12 graphs with cliques and
12 without. As the input graphs did not naturally include
cliques, they were introduced artificially when necessary. 5
random nodes in each graphs were randomly selected, and
then new edges were added to form the clique in one or
more random timeslices (simulating the clique forming and
breaking). The size of the graphs is comparable with the
majority of empirical studies on graph visualization [14],
[53].

Trials. Each of the tasks is applied to all combina-
tions of structural and temporal encodings of interest in
our study (see Section 3) resulting in 48 unique trials:
3(task types)× 2(entity types)× 2(network encodings)×
4(temporal encodings). The entity types refer to either
low-level (node or link) or high-level (cliques or clusters)
components of the network [47]. The order of the trials
during the study is randomized in order to mitigate learning
effects. The participants take part in the online experiment
by completing the trials prepared using SurveyJS [54].

Study Design. Our experiment follows a between-
subject arrangement: all participants complete the same
entire set of 48 trials on the same graphs, but are exposed
to one of two conditions, either without (Group A) or with
(Group B) the support of the interactions discussed in Sec-
tion 5.1. Participants were randomly assigned to the two
groups, with the majority (75%) in Group B. This subdivi-
sion is justified by the fact that only one of our research
hypotheses (H3) requires participants not to take advantage
of interactions. Therefore, we design the experiment to have
a higher number of participants with interaction support.
We estimated a split of 25% over the expected number of
participants, as a sufficient size for Group A to obtain statis-
tically significant results, see Sections 5.3 and 5.4 for further
details. For each trial, we ask the participant to provide a
confidence score of their answer using a 5-point Likert scale
(1 least confident - 5 most confident). At the end of the
experiment, the participants express their thoughts in a text
field (i.e., “Please enter any personal comments”) about the
encoding combinations they encountered and rank them on
a 5-point Likert scale (1 least preferred - 5 most preferred).

Participants. For our study, we enrolled students who
were part of a graduate course on information visualization

H# Groups MWU T-Test Binomial

(NL T1) vs (M T1) 0.0104*b <0.001***b 0.0013*b

(NL T2) vs (M T2) 0.1579 <0.001***b 0.9313H1
(NL T3) vs (M T3) <0.001***b <0.001***b 0.0022**b

(SI) vs (JP) <0.001***b 0.1065 0.166
(SI) vs (ANC) 0.8662 0.1429 0.0883H2

(SI) vs (AN) 0.2766 0.7751 <0.001***b

H3 (Grp A) vs (Grp B) <0.001*** <0.001*** <0.001***

(M Low) vs (NL Low) <0.001***b 0.1392 <0.001***b
H4 (M High) vs (NL High) <0.001***b <0.001***b 0.4321

(M+SI) vs (M+JP) 0.0056** 0.2567 0.2424
(M+SI) vs (M+ANC) 0.6301 0.2989 0.0261

(M+SI) vs (M+AN) 0.2766 0.6328 0.0646
(M+SI) vs (NL+SI) 0.0038**b <0.001***b 0.449
(M+SI) vs (NL+JP) <0.001***b <0.001***b 0.1389

(M+SI) vs (NL+ANC) 0.0088 <0.001***b <0.001***b

H5

(M+SI) vs (NL+AN) 0.0331 <0.001***b <0.001***b

TABLE 3: The results of the statistical test (p-values) for each
research hypothesis. We mark the cells with * if p < 0.05, **
if p < 0.01, *** if p < 0.001. If multiple comparisons are
performed, b indicates the Bonferroni correction [55].

design. To ensure that participants had a sufficient level of
knowledge on the topic, we gave an online introductory lec-
ture about the visualizations and the experiment modalities.
Participation was optional and its performance did not im-
pact the final grade of the students. The online setting was
necessary to guarantee a sufficient number of participants
while ensuring a safe social-distancing protocol. However,
this also meant giving up control of the experiment environ-
ment (i.e., no control over the participants’ setup, devices
used, and resolution).

5.3 Analysis Approach

We received a total of 76 submissions from as many partici-
pants, of which we removed 8 that either recorded anoma-
lous response times (way too quick or long) or incorrect
answers to control questions, suggesting participants trying
to “game” the study. This resulted in a final set of 68 valid
submissions that were used as the basis of our analysis. We
provide further details as supplemental material.

