
An Interactive Visualization Approach
to Tackle Design Constraints in a

Rule-Based Recommendation System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Bernhard Pointner, BSc
Matrikelnummer 01527081

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag. Dr. Silvia Miksch
Mitwirkung: Dipl.-Ing. Dr. Johanna Schmidt

Wien, 22. August 2022
Bernhard Pointner Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

An Interactive Visualization Approach
to Tackle Design Constraints in a

Rule-Based Recommendation System

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Bernhard Pointner, BSc
Registration Number 01527081

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag. Dr. Silvia Miksch
Assistance: Dipl.-Ing. Dr. Johanna Schmidt

Vienna, 22nd August, 2022
Bernhard Pointner Silvia Miksch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Bernhard Pointner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. August 2022
Bernhard Pointner

v

Acknowledgements

First of all, I want to express my thanks to my advisors Johanna Schmidt and Silvia
Miksch. They supported me in shaping the underlying ideas of the thesis and contributed
with their expertise in information visualization.

Furthermore, I am grateful for all the experiences and support during my studies in
difficult times. It resulted in awesome friendships and memories of my time at university.
Mainly, I want to thank my colleagues Elitza Vasileva and Dominik Scholz for their
motivating attitude and collaboration during our journey that led to remarkable successes.

Finally, I want to thank my parents who made all this possible for me and other close
people in my life. I am convinced that they know how grateful I am for their versatile
support, not only at the finishing straight of this thesis.

This work was enabled by the Competence Centre VRVis. VRVis is funded by BMK,
BMDW, Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET
(879730) which is managed by FFG.

vii

Kurzfassung

Bisher sind bestehende regelbasierte Frameworks, die Richtlinien für das Visualisierungs-
design kodieren, entweder zu komplex, zu mühsam zu pflegen und zu erweitern oder
führen zu vernachlässigbaren Ergebnissen. Aus diesem Grund wurde Draco von Dominik
Moritz et al. entwickelt - ein automatisiertes Visualisierungs-Empfehlungssystem, das De-
signwissen als auf logischen Ausdrücken basierte Regeln zur Einschränkung des möglichen
Eregebnissets in Answer Set Programming (ASP) formalisiert. Es hat zum Ziel die Lücke
zwischen Visualisierungsrichtlinien und deren Anwendung in Visualisierungswerkzeugen
zu schließen. Unter Berücksichtigung aller Vorteile und Möglichkeiten von Draco verlieren
jedoch selbst Visualisierungsexpert:innen mit einer zunehmenden Anzahl an Regeln und
beinhaltetem Designwissen den Überblick und haben Mühe, die vom System getroffenen
automatisierten Empfehlungsentscheidungen nachzuvollziehen.

Diese Arbeit schlägt einen interaktiven Visualisierungsansatz für Dracos Regelwerk vor.
Es soll Visualisierungsexpert:innen in die Lage versetzen, identifizierte Aufgaben bezüg-
lich der Wissensbasis zu lösen und sie beim Verständnis des Systems unterstützen. Um
die notwendigen Daten für diesen Visualisierungsansatz zu gewinnen, erweitern wir die
bestehende Datenextraktionsstrategie von Draco um eine Datenverarbeitungsarchitektur,
die in der Lage ist, Informationen aus der Wissensbasis zu extrahieren. Eine überarbeitete
Version der ASP-Grammatik liefert die Grundlage für diese Datenverarbeitungsstrategie.
Die daraus resultierenden Merkmale der Regeln werden dann unter Verwendung einer
Hypergraphstruktur innerhalb der radial angeordneten Regeln visualisiert. Die hierarchi-
schen Kategorien der Regeln werden durch Bögen angezeigt, die die Regeln umgeben.
Darüber hinaus schlagen wir eine getrennte, aber interaktiv zusammenhängende Ansicht
von Dracos Visualisierungsempfehlungen und unserer Visualisierung für die Regeln vor.
Diese geteilte Ansicht soll es Expert:innen ermöglichen, Verstöße gegen die Designregeln
auf Basis von Hervorhebungen betroffener Regeln interaktiv zu untersuchen.

Der implementierte Prototyp verifiziert die Machbarkeit der Datenextraktionsstrategie
und des vorgeschlagenen Visualisierungsansatzes. Eine Evaluierung des Prototyps, die
qualitative und quantitative Methoden kombiniert, zeigt offene Schwierigkeiten und
irreführende Darstellungen auf. Die Evaluierungsergebnisse bestätigen jedoch auch die
Effektivität und den Wert des Prototyps. Dieser ermöglicht Einsicht und ein besseres
Verständnis von Dracos Empfehlungsprozess und des zugrundeliegende Regelwerks zu
erhalten.

ix

Abstract

So far, existing rule-based frameworks that encode visualization design guidelines are either
too complex, laborious to maintain and extend, or produce negligible results. Therefore,
Draco has been developed by Dominik Moritz et al. - an automated visualization
recommendation system formalizing design knowledge as logical constraints in Answer Set
Programming (ASP). It is supposed to close the gap between visualization guidelines and
their application in visualization tools. However, taking all advantages and capabilities
of Draco into account, with an increasing set of constraints and incorporated design
knowledge, even visualization experts lose overview and struggle to retrace the automated
recommendation decisions made by the system.

This thesis proposes an interactive visualization approach to Draco’s constraints. It is
supposed to enable visualization experts to accomplish identified tasks regarding the
knowledge-base and support them in understanding the system. To acquire the necessary
data for this visualization approach, we extend the existing data extraction strategy
of Draco with a data processing architecture capable of extracting features of interest
from the knowledge-base. A revised version of the ASP grammar provides the basis for
this data processing strategy. The resulting incorporated and shared features of the
constraints are then visualized using a hypergraph structure inside the radial-arranged
constraints of the elaborated visualization. The hierarchical categories of the constraints
are indicated by arcs surrounding the constraints. In addition, we suggest a split but
connected view of Draco’s visualization recommendations and our visualization. This
faceted view is supposed to enable visualization experts to interactively explore the design
rules’ violations based on highlighting respective constraints or recommendations.

The implemented prototype verifies the feasibility of the data extraction strategy and
the proposed visualization approach. An evaluation of the prototype combining qualita-
tive and quantitative methods reveals open difficulties and misleading representations.
However, the evaluation results also confirm the prototype’s effectiveness and value in
acquiring insights into Draco’s recommendation process and design constraints.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Questions . 3
1.3 Methodology . 4

2 Related Work 5
2.1 Recommendation Systems . 5
2.2 Grammars for Answer Set Programming 8
2.3 Parser Generators for Answer Set Programming 9
2.4 Visualizations in Context of Logic Programming 10
2.5 Network-Based Visualizations of Set Relationship 13
2.6 Hierarchical Data Structure-Based Visualizations 14
2.7 Summary . 18

3 Data Processing and Visualization Approach 19
3.1 Problem and Requirements Analysis . 21
3.2 Data Extraction and Processing . 26
3.3 Visualization and Interaction Design 33
3.4 The Final Design . 49

4 Implementation 51
4.1 Prototype Design . 51
4.2 Selected Technology Stack . 53
4.3 Limitations of the Prototype . 54

5 Evaluation 55
5.1 Evaluation of the Grammar . 55
5.2 Evaluation of the Visualization . 59

xiii

6 Discussion and Future Work 73
6.1 Contributions . 73
6.2 Generalizability . 74
6.3 Modular Version of Draco . 74
6.4 Limitations . 75
6.5 Future Work . 75

7 Summary and Conclusion 77

List of Figures 79

List of Tables 83

List of Listings 85

Acronyms 87

Bibliography 89

Appendix 99

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Effective information visualization is becoming crucial with today’s increasing number of
data and its complexity. For a long time, only researchers and data analysts, so-called
experts, have been associated with analytical tasks and the process of visualizing complex
data. However, with increasing digitization, not only experts process data, but also
children from an early age are confronted with data visualizations in their daily life in
school, at home, on TV, on social media, and so on. It is insufficient only to be able to
read and understand data visualizations but also to be capable of creating visualizations
by yourself (user) to get insights and to derive value from a data domain of interest. Such
insights involve detecting trends, spotting anomalies and correlations, clusters, patterns,
distributions, or compositions [VHS+17].

Whereas earlier data visualizations have to be drawn manually, current popular tools, like
Excel and Tableau, assist the user in creating data visualizations by proposing popular
types of visual encodings, such as line charts, bar charts, or scatter plots. However, the
story of creating effective visualizations does not end with knowing which chart type to
select. Visual encodings, such as visual channels, mark types, binning and aggregation
operations, faceted view, and others, must be carefully selected and used to create a
visualization for given data. This knowledge of how to properly use and apply these
encodings can be learned from books, scientific papers, courses in schools, and similar.
However, studies show that visualization designers still not always follow these guidelines
due to various reasons [BRBF14a, BRBF14b].

Therefore, it is unsurprising that visualization recommendation, especially automated
visualization design, have enjoyed an increasing interest in recent years. Saket et al.
argue that it is time to go beyond manually curated and applied visualization design
guidelines [SML+18].

1

1. Introduction

According to Moritz et al. [MWN+19], the existing design principles and guidelines are
generally incomplete and continually evolving. Consequently, as mentioned by Moritz et
al., the outcome of regularly published empirical study results has to be incorporated
into these systems to ensure the observance of theories concerning effective design by
time. However, due to Moritz et al. [MWN+19], we still lack a formal framework for
representing design knowledge that the research community can easily update to fit
those requirements. Although Machine-Learning (ML)-based approaches enjoy increasing
popularity in the field of automated visualization design, the process of applying the new
findings and theories is slowed down, which is in the ML-based systems’ nature. These
systems can only learn from previous visualizations in which the study results are not
yet taken into account and are, therefore, unsuitable for testing new theories and study
results concerning visualization design.

Consequently, Moritz et al. proposed a system called Draco [MWN+19] to address this
problem. It is based on a novel formal model that represents visualizations as a set of
logical facts. Furthermore, it constitutes design guidelines and principles as an extendable
list of ∼230 hard and soft constraints over these facts – the knowledge-base. Whereas
hard constraints prune all visual encodings, which would result in non-expressive or
ill-formed visualization specifications, the soft constraints determine the final ranking
of remaining design specifications based on their violations. The whole knowledge-base,
including logical facts, the constraints, and the recommendation query definition, is
expressed in Answer Set Programming (Answer Set Programming (ASP)), a declarative
constraint-based logic programming language.

Draco proposes numerous suggestions for improving the system, and possible usage
scenarios, such as design space enumeration, visualization model comparison, or design
debugging [MWN+19]. Of course, not all of these suggestions can be addressed at once.
However, we believe that the aspect of understanding the system’s knowledge-base and
recommendation process should be prioritized. Making the system more accessible and
understandable by the research community and visualization designers would create
the basis for further developments, such as using Draco for testing and comparing new
theories and empirical study results.

Therefore, we analyzed Draco regarding this aspect and encountered the following
weaknesses of the system:

• Visualization designers have to be familiar with logic programming in general, but
especially with ASP in order to be able to work with the knowledge-base. The
current implementation of Draco not only requires the user to know how to formulate
logical expressions syntactically correct but also to know which parameters are
already encoded into the system and how the expressions relate to each other.
Since the knowledge-base is only textually encoded and no advanced filter or
reorganization mechanisms are available, it is very time-consuming to investigate
the system’s ingredients and purpose.

• Although the underlying constraint solver provides information on which constraints

2

1.2. Research Questions

have been violated concerning a recommended visualization, it is perceptually hard
to trace the recommendation process and obtain a "big picture". On the one hand,
recommended visualizations can not be directly compared, and on the other hand,
the influence of specific soft constraints concerning these recommendations is hard
to derive.

In this thesis, we want to address these limitations by investigating the knowledge-base,
extracting features of interest, and elaborating a proper visualization of the knowledge-
base. Additionally, we connect the recommendations with the elaborated visualization
to highlight the recommendations’ violations and show constraints’ influence on the
recommendation results. However, we concentrate on only visualizing the hard and soft
constraints as it is most difficult to get an overview here due to the number of rules.

1.2 Research Questions
This research aims to investigate the knowledge-base behind Draco and find proper tooling
and visualization to support developers, researchers, and designers in understanding the
system and its recommendation process.

We assume that adding meta-data to Draco’s constraints and visualizing them in a
proper and interactive way would help visualization experts gain the desired insights into
the underlying knowledge-base (RQ1.1+RQ1.2). Furthermore, we suspect that visually
connecting the recommendation results with the created visualization of the constraints
and highlighting respective violations enables these experts to adjust the constraints and
their weights accordingly to concrete preferences (RQ2.1+RQ2.2).

To verify these claims, we aim to answer the following research questions:

RQ1.1: Which predicates, variables, and other syntax features are shared by different
design constraints?

RQ1.2: How does the distribution of costs look like within the constraints?

RQ2.1: Which constraints are violated by specifically recommended visualizations
and to which degree?

RQ2.2: Which recommended visualizations are violated by specific constraints and
to which degree?

3

1. Introduction

1.3 Methodology

1. Research and Literature Review
• Analysis of the state of the start of visualization recommendation systems

with focus on rule-based ones.
• Investigation and comparison of different grammars for ASP.
• Examination of different visualizations for logic programming, like ASP, graph1-

based data, and hierarchical-based data.

2. Grammar and Design Investigation
• Elaboration of a suitable grammar to parse the knowledge-base and extract

features of interest.
• Analysis of extracted features to find an appropriate visual mapping for the

design constraints.
• Iterative design process to visualize the constraints, their interrelations, and

to improve user experience.

3. Prototype Development
• Selection of a suitable web-based framework as the underlying basis for the

tool.
• Integrating Draco’s JavaScript module into the framework.
• Testing different ASP grammars and parser generators to select the most

suitable combination to parse Draco’s knowledge-base and to create the
Abstract Syntax Tree (AST).

• Selection of most suitable visualization library to visualize constraints and
their relations.

4. Evaluation
• Expert-based analysis of the completeness of the elaborated grammar, its

abilities, and limitations.
• Qualitative and quantitative evaluation of the created prototype by perform-

ing a task-based performance analysis with target users and determining
the visualization’s value through a heuristic-based survey and qualitative
questionnaire.

1graph is used as a synonym for network

4

CHAPTER 2
Related Work

The following chapter gives an overview of related work in different areas relevant to
tackling and visualizing design constraints in the context of visualization recommendation
systems. First, we give a brief overview of different existing recommendation systems
and analyze respectively categorize them regarding their design of the recommendation
engine. Then we will look at the various available types and versions of the grammar
for ASP as the extraction of features of design constraints is an essential task to be
capable of visualizing the constraints and their feature-based overlaps. Next, we examine
existing web-based syntax parser projects and compare them regarding their performance
and grammar support as we have to select a suitable ASP parser for our prototype.
Then, we recap tools that proposed different visualizations in the context of knowledge
representation formalism and logic programming. Finally, we conclude this chapter with
different existing visual approaches and techniques to show relationships and overlaps
between entities of a set and their hierarchical affiliation to categories.

2.1 Recommendation Systems
Although several integrations and applications of data visualization recommender systems
have been proposed in the last years, they are barely known by data analysts, researchers,
and non-experts [KFD19]. Most of these approaches are scientific-related and are not
incorporated into any public available and known data analysis tool. On the contrary, the
most popular available systems are the Show Me feature [MHS07] of Tableau [MHS07],
Explore in Google Sheets [VWS+18], Watson Analytics1, and Spotfire2.

As mentioned by Kubernátová et al. [KFD19], Kaur and Ownibi distinguish 4 types of
recommender systems [KO17]: Data Characteristics-Oriented, Task-Oriented, Domain

1https://www.ibm.com/analytics (accessed 2022/08/22)
2https://www.tibco.com/products/tibco-spotfire (accessed 2022/08/22)

5

https://www.ibm.com/analytics
https://www.tibco.com/products/tibco-spotfire

2. Related Work

Knowledge-Oriented, and User Preference-Oriented. This categorization is extended by
Vartak et al. [VHS+17] with the field of ’Visual Ease of Understanding.’ In addition to
this categorization, we further distinguish between approaches recommending WHAT
data to show [SS05, ESC16, VRM+15] in contrast to HOW to show it (like [WMA+16b,
WQM+17, LQTL18, HBL+19, MWN+19, DD19]). Furthermore, these systems can be
divided into approaches only proposing the visualization type and actual visual encodings.
Lastly, the underlying recommendation strategies differ by rule-based, ML-based, and
hybrid-based approaches.

The majority of the most relevant visualization recommender systems are data-driven.
They recommend visualizations based on the characteristics of the data. Their main goal
is to get insights of the dataset and to recognize interesting values, trends, patterns, distri-
butions, compositions, and differences. Such tools are BHARAT [Gna81], APT [Mac86],
Explore in Google Sheets [VWS+18], Watson Analytics, Google Sheets [VWS+18], Show
Me [MHS07], VizDeck [KHPA12], Seedb [VRM+15], Voyager [WMA+16b], Voyager
2 [WQM+17], VizML [HBL+19], Draco [MWN+19], Data2Vis [DD19] and DeepEye
[LQTL18].

In contrast to data-driven systems, task-oriented-based approaches focus on the user’s
intent respectively goal. Such approaches vary widely in their design and application area.
For instance, the tool BOZ [Cas91] analyses tasks encoded as logical facts and produces
graphics with perceptional instructions to reach the goal. IMPROVISE [ZF01] performs
a natural language query on the user’s intents to extract and automatically propose
visual tasks. Other task-oriented systems are HARVEST [GW09] or the more recent one
called DataSlicer [ACC+17]. However, these systems are mostly scientific-related and
play a minor role in user-centered data visualization recommender systems.

According to recent approaches, it can be derived that systems suggesting actual visual
encodings to get insights into a dataset are preferred over systems only proposing the
type of data visualization to use. Although Kubernátová et al. [KFD19] propose a formal
ML-friendly model only recommending chart types, they also suggest enhancing their
system to provide information on how to create these charts.

Whereas earlier recommendation strategies mainly encoded decisions on visualization
guidelines and principles as a set of rules and constraints, recent approaches increas-
ingly use ML-based, respectively, hybrid-based recommendations. These systems learn
relationships between design guidelines and principles and weight their influence on re-
spective visual encodings. Such ML-based systems are, for example, Data2Vis [DD19] and
VizML [HBL+19]. However, the predominant part of systems still rely on hand-crafted
rules, such as APT [Mac86], SAGE [RKMG94], BOZ [Cas91], VizDeck [KHPA12], DIVE
[HOH18], CompassQL [WMA+16a], Voyager [WMA+16b], Voyager 2 [WQM+17], and
the most famous ones Show Me [MHS07] and Explore in Google Sheets [VWS+18]. Recent
hybrid-based systems combine the advantages of rule-based and ML-based approaches
by applying a mixed strategy, like DeepEye [LQTL18] and Draco [MWN+19].

Draco combines hand-crafted visualization facts, hard and soft constraints with learned

6

2.1. Recommendation Systems

weights from a Support Vector Machine (RankSVM) model trained on labeled visualiza-
tion pairs. The underlying module processes an input consisting of a dataset definition,
its partial specification, and a user task to a query definition describing a data schema and
query constraints (see Figure 2.1). This query definition is combined with the predefined
search space definition consisting of aggregate rules, well-formedness constraints, expres-
siveness constraints, and the preference model. Draco then calls the ASP solver Clingo
[GKK+08a] to solve the resulting program and subsequently, to obtain ranked answer
sets. These answer sets (also called models) are finally translated to Vega-Lite (VL)
specifications [SMWH17]. A provided web-based Application Programming Interface
(API) of Draco facilitates easy access to the module and decouples Draco from a tool
using the system.

Aggregate Rules
Well-formedness Constraints
Expressiveness Constraints

Preference Rules
Weights

Data Schema
Query Constraints

Dr
ac

o
AP

I

Dataset
Partial Specification
User Task

ASP Solver
clingo

Search Space Definition
Vega-Lite Specification

Preference Model

Input:

Output:

Query Definition

+

ASP

ASP

Figure 2.1: Draco’s recommendation engine that compiles a user query consisting of a
dataset, partial specification, and user task into a set of rules and combines them with
the existing knowledge-base. The resulting ASP program is then processed and solved by
Clingo to obtain an optimal answer set which is translated to a VL-based specification
[SMWH17] - reprinted from Moritz [MWN+19].

An exemplary model of Draco’s output is illustrated in Figure 2.2. It shows the underlying
formal specification of a bar chart once as a VL-based specification in JavaScript Object
Notation (JSON) format and the respective ASP-based definition. The encoding identifiers
e0 and e1 group field, data type, and data transformation definitions for each encoding.
These encodings reflect the two axis x (mean of horsepower) and y (cylinders).

7

2. Related Work

mark(bar).

encoding(e0).
channel(e0,x).
type(e0,ordinal).
field(e0,cylinders).

encoding(e1).
channel(e1,y).
type(e1,quant).
field(e1,horsepower).
aggregate(e1,mean).

{
 "data": {"url": "cars.csv"},
 "mark": "bar",
 "encoding": {
 "x": {
 "field": "Cylinders",
 "type": "ordinal"
 },
 "y": {
 "field": "Horsepower",
 "type": "quantitative",
 "aggregate": "mean"
 }
 }
}

3 4 5 6 8
Cylinders

0

50

100

150

M
ea

n
of

 H
or

se
po

we
r

ASPVL JSON

Figure 2.2: An example specification of a bar chart by VL and in the ASP notation
resulting from Draco’s recommendation pipeline. It defines a mark type, two encodings
and their field, data type, and data transformation definition - reprinted from Moritz
[MWN+19].

2.2 Grammars for Answer Set Programming
ASP is based on the concept of stable models as a result of difficult search problems.
Dimopoulos and Köhler [DNK97] applied this concept for logic programming in their
planning method for the first time. Since then, several adaptions and refinements have
been made to this paradigm [SN98, MT99]. Lifschitz [Lif99] introduced the terminology
answer set instead of stable model to highlight that those stable models are
answers to a search problem.

The search problem is expressed in a declarative logic programming notation following
the Prolog-style [CM03]. These queries are either processed by imperative parsers, like
Clingo, or parser generators that are applying a Context-Free Grammar (CFG). Parser
generators using grammars have the advantage of being quickly and easily adaptable
as well as easy to comprehend, whereas imperative parsers can be implemented more
efficiently. Therefore, in scientific papers related to ASP, the input language format
is often specified by CFGs using production rules, such as Backus-Naur Form (BNF),
Extended Backus-Naur Form (EBNF), Augmented Backus-Naur Form (ABNF), and
similar.

Analogous to other knowledge representation and reasoning research areas, the standard-
ization process of the input language of ASP led to more advanced and efficient solvers.
This process was mainly driven by Gebser et al. [GKK+08a], Brewka et al. [BET11], and
Calimeri et al. [CIR11], who proposed the first standardized versions of the grammar for
ASP in different implementations of the BNF notation. This first standardized version,
called ASP-Core, was revised in ASP-Core 2 [CFG+12] and has been regularly updated
through ongoing ASP solving competition events since 2012.

The different types and versions of the ASP grammar mainly differ by the syntax of
additional solving features of different ASP solvers, e.g., the optimization function

8

2.3. Parser Generators for Answer Set Programming

of Clingo [GKK+08a] or the meta-syntax giving additional information to the solver
[GKK+08b]. Basic answer set solvers use the syntax of ASP-Core 2 [CFG+12] to solve
the question of whether a set of atoms is a valid answer set. More advanced solvers, like
Gringo and Clingo, however, determine not only if it is a valid set, but whether it is
an optimal one or not [GKK+08b]. They make use of so-called weak constraints with
assigned weights defined as constants. The optimization functions then reason these
special constraints.

Gringo respectively Clingo implemented an imperative approach to parse ASP syntax3.
In their API documentation of the AST module they mentioned the underlying grammar.
It is defined very language specific and is difficult to comprehend. However, it resembles
an EBNF notation. The first and more generalized EBNF version of this input language
specification was proposed by Gebser et al. [GKK+08a]. Besides, another very similar
version can be found in the API documentation of the TweetyProject4. Although
this grammar supports most of the features defined by Gringo and Clingo [GKK+08a],
optimization functions and meta-syntax statements, like #show, #hide, #include,
#external, #program, #script, and #const are not supported.

Depending on the BNF type of the different grammar versions proposed in the mentioned
sources, the definition of the lexical values differs. These values are either written in a
right-recursive style with empty words and alternative terminal symbols, as necessary for
the basic BNF notation, or in Flex5 syntax similar to Regular Expression (REGEX). The
proposed grammar in ASP-Core 2 [CFG+12] is defined in the Flex notation. The usage
of the different lexical value specifications depends on the system executing the grammar.

2.3 Parser Generators for Answer Set Programming
Since we want to investigate the knowledge-base of Draco in a web-based scenario,
we analyzed a set of easily accessible and applicable existing ASP grammar parsers
and parser generators regarding the accepted BNF types, the AST creation support,
performance, and relevance (see Table 2.1). The relevance criterion is derived from the
weekly downloads at the JavaScript node package manager platform NPM according
to the publishing date of this thesis. The assessment scale is divided into low relevance
(0-100 downloads p.w.), medium relevance (100-1000 downloads p.w.), and high relevance
(>1000 downloads p.w.).