For each question of our study, we collected the par-
ticipants’ answers, their corresponding response times,
and confidence values. We ignored the group subdivision
(Group A and B) for research hypotheses that did not
focus on the presence of interactions in the visualizations
(all except H3, see Section 5), as ANOVA tables do not
show a statistically significant interaction effect between
the independent variables for H1, H2, H4, H5 (for more
information we refer to [56]).

We conduct our analysis as follows, supported by
Python libraries for statistical analysis [57], [58], [59]. We
consider the structural and temporal encoding, the task
type, entity type, and the groups (Group A and B) as
independent variables, the response times and accuracy are
taken as dependent variables. As the group subdivision is not
even (25-75), we choose methods that are robust against
these unbalanced designs [60], [61], [62], [63]. For each of
the research hypotheses, we decomposed them into simpler
hypotheses and executed multiple null hypotheses tests
(see groups in Table 3) to find evidence for or against our
research hypotheses. For multiple group comparisons, we
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Fig. 2: H1: Box plot of response times for NL and M per task.

took countermeasures by using the Bonferroni corrected
alpha significance levels [55]. For the analysis, we con-
sider and visually inspect response times and accuracy
(number of correct answers ÷ total number of answers).
To remove outliers from the data before the analysis we
employ the inter-quantile range (IQR) [64]. We set the IQR
lower (q1 − 1.5 · IQR) and upper (q2 + 1.5 · IQR) bounds at
q1 = 0.25 and q2 = 0.75 as the outlier cut-off boundaries.
This resulted in 116 trials (or 3.43%) being detected as
outliers and omitted from the analysis.

The task response times in our experiment are not
normally distributed. To mitigate this, we perform a Box-
Cox transformation [65]. Visual inspection of the quantile-
quantile (Q-Q) plots confirmed a normal distribution of the
transformed data. This allows us to run parametric tests,
specifically, ANOVA (see [56] for further information about
the ANOVA tables) and T-tests [60], [61], [62], [63]. The stan-
dard ANOVA and T-tests are robust against such skewed
distributions [66], [67], [68], therefore, we rely on them
for our analysis as they both have more statistical power
than non-parametric tests and detect significant effects if
they truly exist. In the presence of a statistically significant
difference (p-value < 0.05), we check, with T- and Mann-
Whitney-U (MWU) tests, whether the significance held and
visually explored the corresponding box plots to come to
a conclusion. To evaluate our research hypotheses on ac-
curacy, we also perform Binomial tests to detect statistical
significance between the distributions.

5.4 Quantitative Results

H1. We presume, based on previous work [27], that M
would perform better overall compared to NL for all tasks.
Figure 2 depicts differences in response times between M
and NL diagrams per task type. The results (see Table 3)
indicate that NL is generally faster and more accurate than
M. However, when looking at their differences per task
we discover for T1 that NL is significantly faster than
M (NL: 73.49s, M: 97.93s), whereas M proves to be more
accurate (NL: 74.9%, M: 80.7%). For T2 the T-Test detects
a significant difference in response times between NL and
M (NL: 133.41s, M: 194.20s), however, in terms of accuracy
they both perform similarly (NL: 52.5%, M: 52.7%). For T3
NL representations significantly outperform M in terms of
response times (NL: 107.32s, M: 175.92s) as well as accuracy
(NL: 65.7%, M: 59.4%). Summarizing, the results suggest
NL to generally have the lowest response times and higher

Fig. 3: H2: Box plot of response times for temporal and
network representations.

accuracy compared to M for the proposed tasks. Thus, our
results do not support H1.

H2. We assume SI to have the lowest response times
and highest accuracy out of all the temporal encoding
techniques. In our analysis, however, we do not detect any
statistical significance in the comparisons shown in Table 3,
with the only exception being JP, which has considerably
lower response times than SI (see Figure 3). Concerning
response times, JP has the lowest (118.32s), followed by AN
(127.76s), SI (129.69s), and ANC (141.35s). We also run a
paired T-Test comparing the temporal encoding approaches
to check for statistical significance between pairs out of our
initial research hypothesis and detect a significant difference
between JP and ANC. In terms of accuracy, we discover a
significant difference between SI (62.1%) and AN (68.6%).
Whereas, between SI and JP (64.45%) or ANC (59.13%) there
is no significant difference. We conjecture these results to be
due to the graph’s size and limited number of structural
changes over time, which might favor AN as it is possible
for participants to follow all changes during animation. Our
analysis shows no evidence to support H2.

Fig. 4: H3: Box plot of response times for interaction groups
per task.

H3. We conjecture that providing interactions influences
the response times but not the accuracy. Our tests detect
a significant difference (see Table 3) in the response times
between group A (no interactions; 114.76s) and B (interac-
tions; 163.83s). As we initially assume, the group with inter-
actions is much slower in completing tasks than the group
with no interactions (see Figure 4), however, the difference
in accuracy is unexpected. The group with interactions is
significantly more accurate than the one without (group
A: 58%, group B: 65%). This suggests that interactions in-
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Fig. 5: H4: Box plot of response times for (A) single entities and (B) cliques.

deed increase response times, but at the same time provide
the participants with a much better understanding of the
visualized graphs and corresponding network dynamics
regardless of the temporal encoding, therefore, leading to
more accurate responses. The analysis shows that our results
support H3 in terms of response times, but not accuracy.

Fig. 6: H5: Box plot of response times for temporal and
network representations.

H4. We formulate this research hypothesis to evaluate
whether the response times and accuracy of M and NL
representations are affected by the type of target entity in
a dynamic context (low-level - individual nodes and edges;
or higher-level - cliques), regardless of the temporal repre-
sentation. For low-level entities, we do not detect any sig-
nificant differences in the response times between network
representations (see Table 3), both NL and M diagrams
perform similarly. The results (see Figure 5) for tasks on low-
level entities indicate that M has lower response times (NL:
97.08s, M: 90.24s), whereas for higher-level entities NL has
significantly lower response times (NL: 146.66s, M: 245.2s).
However, in terms of accuracy M is significantly better than
NL for lower-level entities (NL: 82.1%, M: 86.4%). For the
higher-level entities, NL and M representations perform
quite similarly in terms of accuracy (NL: 42.1%, M: 41.3%)
Based on these findings, the results suggest that H4 is
partially supported.

H5. Finally, we want to assess the response times and
accuracy for all possible combinations of network struc-
tural and temporal encodings. Our assumption is that M
representations with SI temporal encoding have the lowest
response times and highest accuracy. We compare M+SI to
all other combinations of network structural and temporal

encodings (see Figure 6). The results of the statistical tests
yield significant differences in response times when com-
paring M+SI (154.53s) with M+JP (140.13s), NL+SI (105.25s),
NL+JP (99.54s), NL+AN (108.8s), and NL+ANC (110.97s).
Between M+SI (154.53s) and M+ANC (168.87s) and M+AN
(160.62s) there is no significant difference in response times
(see Table 3). In terms of accuracy, we detect statistically
significant differences between M+SI (61.1%) and NL+ANC
(51.8%) and NL+AN (71.4%). Whereas, the other combina-
tions do not differ enough to warrant significance: M+JP
(64%), M+ANC (66.4%), M+AN (65.5%), NL+JP (64.6%),
and NL+SI (62.9%). From these results, the most balanced
combination in terms of response times and accuracy is
NL+AN followed by NL+JP. Therefore, we find no evidence
supporting H5.

5.5 User Ratings and Feedback
We collect the participants’ ratings per combination of net-
work structural and temporal encoding along with textual
feedback pertaining to their preferences and experience
during the experiment (see Figure 7). There are no major
differences in the preferences between the SI and JP encod-
ings; ANC is the most preferred temporal encoding when
coupled with an NL base representation. The NL represen-
tation is generally the most preferred approach, regardless
of the temporal encoding. In terms of the participants’
confidence, we observe that most participants seemed to
be fairly confident in their answers across all approaches
(see Figure 8). Most notably, the participants were most
confident with NL+JP, followed by M+ANC, NL+ANC, and
M+JP. There is general consensus that NL+SI was a very
cluttered combination, whereas for M it performed a lot bet-
ter and was easier to understand (“SI was really confusing for
some of the NL tasks but really useful for many of the M tasks”).
This is presumably due to the clutter generated by parallel
edges crossings that occur in NL diagrams, which does not
affect M. As in previous studies [27], the feedback on JP
outlines that it requires participants to split their attention
between multiple views in order to compare the temporal
information. The ANC approach was preferred by the study
participants for its flexibility due to the additional controls
(i.e., time slider). AN was not considered to be a very good
temporal encoding technique with the feedback being con-
sistent across structural representations. Some participants
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Fig. 7: Preferences per network and temporal encoding on a
Likert scale (1-5).