3https://potassco.org/clingo/python-api/5.4/ast/#clingo.ast.
AggregateFunction (accessed 2022/08/22)

4http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/
ASPCore2Parser.html (accessed 2022/08/22)

5https://github.com/westes/flex (accessed 2022/08/22)
6Relevance according recent downloads on npm (assessment scale from low, medium, high) (accessed

2022/08/22)
7https://www.npmjs.com/package/bnf (accessed 2022/08/22)
8https://www.npmjs.com/package/bnf-parser (accessed 2022/08/22)
9https://www.npmjs.com/package/ebnf (accessed 2022/08/22)

9

https://potassco.org/clingo/python-api/5.4/ast/#clingo.ast.AggregateFunction
https://potassco.org/clingo/python-api/5.4/ast/#clingo.ast.AggregateFunction
http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/ASPCore2Parser.html
http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/ASPCore2Parser.html
https://github.com/westes/flex
https://www.npmjs.com/package/bnf
https://www.npmjs.com/package/bnf-parser
https://www.npmjs.com/package/ebnf

2. Related Work

Generator/Parser BNF Types AST Performance Relevance6

(1) BNF7 BNF, ABNF, MBNF N/A N/A low
(2) BNF-Parser8 Mix of BNF and EBNF promising N/A low

(3) EBNF9 BNF, EBNF supported BNF slow
EBNF fast low

(4) EBNF-Parser10 modified BNF/EBNF supported N/A medium
(5) ANTLR411 modified EBNF supported fast high

Table 2.1: List of relevant web-based context free parser generators and grammar parsers.

There are many other web-based parser generators like Jison12, PEG.js13, Nearley14,
or APG15. However, they all have in common that their grammar notations resemble
the standards BNF, EBNF, ABNF or any other extension of BNF, but are not strictly
standardized. Consequently, writing a grammar in their notation creates a strong
dependency on their parser generator’s implementation.

2.4 Visualizations in Context of Logic Programming
The visualizations in the context of logic programming are very diverse and address
different goals and steps. These steps reach from interpreting the logic programs using a
proper visualization of the program to the visualization of the solvers’ results. For better
comprehension, we categorized these visualizations into three classes: visualizations
showing the program respectively the query encoded as logical expressions, visualizations
showing the solving process of the logic program, and visualizations showing the answer
sets. For this categorization, we analyzed related work to logic programming in ASP,
Prolog, and Constraint Logic Programming (CLP):

Visualizations showing program dependencies

The first category is the most relevant regarding the context of this thesis. Therefore, we
look closely at the related work in this field. As a starting point, dependency graphs are
often used to show the relations between the units of a logic program – also often known
as features or arguments represented as nodes, such as predicates, variables, constants,
and similar. These graphs can be visualized as free node-link layout graphs, where the
node positions are only dependent on their linked neighbor nodes or in tree respectively
flow structures showing the deductions of the predicates.

10https://www.npmjs.com/package/ebnf-parser (accessed 2022/08/22)
11https://www.npmjs.com/package/antlr4 (accessed 2022/08/22)
12https://www.npmjs.com/package/jison (accessed 2022/08/22)
13https://pegjs.org (accessed 2022/08/22)
14https://www.npmjs.com/package/nearley (accessed 2022/08/22)
15https://www.npmjs.com/package/apg-js (accessed 2022/08/22)

10

https://www.npmjs.com/package/ebnf-parser
https://www.npmjs.com/package/antlr4
https://www.npmjs.com/package/jison
https://pegjs.org
https://www.npmjs.com/package/nearley
https://www.npmjs.com/package/apg-js

2.4. Visualizations in Context of Logic Programming

An example of free layout representing the dependencies of the units of a logic program
in Prolog-style has been proposed by Seipel et al. [SHH03]. Their approach suggests
a directed graph representing predicates as circles and not arguments as a rhombus
with four right angles (see Figure 2.3). These glyphs are then connected by arrow links
showing the directions of the deductions. However, the graph does not contain any
variables or constants. They are abstracted by the arity of the predicates. The arity is
shown in Figure 2.3 by name/arity where arity represents the number of arguments and
name the identifier of the predicate.

Figure 2.3: Acyclic dependency graph for predicates of Prolog programs in VISUR -
reprinted from Seipel et al. [SHH03].

Another way to visualize logic programs in Prolog is by mapping the program to top-down
trees, as mentioned by Cameron et al. in ViMer [CGDLBMM03]. They distinguish
between Selective Linear Definite (SLD) trees and AND/OR trees representing the atoms
of the program as nodes (see Figure 2.4). In the AND/OR tree, additional nodes are
included that show AND links in the bodies of the rules. Multiple identical headers
are branched out with an OR link. However, according to Adachi et al. [ATIY00], it is
difficult to correlate the content of logic programs in Prolog to the corresponding nodes
in the AND/OR tree.

The Integrated Development Environment (IDE) called ASPIDE [FRR11] for ASP inte-
grates a visual editor for creating and modifying logic programs. The editor resembles
a UML diagram typically used to describe classes and their properties in programming
languages, like Java. Instead of classes and their relationships, the editor shows predicates
and their use in rules, respectively constraints (see Figure 2.5). However, this represen-
tation is only applicable for visually developing logical programs. The editor does not
provide any visualization giving an overview of the whole program and its dependencies.

11

2. Related Work

Figure 2.4: SLD (middle) versus AND-OR tree (right) formats for Prolog programs (left)
- adapted from Cameron et al. [CGDLBMM03].

Figure 2.5: ASPIDE visual editor - reprinted from Febbraro et al. [FRR11].

12

2.5. Network-Based Visualizations of Set Relationship

Visualizations showing solving process
Several approaches exist to visualize the solving process of logic programs in general,
but especially for CLP. However, due to the complexity of these programs and the
corresponding solving process, the visualizations’ scaleability depends strongly on either
the number of logical expressions, constraints, predicates, or the number of variables.
For instance, some approaches show the concrete propagation and evolution of variables
and predicates for small programs on a very detailed level such as LogiChart [ATIY00,
AF07, Ada09] (see Figure 2.6), or the DeLPViewer of Escarza et al. [ELCM09]. On the
other hand, approaches, like Clavis of König and Schaub [KS13] as well as the approach
of Simonis [SCD+00] visualize the solving process more abstractly with better scalability.
However, these approaches do not provide an overview of the original logical program
and barely show dependencies between the entities of the unprocessed program.

Figure 2.6: LogiChart - reprinted from Adachi et al. [ATIY00, AF07, Ada09].

Visualizations showing answer sets/dependencies between answer sets
To the third category, visualizations belong that either visualize the interpretations of
computed answer sets of logic programs or dependencies between those answer sets.
Since they do not provide any information on relations between arguments of the input
program, they are of minor importance to this thesis. For sake of completeness, however,
we want to mention some of these approaches, such as ASPViz [CVBP08], IDPDraw
[Wit09], Kara [CVBP08] used by SeaLion [OPT13], and ARVis [ACJ+13].

2.5 Network-Based Visualizations of Set Relationship
There are almost uncountable graph-based approaches and applications for showing rela-
tionships between a set of entities. To get an overview, Nobre et al. [NMSL19] categorizes
them into node-link layouts, tabular layouts, and implicit tree layouts. According to
Nobre et al., node-link layouts are the most common graphical representation for graphs
and networks. Schulz and Schumann [SS06] further subdivide such layouts into free
layouts, where the nodes’ positions are not restricted, styled layouts, where the positions

13

2. Related Work

follow a predefined scheme, and fixed layouts, where the position is determined by nodes’
attributes, such as latitude and longitude. Examples of free layouts are force-directed
layouts where a node’s position depends only on the links to its neighbors. Styled
layouts typically make use of predefined schemes, like grids or axis-parallel and radial
arrangements [NMSL19]. Besides, on-node and on-edge encoding is often used to encode
additional information into graph visualizations [NMSL19].

The hair-ball problem mentioned by Schulz and Hurter [SH13] is typical in node-link
layouts. When the number of nodes and links between those nodes exceeds a critical
sum, the visualization suffers from cluttering and overplotting. The problem especially
appears when a set of entities is strongly connected, which results in a very dense graph.
An extreme example would be a complete graph. A different interpretation would be
that many entities of the set share the same information.

To address this problem, researchers developed various approaches to reduce the clutter
by aggregating or filtering either the nodes, the edges, or both. For example, edge
bundling [LHT17] and edge splatting [BBW12] are very commonly used techniques. A
different approach would be the use of hyperedges. The edges of a completely connected
subset of nodes of a graph are removed, a new hypernode is added, and this introduced
node is newly connected with the original nodes of the subset [AAMH13] (see Figure
2.7a). Another technique for hyperedges was introduced by Kerren and Jusufi [KJ13]. In
their approach, the nodes of the set are arranged in a radial layout, and the hyperedges of
at least degree 3 are represented as arcs that enclose the circle (see Figure 2.7b). Nodes
that are part of the hyperedge are reprinted on the edge at related arc positions.

Other typical visualizations for showing relationships between radial arranged entities of a
set are for example arc diagrams, chord diagrams [HEAE16], non-ribbon chord diagrams
[ZBA+20] or tidy tree diagrams [VBW17] (also see Figure 2.10c).

2.6 Hierarchical Data Structure-Based Visualizations

Hierarchical data can be visualized in many different ways. Schulz et al. [Sch11] suggests
three design axis to describe such tree visualizations: dimensionality, edge representation,
and node alignement. For dimensionality, they distinguish between 2D, 3D, and hybrid
visualizations. Whereas in explicit edge representations the links between the nodes are
clearly drawn (see Figure 2.8a), the nodes’ connections in implicit representations are
shown through related positioning (see Figures 2.8a-2.8d). To conclude the three design
axis, the node alignment can be either radial, axis-parallel, or free.

Typical examples for implicit edge representations of hierarchical structures, mentioned
by Woodburn et al. [SZ00], are icicle plots (see Figure 2.9a), sunburst charts (see Figure
2.9d) [SZ00], sundown charts (see Figure 2.9b), or treemaps (see Figure 2.9c). This list
can be extended by circle packing approaches [WWDW06] which is a subcategory of
treemaps, and hybrid approaches, like fore-directed tree layouts [Wal08] or phylogenetic

14

2.6. Hierarchical Data Structure-Based Visualizations

(a) Hyperedges embedded inside of radial arranged
nodes with node-encoded bar charts - adapted from
Alsallakh et al. [AAMH13].

(b) Hyperedges drawn as attached arcs
to radial arranged nodes - adapted from
Kerren and Jusufi [KJ13].

Figure 2.7: Radial hypergraph-based set overlap visualizations showing two techniques
to represent the hyperedges.

(a) Explicit inclusion (b) Implicit inclusion (c) Implicit overlap (d) Implicit adjacency

Figure 2.8: Four types of edge representations - adapted from Schulz et al. [Sch11].

trees [Nie16]. Examples for explicit edge representations are tidy trees16 [SDS12], also
known as dendograms17.

Most relevant related to this thesis are visualization showing hierarchical structures in
graphs. Vehlow et al. [VBW15, VBW17] summarized the state of the art in this field
and categorized the visualizations into the approaches visual node attributes, juxtaposed,
superimposed, and embedded visualizations. Whereas the category of visual node attributes
is primarily used in flat group structures, many different approaches exist for embedded,

16https://observablehq.com/@d3/tidy-tree (accessed 2022/08/22)
17https://www.d3-graph-gallery.com/dendrogram (accessed 2022/08/22)

15

https://observablehq.com/@d3/tidy-tree
https://www.d3-graph-gallery.com/dendrogram

2. Related Work

(a) Icicle Plot (b) Sundown chart

(c) Treemap (d) Sunburst chart

Figure 2.9: Implicit edge representations for visualizing hierarchical quantitative data -
reprinted from Woodburn et al. [WYM19].

juxtaposed, and superimposed visualizations (seen in the table classifying different
techniques by the taxonomy of Vehlow et al.). Because we have a hierarchical structure
in our data domain, we focused on differences between mentioned approaches by Vehlow
et al. in showing these structures. However, we omitted matrix-based approaches, as
they cannot visualize hyperedges providing textual information about shared features of
nodes.

For juxtaposed visualizations they distinguish between techniques separating the graph and
the visualization showing the hierarchical structure respectively the group membership
(see Figure 2.10a and 2.10b) and techniques attaching the visual encoding of the hierarchy
structure to the nodes of the graph (see Figure 2.10c and 2.10d). In the separated views,
either brushing and linking by color highlighting is used (see Figure 2.10a) or visual
links between the views to show the group membership (see Figure 2.10b). For attached
approaches, the nodes are arranged along a horizontal line (see Figure 2.10c) or in a circle
building a radial layout (see Figure 2.10d). Therefore, the lowest level in the hierarchy is

16

2.6. Hierarchical Data Structure-Based Visualizations

either presented in the same way as the attached encoding of the hierarchy or as separate
glyphs representing the nodes.

(a) Separate — brush-
ing and linking

(b) Separate — visual
links

(c) Attached — node-
link

(d) Attached — radial

Figure 2.10: Juxtaposed visualizations of disjoint hierarchical groups - adapted from
Vehlow et al. [VBW15, VBW17].

In embedded views for disjoint groups, nodes are aggregated according to their group
membership and hierarchy level (see Figure 2.11a). Aggregated nodes are again rep-
resented as circles where the number of containing nodes determines the size of the
circle. If the groups overlap, each aggregation node is colored differently, and additional
connection nodes are introduced in the form of pie charts. The slices of the pie charts
show the division of affiliations to the groups and are colored according to the group (see
Figure 2.11b).

For superimposed hierarchical structures, either nested contours (see Figure 2.11c)
or screen space partitioning is used (see Figure 2.11d). Especially the screen space
partitioning is very similar to the representation of tree maps, as shown in Figure 2.9c.

(a) Embedded dis-
joint hierarchical

(b) Embedded over-
lapping hierarchical

(c) Superimposed dis-
joint hierarchical us-
ing nested contours

(d) Superimposed dis-
joint hierarchical us-
ing screen space par-
titioning

Figure 2.11: Embedded and superimposed visualizations for hierarchical group structures
- adapted from Vehlow et al. [VBW15, VBW17].

17

2. Related Work

2.7 Summary
To conclude, none of the existing recommendation systems enable researchers to test
new design theories without spending great effort in learning and understanding the
system (see Section 2.1). The used rules and theories are opaque and poorly referenced.
Depending on the underlying system, the recommendation engine either relies on the
quality of previous visualizations or on expensively created rules. The recommendation
processes of these systems mostly resemble a black box where made decisions are hard to
retrace.

Draco addresses these problems by simplifying the hand-grafted rules using a constraint-
based logic programming notation and combining these rules with trained weights. The
resulting hybrid-recommendation engine is less complex, allows real-time manipulation
of the knowledge-base, and enables to retrace made decisions through printing violated
design rules.

However, Draco still requires sufficient understanding of the used logic programming
notation and lacks adding dynamic meta-data to the rules. Considering the different
existing grammars and parser generators of the ASP notation, it is possible to split up
the knowledge-base of Draco into its units to develop tools helping in understanding and
maintainig it (see Sections 2.2 and 2.3). Yet, these ASP syntax grammars are either
incomplete, written in a very language-specific notation, or are incorporating syntactical
errors. Consequently, the grammars can not directly be used by modern parser generators
without any modifications.

Besides, several attempts exist to find proper visualizations in context of logic program-
ming. They aim to enhance the understanding of similar logic programming problems
and subsequent enumeration processes (see Section 2.4). However, these visualizations
represent the dependencies between the units of the logic programs either in a too
detailed manner, address a different aspect and problem field like IDEs, or are showing
the enumeration process or dependencies and similarities between answer sets. The enu-
meration process on the very low level is, again, too detailed for generating the overview
and understanding of the knowledge-base in which we are interested. The majority of
visualizations in the context of logic programming simply address a different domain or
task to complete. Furthermore, none of the existing graph-based and hierarchical-based
visualizations (see Sections 2.5 and 2.6) can be directly applied and used to visualize
design rules respectively constraints to show their feature-based connections.

It can be concluded that several different domains must be addressed to enable developers
to build a new tool that helps to understand, maintain, and enhance a hybrid-based
recommendation engine such as Draco. These domains range from interpretation of
the encoded design rules and their parsing mechanism to proper visualizations of the
underlying knowledge-base.

18

CHAPTER 3
Data Processing and

Visualization Approach

Any data visualization requires several steps, from the raw data to the final interactive
visualization. These steps are described roughly by the Information Visualization (InfoVis)
reference model of Card et al. [Car99] in Figure 3.1. It mainly consists of three viewing
angles: the data processing perspective, the visual form perspective, and the users’
perspective to feed back into the visualization pipeline by interaction to solve particular
tasks. According to Card, the raw data has to be transformed into data tables having an
appropriate data structure and organization for the subsequent visual mapping of the data
to visual structures. View transformations describe the change of graphical parameters
of the visualization to the users’ needs to obtain different views and perspectives of the
underlying data.

Figure 3.1: Information visualization reference model by Card et al. [Car99].

Every visualization has to serve a certain purpose and must not be an end in itself. Hence,
three elementary components have to be taken into account in the context of Draco:

19

3. Data Processing and Visualization Approach

• Data: Design rules are expressed as logical constraints in the ASP notation,
including variables, predicates, numbers, terminals, and other logical language-
specific features. Rules having assigned weights form soft constraints, and rules
with no weight belong to hard constraints.

• Users: The target users for our visualization respectively tool are visualization
experts and persons in the research community of automated visualization recom-
mendation and design.

• Tasks: Starting point of every design decision is to target the following tasks by
the elaborated linked visualization:

- T1: Analyze the distribution of costs
- T2: Identify shared syntax features of multiple constraints
- T3: Find violations of recommendations and relate them to the complete list

of constraints
- T4: Compare violations of multiple recommendations
- T5: Identify recommendations sharing same violations of syntax features or

constraints

Figure 3.2: Design triangle: data - user - tasks - reprinted from Miksch and Aigner
[MA14].

Based on these specifications, Miksch and Aigner [MA14] introduced the ’Design Triangle’
framework to show qualitative dependency criteria between each of the three components
(see Figure 3.2). Every visualization should be analyzed regarding its expressiveness,
effectiveness, and appropriateness. Mackinlay [Mac86] stated that a visualization is

20

3.1. Problem and Requirements Analysis

considered to be expressive if and only if all relevant information is expressed by the
visualization to achieve a certain goal. He further declares that a visualization is effective
if the used graphical language respectively encoding addresses the capabilities of the
output medium and the human visual system and best exploits these limitations. The
last criterion of the design triangle describes a trade-off between the effort required to
create the visual representation and the benefits yielded by it, as stated by Schumann
and Müller [SM00].

Therefore, we conducted a problem and requirements analysis, analyzing Draco’s current
knowledge-base (the raw data) and its applied context. The goal is to identify the
problems that users of Draco encounter when trying to solve respective tasks and,
consequently, to derive a set of requirements. These requirements are necessary to
properly build and subsequently evaluate the data processing and visualization procedure
for the knowledge-base of Draco.

3.1 Problem and Requirements Analysis
To organize the knowledge-base and make it more readable, Draco’s logical expressions
have several peculiarities that are not mandatory requested by ASP. First, expressions
sharing the same goal are grouped in sections. Next, rules called hard and soft constraints
in Draco share the predicates ’hard’ and ’soft’ in the head of the rule. The first
argument of each soft and hard predicate represents the identifier of the constraint. This
identifier is a connected list of textual categories representing visual encodings or data
transformations. Besides, rules, facts, and constraints do not have an identifier in ASP in
general. Therefore, the first argument of the hard and soft constraints in Draco is used
as an identifier to assign weights to the soft constraints and for maintainability reasons
of the knowledge-base. However, the identifiers are not unique to depict logical OR
constructions between multiple constraints. Hence, a hard or soft constraint is violated if
only one of the multiple definitions is violated.

Whereas the predicate names are always written in long form, the variables are shortened
to a maximum of three letters in Draco. This notation was chosen to increase the
readability of the constraints. Furthermore, in the knowledge-base only single-line
comments are used. Sections grouping the same intent are described in the head by
comments of the form "% == X ==," where X is the title of the section. Each hard and
soft constraint is described by a comment of the form "% @constraint Y," where Y is the
description of the constraint.

The following problems can be derived from the Draco-specific notations encoded into its
knowledge-base:

1 Syntax dictionary and overview
Although the notations of the constraints, predicates, and variables – the argu-
ments; are well-considered, ambiguities arise for users who were not involved in

21

3. Data Processing and Visualization Approach

the development phase. First, it is not visible at first glance what predicates and
variables are used in the knowledge-base and in which context they are used. There
is no syntax dictionary or advanced documentation besides the single-line comments.
Even though the knowledge-base developers did their best to find appropriate and
expressive names for the predicates and variables, it is not always clear what these
arguments are intended for. Most of the time, this purpose can only be derived
by looking at the different contexts where this argument is used. This method of
argument understanding is tough for variables since the most common forms are
variables with only one or two characters. For example, the variable E indicates the
name encoding. However, this derivation might be significantly more difficult for
users dealing with this syntax for the first time.
Furthermore, the representation of the knowledge-base leads to difficulties in getting
an overview of where different features respectively arguments are used. This
overview knowledge is essential to comprehend if different arguments are used in the
right way and at appropriate positions.

2 Overlaps of constraints
Currently, overlaps of constraints can only be derived through pairwise comparing
the constraints. Therefore, it is difficult to perceive how a collection of constraints
differ and to which degree. Comparing constraints is especially interesting when
similar or faulty constraints should be detected.

3 Category overview
The identifiers of the constraints are already hierarchically structured in naming.
Moreover, the constraints sharing similar hierarchical structures are grouped in
the knowledge-base. This naming and structuring approach to the constraints is
intended to increase their readability and maintainability. However, the constraints
are statically defined in a string format and can not be rearranged, filtered, grouped,
or sorted. This fact applies to both the content of the rules and the categories.
Hence, it is not possible to see at a glance which categories and hierarchies of these
categories exist. Such information would be especially interesting for perceiving a
"big picture" of the knowledge-base and to enable users making a statement about
which categories of visual encoding are covered and which are not.

4 Descriptions and sources
One of the many advantages of ASP is using comments in the syntax. The comments
enable developers to describe the logical expressions at related positions. In Draco,
the rules and constraints are primarily described in the comments by phrases in the
form of "prefer to," "prefer not to," "should," and "should not." However, advanced
explanations of the rules are missing. No statement is made about why something
should be preferred or why not. Additionally, it is unclear where the rules come
from, who defined them and how they have been verified to fulfill their purpose.
Although such additional information could be added via the comments, it would
compromise the readability of the knowledge-base as the expressions lose prominence

22

3.1. Problem and Requirements Analysis

in the code editor. Furthermore, advanced meta-data can not be added because the
logical expressions and comments are a sequence of textual lines.

5 Readability
The advantage that comments enable to describe the logical expressions is at the
expense of readability. The comments can not be hidden, and the constraints can
not be rearranged to get related positioning of constraints associated with similar
hierarchical categories. Hence, it is hard to obtain an overview of the constraints
and get insights into which syntax features are used and where they are used.

Hence, we can derive that neither the data format of the logical expressions nor their
representation are optimal to comprehend the knowledge-base of Draco and subsequently
maintain it. One possible way to improve this data format and representation would be
to extract the essential information and reorganize it as desired. For such an information
extraction process, the ASP parser of Draco could be used to produce an Abstract Syntax
Tree (AST) of the knowledge-base with subsequent extraction of desired information.
As the AST of the parser can not be easily accessed, the developers of Draco decided
to use REGEX to extract the information. This procedure is sufficient to separate the
constraints from the comments, extract constraints’ identifiers, and map the constraints
with the solver’s results – as accomplished in Draco. However, it is unsuitable for extended
analysis of the knowledge-base and advanced interactions and visualization techniques as
the amount of extractable information is limited to the specificity of REGEX.

In addition to derived representation and maintainability problems of the knowledge-
base of Draco, we analyzed the recommendation process regarding its traceability. To
recommend visualizations, the ASP solver Clingo [GKK+08a, GKK+08b] reasons over
the facts, rules, and constraints and prints valid answer sets to the query. One valid
answer set is a combination of facts concerning visualization design variables and headers
of violated soft constraints – so-called witnesses [MWN+19]. Whereas the resulting facts
can be directly used to construct a visualization, the soft constraints must be mapped
back to the original expressions in the knowledge-base. Therefore, Draco’s identifiers of
the soft constraints in the knowledge-base are extracted with the mentioned REGEX
approach and filtered by the violated soft constraints in the answer set. However, to
compare the violations of different recommended visualizations, the user must inspect the
visualizations’ violations one after the other and can not compare them directly. Since
the violations are also unsorted, it is a demanding task to obtain an overview of the
violations and comprehend the ranking of the recommended visualizations.