Fig. 8: Confidence per network and temporal encoding on a
Likert scale (1-5).

commented that they needed to “screenshot every timestamp
to look at the different connections between the nodes” and wait
to watch the whole animation from the beginning. NL+AN,
therefore, appears to be the least practical of the approaches,
however, it also provides the best results. We conjecture
this to be due to the size of the graphs and the number
of structural changes occurring. M+AN is the lowest rated
by the participants. The general consensus for AN is that it
was difficult to keep track of the changes occurring between
the nodes, requiring the viewer to memorize node positions
and labels incurring a high cognitive effort to complete the
tasks. Despite the aforementioned drawbacks, AN scales
better to a larger amount of timeslices compared to SI and JP.
Finally, the group with interactions had a better experience
overall compared to the group without. The majority of the
members of this group explicitly requested interactions to
be implemented, supporting our findings concerning H3.

5.6 Limitations

In this experiment, the size of the graph was not considered
when preparing the stimuli. Small graphs were chosen, both

in the number of nodes/links and timeslices. M scales better
to larger graphs than NL, while AN and ANC support a
greater number of timeslices compared to SI and JP. Second,
we chose simple, custom implementations for our structural
and temporal encodings, disregarding more advanced so-
lutions in literature (see Section 3). While this was done
with the intention of testing the fundamental principles
of the techniques in our design space, evaluating more
sophisticated approaches might have significantly impacted
the results. Finally, we focus on a selection of tasks from a
taxonomy on network evolution analysis [47], other graph-
based taxonomies could present relevant benchmarks for
the proposed techniques.

In contrast to our previous exploratory study [27], the
analysis of the results in this paper show that M-based
approaches do not perform well in terms of response times
and accuracy compared to NL diagrams. Our results also
confirm the outcomes of similar studies evaluating the
differences between structural representations in a static
environment [7], [11]. Many of our research hypotheses are
not supported and this challenges our opinions about the
usefulness of M-based representations in a dynamic context.
Therefore, building on the outcomes of this study, we con-
duct a further evaluation with the goal of investigating how
well the techniques support extracting insights and gaining
knowledge about the network’s dynamics. We describe the
experiment setting and results in our follow-up study (see
Section 6), where we also aim at overcoming the limitations
we identified.

6 STUDY 2: HEURISTIC EVALUATION

In this section, we describe the structure of our second study,
discuss the design, present our dataset, stimuli, and the
evaluation procedure we follow.

Complementary to the previous study, we evaluate the
techniques based on their potential to gain insights about
the depicted dataset. For this purpose, we follow the heuris-
tic evaluation methodology ICE-T by Wall et al. [46]. The
goal of this evaluation is to determine the value of the best-
performing visualizations from the first study: the value
of visualization is defined as its capability of responding
to data-driven questions, generating insights, and inspiring
confidence in the potential results of the analysis [46].

6.1 Tested Techniques and New Interactions
We selected four combinations from our design space for
this evaluation as the overall best performing from our first
study (see Section 5). These are: NL+JP, NL+ANC, M+JP,
M+ANC. Based on the user feedback, we modified the
visualizations from the first study.

In terms of visualization, we improved the highlighting
for both M and NL (see Figure 9). In NL diagrams hovering
with the mouse over a node highlights it as well as its
adjacent nodes. With M we highlight the entire column and
row of the currently selected cell, providing the participants
with a better view of intersecting cells. We depict the inac-
tive nodes (i.e., not present at the current timeslice) in gray.
Furthermore, we added tooltips for both structural repre-
sentations showing the viewer the label(s) of the currently
selected node or cell.
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Fig. 9: Highlighting in the visualizations: (A) both the
columns and rows of the selected cell in M-based represen-
tations are highlighted; (B) the selected node and its adjacent
neighbors are highlighted for NL diagrams.

In terms of improved interaction techniques, for NL
diagrams we implemented sticky nodes as a way for the
participants to reorganize the layout of the network mit-
igating edge crossings in denser areas: each time a node
is dragged around, its position becomes fixed and is not
changed by the layout algorithm. For M-based represen-
tations, we included reordering algorithms, that are part
of the ReorderJS library [69] (Leaf Order, Reverse Cuthill-
McKee, Spectral, and Barycentric), with the aim of outlining
structural patterns. Users can switch between the different
reordering techniques at any point in the exploration. We
also improved interaction with the temporal encodings as
follows. For ANC we updated the animation to include
both auto-animation as well as a time slider providing
more interactive control. For JP we updated the layout to
accommodate 8 timeslices so that all of these are visible on
a single screen.

6.2 Experiment Setting

Stimuli. For this evaluation we used a real-world dataset
describing co-authorships between authors in the Informa-
tion Visualization community from 2008 to 2016, with 8
timeslices (compared to 4 in the first study) each spanning 1
year, obtained from a co-citation network [70]. We aimed
at obtaining a graph about twice the size as the ones
from the first study. We filtered the original input graph
as follows: first, we stacked and ordered the graph nodes
by descending degree; second, we popped the stack and
included that node and its neighborhood in the filtered
graph. This process continued until we reached a predefined
threshold of 80 nodes, which we increased to 107 to avoid
breaking any existing clique. This resulted in a total of 469
individual edge occurrences (avg. 58,6 per timeslice). In
order to evaluate the capabilities of the visualizations to
highlight invalid, unusual, or unexpected data cases [46],
we inserted an additional 194 random edge occurrences,
that brought up the average to 82,8 edges per timeslice. This
is well within the typical scale of the graphs used in other
evaluations [53].

Trials. In this study, we apply the heuristic evalua-
tion by Wall et al. [46] aimed at evaluating the value of
a visualization. This evaluation protocol entails an open-
ended exploration of the data, where participants identify

their own data-driven questions and find the correspond-
ing answers. To initiate the analysis, we encouraged the
participants to perform free-form exploration and browsing
of the network and the timeslices, pointing out interesting
insights they found (e.g., highly connected nodes, changes
in relationships, reoccurrences, cliques or clusters that are
formed, more interesting timeslices).

Study Design. We conducted the experiment as individ-
ual expert interviews remotely using a video conferencing
platform (Zoom [71]) that lasted 60 minutes on average,
preceded by a 10-minute introduction to the scope of our
evaluation. Our visualizations were implemented using
Angular [72] and d3.js [73] and hosted on a web server
accessible to our participants from their own devices. The
participants shared their screen content, which allowed us
to record their activities and interactions as well as audio
recordings. We kept a protocol of notes for each interview
as well as reviewed the recordings after the evaluation
sessions. Each participant spent about 15 minutes per vi-
sualization technique, exploring and interacting with the
data, gaining insights, and voicing their thoughts about
what they are doing, searching for, finding, or expecting
to see. In the end, we asked them about their opinions
on each visualization technique and to fill out one ICE-T
survey [46] for each technique at their own convenience.
We provided the surveys as online forms, where we would
collect the results and calculate the overall score for each
visualization technique afterward. Additionally, we added
a field where the participants could explicitly provide any
textual feedback pertaining to the visualization or interac-
tion techniques, what they found useful, and what could be
further improved (i.e., ”Feel free to add any comments and
feedback here.”). Interviews were done in an uncontrolled
setting. Participants used their own devices to complete the
study by accessing the experiment online.

Participants. We recruited five participants, which is
considered an appropriate number for an ICE-T survey
stated by Wall et al. [46]. All participants are experts and
have experience in both visual analytics and network vi-
sualization with a prominent publication track record in
these fields. To ensure that they were all informed about the
different modalities of our study we introduced the visual-
ization and interaction techniques, dataset, and provided a
brief explanation of patterns that might occur in M-based
representations prior to the evaluation.

6.3 Analysis Approach

The ICE-T evaluation methodology used in this study [46]
is structured hierarchically into 4 aspects relevant to visu-
alizations (components), which are Insight, Time, Essence,
and Confidence. Each component contains two to three
visualization guidelines (intermediate level), with each en-
capsulating one to three heuristics. Heuristics represent
how the visualization guidelines can be achieved (e.g., “The
visualization provides a big picture perspective of the data”).
These 21 heuristics are formulated as rateable statements
asked directly to the participants (e.g., “The visualization
presents the data by providing a meaningful visual schema”).
Each participant provided a response to each one of the 21
heuristics in the questionnaire.
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Fig. 10: Results of the ICE-T heuristic evaluation. This figure
shows the average scores of each of the combinations of
structural and temporal encodings evaluated in the study.
The scores vary from 1 (Strongly Disagree) to 7 (Strongly
Agree).

Heuristics are rated on a 7-point Likert scale with 1
being “Strongly Disagree” and 7 being “Strongly Agree”.
Additionally, there is a “Not Applicable” answer in case
any of the participants thought the question does not apply
(and excludes the answer from the score calculation). Scores
are then averaged per component, whose average value is
the visualization’s overall score (or value). According to this
methodology [46], a valuable visualization should obtain an
overall average score of at least 5. To make the reported
scores more transparent, we included the standard deviation
of the ratings in our results together with the average scores
(see Table 4). We include in the supplemental material the
complete questionnaire and a detailed breakdown (includ-
ing the individual responses) of the results we obtained. For
more details about the ICE-T methodology, we refer to Wall
et al. [46].