3.1.1 Requirements Concerning Data Extraction
A different data extraction methodology has to be examined to overcome the identified
limitations of the current extraction approach of knowledge-base features. To fulfill
typical quality metrics as mentioned by Coulin et al. [CDMP19], we formulate the
following general requirements concerning the data extraction process:

23

3. Data Processing and Visualization Approach

• Extensibility: The language features of ASP are regularly adapted and expanded
to incorporate further developments in modern ASP solvers. Therefore, the sup-
ported language features must be easily expandable to enable users to explore new
relationships between potentially changed formulations of design constraints or
between existing constraints and newly incorporated ones.

• Maintainability: The grammar and the parser generator should be encapsulated
to different modules to ensure maintainability of the feature extraction process.
Therefore, both the grammar and the parser generator should be easily replaceable.

• Simplicity, Understandability: The architecture of the data extraction process
should be as simple as possible to ensure ease of understanding and, consequently,
its maintainability and reliability. Therefore, the system should be easier to
communicate to new developers, such as visualization experts.

• Reusability: Extracted data should be reusable and therefore, stored in a perma-
nent data storage. This approach is expected to reduce the time necessary for the
initialization phase of the visualization and to ensure real-time data manipulation
of the data in terms of filtering, sorting, grouping, and aggregating.

• Reproducibility: Repetition of extraction process of unchanged knowledge-base
should lead to identical extracted features.

Besides, more specific requirements and criteria for the selection of ASP grammar and
associated parser generator should be considered within the design of the data extraction
process:

• Completeness of ASP grammar
The grammar should be capable of describing all syntax features incorporated
into Draco’s soft and hard constraints (a minimum fulfillment requirement is the
ASP-Core 2 standard). The existence of typographical errors or missing syntax
features in the grammar must be minimal to ensure ease and direct use by the
parser generator with minimal adaptation required.

• Support of AST creation by parser generator
The parser generator must contain the functionality of creating and returning a
recursive searchable AST preserving the grammar structure and identifiers for
parsed ASP code.

• Support of available ASP grammar by parser generator
The parser generator must support the grammar without extensive adjustments to
the grammar.

• Applicability of parser generator
The parser generator should be selected regarding the ease of integration into
web-based frameworks to guarantee maintainability.

• Performance of parser generator
The parser generator should be selected by taking into account the time necessary

24

3.1. Problem and Requirements Analysis

to create the parser instance and subsequently to parse the ASP code. The
parser should be capable of parsing the complete knowledge-base of Draco within
a maximum of one second to guarantee real-time parsing in case of changes to
knowledge-base during runtime.

3.1.2 Requirements Concerning Data Visualization
An enhanced representation respectively visualization of the knowledge-base should be
elaborated to overcome the limitations of the current representation. The hard and soft
constraints of the knowledge-base should be visualized in combination with the newly
extracted features of the intended extraction process. Additionally, the recommendation
process concerning constraints’ violations should be made traceable by connecting the
recommendations with the visualization limited to the constraints of the knowledge-base.
Therefore, both tracing directions of the recommendation process should be supported.
On the one hand, the respective violated constraints of selected recommendations should
be highlighted. On the other hand, the knowledge-base constraints’ influence on the
recommendation results should be made visible.

Consequently, we formulate the following general quality metrics and corresponding
requirements to guarantee their compliance in the design process:

• Interactivity: It is impossible to show every perspective of the data in one view
at once. Therefore, high interactivity with the visualized data is required to
handle complexity, gain the necessary insight, and show and extract the relevant
information.

• Intuitiveness: Both graphical representations and interaction possibilities should
be understandable by expert users having background knowledge in visualization
design. To decrease the learning curve, complex commands, textual queries, and
misleading representations should be avoided.

• Accessibility: The visualization should be easily accessible without any complex
installation and setup process. Therefore, the visualization should be embedded
into an Operating System (OS) independent web-based environment accessible
through any modern web browser.

• Performance: The key to smooth interactivity is performance of the underlying
algorithms and data processing strategies. Satisfactory performance must be
guaranteed for loading and processing the data, initializing the visualization, and
later manipulation. Changes to data and the visual appearance of the visualization
through user interaction must result in immediate response times for visual changes.
With increasing data entries, the performance may only decrease marginally without
restricting the real-time interactivity.

25

3. Data Processing and Visualization Approach

3.2 Data Extraction and Processing
In this section, we theoretically elaborate on the data extraction and processing necessary
to tackle the design constraints of Draco visually. As a result, we propose a data extraction
architecture that fulfills the requirements defined in the previous section.

3.2.1 Feature Extraction Strategy

To find the most appropriate strategy for our extraction task, we analyzed the existing
techniques in Draco according to their applicability and feasibility in parsing and extract-
ing the features of interest. The idea is to re-use the logic of the current recommendation
engine as much as possible to keep new dependencies and redundant logic to a minimum.
As a result of this analysis, two extraction and parsing techniques could be identified in
the whole ecosystem of the recommendation system behind Draco:

• Extraction using REGEX
Draco uses REGEX to solve two distinct tasks. First, it validates if a selection
of ASP code is a collection of valid hard and soft constraints (according Draco’s
specific notation style). Second, it splits the validated constraints and extract
several features per constraint, such as documentation (constraint’s comment), the
type (hard or soft), the identifier, the constraint’s weight, and the whole constraint
itself. This approach enables Draco to quickly and easily validate and extract
certain knowledge-base features without analyzing the ASP code on a syntax
grammar-based level.

However, this approach requires carefully designed REGEX expressions and has to
be adapted for every change to Draco’s specific notation style of the constraints.
As a consequence, the complex REGEX expressions are prone to errors. Like most
programming languages, ASP is extending CFGs and thus, can be classified to the
Chomsky hierarchy 2 [Cho56]. Since REGEX applies to Chomsky hierarchy 3, it is
not expressive enough to describe the complete syntax of ASP. Consequently, this
approach is limited to consistent meta-data features (such as the extracted ones
by Draco) and prohibits extended analysis of the knowledge-base beyond the hard
and soft constraints.

• Extraction using grammar parsing
To ground and reason over knowledge-base, Draco uses Gringo and Clingo [GKK+08a,
GKK+08b]. Gringo integrates bison1, a parser generator based on a CFG, to gen-
erate an ASP parser and parse, respectively, validate the ASP program provided
by Draco. Additionally, an AST module is implemented into Clingo to classify and
subsequently access certain attributes and features of the parsed program. This
module can be directly used to parse a program and extract an AST by including
Clingo in an external project.

1https://www.gnu.org/software/bison (accessed 2022/08/22)

26

https://www.gnu.org/software/bison

3.2. Data Extraction and Processing

However, the module can not be accessed via the Command-Line Interface (CLI).
The CLI API of Clingo does not provide any argument which would allow returning
an AST when running Clingo. The same applies to the output of bison. Since Draco
runs Clingo over the CLI, it has no access to the parsed program. Nevertheless,
Draco could be changed to include and use Clingo directly. Then it would have
access to these AST-based parsing functions. Still, it is not guaranteed that the
AST is accessible in the way necessary. Furthermore, due to the issue entry of the
Clingo project2, the AST module is still experimental and thus, unstable concerning
further developments in future. This finding also explains why Draco introduced
its own parsing strategy via REGEX to extract certain desired syntax features.
Moreover, directly including Clingo into Draco would increase the coupling and,
therefore, negatively influence its maintainability. Besides, it is not our goal to
change Draco to fit our requirements. Draco should be developed and enhanced
independently to our approach.

Hence, we can conclude that both existing parsing respectively syntax extraction imple-
mentations are not suitable or accessible to extract the knowledge-base features we are
interested in. However, according to the existing strategies, generating a parser using a
CFG looks most promising to receive a data processing unit that delivers the desired
results.

Therefore, we developed a similar approach to Clingo using a parser generator capable
of returning an AST of the parsed knowledge-base. In the following sections, we argue
our decisions made concerning the selection of an ASP grammar and the corresponding
parser generator and take a closer look into the proposed architecture of our parsing
strategy.

3.2.2 ASP Grammar and Parser Generator
For selecting a suitable combination of an ASP grammar and a parser generator, we
analyzed different available grammars and web-technology-based parser generators during
the development phase of the prototype. The found grammars and generators are
described in sections 2.2 and 2.3. Because of the incomplete and partially faulty definitions
of the mentioned grammars in scientific publications [GKK+08b, CIR11, CFG+12] and
the very language specific notations found in ASP solver documentation, such as Potassco3

or in the Tweety Project4, we looked for a grammar where least modifications to the
notation are necessary. A grammar containing all the specifics of the described syntax
features by Gringo [GKK+08b] would be ideal since Gringo is used for parsing Draco’s
knowledge-base and ground over it. However, their suggested EBNF notation of the
grammar follows no common notation style, which is accepted by popular web-based
parser generators. Moreover, not only the implicit grammar implementation of Gringo

2https://github.com/potassco/clingo/issues/171 (accessed 2022/08/22)
3https://potassco.org/clingo/python-api/5.4/ast (accessed 2022/08/22)
4http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/

ASPCore2Parser.html (accessed 2022/08/22)

27

https://github.com/potassco/clingo/issues/171
https://potassco.org/clingo/python-api/5.4/ast
http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/ASPCore2Parser.html
http://tweetyproject.org/api/1.17/net/sf/tweety/lp/asp/parser/ASPCore2Parser.html

3. Data Processing and Visualization Approach

in its source code is too language specific to C++, but also its documentation on the
Potassco’s website.

As a consequence that we did not find a suitable grammar notation of ASP integrating
the syntax features of Gringo and simultaneously, fulfilling the derived requirements for
a grammar noted in Section 3.1.1, we decided to adapt the grammar of the ASP-Core 2
standard to our needs. This approach is supported and justified, as many introduced
syntax features of Gringo are not required to be able to parse the main part of the
knowledge-base (rules, facts, and constraints). We will discuss those limitations of
ASP-Core 2 grammar in relation to the knowledge-base in more detail in the evaluation
chapter 5.

The ASP-Core 2 grammar is specified in a custom EBNF notation mixing the ISO/IEC-
14977:19965 standard for EBNF with the BNF typical angle brackets for non-terminals.
However, EBNF can not only be defined in the ISO/IEC standard, but also following the
World Wide Web Consortium (W3C)6 notation standard. Wheeler [Whe20] compares
these two standards and concludes that the W3C standard should be preferred over the
ISO/IEC standard due to its several weaknesses. One of the most important reasons to
not use the standard, according to Wheeler [Whe20] is that it is not generally accepted
by its related community. Furthermore, it is not even used in all ISO language standards
[Whe20]. Consequently, many grammar parsers and generators, especially those we
analyzed in this thesis, do not accept grammar following the ISO/IEC-14977 standard.

There are many other forms for defining an EBNF syntax as described in Chapter 2.
However, by analyzing these custom notations, we concluded that these modified versions
of the BNF or EBNF notations are either too specific to the respective parser generator
or are not as easy to comprehend as the W3C standard of EBNF. Therefore, we decided
to transform the ASP-Core 2 grammar notation from the ISO/IEC-14977 standard to
the more solid and accepted W3C standard. This remodeled version enabled us to choose
between a broader selection of parser generators.

For this transformation, the following adaptions to the ASP-Core 2 grammar notation
are necessary:

• Define all lexical values in REGEX notation.
• Remove angle brackets at non-terminals.
• Add surrounding quotation marks to all terminals.
• Replace optional expressions of the form "[...]" with the postfix question mark

character "?" of the REGEX notation having the identical meaning .
• Eliminate left recursions by using the occurrence postfix characters "+" (1...n) and

"*" (0...n) of the REGEX notation, or by introducing new non-terminals.
• Add a lexical value for whitespaces.
5https://www.iso.org/standard/26153.html (accessed 2022/08/22)
6https://www.w3.org/TR/xml/#sec-notation (accessed 2022/08/22)

28

https://www.iso.org/standard/26153.html
https://www.w3.org/TR/xml/#sec-notation

3.2. Data Extraction and Processing

• Incorporate definitions for single-line and multi-line comments as well as whitespace
definition and new-line definition wherever necessary and valid.

The resulting EBNF-based grammar of ASP having the ASP-Core 2 input syntax standard
can subsequently be easily used by a parser generator accepting this W3C standard.
However, concerning the list of relevant web-based parser generators as outlined in
Chapter 2, there is only one parser generator fulfilling our requirements stated in Section
3.1.1. The EBNF parser generator7 published by Mendez is capable of parsing W3C-based
syntax and generates an easy processable AST. Every node or leaf of the resulting tree is
a reference to the corresponding terminal definition in the grammar. Those hierarchical
references enable to search the AST for certain desired features as described in the
following section.

3.2.3 Extraction of Features

For further development and extension of the knowledge-base it is crucial to get insights
into the existing defined visualization design facts, rules, and constraints over these
facts. To gain this degree of understanding and overview of the knowledge-base, it is
essential to get an overview of the used variables, predicates, and other syntax features.
These features can be easily extracted from the generated AST of the knowledge-base.
Exemplary, we show the generated AST in Figure 3.3 of the constraint with the identifier
bin_high in Listing 3.1.

Listing 3.1: A soft constraint with the identifier bin_high which has a negative impact
to a recommendation’s ranking when one of its encodings contains more than 12 bins.
% @constraint Prefer binning with at most 12 buckets.
soft(bin_high,E) :- bin(E,B), B > 12.

One way to extract these features would be to define a method for every feature we are
interested in. These methods search the resulting syntax tree for the feature and return
all found entities. However, the list of features we are interested in might be changing or
extending over time. Therefore, the more advanced strategy is to define a generic search
function for any desired feature available in the grammar. This list of features is stored
separately and hence, decoupled from the extraction process.

The search algorithm of the generic function, therefore, has three parameters (see pseudo
code in Algorithm 3.1): The generated AST of the knowledge-base from the parser, the
identifier of the desired feature, and a temporary feature list which is extended by newly
found ones. In a recursive process, the method steps into the different branches of the
AST. Then it compares the reference to the grammar of the tree node with the identifier
of the desired feature. If they are equal and the feature is not already present in the list

7https://www.npmjs.com/package/ebnf (accessed 2022/08/22)

29

https://www.npmjs.com/package/ebnf

3. Data Processing and Visualization Approach

program
statement

comment Text=% @constraint Prefer binning with at most 12 buckets.
statement

rule
head

disjunction
classical_literal

predicate Text=soft
terms

term Text=bin_high
terms

term Text=E
bodies

body
naf_literal

classical_literal
predicate Text=bin
terms

term Text=E
terms

term Text=B
body

naf_literal
builtin_atom

term Text=B
binop Text=>
term Text=12

Figure 3.3: Generated AST of the constraint in Listing 3.1. It is a hierarchically
decomposed structure of the test code where the identifiers in each level are described by
the grammar.

of found features, the list is extended by this feature. The result of the search algorithm
is a list of found features.

The crucial advantage of this generic approach is that if the grammar of ASP changes,
like renaming terminal definitions, only the list of desired features must be modified
accordingly. Hence, no code adaptions are necessary, and the modifications can be done
in runtime.

3.2.4 Interpretation and Processing of Constraints’ Categories

The textual encoded categories of the constraints’ identifiers are structured hierarchically
and separated through underlines (see Listing 3.2). The hierarchy levels decrease from
left to right, where the category value represents the highest hierarchy level and x the
lowest and most specific level. Thereby, the categories in the hierarchies do not depict
formal categorizations of visual variables or encoding but rather informal hierarchical
descriptions of the constraints’ content. Therefore, the descriptions are chosen so that
the descriptions map to similar hierarchy levels and are most descriptive and expressive
in minimal words. Although ’category’ is not the most accurate terminology for these

30

3.2. Data Extraction and Processing

Algorithm 3.1: Recursive feature extraction from the generated syntax tree
1 Function extractFeatures(ast, identifier, features)

Input: AST of knowledge-base and desired feature’s identifier
Output: List of found features

2 if ast.identifier! = identifer then
3 n ← ast.children.length;
4 for i = 0 to n do
5 child ← ast.children[i];
6 extractFeatures(child, identifier, features);
7 end
8 else if features does not already contain identifier then
9 features ← features + ast

10 return features

11 end

hierarchically structured descriptions, we remain using this term. We expect that treating
the identifiers as hierarchical categories best supports the user to distinguish between
the constraints and explore the knowledge-base efficiently.

An example of such a hierarchical description of the constraint is shown by Listing
3.2. It declares that the content of the constraint defines restrictions concerning the
visualization recommendation task, the quantitative data type, and a visual channel in
the visualization. To be more precise, without looking at the content of the constraint,
we can derive from the identifier that the constraint is violated if we have a value task
and continuous data points on the x-axis.

Listing 3.2: Example of a soft constraint with three hierarchy levels in the identifier –
task value, quantitative data type continuous, and channel x.
% @constraint Continuous x for value tasks.
soft(value_continuous_x,E) :- task(value), channel(E,x),

continuous(E), enc_interesting(E).

To visualize such hierarchical structured descriptions, the categorical-based description
must be stored in a hierarchical data structure. Therefore, the categories of the constraints
are extracted using the REGEX extraction approach of Draco. The resulting identifier of
the constraint is then split by the underline character. Next, the constraints are sorted
alphabetically across the hierarchical categories. The sorting is accomplished by first
sorting them in the first level, then in the second, up to the lowest hierarchy level. This
sorting procedure is required to aggregate the categories in the different levels in the last
processing step of the constraints’ category extraction.

31

3. Data Processing and Visualization Approach

3.2.5 Persistent Data Storage
As we do not want to newly extract all the information necessary to visualize the
constraints of Draco’s knowledge-base every time we draw or manipulate the visualization,
the corresponding data must be stored in a persistent database. The database type and
location are, however, not decisive. They can be selected due to personal preference. The
only restriction is the availability of the respective database in the system’s architecture.
Of course, the database should be selected regarding its performance, as well as ease of
integration and data access. In the chapter implementation 4 of the system’s prototype,
we argue our selection concerning the database and its structure.

3.2.6 The Final Data Extraction Architecture
The feature extraction architecture aims to reduce the external dependencies and nec-
essary parsing and data processing logic to a minimum. More decisive than maximum
performance is the maintainability and understandability of the grammar and the corre-
sponding parsing and extraction operations. Therefore, the architecture consists of a few
easy-to-understand units (see Figure 3.4). The pipeline is divided into two parallel strands.
One strand extracts and stores the currently unknown features from the knowledge-base
by Draco, and the second one extracts the hard and soft constraints. Then, the results
of the two strands are merged and stored in the database.

In the first pipeline strand, the parser generator takes the ASP grammar as input and
generates a parsing instance. This instance then parses the knowledge-base and generates
an AST of the given ASP program in the second step. In the third unit, the recursive
method extracts the features of interest (defined in a configuration file) from the generated
AST.

The second pipeline strand extracts the hard and soft constraints and the corresponding
weights with the same REGEX extraction approach applied by Draco. The reason, there-
fore, is that the desired constraints are already annotated in Draco, which considerably
simplifies their classification and extraction process. Besides, the desired information
follows a strict structure introduced by Draco, which enables to form simple REGEX
expressions. By contrast, filtering these constraints from the first pipeline strand’s
resulting AST would require additional logic. The hierarchy can be easily computed
from the resulting constraints by processing the constraints’ identifiers resulting from the
REGEX extraction approach.

The last step unites the two strands and connects the constraints based on the extracted
features. The resulting hypergraph-based data is stored in a database together with the
features, the constraints, and the hierarchy of the constraints. Whenever the knowledge-
base, the grammar, or the list of desired features changes, the corresponding steps have
to be repeatedly executed, including their subsequent pipeline steps.

32

3.3. Visualization and Interaction Design

Figure 3.4: Data extraction architecture consisting of two pipelines. The first pipeline
extracts the features of Draco’s knowledge-base and the second pipeline the constraints,
their weights, and the constraints’ identifier hierarchy. A hypergraph data generation
module processes the features and the constraints and creates the necessary graph-based
structure for visualizing a hypergraph of the constraints’ shared features.

3.3 Visualization and Interaction Design
This section elaborates on the visualization and interaction design for Draco’s soft and
hard constraints. We argue the taken design and interaction choices and discuss associated
advantages and disadvantages. The final design in Section 3.4 puts together the different
aspects and approaches, which are then implemented by the prototype described in the
subsequent chapter 4.

3.3.1 Visual Design

An approach to designing a visualization for an unknown dataset is to iteratively try out
different visual mappings and encodings to get to the desired result. First, we visualized
all the constraints without any order in a free layout design, only showing the connections
between the constraints. This exploratory approach gave us an initial overview of the
dataset we created in the previous section.

As a starting point, we interpreted our dataset as graph-based and applied an appropriate
visual mapping to it. In this approach, every constraint represents a node, and every

33

3. Data Processing and Visualization Approach

feature-based connection between these nodes represents an edge. However, this kind of
edge-mapping resulted in a very dense graph due to the number of shared features. So
solve this issue, we introduced so-called hyperedges to reduce the number of edges. For
every hyperedge, a new node is created. This node represents a feature and is connected
to all the nodes sharing this feature. Using this new graph structure reduces the number
of e edges for n nodes from O(n*(n-1)/2) edges to just O(n) edges. Besides, node-
based color encoding is used to show the associated weight of the constraints. This
coloring of the nodes gives a first impression of the incorporated weights in Draco’s design
constraints.

The result of this first iteration is a hypergraph seen in Figure 3.5. It is a free node-link
layout without any ordering or attribute-based positioning of the nodes and edges. To
show violated constraints of a recommended visualization of Draco in the left view, the
affected nodes and edges are visually highlighted in the right view.

Recommendations

Cost: 30

Cost: 30

Cost: 32

Knowledge Base

Soft Constraints

Choose constraints

Variables

Choose connection type

1 - weight: 1

2 - weight: 2

3 - weight: 10

4 - weight: 6

5 - weight: 06 - weight: 6

7 - weight: 8

8 - weight: 16

9 - weight: 50

10 - weight: 5

11 - weight: 10
12 - weight: 2

13 - weight: 5

14 - weight: 1

15 - weight: 30

16 - weight: 3

17 - weight: 10

18 - weight: 3

19 - weight: 2

20 - weight: 1

21 - weight: 1
22 - weight: 1

23 - weight: 3

24 - weight: 1

25 - weight: 5

26 - weight: 10

27 - weight: 1

28 - weight: 1

29 - weight: 10

30 - weight: 10

31 - weight: 10
32 - weight: 20

33 - weight: 1

34 - weight: 2

35 - weight: 2

36 - weight: 1

37 - weight: 1

38 - weight: 0

39 - weight: 1

40 - weight: 1

41 - weight: 1

42 - weight: 1

43 - weight: 0

44 - weight: 0

45 - weight: 0

46 - weight: 0

47 - weight: 5

48 - weight: 1

49 - weight: 20

50 - weight: 0

51 - weight: 1

52 - weight: 2

53 - weight: 0

54 - weight: 20
55 - weight: 20

56 - weight: 2

57 - weight: 5

58 - weight: 10

59 - w

60 - weight: 20

61 - weight: 20

62 - weight: 50

63 - weight: 0

64 - weight: 20

65 - weight: 0

66 - weight: 20

67 - weight: 20

69 - weight: 25

70 - weight: 0

71 - weight: 1

72 - weight: 0

73 - weight: 0

74 - weight: 0

75 - weight: 10

76 - weight: 1

77 - weight: 20

78 - weight: 1

79 - weight: 0

80 - weight: 8

81 - weight: 10

82 - weight: 32

83 - weight: 10

84 - weight: 10

85 - weight: 3

86 - weight: 0

87 - weight: 10

88 - weight: 11

89 - weight: 12

90 - weight: 7

91 - weight: 10

92 - weight: 20

93 - weight: 0

94 - weight: 1

95 - weight: 2

96 - weight: 2

97 - weight: 3

98 - weight: 6

99 - weight: 6

100 - weight: 7

101 - weight: 20

102 - weight: 0

103 - weight: 2

104 - weight: 1

105 - weight: 3

106 - weight: 4

107 - weight: 4

108 - weight: 5

109 - weight: 0

110 - weight: 1

111 - weight: 0

112 - weight: 0

113 - weight: 0

114 - w

115 - weight: 0

116 - weight: 0

117 - weight: 0

118 - weight: 0

119 - weight: 0

120 - weight: 0

121 - weight: 0

122 - weight: 0

123 - weight: 0

124 - weight

125 - weight: 0

126 - weight: 0

127 - weight: 0

128 - weight: 0

129 - weight: 0
130 - weight: 0

131 - weight: 0

132 - weight: 0

133 - weight: 0

134 - weight: 0

135 - weight: 0

136 - weight: 0

137 - weight: 0

138 - weight: 0
139 - weight: 0

140 - weight: 0

141 - weight: 0

142 - weight: 0

143 - weight: 0
144 - weight: 0

145 - weight: 0
146 - weight: 0

147 - weight: 0

148 - weight: 0

149 - weight: 0

150 - weight: 0

Figure 3.5: First visualization iteration of the constraints using a free node-link layout
for the hypergraph. Even with few features and connections, the graph encounters the
hairball problem of dense node-link graphs.

As noticeable, the resulting visualization of the first design iteration looks severely like a

34

3.3. Visualization and Interaction Design

hairball and it is difficult to obtain any meaningful structure or order. Moreover, due
to this flexible layout, each redrawing cycle of this graph leads to a repositioning of
the nodes and edges. However, it is a crucial requirement for good visualization design
that the same input parameters to a visualization must lead to the same visualization.
Consequently, the time necessary to search and find a specific node or connection in the
graph stays the same for each redrawing of the graph. Furthermore, it is hard to detect
related nodes in this unstructured free node-link layout, and it is infeasible to perform
any attribute-based sorting of the nodes. As a consequence of the abstraction of the
constraints to nodes and edges, the content of the constraints respectively the logical
expressions are hidden, and it is impractical to attach any meta-data to the nodes, such
as descriptions or notes.

In the following sections we overcome the limitations and derived difficulties of the first
iteration by proposing proper visual organizations and mappings.

Visual Mapping of Constraints

To get the desired consistency in the visual appearance of the graph, the first step is to
add any kind of positioning restriction rule to the nodes. This rule is intended to ensure
that the nodes retain their position and the context they are embedded in for every
re-drawing cycle of the graph. A requirement, therefore, is that no data transformations
were executed between these cycles.

Besides free node-link layouts, Nobre et al. [NMSL19] distinguish between styled layouts
and fixed layouts. However, a fixed layout is not applicable, as the constraints do not
have any attributes describing a x or y position on a map. Hence, a styled layout is
required that adds a positioning pattern to the nodes, like arranging them in a line
or along a circle. Both strategies have advantages and disadvantages, which must be
weighed against each other.

Although the linear arrangement resembles the natural 1D line-based arrangement of the
constraints in their code base, many connections between the nodes lead to cluttering in
the visualization. The key to reducing the number of overlaps that causes this cluttering
is to add a smart ordering to the nodes. However, the restriction to only one type of
suitable ordering limits the positioning and arranging flexibility of the nodes. E.g., the
constraints have multiple attributes, which could be used to sort the nodes accordingly.
For instance, it might be interesting to sort the soft constraints based on their weight or
based on the natural alphabetical order of the constraints applied to their identifiers.

Similar to the linear-based arrangement, the number of overlaps of the connections
between the nodes also depends on the used sorting mechanism. In addition to the
overlap problem of the connections, both layouts share further difficulties that must be
tackled. One of the most critical aspects is scalability. The knowledge-base of Draco
comprises around 150 soft constraints and 70 hard constraints. Since not every attribute
respectively content of these constraints can be encoded as a visual variable or type of
shape, a text representation is required. Because representing text is only meaningful

35

3. Data Processing and Visualization Approach

if it is readable, it requires a minimum size on the printing media. Hence, the amount
of visualizable data depends on the amount of text to be shown and its arrangement
and positioning. This problem is known, for example, in 2D time-series charts where the
corresponding time point labels every point on the x-axis. With an increasing number
of time points, the labels have to be either grouped or arranged side-by-side by adding a
certain angle to the labels. Rotating the labels enables positioning them closer to each
other by improving the use of the available 2D space of the printing medium.

A similar strategy is required for both styled layouts since the number of constraints is
sufficient that the labels of the nodes can not simply be added next to the nodes without
any rearrangement. However, rotating a text makes it less readable, especially when the
rotation angle is between 90 and 270 degrees. In the worst case, at 180 degrees, the text
is upside-down and hence, very hard to read.

In addition to the scalability problem of labels, the visualization size likewise increases with
the number of constraints by a constant factor. This factor depends on the dimensions
selected for one node of the graph. In the case of circular nodes used to represent
the constraints, the diameter parameter of the circle is decisive. Whereas the linear
representation of the nodes increases only in one direction respectively axis, the size of
the visualization in the radial arrangement of the nodes increases by two dimensions. In
both cases, the visualization inevitably reaches the dimension limitations of the printing
media at a specific number of constraints.

Since both layouts face similar limitations and problems to be solved, we selected the radial
layout, as it best illustrates a self-contained system where the order of the constraints
is not decisive. Furthermore, the constraints enclose the shared features, which gives
the impression that they are part of these features and not floating around. The radial
approach is additionally supported by many scientific papers and application areas where
radial layouts are used to visualize flows of dependencies between the entities of a system.

In our radial layout (see Figure 3.6), the constraints of the knowledge-base are represented
as nodes. In the case of soft constraints, a node encodes its weight by coloring the node
accordingly and showing a textual representation of the weight in the center of the node
(using node-encoding). Since hard constraints have no weight, all nodes share the same
color. To be able to locate and associate the constraints, their textual identifiers are
added in the form of labels next to the nodes.

Following the radial arrangement style, the node’s weight label is rotated according to
the angle of the node in relation to the center of the visualization. The problem of
poorly readable labels caused by their rotation is tackled by mirroring them between the
angles of 90 and 270 degrees (supported by similar layouts, as shown by Humayoun et al.
[HEAE16]).

Furthermore, the radius of the constraints regarding the center of the visualization
depends on multiple factors. Selecting an appropriate radius is crucial to avoid visual
clutter of the hypergraph inside the radial arranged constraints and to avoid generating
too big visualizations that exceed the visually representable area of the output medium.

36

3.3. Visualization and Interaction Design

An appropriate radius can be derived by taking into account the number of surrounding
nodes (number of constraints), their radii, their spacings, and the number of shared
features of the constraints.

2
ag

g
>
di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
e
>
co

un
t

3

ag
gr
eg

at
e
>
gr

4
ag

gr
eg

at
e
>
m
ax

1
ag

gr
eg

at
e
>
m
ea

n
3

ag
gr
eg

at
e
>
m
ed

ia
n

4

ag
gr
eg

at
e
>
m
in

5

ag
gr
eg

at
e
>
st
de

v

2

ag
gr
eg
at
e
>
su
m

2

bi
n

5

bi
n
>
ca
rd
in
al
ity

10

bi
n
>
hi
gh

6

bi
n
> l
ow

20

c >
c >

ar
ea

20

c >
c >

lin
e

0

c >
c >

po
int

2

c >
c >

tex
t

5

c >
c >

tic
k

20

c >
d >

are
a

20

c >
d >

ba
r

5

c >
d >

co
lum

n

20

c >
d >

line

20

c >
d

0

c

1
ero

1

positional <
zero

3
size

<
zero

5
skew

<
zero

B

EX

agg
aggregate

bin

c

zero

dim count group max mean m... min stdev sum

car... high
low

c

d

pos... size skew

by

area
line

point
text

tick

area
bar

co...
line

no

raw

overlap

area
bar

line
point

270°
0°/360°

90°

180°

Figure 3.6: Radially arranged constraints abstracted by round nodes which are encoding
the constraints’ weight by number and color. The identifiers of the constraints are
positioned next to the nodes and similarly arranged along the circle with the corresponding
angles of the nodes.

For the color encoding of numerical values, a color map is required. It defines the
mapping between the values and colors. Since various types of colormaps are available,
the selection must be well-founded. A good overview of different examples and types of
colormaps is given by the documentation of the d3-scale-chromatic plugin8 of d3js. For
positive real, integer, or natural numbers, single hue sequential color interpolations are
usually applied. Sequential schemes interpolate between either Black or White and one
other color hue. For data ranges including a clear middle like zero, diverging colormaps
should be preferred9. However, the selection not only depends on the type of underlying
data. It also depends on which properties of the data should be highlighted, respectively,

8https://github.com/d3/d3-scale-chromatic (accessed 2022/08/22)
9https://blog.datawrapper.de/diverging-vs-sequential-color-scales (accessed

2022/08/22)

37

https://github.com/d3/d3-scale-chromatic
https://blog.datawrapper.de/diverging-vs-sequential-color-scales

3. Data Processing and Visualization Approach

in which data characteristics the user or viewer of the data visualization is interested.
Hence, a common approach in scientific visualizations is to provide multiple colormaps
to enable the user to explore different data characteristics by choosing an appropriate
colormap.

For the color encoding of Draco’s constraints’ weights, we suggest a diverging colormap
between Blue and Red (see Figure 3.7). The color blue identifies soft constraints with
zero weight, and the color red the constraints with the maximum weight related to the
total range of the weights 0-50. Although the soft constraints incorporate only positive
weights, the diverging colormap supports rapidly identifying extrema and weights, which
correspond to the average of the entire range.

Costs of rules (Min - Max)

0 5 10 15 20 25 30 35 40 45 50

Figure 3.7: Colormap to encode the weights of the constraints as colors. The map
interpolates between the two colors Blue and Red in a diverging scheme from the lowest
assigned weight to the highest one.

Visual Mapping of Hierarchical Categories

Categories, groups, or similar structures in node-link graphs in either hierarchical or
flat schemes can be visualized in different forms [VBW15]. Their visual mapping mainly
depends on the used layout of the graph. Since we chose a radial layout for the nodes with
a clear and consistent structure and positioning scheme, we apply an attached juxtaposed
layout for the hierarchical encondings as suggested by related scientific visualizations
[Hol06, TKE12, VBSW13] and summarized by Vehlow et al.[VBW15]. In such a layout,
a group of entities is encoded as an arc radially aligned to the entities of the graph
visualization. In case of Draco, an arc encloses its including constraints (see Figure
3.8). Depending on the hierarchy level of the constraints’ identifiers, the length of the
corresponding arc is determined by the number of constraints it encloses.

In general, there are two possibilities for placing the hierarchical groups next to the
graph visualizations. We distinguish between an inside-out and outside-in strategy. In
the inside-out layout, the root of the hierarchy is placed next to the nodes of the inner
circle and the leaf nodes at the outermost circle depending on the number of levels of the
hierarchy. Such a layout is often called a sunburst layout, as mentioned by Woodburn et
al. [WYM19]. In the second case, the outside-in strategy reverses this direction. Leaf
nodes of the hierarchy are placed next to the nodes representing the constraints. Hence,
the leaf nodes could be merged with the constraints whereby the lowest level would be
omitted.

Although the outside-in strategy benefits from one hierarchy level less than the inside-out
strategy, it requires a hierarchical group structure with the same depth for each leaf
node, as shown by Figure 4e in Vehlow et al. [VBW15]. Since in Draco, the constraints’

38

3.3. Visualization and Interaction Design

2
ag

g
>

di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
e

>
co

un
t

3

ag
gr

eg
at

e
>

gr
4

ag
gr

eg
at

e
>

m
ax

1

ag
gr

eg
at

e
>

m
ea

n

3

ag
gr

eg
at

e
>

m
ed

ia
n

4

ag
gr

eg
at

e
>

m
in

5

ag
gr

eg
at

e
>

st
de

v

2

ag
gr

eg
at

e
>

su
m

2

bi
n

5

bi
n

>
ca

rd
in

al
ity

10

bi
n

>
hi

gh

6

bi
n

>
lo

w

20

c
>

c
>

ar
ea

20

c
>

c
>

lin
e

0

c
>

c
>

po
in

t

2

c > c > te
xt

5

c > c > tic
k

20

c > d >
are

a

20

c > d >
bar

5

c > d >
column

20

c > d >
lin

e

20

c > d

0

c

1
ero

1

positional <
zero

3
size

<
zero

5
skew

 <
zero

B

EX

agg
aggregate

bin

c

zero

dim count group max mean m... min stdev sum

car...
high

low

c

d

pos... size skew

by

area
line

point
text

tick

area
bar

co...
line

no

raw

overlap

area
bar

line
point

Figure 3.8: Circular attached arcs showing the hierarchical categories of the constraints.

identifiers form a hierarchy with variable depths in the leaf levels, an outside-in layout
would introduce empty visual holes towards the center of the graph visualization. As a
consequence, the visually detached arcs make it perceptually hard to assign the constraints
to their corresponding group, respectively, category.

For these reasons, we employ the inside-out strategy and attach the hierarchical layers
to the introduced nodes for the constraints in the innermost circle. The labels of the
constraints are moved outwards so that they are not hidden under the surrounding arcs.
Furthermore, the arcs are colored according to the average weight of the respective
enclosed constraints. These colored arcs simplify finding groups of constraints with very
low or very high weights. They encode their underlying name as a textual label in the
arcs’ center to identify them. These labels are rotated according to the arcs and shortened
when the labels exceed the arcs (see Figure 3.8).

39

3. Data Processing and Visualization Approach

Visual Mapping of Constraints’ Relationships

Each set of hard and soft constraint shares components in different levels of non-terminals.
These non-terminal and terminal-based relationships, which we call feature-based depen-
dencies of the constraints, can be shown by connecting the respective constraints using a
visual link.

Connecting a subset of constraints sharing the same features with such simple links
results in a fully connected sub-graph. Hence, we introduce a hypernode inside the circle
of the radial arranged constraints for every shared feature of the constraints. Such a node
is visually labeled by the feature’s content and connected to every constraint, including
this particular feature.

2
ag

g
>
di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
3

a
4

ag
gr
eg

at
e

1
ag

gr
eg

at
e

3

ag
gr
eg

at
e
>

4

ag
gr
eg

at
e
>
m
i

5

ag
gr
eg

at
e
>
st

2

ag
gr
eg

at
e
>
su
m

2

bi
n

5

bi
n
>
ca
rd
in
al
ity

10

bi
n
>
hi
gh

6

bi
n
> l
ow

20

c >
c >

ar
ea

20

c >
c >

lin
e

0

c >
c >

po
int

2

c >
c >

tex
t

5

c >
c >

tic
k

20

c >
d >

are
a

20

c >
d >

ba
r

5

c >
d >

co
lum

n

20

c >
d >

line

20

c >
d >

no
>

0

c >
d >

no

20

c >
d >

20

c >
d

30

c >

25

10

c > d
>

50

c > d
>

0

c > d

0

colo

0

col

10
contin

1
contin

20 contin

0 contin
0 contin
50 count
20

d0
d >0

d >1

d >
0

encoding
6

encoding >

0

facet > summa

10

high > ca

10

high >

10

high > cardin

1

high > cardinali

20

horizontal > scrolling

10

includes > zero

2

interesting > color

7

interesting > column

20

interesting > detail

6

interesting > row

3

interesting > shape

2

interesting > size

6

interesting > text

0

interesting > x

1

interesting
> y

1

log

3

m
ultiple

>
non

10

nom
inal >

color

10

nom
inal >

colu

20

nom
inal >

de

7

nom
inal >

r

11

nom
inal >

12
nom

inal

3
nom

ina

0
nom

ina

10
no

10
num

b

30
only

>

1
x
<
on

ly
8

rd
er
ed

10
or
de

re
d

10
or
de

re
d

10

or
de

re
d

32

<
or
de

re
d

1

<
or
de

re
d

0

y
<
or
de

re
d

1

<
or
ie
nt
at
io
n

2

op
y
<
po

si
tio

n
1

bi
n
<
qu

an
t

2

er
s
<
qu

an
tit
at
iv
e

8

2
< f
ie
ld
< s

am
e

16

te
3
< f
ie
ld
< s

am
e

5

ca
rd
in
al
ity

< s
ha
pe

0

hi
gh

< e
nt
ro
py

< s
ize

0

low
< e
nt
ro
py

< s
ize

1

no
rm
ali
ze
< s
ta
ck

0

ze
ro
< s
tac

k

2

no
mi
na
l <
no
n <

str
ing

0

are
a <

su
mm

ary

0

ba
r <

su
mm

ary

0

< c
on
tin
uo
us

< s
um

ma
ry

0

ont
inu

ous
< s

um
ma

ry

0

tinu
ous

< s
um

ma
ry

0

uou
s <

sum
ma

ry

0

us <
sum

mary

0

e < s
ummary

0

< su
mmary

0

sum
mary

0

mmary

0

mmary

0

mmary

0

mmary

0

mmary

0
mmary

0mmary

0mmary
0mmary
0mmary
1

mporal
1

emporal 2

n < type 1

o < type 0

q < type 1

agg < value 0

area < value
0

bar < value
0

uous < value

0

nuous < value

0

ntinuous < value

0

continuous < value

0

y < continuous < value

0

color < discrete < value

0

column < discrete < value

0

row
< discrete < value

0

shape < discrete < value

0

size < discrete < value

0

text < discrete < value

0

x < discrete < value

0

y < discrete < value

0

line < value

0

point < value

0

rect < value

0

text <
value

0

tick
<
value

1

colum
n
<
x

1

row
<
x

1

aw
<
y
<
x

1

colum
n
<
y

1

row
<
y

1
zero

1

onal <
zero

3
size

<
zero

5
ew

<
zero

E

B

F

C

V

EXEY

MIN

MAX

EN

agg
aggregate

bin

c

color
continuous

co
un

t
d

en
co

di
ng

fa
ce
t

hi
gh

ho
...

in
...

int
ere
sti
ng

log

mu...

nominal

nonn...only
ordered

or...
po...

q...

qu...

same

s...

size

stack

string

sum
m
ary

te
m
po

ra
l

ty
pe

va
lue

x

y
zero

dim count group max mean m... min stdev sum

car... high
low

c

d

entropy
color

size
text

x

y
tw

ic
e

d

fie
ld

s.
..

ca
rd
in
al
ity

sc
r..
.

ze
ro

co
lor

c..
.

de
ta
il

row

s..
.

siz
e

tex
t

x

y

non

colo
r

c...

deta
il

row
s...

textxypos...no...dis...xcolorc...rowsize
text

x
y

bi...

en...

bin

n...

field

car...

entropy

no...

zero

non

area

bar

continuous

discrete

line
point

rect

te
xt

tic
k

da
te

y
n

o
q

ag
g

ar
ea

ba
r

co
nt
in
uo
us

dis
cre
te

line
poi

nt
rec

t
text

tick
c...

row
y

c...
row

pos... size skew

by

area
line

point
text

tick

area
bar

co...
line

no

point
text

tick
high

low

ov
...

po
in
t

re
ct

te
xt

no
m
in
al

or
d.
..

si
ze

pos

pref

2

gte3

high

low

no...

color

size

text

x
y

color

co...

row
shape

size
text

x
y

co
lo
r

si
ze

te
xt

x

y
co
lor

co
...

ro
w

sh
ap
e

siz
e

tex
t

x

y

raw

raw

overlap

co
lo
r

area
bar

line
point

text
tick

deg(V)

1 deg(F)

6

deg(EN)

5 deg(C)

11

R
deg(E)

99

deg(MIN)

2

deg(B)

2

deg(EX)

2
deg(EY)

1

deg(MAX)

2

max

Figure 3.9: Hypergraph showing the used variables within the soft constraints of the
knowledge-base. The variables are represented as feature nodes with different degrees
based on the number of connected constraints. A maximum radius Rmax ensures a
minimum distance between the constraints and their shared feature nodes.

40

3.3. Visualization and Interaction Design

However, a common hypergraph strategy is introducing only new nodes for hyperedges
connecting at least three nodes. Therefore, relationships between two nodes can be
represented by a single line that does not require a hypernode. Since we are mainly
interested in the included features, we introduce a hypernode for every feature used at
least by one constraint. Hence, every included feature, no matter to which degree of
connected constraints, is represented the same way inside the graph (see deg(vertex) in
Figure 3.9).

A feature node’s position in the hypergraph depends on its connections to the constraints.
The locations of the corresponding constraints lead to a weighted centroid to which the
node converges. Since at least three surrounding constraints always form a regular-shaped
polygon, the centroid is invariably inside the outer circle. However, to ensure that feature
nodes connecting only one or two nodes also fit this positioning restriction, we introduced
a maximum radius to which feature nodes can converge.

To further reduce visual clutter and the number of feature-based relationships, we only
visualize the features and their connections based on one specified feature type. In the
case of Figure 3.9, only the variables of the constraints are shown.

41

3. Data Processing and Visualization Approach

3.3.2 Interaction Design
Few [Few09, p. 59] describes the effectiveness of information visualization based on its
ability to clearly and accurately represent information and the user’s ability to interact
with it to gain the desired insight. Whereas static information visualization fulfills the
goal of giving a first impression of the data and is sufficient for visualizing simple data,
complex data requires user interaction with the different stages of the visualization
process. Spence [Spe07, p. 136] states that "usually a corpus of data is so large that no
single all-inclusive view is likely to lead to insight." Hence, being able to interactively
explore the data and change one’s view of the corpus of data is crucial for acquiring the
"a ha!" experience, according to Spence.

A frequent and often practiced procedure for an exploratory approach to an unknown
data domain is to apply Shneiderman’s Visual Information-Seeking Mantra [Shn03]:
’overview first, zoom and filter, then details on demand.’ Although this Mantra lacks a
scientifically studied and proven methodological approach according to Craft and Cairns
[CC05], it serves as a well-established and accepted guideline for designing an interactive
approach to tackle complex data domains. Besides this Mantra, other taxonomies such
as proposed, for example, by Kang and Stasko [YKSJ07] address the interaction design
from a different point of view. Their proposed interaction methods especially tackle the
users’ intents:

• Select: mark something as interesting
• Explore: show me something else
• Reconfigure: show me a different arrangement
• Encode: show me a different representation
• Abstract/Elaborate: show me more or less details
• Filter : show me something conditionally
• Connect: show me related items

Many other authors of scientific studies related to interaction design extend this list of
methods. Although these mentioned techniques fulfill a particular goal and the individuals
can not be generally negated to be valuable in certain contexts, they should not be
implemented at any expense [YKSJ07]. Not every potential interaction is beneficial
or necessary for users to accomplish their tasks. Some interaction techniques are only
meaningful in specific scenarios dependent on the data domain and its representability
by different encodings.

Hence, we focused on implementing Shneiderman’s guideline and using advanced in-
teraction strategies wherever such an interaction technique is necessary to support the
user in solving specific analytical and exploratory tasks. This approach is supported by
the argumentation of Craft and Cairns [CC05] that this guideline can be beneficial for
developing novel visualizations such as our proposed one.

42

3.3. Visualization and Interaction Design

Overview

Generating an overview of Draco’s constraints and rules is implicit given through the
design and intention of the static visualization design proposed in the previous section.
The constraints are abstracted to the required degree to represent the two sets of
constraints (soft and hard constraints) within the dimensions of a typical visual output
device like a notebook or desktop monitor. A constraint is abstracted by its given meta-
data weight (see Figure 3.6), hierarchical description of the body, respectively context of
the constraint (see Figure 3.8), and its comprised features like variables, predicates, and
similar. The proposed radial design of the visualization qualifies to create a dependency
graph between these constraints to figure out related constraints and their shared features
(see Figure 3.9).

Zoom/Pan and Filter

An increasing number of constraints requires reducing the size of the visual glyphs and
textual labels to be still able to represent them on the output device. Especially the
textual labels get worse readable due to the decreased size. Hence, the interaction
technique zooming is required to enlarge such information. However, zooming is at
the expense of presentable information within the available view space. Therefore, the
zooming technique is often coupled with the interaction technique panning (see 1 in
Figure 3.10). Panning immediately adjusts the information in focus by moving the view
space to show different parts of the visualization. While panning over the visualization,
the zoom level stays unchanged.

ag
gr

eg
at

e
>

co
u

3
ag

gr
eg

a
4

ag
gr

eg
at

e
>

m
ax

1
ag

gr
eg

at
e

>
m

ea
n

3

ag
gr

eg
at

e
>

m
ed

ia
n

4

ag
gr

eg
at

e
>

m
in

5

ag
gr

eg
at

e
>

st
de

v

2

ag
gr

eg
at

e
>

su
m

2

bi
n

5

bi
n

>
ca

rd
in

al
ity

10

bi
n

>
hi

gh

6

bi
n

> l
ow

20

c >
 c

> a
re

a

20

c >
 c

> l
ine

0

c >
 c

> p
oin

t

2

c >
 c

> t
ex

t

5

c >
 c

> t
ick

20

c > d > area

20

c > d > bar

5

c > d > column

20

c > d > lin
e

20

c > d > no > overlap > area

0

c > d > no > overlap > bar

20

c > d > no > overlap > line

20

c > d > no > overlap > point

30

c > d > no > overlap > text

c > d > no > overlap > tick

c > d > point

 d > text

B

aggregate

bin

c

unt group max mean m... min stdev sum

car... high
low

c

d

by

area
line

point
text

tick

area
bar

co...
line

no

poin

raw

overlap

area
bar

line
point

text
tick

Soft Constraints
Choose constraints

Variables
Choose connection type

bin
Constraint Categories
aggregate

bin

c

color

count

d
Apply filter Remove all filters1

2a

2b

Figure 3.10: Interaction technique zooming and panning to navigate certain areas of
interest of the visualization and enlarge them (1) and direct filter operations on specific
constraint categories (2a) and indirect filter operations over a dropdown to reduce the
corpus of shown constraints by selecting or deselecting constraint categories (2b).