We report the quantitative results of this evaluation in
Section 6.4. In addition, to the heuristic evaluation, we
collected the participants’ qualitative feedback and discuss
it in Section 6.5.

6.4 Quantitative Results

The results of the evaluation (see Figure 10) indicate a
clear preference of the participants for NL representations
compared to M. This result is also consistent and confirms
the findings of our first study, especially the ones con-
cerning participants’ preferences (see Sections 5.4 and 5.5).
NL+ANC obtained a score of 6.15, whereas NL+JP was 5.96,
while M did not get past 4.26.

Unsurprisingly, study participants found NL visualiza-
tions to provide a more natural and intuitive representation
of the topology of the network, being more capable of high-
lighting structural patterns thus supporting insight gener-
ation and knowledge extraction. In turn, when using M
representations a viewer must first decode the visualization
in order to make sense of the relational data and structure,
which takes more time and cognitive effort compared to NL.

When comparing the temporal encoding, a reoccurring
trend from the first study (see Section 5), is that ANC is
consistently preferred to JP. We presume this to be due to

the nature of JP, which requires the viewer to continuously
switch attention between the individual timeslices in order
to trace an individual node, edge, and/or cell, and to ob-
serve its behavior over time. However, differently from JP,
with ANC is not possible to compare distant (non-adjacent)
timeslices.

We additionally inspected the scores of each visualiza-
tion technique on a per-component basis (see Figure 11).
The scores are mostly consistent throughout the four com-
ponents, following the same trend as in Figure 10) with
the exception of M+JP and M+ANC for the “Essence” (i.e.,
“Live view or summarization of the dataset” [46]), where M+JP
scores better (4.36) than M+ANC (3.93). This may also
come as a consequence of the divided opinion on M-based
representations in a dynamic context, which is indicated
by the high variance of both ANC and JP (see Figure 11).
While the participants were interacting with the M-based
representations, overall they favored ANC over JP, however,
their opinions were somewhat divided if they found M
useful for such analysis tasks or not.

The NL-based network visualization results indicate that
across all components the ANC temporal encoding is con-
sistently preferred to JP (see Figure 11). Furthermore, the
participants’ opinions and scores on NL diagrams are more
consistent and in agreement compared to M representations
as seen in Figure 11 (low variance for all NL techniques).

Overall, the best-performing combination of techniques
(as well as the highest valued one), indicated by these re-
sults is NL+ANC (6.15), followed by NL+JP (5.96), M+ANC
(4.46), and, finally, M+JP (4.26) (see Figure 10).

6.5 Qualitative Results

According to the study participants, with ANC it was easier
to track changes occurring to a specific part of the graph
(local changes), whereas for JP it was easier to observe more
global changes happening over all the available timeslices
and the entire graph regardless of the structural representa-
tion. With the support of our linked interaction techniques
in JP, it was easier to compare distant timeslices compared to
ANC, which most participants expressed being only useful
to compare up to two neighboring timeslices. Thus, we be-
lieve the choice of temporal encoding, in this case, depends
heavily on the granularity of the network analysis that
participants are interested in (i.e., local vs. global behavior,
distant vs. neighboring timeslices). Generally, the partici-
pants observed how ANC offered a lot more screenspace
compared to JP for each timeslice, which is common for
time-to-time vs. time-to-space visualization techniques [74].

Our decision of favoring layout stability to preserve the
viewers’ mental map both in NL and M was generally
received favorably by the study participants. However, they
also remarked that a balance between the layout stability
and quality on a per-time slice basis may improve graph
readability and insight generation - despite the cognitive
impact on the users’ mental map. In support of this claim,
several participants argued that the existing reordering
algorithms available for M representations were not able
to emphasize topological patterns existing on individual
timeslices as reordering was applied on the matrix rep-
resenting the aggregated graph. Due to the nature of the
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Component Insight Time Essence Confidence Total
Score AVG STD AVG STD AVG STD AVG STD AVG STD
M+ANC 4.65 1.22 4.25 1.84 3.93 1.44 4.73 1.73 4.46 1.53

M+JP 4.33 1.46 3.85 2.06 4.36 1.91 4.53 1.96 4.26 1.78
NL+ANC 6.22 0.82 6.00 0.84 6.14 0.83 6.13 1.02 6.15 0.87Te

ch
ni

qu
e

NL+JP 6.10 0.80 5.65 1.19 5.93 0.96 6.00 0.97 5.96 0.97

TABLE 4: Results of the ICE-T heuristic evaluation. The rows are the individual combinations of structural and temporal
graph encodings that were evaluated. The columns are grouped per component and within each we calculate the mean
and standard deviation of the participants’ ratings. The right-most column shows the total for each technique.

publication dataset, where local neighborhoods can change
drastically across adjacent timeslices, it was a challeng-
ing task to observe the global behavior of the network
in M-based representations, regardless of their temporal
encoding. This is also indicated in the results of M-based
representations in the “Total” column of Table 4, where
the standard deviation of the participants’ ratings are sig-
nificantly higher than those for the NL representations.
Based on these results and our observations during the
evaluation sessions this illustrates the diverging opinions
and preferences that the participants had about M-based
representations. Based on the interview videos, we also
observed that all participants managed to identify smaller-
scale structures and important or central nodes with the
aid of matrix reordering algorithms. Using the M+ANC
combination was more useful for detecting local changes
compared to JP, which is consistent with the participants’
general feedback about the temporal encodings. Based on
the comments of the participants it became clear to us that
M-based representations possess a steep learning curve in
order to be decoded properly. However, when asked about
the usefulness of M-based representations, there was also
agreement there is potential to improve these by including
more sophisticated interaction techniques, visual encodings,
and reordering algorithms (“M seems a bit nerfed”).

For NL+JP all participants expressed that the linked
interactions and adjacency highlighting were extremely use-
ful in order to observe changes occurring to a node and
its neighbors over time. From the evaluation sessions we
observed that NL+JP was regarded by most participants as
providing a better view of the network and being effective at
supporting cluster/clique identification, as well as, central
(or bridge) nodes. However, there was consensus among
participants on NL+ANC being the most intuitive approach
contrary to their initial expectations. Prior to experimenting
with the approaches, the participants assumed that NL+JP
would be the most efficient technique for extracting insights.
NL+ANC made it easier to identify persistent nodes and
how clusters/cliques appear, disappear, or evolve over time
due to the natural time-to-time encoding. These results are
also visible in the scores of the ICE-T questionnaire [46],
where NL+JP and NL+ANC are quite closely ranked in
terms of Essence, that is the capability of the visualization
of communicating both overview and context of the data
(see Figure 10 and Table 4)

6.6 Limitations
In our second study, we explored how the scale of the graph
(in terms of the number of nodes and edges as well as

Fig. 11: Results for each of the ICE-T heuristics. The bars
each represent one of the techniques being evaluated. The
scores vary from 1 (Strongly Disagree) to 7 (Strongly Agree).
The dashed line indicates a score of 5, which is considered
the minimum .

timeslices) affected the ability of the participants to extract
insights and generate knowledge from a real-world dataset.
We had to face space issues with JP, as beyond 8 timeslices
there is not nearly enough screen space to depict the graph
in its entirety in all timeslices while keeping a sufficient
zoom level to keep labels and nodes readable.

While the results of the evaluation are clear in showing
the participants’ preference, two elements might have neg-
atively affected M-based representations leading to a lower
score. These should be considered when elaborating on the
study results, and, therefore, we discuss them as limitations.

First, M visualizations appeared to be sparse (“[There
was] lots of whitespace”). Co-authorship networks appear as
rapidly changing cliques and we picked the biggest cliques
in order to have a sufficient amount of nodes and edges.
However, we soon hit an upper bound on the number of
nodes, as space requirements for M are particularly de-
manding to accommodate node labels. While it is commonly
accepted that sparse graphs are better visualized as NL
diagrams, we were not testing task performance, but rather
the expressive power of combinations of structural and
temporal encodings in a dynamic scenario. Nonetheless,
it remains untested whether M-based approaches would
provide improved task performance compared to NL in a
dynamic scenario with larger, denser graphs.

Second, one participant observed that there could be
some negative bias towards M-based approaches as NL
are more common. We did not measure or counteract bias
effects.

Finally, we remark that this study provides empirical
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evidence of the expressive power and preference of different
dynamic network visualizations in a more realistic scenario,
which includes larger graphs and more nuanced interac-
tions. However, we can’t conclude whether the findings of
the first study apply to larger graphs, which would require
further studies in this direction.