43

3. Data Processing and Visualization Approach

Since some analytical tasks require concentrating only on a certain subset of constraints
or one or more specific categories of constraints, filter out irrelevant data helps to focus
on the desired information. Our approach offers two different filter options (see 2a and 2b
in Figure 3.10). The visualization incorporates a direct filter operation on the constraint
categories by clicking on the category of interest. Subsequently, the visualization is
redrawn only showing the filtered category and its included constraints (see Figure 3.11).
Furthermore, the dependency graph inside the radial layout is likewise reduced to the set
of features shared by the resulting constraints. In addition, the new maximum weight
is determined, and the colormap is adjusted accordingly to depict the shown range of
weights in the visualization.

2
bi

n

5 bin > cardinality

10
hi

gh
 <

 b
in

6low < bin

E
B C

bin

ca
rd

in
al

ity

high

low

Soft Constraints
Choose constraints

Variables
Choose connection type

bin
Constraint Categories

0 1 2 3 4 5 6 7 8 9 10 home

Costs of rules (Min - Max)

Figure 3.11: Constraints visually filtered by the category ’bin’ in the highest level of the
category hierarchy.

Details on Demand

Although the zooming interaction enables to enlarge parts of the visualization of interest,
it does not affect the degree of detail of the focused and shown data items. By abstracting
the constraints to their weight and identifier, the decisive part of the constraint for the
visualization recommendation process, the body, is hidden and, therefore, inaccessible

44

3.3. Visualization and Interaction Design

within the static visualization. Equally to the body of the constraint, other meta-data
like its description and comments are hidden as well. Hence, the static visualization must
become dynamic by incorporating any details on demand interaction functionality or
view that makes such information accessible again for the user.

In theory, several possibilities exist to incorporate additional information into a visu-
alization. A well-established approach is to increase the level of detail of a constraint
when zooming into the visualization. Since we abstracted the constraints by circles,
the on-node encoding technique would be an evident candidate to show such a level
of detail functionality [NMSL19]. However, it is obvious that a node cannot visually
include many textual descriptions and comments as required for Draco’s meta-data in the
knowledge-base. Another option would be to attach those meta-data to the constraints
by labels. Since the necessary visual space to show such information as labels is already
occupied by the labels and arcs, as seen in Figure 3.8, this approach is also impracticable.

Another possibility to make such information accessible is to detach it from the static
visualization by incorporating it into a tooltip or showing it in a separate view. The
difference between these two approaches is that the tooltip is a floating container within
the possible drawing area of the visualization. In contrast, the separate view is entirely
outside of this area. An advantage of the tooltip over the separate view is that it can be
drawn directly next to the hovered or selected data item. Thereby, related information is
not visually disjoint by a considerable visual distance, as is the case for the separated
view. However, tooltips possibly overlap other parts of the visualization and should not
exceed a certain visual extent.

Know
ledge Base View

er
keyboard_arrow_up

(click
to

close)

2
ag

g
>

di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
e

>
co

un
t

3
ag

gr
eg

at
e

>
gr

ou
p

>
by

 >
 ra

w
4

ag
gr

eg
at

e
>

m
ax

1
ag

gr
eg

at
e

>
m

ea
n

3

ag
gr

eg
at

e
>

m
ed

ia
n

4

ag
gr

eg
at

e
>

m
in

5

ag
gr

eg
at

e
>

st
de

v

2

ag
gr

eg
at

e
>

su
m

2

bi
n

5

bi
n

>
ca

rd
in

al
ity

bi
n

>
hi

gh
bi

n
> l

ow
c >

 c
> a

re
a

c >
 c

> l
in

e
c >

 c
>

c >1 1

x

1

colum
n < y

1

row
 < y

1
zero

1

positional < zero

3
size < zero

5
skew

 < zero

agg
aggregate

bin

x

y
zero

dim count group max mean m... min stdev sum

car... high
low

y
c... row

pos... size skew

by

area
line

point
text

raw

raw

agg_dim (cost 2)
Aggregate should also have a discrete encoding to group
by.
soft(agg_dim) :- aggregate(_,_), not
discrete(_).

aggregate (cost 1)
Prefer to use raw (no aggregate).
soft(aggregate,E) :- aggregate(E,_).

aggregate_count (cost 0)
Count as aggregate op.
soft(aggregate_count,E) :-
aggregate(E,count).

aggregate_group_by_raw (cost 3)
Aggregate plots should not use raw continuous as gr oup
by.
soft(aggregate_group_by_raw,E) :-
aggregate(_,_), continuous(E), not
aggregate(E,_).

aggregate_max (cost 4)
Max as aggregate op.
soft(aggregate_max,E) :-
aggregate(E,max).

Know
ledge Base Inspector

keyboard_arrow_down
(click

to
open)

Soft Constraints
Choose constraints

aggregate
Type to filter ...

closeSoft Constraints
Choose constraints

Variables
Choose connection type

agg, aggregate,…
Constraint Categories

Figure 3.12: Details on demand for constraints’ data through searching over the list of
constraints in a separate view right next to the main visualization.

Since we want to employ the advantages of both strategies, we implemented both in
our multi-view visualization to incorporate additional and more detailed data regarding

45

3. Data Processing and Visualization Approach

the constraints and their shared features. In a separate view right next to the main
visualization, all of Draco’s constraints are listed among each other (see Figure 3.12). Each
element of the list contains the hierarchical identifier of the constraint, its description, its
logical expression in ASP-notation, and in the case of soft constraints, its weight. The
type of listed constraints can be switched between soft and hard constraints using the
select button at the top of the view. A search functionality enables the user to search
over these constraints and their meta-data and filter out irrelevant information to the
search query.
Since a user might be interested in the details of a set of constraints sharing a specific
feature of interest, a tooltip incorporating this information is shown at the bottom right
corner of the visualization when such a feature is selected (see Figure 3.13). The fixed
position at the corner of the visualization reduces the amount of overlap within the
visualization and hence, enables to enlarge the tooltip and show more information at once.
The downside is that the visual distance between the clicked feature inside the graph and
the tooltip is increased. However, minimized overlaps and more shown information is
more beneficial than directly drawing the tooltip next to the selected feature. Besides, the
feature is highlighted within the list of constraints sharing this feature. Such highlighting
enables the user to quickly identify the feature within the list and retrieve the desired
insights.

d > point0

d > d > rect
1

d > d > text
0

encoding6

encoding > field

0

facet > summary

10

high > cardinality > n

10

high > cardinality

10

high > cardinality > ordin

1

high > cardinality > size

20

horizontal > scrolling

10

includes > zero

2

interesting > color

7

interesting > column

20

interesting > detail

6

interesting > row

3

interesting > shape

2

interesting > size

6

interesting > text

0

interesting > x

1

interesting
> y

1

log

3

m
ultiple

>
non

>
pos

10

nom
inal >

color

10

nom
inal >

colum
n

20

nom
inal >

detail

7

nom
inal >

row

11

nom
inal >

shape

12
nom

inal >
text

3
nom

inal >
x

0
nom

inal >
y

10
non

>
positional >

pref

10
num

ber >
nom

inal

30
only

>
discrete

1
x

<
on

ly
8

co
lo

r <
or

de
re

d
10

co
lu

m
n

<
or

de
re

d
10

ro
w

<
or

de
re

d
10

si
ze

<
or

de
re

d
32

te
xt

<
or

de
re

d
1

x
<

or
de

re
d

0

y
<

or
de

re
d

1

bi
nn

ed
<

or
ie

nt
at

io
n

2

en
tro

py
<

po
si

tio
n

1

bi
n

<
qu

an
t

2

nu
m

be
rs

<
qu

an
tit

at
iv

e
8

2
< f

ie
ld

< s
am

e

16

gt
e3

< fie
ld

< sa
m

e

5

ca
rd

in
al

ity
< sh

ap
e

0

hi
gh

< en
tro

py
< siz

e

0

low
< en

tro
py

< siz
e

1

no
rm

ali
ze

< sta
ck

0

ze
ro

< sta
ck

2

nominal <
non < strin

g

0

area < summary

0

bar < summary

0

ous < summary

0

s < summary

0

summary

0

mmary

0

mary

0

ary

0

ry

0

y

0
0

0
0

F

C

V

EN

en
co

di
ng

fa
ce

t

hi
gh

ho
...

in
...

interestin
g

log

mu...

nominal

nonn...only
ordered

or...
po...

q...

qu...

same

s...

size

stack

string

sum
m

ary

fie
ld

s.
..

ca
rd

in
al

ity

sc
r..

.

ze
ro

co
lor

c..
.

deta
il

row

s...

size

text

x

y

non

color

c...

detail

row
s...

text
xypos...no...dis...xcolorc...rowsize

text
x

y
bi...

en...

bin

n...

field

car...

entropy

no...

zero

non

area

bar

continuous

discrete

re
ct

te
xt

no
m

in
al

or
d.

..

si
ze

pos

pref

2

gte3

high

low

no...

color

size

text

x
y

color

co...

row
shape

size
t

co
lo

r

Costs of rules (Min - Max)

0 5 10 15 20 25 30 35 40 45 50 home

Variable EN

color_entropy_high (cost 0)
Entropy, primary quantitaty interactions as suggested
by Kim et al.
soft(color_entropy_high, E) :-
channel(E,color), enc_entropy(E,EN),
EN > 12, type(E,quantitative),
enc_interesting(E).

color_entropy_low (cost 0)
Entropy, primary quantitaty interactions as suggested
by Kim et al.
soft(color_entropy_low, E) :-
channel(E,color), enc_entropy(E,EN),
EN <= 12, type(E,quantitative),
enc_interesting(E).

position_entropy (cost 2)
Overplotting. Prefer not to use x and y for continuous
with high cardinality and low entr opy without

i b h i ill l

✖

Figure 3.13: Details on demand for constraints sharing a certain feature of interest that
is selected within the visualization. To minimize the overlapped area of the visualization,
the tooltip has a fixed position at the bottom right corner of the possible drawing area of
the visualization.

In general, information of interest can be highlighted using two techniques: emphasizing

46

3.3. Visualization and Interaction Design

the corresponding information of interest and de-emphasizing irrelevant information.
Both techniques make use of changing the encoding, respectively, the visual appearance
of the information to reach the goal. In the case of textual information, either the size of
the text, its color, its thickness, and several other meaningful attributes can be changed
to emphasize, respectively, de-emphasize it from the rest of the shown information.

Within our visualization, we applied the emphasize strategy to highlight selected, hovered,
or linked information of interest within the proposed visualization. The advantage of
this strategy is that other parts of the visualization which are currently not highlighted
do not get worse readable. Hence, highlighted information can be compared with other
aspects of the visualization without any required additional interaction.

Comparing multiple recommendations

Likewise interesting to the elaboration of Draco’s knowledge-base for analytical tasks is
the analysis of interrelations between the resulting visualizations of the recommendation
engine and the knowledge-base based on the constraints’ violations. Since the underlying
recommendation engine prints this list of violated constraints, they can be mapped
back to those constraints the system is fed. Hence, it is possible to establish visual
links between the recommendation results and the proposed visualization for Draco’s
constraints. These links can be emphasized by highlighting respective violated constraints
when hovering or selecting a recommended visualization in the recommendation view
(left view in Figure 3.14). Conversely, one or multiple recommended visualizations can be
highlighted when selecting or hovering over one or multiple constraints in the proposed
visualization (right view in Figure 3.14). Connecting these related aspects refers to the
’connect’ interaction, which enables the user to view relationships usually hidden by the
static visualization.

Each recommended visualization has its own set of violated constraints. Since we
want to compare multiple visualizations based on their violations, we use different
colors to highlight the recommendations and their constraints. Whereas framing the
recommendations by color works well in the left view of Figure 3.14, it is challenging to
find an appropriate highlighting method for the constraints in the right view. The reason,
therefore, is that the space is limited and the nodes can be tiny. Since one constraint
can be violated by multiple recommended visualizations, framing the nodes with colored
borders is inappropriate. Multiple differently colored borders are difficult to distinguish at
this scale. Furthermore, one constraint can be violated by a recommended visualization
multiple times. Hence, another type of encoding than colored borders is necessary, which
reveals the number of violations.

Therefore, we propose using a textual label next to the node disclosing the number of
violations of each constraint per recommended visualization (see 2 in Figure 3.14). Each
label shares the same color as its corresponding recommendation to determine the visual
link between these two views. Additionally, the links to the connected features of the
violated constraints are likewise highlighted to determine the affected features by the

47

3. Data Processing and Visualization Approach

violations. The problem of overlapping colors is solved using different dash and gap
patterns for each highlighting (see 3 in Figure 3.14).

Recom
m

endations
keyboard_arrow_down

(click
to

close)

Cost 30

A

Cost 30

B

Cost 32

Know
ledge Base View

er
keyboard_arrow_up

(click
to

close)

2
ag

g
>

di
m

1
ag

gr
eg

at
e

0

0
line < summary

0
point < summary

0rect < summary
0text < summary
0

tick < summary
1

date < temporal
1

y < temporal 2 1x 1x 1x

n < type 1

o < type 0 2x 2x 2x

q < type 1

agg < value 0

area < value
0

bar < value
0

color < continuous < value

0

size < continuous < value

0

text < continuous < value

0

x < continuous < value

0

y < continuous < value

0

color < discrete < value

0

column < discrete < value

0

row
< discrete < value

0

shape < discrete < value

0

size < discrete < value

0

text < discrete < value

0

x < discrete < value

0

y < discrete < value

0

line < value

0

point < value

0

rect < value

0

text <
value

0

tick
<

value

1

colum
n

<
x

1

row
<

x

1

raw
<

y
<

x

1

colum
n

<
y

1

row
<

y

1
1

x

zero
1

1
x

positional <
zero

3
size

<
zero

5
skew

<
zero

E

EXEY

agg

te
m

po
ra

l
ty

pe

va
lue

x

y
zero

dim

line
point

rect

te
xt

tic
k

da
te

y
n

o
q

ag
g

ar
ea

ba
r

co
nt

in
uo

us

discrete

line
point

rect
text

tick
c...

row
y

c... row
pos... size skew

y

co
lo

r
si

ze
te

xt
x

y
co

lor
co

...
ro

w
sh

ape

size
text

x

y

raw

2x 2x 2x

Chart 1

Chart 2

Chart 3

Chart 4

1

2

3

Figure 3.14: Illustration showing selected (A and B) and hovered visualization recommen-
dations (highlighted greyish) on the left side (1), the number of constraints’ violations
in badges (2), and the violations of the constraints’ features through highlighting the
corresponding links to these features using colored dashes on the right side (3).

48

3.4. The Final Design

3.4 The Final Design
The final design combines the static visualization approach to Draco’s constraints and
the proposed interaction design in Figure 3.15. It targets multiple aspects concerning
Draco’s recommendation process and its underlying knowledge-base to enable users to
find answers to the scientific questions we stated in Chapter 1.2.

Recommendation view
In the left view of Figure 3.15, the recommended visualizations for a given input query
to a data domain are listed in descending order from top to down based on their
accumulated costs (1a). The visualization with the lowest total cost and hence, the
best-rated visualization is presented in the top left corner of the recommendation view.
The underlying facts crucial to constructing these visualizations and additional meta-data,
such as their violating soft constraints, can be accessed through the tooltip at the bottom
of this view (1b). This tooltip is shown when a specific visualization is selected. The
proposed design allows for comparing up to three recommended visualizations. Two can
be selected (2a) and one additionally hovered (2b). Each one is highlighted by a colored
border. They can be compared regarding their violated constraints in the knowledge-base
view on the right side of Figure 3.15. Since these two views are connected and, therefore,
selected or hovered parts of one view lead to highlighted aspects in the other view (2a-c),
users can quickly derive the desired relationships between the recommended visualizations
and Draco’s soft constraints.

Knowledge-base view
In the right view of Figure 3.15, the constraints of Draco’s knowledge-base are visually
abstracted by nodes positioned along with a radial layout (3). Constraints’ weights
are incorporated into the nodes by text and color encoding. The nodes are naturally
ordered by the first letters of their hierarchical categories. These hierarchical categories
are abstracted by attached arcs to the respective nodes (4). Each arc represents one
category and is colored according to the average weight of its including constraints. The
dependency graph in the form of a hypergraph inside this radial layout connects the
constraints by their shared features (5). Selecting such a feature opens the proposed
tooltip, which lists all its connected constraints (6a-6b). This tooltip allows the user
to explore the meta-data of the constraints and their ASP notation for deeper analysis.
The colormap legend at the bottom left corner of the knowledge-base view enables
visualization experts to classify the color range used for the weight encoding in the
visualization. Several controls allow changing the shown type of constraints or features
and limiting the number of shown constraints by filtering irrelevant categories out. The
constraints can be additionally filtered by selecting a category within the visualization.
After re-rendering the visualization, only the constraints and categories of interest are
shown. Additional controls allow to modify the visualization’s appearance and enable
users to reset the view.

49

3. Data Processing and Visualization Approach

Recom
m

endations
keyboard_arrow_down

(click
to

close)

Cost 30 Cost 30

Cost 32

A

Cost 32

Cost 32 Cost 32

Cost 33 Cost 33

Cost 33 Cost 33

Know
ledge Base View

er
keyboard_arrow_up

(click
to

close)

2
ag

g
>

di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
e

>
co

un
t

3
ag

gr
eg

at
e

>
gr

ou
p

>
by

>
ra

w
4

ag
gr

eg
at

e
>

m
ax

1
ag

gr
eg

at
e

>
m

ea
n

3

ag
gr

eg
at

e
>

m
ed

ia
n

4

ag
gr

eg
at

e
>

m
in

5

ag
gr

eg
at

e
>

st
de

v

2

ag
gr

eg
at

e
>

su
m

2
1x

bi
n

5

bi
n

>
ca

rd
in

al
ity

10

bi
n

>
hi

gh

6

bi
n

> lo
w

20

c > c > ar
ea

20

c > c > lin
e

0
1x

c > c > po
int

2

c > c > tex
t

5

c > c > tic
k

20

c > d > area

20

c > d > bar

5

c > d > column

20

c > d > line

20

c > d > no > overlap > area

0

c > d > no > overlap > bar

20

c > d > no > overlap > line

20

c > d > no > overlap > point

30

c > d > no > overlap > text

25

c > d > no > overlap > tick

10

c > d > point

50

c > d > text

01x

c > d > tick

0

color > entropy > high

0
color > entropy > low

10
continuous > color

1 continuous > size

20 continuous > text

01x continuous > x
01x1x continuous > y

50 count > twice
20

d > d > overlap0
d > d > point0

d > d > rect
1

d > d > text
03x

3x

encoding
63x

3x

encoding > field

0

facet > summary

10

high > cardinality > nominal

10

high > cardinality > nominal > color

10

high > cardinality > ordinal

1

high > cardinality > size

20

horizontal > scrolling

10

includes > zero

2

interesting > color

7

interesting > column

20

interesting > detail

6

interesting > row

3

interesting > shape

2

interesting > size

6

interesting > text

0

interesting > x

1

interesting
> y

1

log

3

m
ultiple

>
non

>
pos

10
1

x
1

x

nom
inal >

color

10

nom
inal >

colum
n

20

nom
inal >

detail

7

nom
inal >

row

11

nom
inal >

shape

12
nom

inal >
text

3
nom

inal >
x

0
nom

inal >
y

10
non

>
positional >

pref

10
num

ber >
nom

inal

30
only

>
discrete

1
x

<
on

ly
8

co
lo

r <
or

de
re

d
10

co
lu

m
n

<
or

de
re

d
10

ro
w

<
or

de
re

d
10

si
ze

<
or

de
re

d
32

te
xt

<
or

de
re

d
1

1x

x
<

or
de

re
d

0

y
<

or
de

re
d

1

bi
nn

ed
<

or
ie

nt
at

io
n

2

en
tro

py
<

po
si

tio
n

1

bi
n

<
qu

an
t

2

nu
m

be
rs

<
qu

an
tit

at
iv

e
8

2
<

fie
ld

<
sa

m
e

16

gt
e3

< fie
ld

< sa
m

e

5

ca
rd

in
al

ity
< sh

ap
e

0

hig
h < en

tro
py

< siz
e

0

low
< en

tro
py

< siz
e

1

no
rm

ali
ze

< sta
ck

0

ze
ro

< sta
ck

2

nominal <
non < str

ing

0

area < summary

0

bar < summary

0

color < contin
uous < summary

0

size < contin
uous < summary

0

text < continuous < summary

0

x < continuous < summary

0

y < continuous < summary

0

color < discrete < summary

0

column < discrete < summary

0

row < discrete < summary

0

shape < discrete < summary

0

size < discrete < summary

0

text < discrete < summary

0

x < discrete < summary

0

y < discrete < summary

0
line < summary

0
point < summary

0rect < summary
0text < summary
0

tick < summary
1

date < temporal
1

y < temporal 2 1x 1x

n < type 1

o < type 0 2x 2x

q < type 1

agg < value 0

area < value
0

bar < value
0

color < continuous < value

0

size < continuous < value

0

text < continuous < value

0

x < continuous < value

0

y < continuous < value

0

color < discrete < value

0

column < discrete < value

0

row
< discrete < value

0

shape < discrete < value

0

size < discrete < value

0

text < discrete < value

0

x < discrete < value

0

y < discrete < value

0

line < value

0

point < value

0

rect < value

0

text <
value

0

tick
<

value

1

colum
n

<
x

1

row
<

x

1

raw
<

y
<

x

1

colum
n

<
y

1

row
<

y

1
1

x

zero
1

1
x

positional <
zero

3
size

<
zero

5
skew

<
zero

E

B

F

C

V

EXEY

MIN

MAX

EN

agg
aggregate

bin

c

color
continuous

co
un

t
d

en
co

di
ng

fa
ce

t

hi
gh

ho
...

in
...

interestin
g

log

mu...

nominal

nonn...only
ordered

or...
po...

q...

qu...

same

s...

size

stack

string

sum
m

ary

te
m

po
ra

l
ty

pe

va
lue

x

y
zero

dim count group max mean m... min stdev sum

car... high
low

c

d

entropy
color

size
text

x

y
tw

ic
e

d

fie
ld

s.
..

ca
rd

in
al

ity

sc
r..

.

ze
ro

co
lor

c..
.

deta
il

row

s...

size

text

x

y

non

color

c...

detail

row
s...

text
xypos...no...dis...xcolorc...rowsize

text
x

y
bi...

en...

bin

n...

field

car...

entropy

no...

zero

non

area

bar

continuous

discrete

line
point

rect

te
xt

tic
k

da
te

y
n

o
q

ag
g

ar
ea

ba
r

co
nt

in
uo

us

discrete

line
point

rect
text

tick
c...

row
y

c... row
pos... size skew

by

area
line

point
text

tick

area
bar

co...
line

no

point
text

tick
high

low

ov
...

po
in

t
re

ct
te

xt

no
m

in
al

or
d.

..

si
ze

pos

pref

2

gte3

high

low

no...

color

size

text

x
y

color

co...

row
shape

size
text

x
y

co
lo

r
si

ze
te

xt
x

y
co

lor
co

...
ro

w
sh

ape

size
text

x

y

raw

raw

overlap

co
lo

r

area
bar

line
point

text
tick

Costs of rules (Min - Max)

0 5 10 15 20 25 30 35 40 45 50 home

Soft Constraints
Choose constraints

Variables
Choose connection type

agg, aggregate,…
Constraint CategoriesChart 1 Chart 2

Chart 3 Chart 4

Chart 5 Chart 6

Chart 7 Chart 8

Chart 9 Chart 10

Variable F

number_nominal (cost 10)
Numbers should not be nominal.
soft(number_nominal,E) :-
type(E,nominal), field(E,F),
fieldtype(F,number).

quantitative_numbers (cost 2)
Prefer quantitativ e for numbers with high car dinality.
soft(quantitative_numbers) :-
field(E,F), fieldtype(F,number),
cardinality(F,C), C > 20, not
bin(E,_), not type(E,quantitative).

same_field_2 (cost 8)
Prefer not to use the same field twice.
soft(same_field_2,F) :- field(F), {
field(_,F) } = 2.

same field gte3 (t 16)

✖

Chart 3 (cost 32)

Specification

Violations

data: Object {"url":"assets/data/cars.json"}
mark: "point"
encoding:

color: Object {"type":"nominal","field":"cylinders"}
x: Object {"type":"quantitative","field":"horsepower","scale":{"zero":false
y: Object {"type":"quantitative","field":"miles_per_gallon","scale":{"zero"

violations: Array[15] [{"description":"Prefer to use fewer encodings.","type":"s

✖

2a

2b

2c

6b

1a

6a
5

3

8b

4

1b

8a

7

Figure 3.15: Final design of the linked visualization consisting of a recommendations list
(left) resulting from the recommendation engine and the hierarchical radial hypergraph
(right) visualizing the knowledge-base constraints and its connections. (1a-1b) a visu-
alization recommendation and its specification, (2a-2b) selected recommendations and
corresponding highlighted violations in the knowledge-base (2c), (3) constraints of the
knowledge-base, (4) hierarchical categories of constraints, (5) feature-based connections
of the knowledge-base, (6a) highlighted constraints and its feature-based connections, and
detailed information about them (6b), (7) colormap legend to the used color encoding
of constraints’ weights, (8a-8b) controls to modify shown data and the visualization’s
appearance.