7 TAKEAWAYS

Our results suggest that, within the afforementioned lim-
itations, the selection of NL as a structural representation
leads to better performance, and participants generally
prefer NL over M. In our first experiment, M was closer
to NL regarding performance and preference, considering
the simple interactions and few timeslices. In the second
study, a broader gap in preference appeared between the
two. Existing research proved the potential of M over NL
representations for specific tasks in a static context (see,
e.g., [11], [15]). Despite offering interactions and reordering
techniques for M-based representations, these need to be
adapted and extended for a dynamic context in order to
emphasize the topological structures that exist and change
over time. This has two interpretations.

First, there is an intrinsic difficulty in reporting the dy-
namics of a graph using matrices: as all the rows/columns
are visible simultaneously, choices have to be made on
whether to hide the currently inactive ones. To help main-
tain the mental map, we chose to show all rows and
columns for all timeslices. This enabled the participants to
orient themselves but simultaneously created clutter that
played against them rather than providing a more com-
prehensive view of the dataset and its temporal evolution.
The first study’s results could also support this: M could
provide a similar performance to NL as only edges were
added/removed.

Second, M representations are undoubtedly oriented to-
wards a more expert audience of users. In the first study,
some participants (students, see Section 5) commented that
they needed to redraw the M representation as a NL dia-
gram. Whereas in the second study, even expert participants
admitted a potential bias as they were used to interacting
with NL diagrams compared to M representations in their
daily work.

Within the context of our two studies and the basic
implementations of the graph representations, temporal
encodings, and available interactions these results appear
in contrast to the ones we obtained in our exploratory
study [27]. We would like to remark that our previous work
was intended as an exploratory study to gather empirical
evidence about the problem to be further evaluated in this
work. In fact, we focused on a significantly reduced set of
tasks, used smaller graphs (both number of nodes/edge and
timeslices), did not consider mental map preservation, and
neither present a statistical analysis of the results. Therefore,
we believe that the combination of the findings of the two
study can support users in making the best informed deci-
sions for the task at hand. The insights, quotes, and results
of our exploratory study [27] should be mediated with the
results of both experiments in this work.

The results of both studies highlight that it is easier
for users to transition to a dynamic network exploration

scenario with NL representations. At the same time, for M
there are still open, underinvestigated problems related to
the presentation of the temporal dynamics. Furthermore,
when considering the use of M for dynamic networks, the
target user groups’ expertise should be considered.

Concerning the temporal encodings, we found AN,
ANC, and JP to be the best performing and most preferred
across our two experiments. In the first study, AN generally
had lower response times and higher accuracy than JP. AN
was closely followed by ANC, which was the most preferred
due to the presence of the manual time slider. JP showed
evident limitations when we scaled up the number of times-
lices, but it is still the encoding of choice for overview tasks.
Participants remarked that the eye needed to travel some
distance and locate the same position within the graph to
focus on it before they could see what is happening to an
individual node or edge. This hints that JP may not be as
well suited for low-level tasks as ANC but was regarded as
a suitable approach for getting an overview of the entire net-
work and how it changes across all timeslices. Nonetheless,
the space requirements of JP should be carefully considered
when designing a dynamic network visualization system.

8 CONCLUSION

In this paper, we investigated the design space of dynamic
network visualization along its two major dimensions,
structural representation and temporal encoding, consider-
ing the effects of simpler and more advanced interaction
techniques. We presented two studies: Firstly, we conducted
a user study, assessing response times, accuracy, and pref-
erences. We evaluated the results against our research hy-
potheses through a complete statistical analysis. Secondly,
based on these results, we selected the best-performing
structural and temporal encodings and improved inter-
actions according to participants’ feedback. The resulting
visualizations were compared in a heuristic evaluation [46]
aimed at investigating to which extent they support con-
ducting exploratory analysis and insight generation.

In accordance with the results of the first study, partic-
ipants favored NL over M for the structural encoding and
preferred ANC over JP for the temporal encoding. We con-
densed our results into a series of takeaways and discussed
the limitations of our studies, which opened several interest-
ing future research directions. First, we believe the tradeoff
between layout quality and stability [29] should be further
investigated in this context for both NL and M. Second,
while both ANC and JP had high scores for NL diagrams,
it would be interesting to see if and how both approaches
could be combined interactively to provide an overall better
experience for network exploration and analysis. Finally, we
believe that the staged animation technique proposed by
Bach et al. [75] could be applied to both NL and M helping
users orient when transitioning from one timeslice to the
other, with visual cues indicating the location and type of
change (appearance or disappearance).
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