50

CHAPTER 4
Implementation

Within this thesis, we implemented a working web-based prototype of the proposed
concepts for the data extraction architecture and the visualization and interaction design.
The prototype’s goal is to serve as an operational analysis tool for Draco’s recommendation
domain. It aims to maximize the user experience regarding the users’ possibility to
execute and fulfill the analytical tasks identified in Chapter 3.

4.1 Prototype Design
The prototype implements the theoretical elaborated split views proposed in the previous
Chapter. However, the final design is supplemented by two more views, as shown in
Figure 4.1: recommendation query editor and the constraint inspector. Each view is
intended to be independent with weak coupling to the other views. This division takes
place not only on the surface but also on the technical level by subdividing the views
into standalone modules. The goal is to make the views reusable for future projects.

1 Recommendation query editor
The recommendation query editor enables the user to define an input query to
the recommendation engine of Draco. It contains a definition of the data source,
its column fields and data types, and statements defining the explorational task
regarding the dataset. Additionally, the query editor allows setting a number of
visualizations to be recommended by Draco. Finally, a button enables the user to
start the recommendation process.

2 Recommendation viewer
The recommendation viewer shows the resulting recommendations of Draco in a
tabular view. Depending on the viewer’s width, multiple recommendations columns
are shown. The visualizations are row-wise sorted according to their cost. A

51

4. Implementation

recommendation’s details are shown in a tooltip below the viewer and can be
accessed by selecting the recommendation.

3 Constraints viewer
The knowledge-base viewer shows Draco’s soft and hard constraints by the proposed
visualization. Multiple controls are available to manipulate the shown data and its
representation.

4 Constraints inspector
The constraints inspector shows the raw data of the constraints in a scrollable list
view. Two controls allow to switch between the soft and hard controls and to filter
respectively search them using a free text search field.

Recommendation Quer y keyboard_arrow_up (click to close)

Recom
m

endations
keyboard_arrow_down

(click
to

close)

Cost 30

B

Cost 30

A

Cost 32

Know
ledge

Base
View

er
keyboard_arrow_down

(click
to

open)

2
ag

g
>

di
m

1
ag

gr
eg

at
e

0
ag

gr
eg

at
e

>
co

un
t

3
ag

gr
eg

at
e

>
gr

ou
p

>
by

>
ra

w
4

ag
gr

eg
at

e
>

m
ax

1
ag

gr
eg

at
e

>
m

ea
n

3

ag
gr

eg
at

e
>

m
ed

ia
n

4

ag
gr

eg
at

e
>

m
in

5

ag
gr

eg
at

e
>

st
de

v

2

ag
gr

eg
at

e
>

su
m

2

bi
n

5

bi
n

>
ca

rd
in

al
ity

10

bi
n

>
hi

gh

6

bi
n

> lo
w

20

c > c >

20

c

0
1x

1x

2
5

20

0mmary

0mmary
0mmary
0mmary
1

mporal
1

emporal 2 1x 1x

< type 1

o < type 0 2x 2x

q < type 1

agg < value 0

area < value
0

bar < value
0

uous < value

0

nuous < value

0

ntinuous < value

0

continuous < value

0

y < continuous < value

0

color < discrete < value

0

column < discrete < value

0

row
< discrete < value

0

shape < discrete < value

0

size < discrete < value

0

text < discrete < value

0

x < discrete < value

0

y < discrete < value

0

line < value

0

point < value

0

rect < value

0

text <
value

0

tick
<

value

1

colum
n

<
x

1

row
<

x

1

raw
<

y
<

x

1

colum
n

<
y

1

row
<

y

1
zero

1

positional <
zero

3
size

<
zero

5
skew

<
zero

E

B

EXEY

MIN

MAX

agg
aggregate

bin

te
m

po
ra

l
ty

pe

va
lue

x

y
zero

dim count group max mean m... min stdev sum

car... high
low

c

poin
rect

te
xt

tic
k

da
te

y
n

o
q

ag
g

ar
ea

ba
r

co
nt

in
uo

us

discrete

line
point

rect
text

tick
c...

row
y

c... row
pos... size skew

by

area
line

p

co
lo

r
si

ze
te

xt
x

y
co

lor
co

...
ro

w
sh

ape

size
text

x

y

raw

raw

Costs of rules (Min - Max)

0 5 10 15 20 25 30 35 40 45 50 home

agg_dim (cost 2) - ID 18
Aggregate should also have a discrete encoding to group
by.
soft(agg_dim) :- aggregate(_,_), not
discrete(_).

aggregate (cost 1) - ID 0
Prefer to use raw (no aggregate).
soft(aggregate,E) :- aggregate(E,_).

aggregate_count (cost 0) - ID 101
Count as aggregate op.
soft(aggregate_count,E) :-
aggregate(E,count).

aggregate_group_by_raw (cost 3) - ID 17
Aggregate plots should not use raw continuous as gr oup
by.
soft(aggregate_group_by_raw,E) :-
aggregate(_,_), continuous(E), not
aggregate(E,_).

aggregate_max (cost 4) - ID 106
Max as aggregate op.
soft(aggregate_max,E) :- aggregate(E,max).

aggregate_mean (cost 1) - ID 103
Mean as aggregate op.
soft(aggregate_mean,E) :- aggregate(E,mean).

aggregate_median (cost 3) - ID 104
Median as aggregate op.
soft(aggregate_median,E) :-
aggregate(E,median).

aggregate_min (cost 4) - ID 105
Min as aggregate op.
soft(aggregate_min,E) :- aggregate(E,min).

aggregate_stdev (cost 5) - ID 107
Standard Deviation as aggregate op.
soft(aggregate_stdev,E) :-
aggregate(E,stdev).

aggregate_sum (cost 2) - ID 102
Sum as aggregate op.

Know
ledge

Base
Inspector

keyboard_arrow_up
(click

to
close)

Soft Constraints
Choose constraints

Type to filter ...

6
Models

close Recommend

% ====== Data definitions ======
data("assets/data/cars.json").
num_rows(142).

fieldtype(horsepower,number).
cardinality(horsepower,94).

fieldtype(miles_per_gallon,number).
cardinality(miles_per_gallon,94).

fieldtype(cylinders,string).
cardinality(cylinders,5).

% ====== Query constraints ======
di (0)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Soft Constraints
Choose constraints

Variables
Choose connection type

agg, aggregate,…
Constraint CategoriesChart 1

Chart 2

Chart 3

Chart 4

Variable B

bin_high (cost 10)
Prefer binning with at most 12 buck ets.
soft(bin_high,E) :- bin(E,B), B > 12.

bin_low (cost 6)
Prefer binning with mor e than 7 buckets.
soft(bin_low,E) :- bin(E,B), B <= 7.

✖

Chart 1 (cost 30)

Specification

Violations

data: Object {"url":"assets/data/cars.json
mark: "point"
encoding: Object {"y":{"type":"quantitativ

violations: Array[13] [{"description":"Pre

✖

2
Recommendion

viewer 4
Constraints
inspector

1
Recommendation

query editor

3
Constraints

viewer

Figure 4.1: Prototype consisting of a recommendation query editor (1), a recommendation
viewer (2), a constraints viewer (3), and a constraints inspector (4).

Since not every view is in the user’s focus at any time, the prototype allows hiding each
view independently. For example, all views except the constraint viewer can be hidden to
maximize the available space for the radial visualization. However, the containers are not
only collapsable but also resizeable. This resizable feature further improves the user’s

52

4.2. Selected Technology Stack

control over the views to optimize the used space regarding the user’s task. Furthermore,
the prototype is intended to be visually appealing and mature enough so that test users
are not distracted from bugs from both technical and interaction perspectives.

4.2 Selected Technology Stack
A web-based technology stack with the established languages Hypertext Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and JavaScript allows to quickly develop
a modern, powerful, and functional prototype. Angular1 is used as the underlying
TypeScript-based framework to structure the code base in distinct self-contained parts.
The framework supports fast and organized development, unit testing, and improving
code maintainability with several out-of-the-box functionalities.

Furthermore, the following libraries and dependencies are necessary to incorporate Draco’s
recommendation system into the prototype and to extract, store, and visualize the desired
information of Draco’s knowledge-base. The ASP solver Clingo is integrated into the
prototype as a compiled WebAssembly (WASM) module2. This module is accessed by
Draco’s web-friendly TypeScript class3 to execute its knowledge-base and, consequently,
to generate the recommendations for a given input query. An EBNF parser library4 is
integrated to parse Draco’s knowledge-base and create the desired AST. The extracted
data is persisted in an Indexed Database (IndexedDb) – a widely supported database
by modern browsers. This database is easily accessible through simple libraries, such
as ngx-indexed-db5 and does not require a complex client-server architecture to store
and access data. Additionally, the JSON formatted data can be stored directly in an
IndexedDb without further processing as it would be necessary for relational databases.

For fast prototyping of the desired visualization, the used JavaScript library D3.js is a
powerful toolset to manipulate Document Object Model (DOM) elements and to create
complex Scalable Vector Graphics (SVG). Angular Material6 serves as a complementary
component and styling library to quickly create common UI components, such as buttons,
input fields, lists, and more. To be able to modify and view the input query in the
recommendation query editor, the code editor library Ace7 is used. Lastly, the Angular
friendly library ngx-json-viewer8 is used to visually format the JSON output of the
Draco’s recommendation system.

1https://angular.io (accessed 2022/08/22)
2https://www.npmjs.com/search?q=wasm-clingo (accessed 2022/08/22)
3https://www.npmjs.com/package/draco-core (accessed 2022/08/22)
4https://www.npmjs.com/package/ebnf (accessed 2022/08/22)
5https://www.npmjs.com/package/ngx-indexed-db (accessed 2022/08/22)
6https://material.angular.io (accessed 2022/08/22)
7https://ace.c9.io (accessed 2022/08/22)
8https://www.npmjs.com/package/ngx-json-viewer (accessed 2022/08/22)

53

https://angular.io
https://www.npmjs.com/search?q=wasm-clingo
https://www.npmjs.com/package/draco-core
https://www.npmjs.com/package/ebnf
https://www.npmjs.com/package/ngx-indexed-db
https://material.angular.io
https://ace.c9.io
https://www.npmjs.com/package/ngx-json-viewer

4. Implementation

All of these dependencies are managed and kept up-to-date by Node Package Manager
(NPM) for Node.Js9, a cross-platform JavaScript runtime. Further dependencies of
the project are either required by Angular and, therefore, not custom selected or are
additional libraries to facilitate the development of the web application.

4.3 Limitations of the Prototype
Currently, the prototype faces a small set of open limitations and weaknesses. Nonetheless,
these "nice to haves" are negligible to successfully accomplish the tasks given in Chapter
3 or to answer the research questions of this thesis. A crucial prerequisite is the
understanding of ASP as simplifying these formal notations would go beyond the scope
of this thesis.

1. Recommendation query editor requires users’ to know which definable facts of
Draco’s knowledge-base are available.

2. No single-/multi-selection possibility of constraints (only hover interaction).

3. Only three recommendations can be compared at once.

4. Only root categories of constraints can be filtered by the given dropdown.

5. No direct comparison of the underlying raw visualization facts of the recommenda-
tions.

6. Only the constraint’s features in the inner hypergraph can be selected but not the
constraints themselves.

7. Only natural alphabetical ordering of constraints.

8. Only one available colormap.

9https://nodejs.org (accessed 2022/08/22)

54

https://nodejs.org

CHAPTER 5
Evaluation

This chapter covers the conducted evaluation to verify the contributions made within this
thesis. In Section 5.1 the proposed data parsing and extraction strategy are analyzed
regarding its capabilities. Subsequently, the selection process of the evaluation method
for the proposed visualization and the conducted evaluation and its findings are described
in detail.

5.1 Evaluation of the Grammar
Evaluating context-free grammars is a challenging task. Quality characteristics of CFGs
can be divided into decidable and undecidable problems.

Decidable problems1,2 [Sip97]:

• Parsing
• Reachability, productiveness, nullability
• Regularity and LL(k) checks
• Emptiness, finiteness, membership

1https://www.site.uottawa.ca/~zaguia/csi3104/Chapter18.pdf (accessed 2022/08/22)
2https://www3.cs.stonybrook.edu/~cse350/slides/decide2.pdf (accessed 2022/08/22)

55

https://www.site.uottawa.ca/~zaguia/csi3104/Chapter18.pdf
https://www3.cs.stonybrook.edu/~cse350/slides/decide2.pdf

5. Evaluation

Undecidable problems3,4:

• Universality
• Language equality
• Language inclusion
• Classification of CFG according Chomsky hierarchy
• Grammar ambiguity
• Post correspondence problem
• Language disjointness

However, analyzing our grammar regarding these problems would go beyond the scope
of this thesis. Especially the language equality of our grammar compared to the one
incorporated into Clingo is a decisive factor. However, not only that the language equality
problem is generally undecidable [Yeh80], it is also unfeasible in our case based on a formal
notation basis of the grammars. The proposed EBNF notation of Clingo [GKK+08a]
does not follow any typical notation style of EBNF and would therefore also have to be
transferred into a common formal form. For example, alternative expressions are not
specified by vertical bars but are defined separately for each expression. Furthermore,
their notation resembles more a BNF notation than the notation of EBNF.

Hence, the best way to evaluate grammar equality is to test whether both grammars
can parse the same programs, respectively, languages. Since the whole knowledge-
base of Draco is parsable by Clingo, it must be ensured that our grammar parses the
knowledge-base within a reasonable time. The time needed, therefore, is dependent on
the implementation of the parser, the used formal notation (e.g., BNF or EBNF), and
the particular formal definition of the grammar.

The knowledge-base of Draco is divided into several logic programming files described
in their GitHub repository5. It consists of topk_lua.lp, define.lp, generate.lp, hard.lp,
hard_integrity.lp, soft.lp, weights.lp, assign_weights.lp, optimize.lp, and output.lp. These
definitions, combined with the input query provided by the user, are then parsed by
Clingo and enumerated by Clingo.

Although we only need to parse the define, soft, weight, and hard statements statements
to generate our visualization, we tested our grammar with all these definitions except
topk_lua. This program is an additional script telling Clingo how to solve and minimize
the costs of its recommendations. It is written in Lua6 notation style instead of ASP and
therefore, can not be described by our grammar.

3http://www.cs.columbia.edu/~aho/cs3261/Lectures/L18-Undecidable_Problems.
html (accessed 2022/08/22)

4https://liacs.leidenuniv.nl/~hoogeboomhj/second/codingcomputations.pdf (ac-
cessed 2022/08/22)

5https://github.com/uwdata/draco/tree/master/asp (accessed 2022/08/22)
6http://lua-users.org/wiki/LuaStyleGuide (accessed 2022/08/22)

56

http://www.cs.columbia.edu/~aho/cs3261/Lectures/L18-Undecidable_Problems.html
http://www.cs.columbia.edu/~aho/cs3261/Lectures/L18-Undecidable_Problems.html
https://liacs.leidenuniv.nl/~hoogeboomhj/second/codingcomputations.pdf
https://github.com/uwdata/draco/tree/master/asp
http://lua-users.org/wiki/LuaStyleGuide

5.1. Evaluation of the Grammar

The results show that our grammar is capable of parsing the ASP statements define, soft,
and hard, and hard_integrity. Generating the parser instance with the selected parser
mentioned in Section 3.2.2 took between 18ms and 40ms. The subsequent parsing of
these statements took between 300ms and 500ms. Since the browser executes this parsing
operations on the Central Processing Unit (CPU), the actual performance is dependent
on the current workload of the CPU. The used CPU for this performance test was an
Intel© Core™ i7-6700K CPU with 4.0 GHz.

We furhter checked the correctness of the parsing result using the tool ebnf-highlighter7

created as an Proof of Concept (POC) for the underlying parser node-ebnf – which is
used by our prototype. This tool takes an EBNF grammar and test program as input
and prints the resulting AST for the given input program (see Figure 5.1).

EBNF OK

37
38
39

29
30
31
32
33
34
35
36

27
28

24
25
26

21
22
23

11
12
13
14
15
16
17
18
19
20

8
9

10

5
6
7

1
2
3
4

terms ::= term ((COMMA | SEMIC
t t ith S* t S*

naf_literals ::= naf_literal WS* (COM
naf_literal ::= NAF? WS* classical_l

predicate ::= ID
classical_literal ::= MINUS? WS* predicate
builtin_atom ::= term WS* binop WS* t

binop ::= EQUAL | UNEQUAL | LE

weight_at_level ::= term WS* (AT WS* ter

aggregate_function ::= AGGREGATE_COUNT | AG
aggreagte_count_function ::= "|" WS* aggreg

aggregate ::= (term WS* binop?)? W
aggregate_elements ::= aggregate_element ((
aggregate_element ::= classical_literal? W

head ::= disjunction | choice
bodies ::= body+ | FALSE | TRUE
body ::= naf_literal WS* COMM

disjunction ::= classical_literal WS

choice ::= (term WS* binop?)? W
choice_elements ::= choice_element WS* (
choice_element ::= classical_literal WS

integrity_constraint ::= CONS WS* bodies? D
comment ::= MULTI_LINE_COMMENT W

fact ::= head DOT WS* NL?
rule ::= head WS* CONS WS* bo

program ::= statement* query?

statement ::= rule | fact | integr
query ::= classical_literal QU

Test code

37
38
39

34
35
36

32
33

29
30
31

26
27
28

24
25

21
22
23

18
19
20

16
17

13
14
15

11
12

8
9

10

5
6
7

3
4

1
2

ordered(E) :- type(E,(ordinal;quantitative)

% i ld

channel_discrete(C) :- discrete(E), channel
channel_continuous(C) :- continuous(E), cha

continuous(E) :- encoding(E), not discrete(

discrete(E) :- type(E,(nominal;ordinal)).
discrete(E) :- bin(E,_).

stacking(zero;normalize).

% ====== Helpers ======

% Possible stackings.

% Possible tasks.
tasks(value;summary).

channel(C) :- single_channel(C).
channel(C) :- multi_channel(C).
non_positional(color;size;shape;text;detail

single_channel(x;y;color;size;shape;text;ro
multi_channel(detail).

binning(10;25;200).

% Encoding channels.

summative_aggregate_op(count;sum).
% Numbers of bins that can be recommended;

primitive_type(string;number;boolean;dateti
% Supported aggregation functions.
aggregate_op(count;mean;median;min;max;stde

% High level data types: quantitative, ordi
type(quantitative;ordinal;nominal;temporal)
% Basic types of the data.

% Types of marks to encode data.
marktype(point;bar;line;area;text;tick;rect

% ====== Definitions ======
AST (Hover to highlight)
program

statement
comment Text=% ====== Definitions ======

statement Text=
statement Text=
statement

comment Text=% Types of marks to encode data.
statement

fact
head

disjunction
classical_literal

predicate Text=marktype
terms

term Text=point
terms

term Text=bar
terms

term Text=line
terms

term Text=area
terms

term Text=text
terms

term Text=tick
terms

term Text=rect
statement Text=
statement

comment Text=% High level data types: quantitat
statement

fact
head

disjunction
classical_literal

predicate Text=type
terms

term Text=quantitative
terms

term Text=ordinal
terms

term Text=nominal
terms

term Text=temporal
statement Text=
statement

comment Text=% Basic types of the data.
t t t

Figure 5.1: Tool to parse a test program and generate an AST based on a given EBNF
grammar7.

7https://menduz.com/ebnf-highlighter (accessed 2022/08/22)

57

https://menduz.com/ebnf-highlighter

5. Evaluation

However, the grammar was not capable of parsing the statements of generate, weights,
optimize, and output. In the following we elaborate some of these statements which are
invalid expressions according our grammar:

• #const max_extra_encs = 5. (part of generate)

This statement represents a meta-syntax and does not originally belong to the
ASP notation. It defines a constant variable max_extra_encs. which is used as
additional information to the solver Clingo. Since the ASP-Core 2 standard does
not describe such syntax, it is also not covered by our grammar.

• obj_id(1..max_extra_encs). (part of generate)

The double dot operator in this statement represents a range operator. It al-
lows defining several atoms that stretch on one or more parameters over a given
range. Although such syntax is described in some sources found online, it is not
part of the ASP-Core 2 standard and, thus, not part of our grammar.

• #minimize { W,F,Q: soft_weight(F,W), [...]}. (part of optimize)

This optimized statement is used to find a minimal set of the logic program.
In Draco, it minimizes the costs of violating soft constraints for a recommended set
of visualizations facts. Like all meta-syntax described by Clingo, the expression is
not part of the ASP-Core 2 standard and, therefore, not part of our grammar.

Since the statements in weights and output almost exclusively consist of meta-syntax
described by Clingo, they are also invalid languages according to our grammar. However,
if there is a need to parse such statements, our grammar can be easily extended to
support such syntax.

To conclude, we have shown that our grammar can describe all ASP language features
necessary to generate the essential parts of the knowledge-base of Draco. Moreover, the
selected EBNF parser generates a parser and parses the provided logic program within
a reasonable time. Finally, since the parser is also easily accessible within a web-based
environment, all requirements related to the grammar and a respective parser described
in Section 3.1.1 are met.

58

5.2. Evaluation of the Visualization

5.2 Evaluation of the Visualization
Evaluating InfoVis and determining a visualization’s value, respectively, utility is a
challenging task ([KSFN08], as cited in [WAM+19]).

In the following section, we briefly overview existing evaluation techniques derived from
the literature research. This overview of methods gives us the necessary decision support
when choosing an appropriate evaluation method to verify our proposed visualization
design.

5.2.1 Strategies and Techniques in InfoVis
Various evaluation techniques have been applied to verify new visualization approaches
and designs in the past. Munzner [Mun09] proposed a nested model of four levels
characterizing different domains relevant to InfoVis evaluation.

• Domain problem characterization
• Data/operation abstraction design
• Encoding/interaction technique design
• Algorithm design

Each level addresses different aspects of the evaluation objective and reaches from the
validation of problem definition in the outmost level to the validation of the most specific
aspect – the algorithm design, respectively, the system’s implementation.

According to Munzner, two evaluation methods can test the correctness of the identified
problems and tasks within a specific domain. The first method is a semi-structured
interview with target users. The second is to observe them in their natural environment
of dealing with the data, respectively, the target domain.

After the problem characterization, the consecutive created data and operation abstrac-
tions can be validated by executing field studies with target users. The users work on
their problems in their normal daily environment. The field study evaluation comprises
observations with field notes, video or audio tapes, and field logs. Such an evaluation is
often concluded by a qualitative interview to receive final impressions.

For evaluating the visualization’s encoding design and interaction techniques, Munzner
suggests three groups of methods: controlled user study, inspections performed by experts,
or qualitative results inspection. A controlled user study can be a comparative lab study,
a crowd-sourcing study, or an eye-tracking study. The method inspections performed
by experts can be either a heuristic informal and holistic evaluation or a cognitive
walk-through of predefined tasks.

The evaluation of the algorithm design strongly depends on its expectations and complex-
ity. Whereas small components and algorithms can be tested by unit tests or black-box
testing, larger entities require methods such as end-to-end testing or integration testing.

59

5. Evaluation

Furthermore. a crucial factor when testing an implementation is often the system time
needed to execute the implementation. The time needed allows making a statement on
whether the visualization is real-time capable or not.

Besides, the literature suggests a few more methods to evaluate information visualization.
They can also be categorized differently as the subdivision into analytical and empir-
ical methods described by Mazza [Maz09]. Most of these methods have already been
mentioned. However, our subject’s list of relevant evaluation methods is concluded with
the ’Thinking aloud’ method of Lewis [Lew82]. It helps to identify and understand arose
difficulties and open limitations during the execution of tasks.

5.2.2 Evaluation Method
This thesis identifies several problems and difficulties regarding Draco’s knowledge-base
while working with the recommendation system and its underlying constraints. Since
Draco is in an early initial stage of development and use, the community behind this
system is very limited. Hence, interviewing and observing target users as proposed by
Munzner to verify identified problems would go beyond the scope of this thesis. The same
applies to possible field studies, which would verify the data and operation abstraction
design and would allow making contribution claims about it. Such a study would be
time-consuming and pragmatically and logistically impractical in evaluating such a novel
visualization as proposed in this thesis.

Since the implementation of the visualization is only prototype-based, the underlying
algorithms’ design and performance play a minor role in this thesis. Accordingly, there
is no need to test and evaluate the prototype’s performance regarding the refresh rate
of the visualization, the number of maximum representable data entries before entering
performance issues, or similar measurements.

Following the nested evaluation model of Munzner [Mun09], only the evaluation of the
visualization’s encoding and interaction design is left. However, we do not want to
evaluate subjective factors such as the assessment of the beauty of the visualization
based on its used colors or glyphs. Similar insignificant to the research questions is the
evaluation of the ingenuity of the interactions.

The decisive question is whether the visualization fulfills its goals regarding the users’
ability to find answers to the identified tasks and their ability to gain the desired
insight into the knowledge-base of Draco. To test the visualization regarding its abilities,
strengths, weaknesses, and value, we decided to combine four established evaluation
methods to get broad feedback:

• Observational task performance analysis
• Thinking aloud [Lew82]
• Heuristic value-driven questionnaire [WAM+19]
• Qualitative interview

60

5.2. Evaluation of the Visualization

These methods are relatively low-cost in their implementation expense and required
equipment. Additionally, only a small number of participants are required since studies
show that five evaluators are enough to obtain more than 75 percent of the problems
[Nie92, WAM+19].

5.2.3 Process
The applied evaluation process consists of five consecutive parts. Due to the difficulty
of the topic and the number of evaluation steps, 45 minutes are allotted for the entire
process.

1. Introduction: Collecting necessary meta-data of the test person and introducing
the user to the topic and evaluation procedure.

2. Free exploration: The test person freely explores the visualization and receives
answers to upcoming questions.

3. Task performance analysis: The test person has to solve a set of 12 pre-defined
tasks.

4. Heuristic evaluation: The test person has to fill out the heuristic value-based
survey.

5. Qualitative interview: The test person is asked to give answers to open-ended
questions about the tool and the evaluation.

Before the test persons are introduced to the topic and the procedure of the evaluation,
they have to declare their academic degree, their sex, date of birth, number of years of
experience in data science, respectively, information visualization, and if they participated
in User Experience (UX) courses. In addition, they have to agree to the evaluation’s
data recording, privacy, and anonymity terms. The subsequent introduction contains
an explanation of the general idea behind visualization recommendation systems, the
different existing recommendation systems, the hybrid recommendation system Draco
and its knowledge-base, and a presentation of the main components of the proposed
visualization.

After the introduction, the test person can freely explore the tool and gets answers to
uncertainties. This free exploration ensures a minimum understanding of the tool, the
tool’s behaviors, and possibilities. During this exploration, the participant is encouraged
to ask questions and to think out loud.

As soon as the test person reaches a minimum confidence level with the tool and the data
domain, s/he is asked to solve the prepared tasks. Each task starts with an introduction
to the task, the targeted context, and its goals. As an aid, parts of the tool are hidden
that are not required to solve the respective task. Some tasks can be solved in different

61

5. Evaluation

ways. Although the order of the tasks is irrelevant since they are independent, all
participants solve the tasks in the same order to get comparable results. While solving a
task, the task’s description is always visible to the user. The tasks are completed when
the test person enters an answer in a designated field and moves on by clicking a button.
Additionally, the test person can adjust an answer to a previous question by stepping
back in the list of tasks.

Since the test persons should conduct the tasks independently, they are requested only
to ask questions when they do not understand the task’s goal. However, they were again
asked to think aloud during the evaluation by communicating their solving procedure
and possible difficulties.

After completing the tasked-based evaluation, the test person is asked to answer the
survey of Wall et al. [WAM+19]. To ensure that the test person is not negatively or
positively influenced in terms of the outcome of the survey, the screen recording is stopped
during the survey’s execution. Additionally, the test person is requested only to ask
questions if s/he struggles to understand the survey’s statements.

In the final step of the evaluation, the qualitative questionnaire, the test person is asked
to give general feedback on the tool, its visualizations, and the evaluation.

5.2.4 Setup

The full evaluation was conducted via the video communication tool Zoom8. Audio and
screen have been recorded using Zoom’s recording functionality. Since web browsers are
independent of the OS and the differences between the available browsers are insignificant,
there was no special requirement about it. The test persons are asked to use an external
24-inch monitor with Full High Definition (FHD) resolution.

A separate web-based evaluation tool has been created to guide the participants through
the evaluation steps and to guarantee a uniform process. Every test person receives an
evaluation token which allows him/her to enter the evaluation. The token guarantees
that all results can be assigned to the test person and nobody else while ensuring the
person’s anonymity. Furthermore, the tool incorporates visual examples in addition to
the spoken introduction, a live example of the prototype for the free exploration, the
task-based evaluation with textual introductions to the tasks, and a final page with links
to the tool and the final questionnaire.

Above all, we use JSONBIN9 to store anatomized automated received results of the test
persons and the measured times needed to complete the tasks. This online storage is
secure and only accessible via a personal account and access token.

8https://zoom.us (accessed 2022/08/22)
9https://jsonbin.io (accessed 2022/08/22)

62

https://zoom.us
https://jsonbin.io

5.2. Evaluation of the Visualization

5.2.5 Participants
Since the chosen evaluation methods require only a small number of participants, we
decided to pick six test users according to their former knowledge and experience in
information visualization. An understanding of rudimentary concepts of InfoVis is a
minimal requirement in selecting appropriate test persons when considering the degree
of specificity of the topic. The number of participants, however, is slightly above the
minimum requirement of five test persons to ensure more significant results.

• P1: 24 years old male master student of Visual Computing having four years of
experience in data science and information visualization and participated in UX,
respectively, information visualization courses.

• P2: 31 years old male who scientifically works in the field of information visualization
with four years of professional experience in InfoVis who participated in respective
courses. The test person stated that he is already familiar with Draco and its
concepts but has no in-depth knowledge or did not directly work with it.r

• P3: 39 years old female with a doctoral degree and eight years of experience in
data science and information visualization who did not participate in information
visualization courses yet.

• P4: 25 years old male master student of Visual Computing having six years of
experience in information visualization and participated in InfoVis lectures.

• P5: 26 years old female master student of data science having three years of
experience in information visualization and participated in InfoVis lectures.

• P6: 32 years old male researcher in the field of biomedical image informatics with 11
years of experience in information visualization also participated in InfoVis lectures.

5.2.6 User Test
Within the first task T1 the test users had to identify soft constraints with exceptionally
high costs. This task aims to test if users can find outliers in the soft constraints regarding
the constraints’ weights. Whereas P1, P3, P4, and P6 quickly identified the outliers based
on the constraints’ eye-catching red color, P2 needed additional time to get confident
with the tool. Moreover, P2 had difficulties understanding the task’s goal. He thought
he had to identify outliers of violated constraints that were not part of the task’s goal.
After clearing up this misinterpretation, P2 quickly identified the searched outliers. P5,
however, would have preferred to search in the list of constraints and sort them according
to their weight. Since such a sorting mechanism was not implemented for the list, she
then quickly solved the task using the knowledge-base viewer. It can be concluded that
all participants solved this task without major problems.

In T2 the goal was to find one category of constraints with a very low average weight.
This task aims to find out if users can quickly identify categories of constraints that have
little to no influence on the recommendation results and vice versa. The participants P1,

63

5. Evaluation

P2, P4, P5, and P6 quickly identified the category summary as a category of constraints
with a very low average weight. P3 first struggled to understand where the average cost
of multiple constraints is depicted within the visualization but then quickly found the
category summary. All participants except P6 almost only focused on the categories
summary and value and picked the respective category by briefly comparing the weights
of these included constraints. These categories have very low average weight. P6 was
also the only person who chose value as the answer, although it was not the category
with the lowest average. However, value is also perfectly fine since only one category
with a very low average weight was the task’s target. A possible explanation for why the
participants were focused on these two categories only might be that they are also two of
the three categories that include most of the soft constraints.

Since we were aware of the fact that summary and value are categories which are
including many constraints and, therefore, might distract the participants, the goal of
task T3 is to identify categories with a very high average weight. Based on the weights
of Draco, the best answer to this task is a category with only one constraint. Hence, this
task shows whether the size of the arcs negatively influences the users or not. The results
show that P1 seems to confirm this assumption since he selected the category c as the
answer, including the third most constraints within the knowledge-base. When comparing
all categories, however, c is only in the middle of the possible range of averages. Although
not all other participants found the best answer, their answer and communicated solving
strategy for this task show that they were not distracted by the size of the arcs. An
interesting observation was that the majority of the participants mainly focused on the
base categories of constraints only – the categories at the highest level of the hierarchy.
However, since two participants explained that they also could select a sub-category to
answer this question, it can not be concluded that the hierarchy of categories shown by
the arcs is entirely misleading.

In task T4 the test persons had to identify a variable that is part of most soft constraints.
The task aims to determine if users can identify occurrences of features within the
knowledge-base. This knowledge is of importance to be able to make a statement about
whether some features have an extensive or relatively little influence on the outcome
of the recommendation system. All participants quickly detected the variable E to be
the variable most used within the system without any problem. It could be observed
that they had no issues understanding how the variables are represented within the
visualization and that they flawlessly used the dropdown select to switch between the
features represented within the hypergraph. P6 stated that he works a lot with graph
theory in his daily business and, therefore, wished to have the vertex degree (sum of
incident edges to a vertex) either visualized by text or node color encoding to answer
this question.

Since the variable E is obviously seen in the visualization as a node with most incident
edges, the task of T5 is oppositely required to identify a variable used by only one
constraint. All participants quickly and correctly answered this task. Merely, P3 needed
two attempts to find a correct answer. A possible reason, therefore, might be that she

64

5.2. Evaluation of the Visualization

first focused more on variables closer to the middle of the hypergraph than on the outer
ones.

Task T6 required the participants to name all constraints using the predicate ’aggregate,’
which does not have aggregate in their name. Except for P1 and P2, all other
participants used the graph to answer this question. This task aims to determine whether
users understand the difference between the identifiers of the constraints and their
content. The participants solved this task using different strategies. P1 preferred the
tooltip showing all constraints related to this predicate to answer this task. P5 was
first confused by the task’s description. But then she answered the task also using the
tooltip after selecting the node aggregate. P2, P4, and P6 used the smartest way to
solve this task. They filtered out the category aggregate using the filter functionality
and then answered the task by writing down all the constraints shown in the tooltip
when selecting the predicate inside the hypergraph. However, P6 first deselected all
categories of constraints except aggregate. However, he then correctly determined
that the remaining constraints are exclusively those that have aggregate in their name.
Thus, he realized that he had to change his solving strategy. It was also noticeable that
some test persons had problems understanding the filter dropdown. They were confused
by which categories are visible within the filter and what selecting or deselecting options
means to the filter. However, this task showed that the tooltip played a major role in
solving the task.

In task T7 the participants had identify how often the constraint encoding>field
is violated by the recommended visualization. This task aimed to determine if users
understand the connection between the recommended visualizations and the constraints
shown in the proposed visualization for the constraints and if they can identify the
number of constraints’ violations. Whereas P1, P3, P4, and P5 had no issues identifying
the violations based on the shown badge next to the constraints, P2 and P6 were confused
by the colored edges connected to the constraint encoding>field and the number
shown in the badge. The reason for this confusion was that the number of these edges is
the same as the number of violations when the predicate connections are shown inside
the graph. This scenario was deliberately created to test whether this confusion occurs
or not. A noticeable side-observation was that some test users read the symbol ’>’ inside
the name as "encoding larger than field." Since this symbol has multiple meanings in
different domains, especially in mathematics, it can be concluded that the use of this
symbol is not necessarily interpreted equally by all users in this context.

To investigate the extent of this possible confusion, task T8 aimed to identify affected
variables by the violations of a recommended visualization. The correct answers to the
task are the variables E and F. Except for P1, who only found the E variable as an
answer to this task, all other participants had no issues solving this task. Hence, this
confusion only exists for the number of violations of the constraints. This confusion
would, therefore, undoubtedly be resolved if nodes and edges are hidden when answering
task T7. However, the users did not use the hide functionality explicitly created for this
purpose. The reason, therefore, might be that they were not aware of this functionality.

65

5. Evaluation

In task T9 the participants had to name at least one constraint by which the two
recommended visualizations differ. The goal of this task was to clarify if users can
find differences between the recommendations based on their violations. Although all
participants found differences, P2, P4, and P7 first identified differences based on the
colored edges. This observation shows that the confusion between the violations of the
constraints and the affected variables remains. After showing those particular test users
the functionality of hiding the nodes and edges, they had the "a ha!" experience [Spe07,
p. 136]. P4 and P6 stated that the hypergraph is so prominent, especially the colored
edges that highlighted edges drew the main focus.

Again, to test the opposite case, in task T10 the participants had to identify a variable
affected by both recommended visualizations. Except for P1, who likely misunderstood
the question and declared a constraint to be the answer to the task, all other participants
had no issues finding the correct answer. Within this task, P5 stated that the logical
expressions of the shown constraints inside the tooltip are misleading since the symbol
’:-’ is missing. Therefore, she was not able to read and understand the logical expression.

So far, in tasks T7 to T10, the goal was to identify violated constraints and affected
variables of recommended visualizations. Task T11 and T12, on the other hand, deal with
the opposite direction between the two views. The goal of T11 is to identify how many
recommended visualizations by Draco are violated by the constraint continuous>x. In
this task, six visualizations are recommended by the system, and the requested constraint
is violated by two of the six visualizations. P3 and P6 first looked at the problem
from the wrong side. They hovered one recommendation after the other to discover
if the requested constraint was violated or not. Whereas P3 needed a hint to change
the strategy, P6 correctly identified that there must be a smarter way to answer this
question. After confirming this assumption, he correctly solved the task by hovering over
the constraint. All other participants had no problem solving the task. However, P4
and P5 recognized a problem with the current functionality. Since the constraints in the
knowledge-base viewer can only be hovered and not selected, it is impossible to scroll in
the recommendations view simultaneously. Hence, this task can only be easily solved for
the currently visible recommendations on the screen.

In the last task T12 the participants had to find out how many recommended visual-
izations commonly violate the sub-category d of the base category c. P1 had problems
understanding the task in the first place but then solved it correctly. P5 also misunder-
stood the task and thought that, again, a constraint containing c>d is the target of the
task rather than a category. Hence, she did not find any visualizations which violate the
sub-category d. However, the reason for this confusion could be in the task’s description.
The exact wording of the description contains "category c>d". This expression could be
misleading if one is not already sufficiently familiar with the hierarchies of the categories.

66

5.2. Evaluation of the Visualization

5.2.7 Value-Driven Survey
The heuristic value-driven survey was conducted by using the tool Excel. The sheet
contained an introduction area where essential terminologies used within the survey
are explained in more detail. The introduction also explains what is meant by ’data
cases’ and ’data attributes’ with respect to the visualization. These explanations are
intended to avoid misleading interpretations of the participants with the consequence of
meaningless results.

However, even with this short introduction and explanations of difficult terminologies,
some participants, especially P1, struggled to understand some statements made in
the survey. According to the asked questions during the answering of the survey, P1
sometimes did not understand which aspect of the tool the statements referred to. The
reason for this confusion could be that our tool consists of two connected views, each
having its own data domain.

The results of the survey are shown in Table 5.1. For each statement, the participants P1
- P6 submitted a score between 1 (strongly disagree) and 7 (strongly agree). The full
descriptions of the survey’s statements are shown in Table A1.

As noticeable, we received the lowest average value score by participant P1. All partici-
pants except P1 rated the visualization based on statements S4, S9, and S14 between 5
and 7. P1 rated S4 and S9 with 2 (disagree) and S14 with 3 (somewhat disagree). S4
declares that "The visualization helps generate data-driven questions," S9 "The visualiza-
tion provides a meaningful spatial organization of the data," and S14 "The visualization
provides a comprehensive and accessible overview of the data." Since it is one of the main
goals of the visualization to support these three statements, it is surprising that P1 has
an opposite valuation. A possible explanation for those bad scores of P1 might be that
he was not able to set the context and meaning of some terminologies correctly.

However, it is less surprising that the participants P2 and P6 achieved the best average
score for all statements. P2 was already familiar with some characteristics of Draco,
and P6 deals a lot with graph visualizations and graph-based data in his daily business.
Furthermore, they are used to the typical terminologies in the field of information
visualization and have a lot of experience in related research fields.

By contrast, we received the lowest average scores in S18 and S19. These statements are
part of the confidence component and claim that the visualization helps avoid making
incorrect inferences. This valuation might lead back to the misleading classified colormap
by some participants, and the confusion occurred between violated constraints and
violated features. P3 could not find an appropriate rating for S18 and S19 at all. Besides,
S21 did not receive a rating at all, and thus, we could not determine an average, median,
or standard deviation value. The participants correctly argued that the visualization
does not cover data quality inspection, and therefore, it is not possible to encounter
unexpected, duplicate, missing, or invalid data.

According to the determined standard deviations, the participants obtained the greatest

67

5. Evaluation

 µ x ̃ σ
 P1 P2 P3 P4 P5 P6 Average Median Stand.Dev.

I

S1 6 7 7 6 5 7 6.3 6.5 0.8
S2 5 7 6 7 5 7 6.2 6.5 1.0
S3 5 7 7 6 7 7 6.5 7.0 0.8
S4 2 6 6 5 7 6 5.3 6.0 1.8
S5 4 4 4 6 7 7 5.3 5.0 1.5
S6 6 6 6 5 5 7 5.8 6.0 0.8
S7 4 6 5 4 7 5 5.2 5.0 1.2
S8 5 7 7 6 7 7 6.5 7.0 0.8

T

S9 2 7 6 5 6 7 5.5 6.0 1.9
S10 3 7 6 6 6 7 5.8 6.0 1.5
S11 7 6 7 6 7 7 6.7 7.0 0.5
S12 5 5 7 7 6 6 6.0 6.0 0.9
S13 6 6 7 7 6 7 6.5 6.5 0.5

E

S14 3 7 6 6 7 7 6.0 6.5 1.5
S15 5 7 6 5 7 7 6.2 6.5 1.0
S16 4 6 4 6 4 7 5.2 5.0 1.3
S17 3 7 5 6 5 7 5.5 5.5 1.5

C

S18 5 7 N/A 5 2 4 4.6 5.0 1.8
S19 3 6 N/A 2 5 4 4.0 4.0 1.6
S20 5 7 6 3 3 6 5.0 5.5 1.7
S21 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Avg. 4.4 6.4 6.0 5.5 5.7 6.5 5.7 5.9 1.2

Table 5.1: Survey’s results showing each participant score made for the statements
proposed by Wall et al. [WAM+19]. The table also includes average, median, and
standard deviation scores. The leftmost column shows the four base components of
the survey Insight (I), Time (T), Essence (E), and Confidence (C) with each sub-
categories presented by the statements S1 - S21. N/A states that there was no answer in
the meaning that the participants were not able to find a suitable rating for the respective
statement. The score range is between 1 (strongly disagree) and 7 (strongly agree).

agreement in statements S11 and S13, with an average score of 6.7 and 6.5. These
statements declare that the interface supports using different attributes of the data
to reorganize the visualization’s appearance (S11) and that the visualization avoids
complex commands and textual queries by providing direct interaction with the data
representation (S13). Especially the high average score of S11 is surprising since the
current implementation of the prototype does not cover all reorganization possibilities
proposed within this thesis. For example, the prototype does not yet have a sorting
functionality.

On the other hand, the participants had the smallest agreement in statement S9 according
to the standard deviation of 1.9. Although the majority of the participants agreed with
statement S9, P1 is an outlier on the downside with a rating of 2. S9 declares that
the visualization provides a meaningful spatial organization of the data. Based on the
feedback received from P1, the reason for this valuation cannot be derived. However, it
can also be observed that P1 submitted the lowest score on almost all statements of the
survey. Hence, we assume that he was the least able to cope with the visualization.

68

5.2. Evaluation of the Visualization

 Insight Time Essence Confidence

P1 4.6 4.6 3.8 4.3

P2 6.3 6.2 6.8 6.7

P3 6.0 6.6 5.3 6.0

P4 5.6 6.2 5.8 3.3

P5 6.3 6.2 5.8 3.3

P6 6.6 6.8 7.0 4.7

Avg. 5.9 6.1 5.7 4.7

Table 5.2: Results of the heuristic value-driven evaluation summarized for the four
different components of the survey of Wall et al. [WAM+19].

Furthermore, when considering the average values for each component per participant
in Table 5.2, it can be observed that P1 did not receive an overall essence of the
data. However, based on the other participants’ ratings for this essence component, the
visualization certainly provides a big picture of the data and an understanding of the
data beyond individual data cases. Besides, it is not surprising that P4, P5, and P6
worst-rated the confidence component since we received the most feedback from them
regarding applied visual encodings, potential issues, and misleading representations.

5.2.8 Questionnaire

In the final questionnaire round, all test persons stated that they had a pleasing overall
impression of the tool and its visualizations. They mentioned that it is easy to use, intu-
itive, and understandable. P4 pointed out that the visualization especially creates a good
overview of which constraints, categories of constraints, and feature-based connections
exist within the knowledge-base of Draco. P6 noted that the domain and its data are,
in general, very difficult to comprehend and thus, emphasized the importance of the
introduction in the beginning of the evaluation – even for visualization experts. However,
P6 states that he does not dare to make any statement on the generalizability of the
visualization. He thinks that the visualization solves the tasks but does not know if the
visualization could be applicable in a different scenario. For example, P6 states that he
could not find any direct dependencies between the constraints, although such radial
graphs are often used to show such dependencies between data entries. However, the
constraints do not have such a characteristic that one constraint is dependent on the
outcome of another one. Therefore, such non-existent dependencies cannot be visualized.

Some test persons, especially P4 and P5, stated that they had difficulties in using and
understanding the filter functionality. They were confused by the checkboxes within the
dropdown and the shown filter possibilities. P5 suggested showing all filter possibilities
within one view without having to scroll them. Otherwise, it is difficult to tell which
base categories of constraints are currently filtered. P5 also did not expect to be able to
select features by clicking on their labels. Sometimes she struggled to select nodes which

69

5. Evaluation

are placed very close to each other.

P2, P4, and P5 stated that the applied colormap from Blue to Red does not perfectly fit in
this scenario. First, the colors used for highlighting the recommended visualizations in the
recommendation viewer are the same as applied within the colormap used for constraints’
weights. Second, the diverging colormap for the weights might be misleading. Although
those participants acknowledge that the diverging colormap better exposes differences
between weights in the low range, P2 stated that it might convey that constraints having
weights in the middle range are neutral.

P4 and P6 suggested unifying the click behavior within the visualization. On the one hand,
clicking on the categories leads to filtering the data, and on the other hand, clicking on
the features leads to more detailed information. Furthermore, they missed this selection
behavior of the features also for the constraints. To be able to select constraints would
allow to simultaneously view the constraints’ details and scroll in the recommendation
view. Besides, since P5 heavily used the constraints inspector during the evaluation, she
missed an advanced filter and sorting functionality for this list. She stated that for some
tasks, she would have preferred to directly use the list of raw data to answer the task
instead of the visualization.

5.2.9 Summary

Overall, the evaluation has shown that the proposed interactive visualization of the
knowledge-base viewer is suitable to answer questions regarding the visualization con-
straints and their shared features. The participants were able to identify the interrelations
between the constraints and Draco’s recommended visualizations based on highlighted
violations. However, the evaluation has also shown that a detailed introduction to the
topic is essential, even for visualization experts.

Identified difficulties that arose during the task performance analysis are reflected in
the heuristic value-driven survey. Whereas the participants performed well in acquiring
insights, using the tools abilities to quickly seek information of interest and obtain an
overall essence of the data, they had problems feeling confident with the data domain in
general. However, the participants stated that many difficulties during the evaluation
are caused by a lack of time dealing with the visualization and the topic in general. This
argument is supported by the observation of a steep learning curve during the evaluation.
It was clearly noticeable that participants improved in understanding the idea behind the
tool and its visualizations while solving the tasks. They felt more confident in interacting
with the visualization and understanding the individual visual mappings towards the end
of the user test.

The evaluation has also shown that interaction possibilities are still missing or too little
mature, such as the filter and constraints selection options. In addition, the current
prototype comprises minor misleading representations and double occupancies of color
encodings.

70

5.2. Evaluation of the Visualization

Above these identified problems and observations, the participants pointed out the overall
intuitiveness of the prototype and its appealing representations. They also acknowledged
the advanced stage of the prototype regarding its completeness and the absence of serious
bugs.

71

CHAPTER 6
Discussion and Future Work

6.1 Contributions
Identifying incorporated predicates, variables, and other syntax features in Draco’s soft
and hard constraints and large logic programs, in general, is a complex and time-consuming
task. However, knowing and understanding these features and their distributions across
the set of logical statements of a program is crucial to comprehending its goal and
characteristics. Such knowledge is essential to adjust, maintain, and extend the program
according to current needs. The evaluation has shown that expert users can identify
those features and interrelations between the constraints using the proposed hypergraph
within seconds (research question RQ1.1).

The costs, respectively the weights of the soft constraints, play a decisive role in the
recommendation process and its outcome. The distribution of those weights significantly
impacts the order of the recommended visualizations. These weights can either be
hand-tuned or derived from the learning mechanism proposed by Draco. Understanding
the weights’ distribution and assignment is crucial for adjusting the respective weight
determination methods to fit the user’s needs and improving the preferences within
recommendation results. The proposed visualization incorporates these weights by the soft
constraints’ color encoding. Additionally, the exact value of the weights is textually shown
within those nodes. According to the evaluation results of the visualization, the users are
able to quickly identify constraints having low costs and outliers having exceptionally high
costs. By inspecting the colored arcs representing hierarchical categories of constraints,
the users can identify whole categories of constraints that play a minor role in the
recommendation process. Although some evaluation participants were distracted by the
arcs’ size when inspecting average values, the majority submitted correct answers to the
respective evaluation tasks. Hence, we assume that users can identify and understand
weight distributions within the soft constraints and, consequently, can adjust the weights
according to their needs (research question RQ1.2).

73

6. Discussion and Future Work

Understanding the constraint-based violations of recommended visualizations and iden-
tifying shared violations of multiple recommendations is essential to comprehend the
system’s recommendation behavior and identify possible weaknesses. Considering the
evaluation results, the test persons could recognize shared violations and their degrees
(research question RQ2.1). However, some participants were confused by highlighting the
affected connections within the hypergraph and, therefore, identified affected features by
violations, although we sought for violated constraints. This confusion is reflected in the
heuristic value-driven evaluation, where weaknesses in the confidence component have
been identified. We assume that if this confusion is eliminated in a further development
of the prototype, expert users will have no issue identifying shared violations of multiple
recommendations. This assumption is supported by the fact that as soon as the evaluation
participants were aware of the respective differences, they could quickly identify the
violated constraints.

So far, to the best of our knowledge, no tool or visualization exists in the context of Draco
that supports selecting a constraint and simultaneously inspecting recommendations that
violate this particular constraint. Especially this direction of inspection is intended to
allow users of the system to identify a constraint’s influence on the recommendation
results (research question RQ2.2). Although the test persons of the evaluation identified
a bottleneck within the current version of the prototype, namely the lack of a feature
to select a constraint within the visualization and simultaneously previewing the list of
recommendations, they were able to complete the respective tasks successfully.

6.2 Generalizability
The proposed visualization was designed to visualize decisive attributes and interrela-
tions between Draco’s soft and hard constraints. However, the generalizability of the
visualization remains unclear. According to the characteristics of the visualization, it can
be used to visualize data structures that consist of a set of entities where the individual
entities are part of hierarchical categories. Additionally, shared features of the entities
can be represented by the proposed hypergraph within the radial arranged entities.

6.3 Modular Version of Draco
Since the publication of Draco [MWN+19], the team behind Draco is elaborating on an
experimental modular version of Draco in Draco 2 1. In Draco 2, the visualization facts
are defined more modularly. The reason, therefore, is still not communicated, and no
related scientific-related paper exists. According to the current state of the project2, the
original notation style of the soft and hard facts did not change much. One of the more
striking changes is the renaming of ’soft’ into ’preference’ and ’hard’ into ’violation’ and
the modular definition of the visualization facts. We assume that without any future

1https://dig.cmu.edu/draco2/intro.html - last accessed 2022/08/22
2https://github.com/cmudig/draco2 - last accessed 2022/08/22

74

https://dig.cmu.edu/draco2/intro.html
https://github.com/cmudig/draco2

6.4. Limitations

elementary changes to the notation of the knowledge-base in Draco2, it should still be
visualizable as proposed in this thesis. However, the data extraction strategy must be
adjusted according to the modular structure.

6.4 Limitations
The data extraction approach and the visualization proposed within this thesis still face
some limitations:

• Data Processing: The proposed grammar is only capable of describing selected
parts of Draco’s knowledge-base. For simplicity reasons, Draco’s knowledge-base
processing methodology is still used to extract the constraints’ weights.

• Understanding: The visualization still requires the user to have a minimal
understanding of ASP and the knowledge-base behind Draco. Users of the system
must be familiar with how Draco encodes information visualization facts and how
it builds hard and soft constraints over these facts.

• Incompleteness: The visualization only shows Draco’s hard and soft constraints
and not the whole knowledge-base. The visualization facts and optimization
statements, as well as the user-dependent input query, are not depicted by the
visualization.

• Abstraction: Although the visualization gives an overview of the constraints
based on their identifier, categories, and weights, it abstracts their content. As a
consequence, the encoded logical expressions can not be inspected directly. The
separate constraints inspector designed for this purpose overcomes this issue by
directly showing the constraints’ formulations in ASP. However, the constraints
viewer and the constraints inspector are currently not interactively connected within
the prototype.

6.5 Future Work
During the research within this thesis, we identified several possibilities and suggestions
for future work in the context of Draco’s recommendation system. They concern not only
the proposed constraint viewer in the form of the radial visualization but also the whole
recommendation process itself, advanced interactions, and the documentation of Draco’s
knowledge-base. Since there are so many ideas for improvement, we tautly summarized
them by the following list:

Knowledge-base viewer

• Summary of knowledge-base features (variables, predicates, numbers, and others).
• Summary of design space definition (mark types, channels, aggregate operations,

data types, and others).

75

6. Discussion and Future Work

• Improve scalability with ideas for radial sunburst visualization/interaction ap-
proaches proposed by Stasko and Zhang [SZ00].

• Eliminate confusion between violated constraints and affected connections within
the hypergraph.

Recommendation process and recommendation results

• Graphical interface for recommendation query and data set loader with automatic
data interpretation and recommendation query generation.

• Clustering of recommendation results by shared encodings or violations to improve
the understanding of the results.

• Pin selected recommendations to the top of the recommendation viewer to improve
direct comparisons.

Advanced interactions

• Advanced selection options (selection of categories, or one/multiple constraints)
• Explore/show me something else (e.g. different attribute of a constraint than its

weight)
• Reconfigure (e.g. swap axis, rotate, rearrange view, panning, sorting items)
• Encode (change representation, switch to a different visualization method)
• Abstract/elaborate (e.g. details on demand, show more information in zoomed

level)
• Advanced filter operations (dynamic search query with live data manipulation/high-

lighting)
• History operations (undo/redo)

Documentation and data processing

• Extend constraints and incorporate features with in-depth documentation and
scientific sources.

• Extend the proposed grammar to support all language features and syntax charac-
teristics of the input language to Clingo.

Regarding the conducted evaluation, we believe that especially eliminating the misleading
representations would help to make our prototype more comprehensible. Particularly the
confusing highlighting of the violations should be targeted in future work. To conclude,
all these ideas and their possible implementation should bring us one step closer to a
user-centered recommendation tool for data visualization.

76

CHAPTER 7
Summary and Conclusion

In this thesis, we proposed a novel visualization approach to tackle the visualization con-
straints of the rule-based recommendation system Draco. The radial-based visualization
approach is embedded into a tool that enables visualization experts to inspect Draco’s soft
and hard constraints. Additionally, violated soft constraints and further interrelations
between the system’s recommendations and the soft constraints can be interactively
explored by selecting or hovering details of interest. We further proposed a hypergraph
incorporated into the radial visualization to show shared features by the constraints.
This hypergraph enables visualization experts to identify the use and distribution of
variables, predicates, and other features – a very time-consuming and challenging task
concerning the original raw data of Draco.

To acquire the necessary data for this hypergraph, we developed a data processing
architecture that allows us to extract features of interest from Draco’s knowledge-base. A
central part of this data extraction is our proposed formal EBNF notation of the ASP-Core
2 standard based on W3C. We eliminated faulty components of the original grammar
and extended it to language features described in Clingo. An EBNF parser applies this
polished grammar and generates an AST of the knowledge-base. The extracted features
of interest from this AST are finally stored together with the constraints in a database
that serves as the visualization’s data source.

The conducted evaluation verifies the capabilities of the elaborated ASP grammar to
describe all necessary parts of Draco’s knowledge-base. It has been proven by generating
an AST of decisive parts of Draco’s knowledge-base using the proposed combination
of a parser generator with the grammar. Furthermore, the evaluation of the developed
prototype has shown that expert users are able to solve identified tasks regarding Draco’s
knowledge-base and its interrelations with recommendations. The heuristic-value-driven
survey gives evidence to the overall value of our visualization approach and confirmed
identified difficulties during the user test.

77

7. Summary and Conclusion

Although there are open limitations and topics to elaborate in future work, we hope our
work supports the visualization community in maintaining and extending the rule-based
visualization recommendation system Draco.

78

List of Figures

2.1 Draco’s recommendation engine that compiles a user query consisting of a
dataset, partial specification, and user task into a set of rules and combines
them with the existing knowledge-base. The resulting ASP program is then
processed and solved by Clingo to obtain an optimal answer set which is
translated to a VL-based specification [SMWH17] - reprinted from Moritz
[MWN+19]. 7

2.2 An example specification of a bar chart by VL and in the ASP notation
resulting from Draco’s recommendation pipeline. It defines a mark type, two
encodings and their field, data type, and data transformation definition -
reprinted from Moritz [MWN+19]. 8

2.3 Acyclic dependency graph for predicates of Prolog programs in VISUR -
reprinted from Seipel et al. [SHH03]. 11

2.4 SLD (middle) versus AND-OR tree (right) formats for Prolog programs (left)
- adapted from Cameron et al. [CGDLBMM03]. 12

2.5 ASPIDE visual editor - reprinted from Febbraro et al. [FRR11]. 12
2.6 LogiChart - reprinted from Adachi et al. [ATIY00, AF07, Ada09]. 13
2.7 Radial hypergraph-based set overlap visualizations showing two techniques to

represent the hyperedges. 15
2.8 Four types of edge representations - adapted from Schulz et al. [Sch11]. . 15
2.9 Implicit edge representations for visualizing hierarchical quantitative data -

reprinted from Woodburn et al. [WYM19]. 16
2.10 Juxtaposed visualizations of disjoint hierarchical groups - adapted from Vehlow

et al. [VBW15, VBW17]. 17
2.11 Embedded and superimposed visualizations for hierarchical group structures -

adapted from Vehlow et al. [VBW15, VBW17]. 17

3.1 Information visualization reference model by Card et al. [Car99]. 19
3.2 Design triangle: data - user - tasks - reprinted from Miksch and Aigner

[MA14]. 20
3.3 Generated AST of the constraint in Listing 3.1. It is a hierarchically de-

composed structure of the test code where the identifiers in each level are
described by the grammar. 30

79

3.4 Data extraction architecture consisting of two pipelines. The first pipeline
extracts the features of Draco’s knowledge-base and the second pipeline
the constraints, their weights, and the constraints’ identifier hierarchy. A
hypergraph data generation module processes the features and the constraints
and creates the necessary graph-based structure for visualizing a hypergraph
of the constraints’ shared features. 33

3.5 First visualization iteration of the constraints using a free node-link layout for
the hypergraph. Even with few features and connections, the graph encounters
the hairball problem of dense node-link graphs. 34

3.6 Radially arranged constraints abstracted by round nodes which are encoding
the constraints’ weight by number and color. The identifiers of the constraints
are positioned next to the nodes and similarly arranged along the circle with
the corresponding angles of the nodes. 37

3.7 Colormap to encode the weights of the constraints as colors. The map
interpolates between the two colors Blue and Red in a diverging scheme from
the lowest assigned weight to the highest one. 38

3.8 Circular attached arcs showing the hierarchical categories of the constraints. 39
3.9 Hypergraph showing the used variables within the soft constraints of the

knowledge-base. The variables are represented as feature nodes with different
degrees based on the number of connected constraints. A maximum radius
Rmax ensures a minimum distance between the constraints and their shared
feature nodes. 40

3.10 Interaction technique zooming and panning to navigate certain areas of interest
of the visualization and enlarge them (1) and direct filter operations on specific
constraint categories (2a) and indirect filter operations over a dropdown to
reduce the corpus of shown constraints by selecting or deselecting constraint
categories (2b). 43

3.11 Constraints visually filtered by the category ’bin’ in the highest level of the
category hierarchy. 44

3.12 Details on demand for constraints’ data through searching over the list of
constraints in a separate view right next to the main visualization. 45

3.13 Details on demand for constraints sharing a certain feature of interest that
is selected within the visualization. To minimize the overlapped area of the
visualization, the tooltip has a fixed position at the bottom right corner of
the possible drawing area of the visualization. 46

3.14 Illustration showing selected (A and B) and hovered visualization recommen-
dations (highlighted greyish) on the left side (1), the number of constraints’
violations in badges (2), and the violations of the constraints’ features through
highlighting the corresponding links to these features using colored dashes on
the right side (3). 48

80

3.15 Final design of the linked visualization consisting of a recommendations
list (left) resulting from the recommendation engine and the hierarchical
radial hypergraph (right) visualizing the knowledge-base constraints and its
connections. (1a-1b) a visualization recommendation and its specification, (2a-
2b) selected recommendations and corresponding highlighted violations in the
knowledge-base (2c), (3) constraints of the knowledge-base, (4) hierarchical
categories of constraints, (5) feature-based connections of the knowledge-
base, (6a) highlighted constraints and its feature-based connections, and
detailed information about them (6b), (7) colormap legend to the used color
encoding of constraints’ weights, (8a-8b) controls to modify shown data and
the visualization’s appearance. 50

4.1 Prototype consisting of a recommendation query editor (1), a recommendation
viewer (2), a constraints viewer (3), and a constraints inspector (4). . . . 52

5.1 Tool to parse a test program and generate an AST based on a given EBNF
grammar7. 57

81

List of Tables

2.1 List of relevant web-based context free parser generators and grammar parsers. 10

5.1 Survey’s results showing each participant score made for the statements pro-
posed by Wall et al. [WAM+19]. The table also includes average, median,
and standard deviation scores. The leftmost column shows the four base com-
ponents of the survey Insight (I), Time (T), Essence (E), and Confidence
(C) with each sub-categories presented by the statements S1 - S21. N/A
states that there was no answer in the meaning that the participants were not
able to find a suitable rating for the respective statement. The score range is
between 1 (strongly disagree) and 7 (strongly agree). 68

5.2 Results of the heuristic value-driven evaluation summarized for the four
different components of the survey of Wall et al. [WAM+19]. 69

83

Listings

3.1 A soft constraint with the identifier bin_high which has a negative
impact to a recommendation’s ranking when one of its encodings contains
more than 12 bins. 29

3.2 Example of a soft constraint with three hierarchy levels in the identifier –
task value, quantitative data type continuous, and channel x. 31

85

Acronyms

ABNF Augmented Backus-Naur Form. 8, 10

API Application Programming Interface. 7, 9, 27

ASP Answer Set Programming. ix, xi, 2, 4, 5, 7–11, 18, 20–30, 32, 46, 49, 53, 54, 56–58,
75, 77, 79, 99

AST Abstract Syntax Tree. 4, 9, 23, 24, 26, 27, 29–32, 53, 57, 77, 79, 81

BNF Backus-Naur Form. 8–10, 28, 56

CFG Context-Free Grammar. 8, 26, 27, 55, 56

CLI Command-Line Interface. 27

CLP Constraint Logic Programming. 10, 13

CPU Central Processing Unit. 57

CSS Cascading Style Sheets. 53

DOM Document Object Model. 53

EBNF Extended Backus-Naur Form. 8–10, 27–29, 53, 56–58, 77, 81, 99

FHD Full High Definition. 62

HTML Hypertext Markup Language. 53

IDE Integrated Development Environment. 11, 18

IndexedDb Indexed Database. 53

InfoVis Information Visualization. 19, 59, 63

JSON JavaScript Object Notation. 7, 53

87

ML Machine-Learning. 2, 6

NPM Node Package Manager. 54

OS Operating System. 25, 62

POC Proof of Concept. 57

RankSVM Support Vector Machine. 7

REGEX Regular Expression. 9, 23, 26–28, 31, 32

SLD Selective Linear Definite. 11, 12, 79

SVG Scalable Vector Graphics. 53

UX User Experience. 61, 63

VL Vega-Lite. 7, 8, 79

W3C World Wide Web Consortium. 28, 29, 77

WASM WebAssembly. 53

88

Bibliography

[AAMH13] Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser.
Radial sets: Interactive visual analysis of large overlapping sets. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2496–
2505, 2013.

[ACC+17] Farid Alborzi, Surajit Chaudhuri, Rada Chirkova, Pallavi Deo, Christo-
pher Healey, Gargi Pingale, Juan Reutter, and Vaira Selvakani.
Dataslicer: Task-based data selection for visual data exploration. arXiv
preprint arXiv:1703.09218, 2017.

[ACJ+13] Thomas Ambroz, Günther Charwat, Andreas Jusits, Johannes Peter
Wallner, and Stefan Woltran. Arvis: Visualizing relations between
answer sets. In Proceedings of the International Conference on Logic
Programming and Nonmonotonic Reasoning, pages 73–78. Springer,
2013.

[Ada09] Yoshihiro Adachi. Prolog visualization system using logichart diagrams.
arXiv preprint arXiv:0903.2207, 2009.

[AF07] Yoshihiro Adachi and Yudai Furusawa. Logichart: A prolog program
diagram and its layout. Electronic Communications of the EASST, 7,
2007.

[ATIY00] Yoshihiro Adachi, Kensei Tsuchida, Takanori Imaki, and Takeo Yaku.
Logichart—intelligible program diagram for prolog and its processing
system. Electronic Notes in Theoretical Computer Science, 30(4):276–
288, 2000.

[BBW12] Michael Burch, Fabian Beck, and Daniel Weiskopf. Radial edge splatting
for visualizing dynamic directed graphs. In GRAPP/IVAPP, pages
603–612, 2012.

[BET11] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set
programming at a glance. Communications of the ACM, 54(12):92–103,
2011.

89

[BRBF14a] Jeremy Boy, Ronald A Rensink, Enrico Bertini, and Jean-Daniel Fekete.
A principled way of assessing visualization literacy. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1963–1972, December
2014. Publisher Copyright: © 2014 IEEE.

[BRBF14b] Jeremy Boy, Ronald A. Rensink, Enrico Bertini, and Jean-Daniel Fekete.
A principled way of assessing visualization literacy. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1963–1972, 2014.

[Car99] Mackinlay Card. Readings in information visualization: using vision to
think. Morgan Kaufmann, 1999.

[Cas91] Stephen M. Casner. Task-analytic approach to the automated design of
graphic presentations. ACM Trans. Graph., 10(2):111–151, April 1991.

[CC05] Brock Craft and Paul Cairns. Beyond guidelines: what can we learn
from the visual information seeking mantra? In Proceedings of the 9th
International Conference on Information Visualisation, IV ’05, pages
110–118, 2005.

[CDMP19] Théo Coulin, Maxence Detante, William Mouchère, and Fabio
Petrillo. Software architecture metrics: a literature review. CoRR,
abs/1901.09050, 2019.

[CFG+12] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista
Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Francesco
Ricca, and Torsten Schaub. Asp-core-2: Input language format. ASP
Standardization Working Group, 2012.

[CGDLBMM03] M. Cameron, M. García De La Banda, Kim Marriott, and Peter Moul-
der. Vimer: a visual debugger for mercury. In Proceedings of the 5th
ACM International Conference on Principles and Practice of Declaritive
Programming, pages 56–66, 2003.

[Cho56] Noam Chomsky. Three models for the description of language. IRE
Trans. Inf. Theory, 2:113–124, 1956.

[CIR11] Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. Third
asp competition-file and language formats. Technical report, Tech. rep.,
Universita della Calabria, 2011.

[CM03] William F. Clocksin and Christopher S. Mellish. Programming in Prolog.
Springer Science & Business Media, 2003.

[CVBP08] Owen Cliffe, Marina De Vos, Martin Brain, and Julian Padget. Aspviz:
Declarative visualisation and animation using answer set programming.
In Proceedings of the International Conference on Logic Programming,
pages 724–728, Berlin, Heidelberg, 2008. Springer.

90

[DD19] Victor Dibia and Çağatay Demiralp. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks.
IEEE Computer Graphics and Applications, 39(5):33–46, 2019.

[DNK97] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding
planning problems in nonmonotonic logic programs. In Proceedings of
the European Conference on Planning, pages 169–181. Springer, 1997.

[ELCM09] Sebastián Escarza, Martín Leonardo Larrea, Silvia Mabel Castro, and
Sergio R. Martig. Delp viewer: a defeasible logic programming visualiza-
tion tool. In XV. Congreso Argentino de Ciencias de la Computación,
2009.

[ESC16] Humaira Ehsan, Mohamed A. Sharaf, and Panos K. Chrysanthis. Muve:
Efficient multi-objective view recommendation for visual data explo-
ration. In Proceedings of the 32nd IEEE International Conference on
Data Engineering, ICD ’16, pages 731–742, 2016.

[Few09] Stephen Few. Now you see it: simple visualization techniques for
quantitative analysis. Analytics Press, USA, 1st edition, 2009.

[FRR11] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. Aspide: Inte-
grated development environment for answer set programming. In Logic
Programming and Nonmonotonic Reasoning, pages 317–330, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[GKK+08a] Martin Gebser, R. Kaminiski, Benjamin Kaufmann, M. Ostrowsky,
Torsten Schaub, and Sven Thiele. Using gringo, clingo and iclingo,
2008.

[GKK+08b] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. A user’s guide to gringo, clasp, clingo,
and iclingo. 2008.

[Gna81] Sakunthala Gnanamgari. Information presentation through default
displays. 1981.

[GW09] David Gotz and Zhen Wen. Behavior-driven visualization recommenda-
tion. In Proceedings of the 14th International Conference on Intelligent
User Interfaces, IUI ’09, page 315–324, New York, NY, USA, 2009.
Association for Computing Machinery.

[HBL+19] Kevin Hu, Michiel A. Bakker, Stephen Li, Tim Kraska, and César
Hidalgo. VizML: A Machine Learning Approach to Visualization Rec-
ommendation. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, pages 1–12, New York, NY,
USA, 2019. Association for Computing Machinery.

91

[HEAE16] Shah Rukh Humayoun, Hafez Ezaiza, Ragaad AlTarawneh, and Achim
Ebert. Social-circles exploration through interactive multi-layered chord
layout. In Proceedings of the International Working Conference on
Advanced Visual Interfaces, AVI ’16, page 314–315, New York, NY,
USA, 2016. Association for Computing Machinery.

[HOH18] Kevin Hu, Diana Orghian, and César Hidalgo. Dive: A mixed-initiative
system supporting integrated data exploration workflows. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics, HILDA ’18,
New York, NY, USA, 2018. Association for Computing Machinery.

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):741–748, 2006.

[KFD19] Petra Kubernátová, Magda Friedjungová, and Max van Duijn. Con-
structing a Data Visualization Recommender System. In Christoph
Quix and Jorge Bernardino, editors, Data Management Technologies
and Applications, pages 1–25, Cham, 2019. Springer International Pub-
lishing.

[KHPA12] Alicia Key, Bill Howe, Daniel Perry, and Cecilia Aragon. VizDeck:
Self-Organizing Dashboards for Visual Analytics. In Proceedings of the
ACM International Conference on Management of Data, SIGMOD ’12,
pages 681–684, New York, NY, USA, 2012. Association for Computing
Machinery.

[KJ13] Andreas Kerren and Ilir Jusufi. A novel radial visualization approach for
undirected hypergraphs. In Proceedings of the EG/VGTC Conference
on Visualization (Short Papers), EuroVis ’13, 2013.

[KO17] Pawandeep Kaur and Michael Owonibi. A review on visualization
recommendation strategies. In Proceedings of the 12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017),
pages 266–273. INSTICC, SciTePress, 2017.

[KS13] Arne König and Torsten Schaub. Monitoring and visualizing answer set
solving. Theory and Practice of Logic Programming, 13:4–5, 2013.

[KSFN08] Andreas Kerren, John Stasko, Jean-Daniel Fekete, and Chris North.
The Value of Information Visualization, pages 1–18. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[Lew82] Clayton Lewis. Using the" thinking-aloud" method in cognitive interface
design. IBM TJ Watson Research Center Yorktown Heights, 1982.

92

[LHT17] Antoine Lhuillier, Christophe Hurter, and Alexandru Telea. State of the
art in edge and trail bundling techniques. Computer Graphics Forum,
36(3):619–645, 2017.

[Lif99] Vladimir Lifschitz. Action languages, answer sets, and planning. In
The Logic Programming Paradigm, pages 357–373. Springer, 1999.

[LQTL18] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. Deepeye: Towards
automatic data visualization. In Proceedings of the 34th IEEE Interna-
tional Conference on Data Engineering, ICD ’18, pages 101–112. IEEE,
2018.

[MA14] Silvia Miksch and Wolfgang Aigner. A matter of time: Applying a
data–users–tasks design triangle to visual analytics of time-oriented
data. Computers & Graphics, 38:286–290, 2014.

[Mac86] Jock Mackinlay. Automating the Design of Graphical Presentations of
Relational Information. ACM Transactions on Graphics, 5(2):110–141,
apr 1986.

[Maz09] Riccardo Mazza. Introduction to information visualization. Springer
Science & Business Media, 2009.

[MHS07] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. Show me: Automatic
presentation for visual analysis. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1137–1144, 2007.

[MT99] Victor W. Marek and Miroslaw Truszczyński. Stable models and an
alternative logic programming paradigm. In The Logic Programming
Paradigm, pages 375–398. Springer, 1999.

[Mun09] Tamara Munzner. A nested model for visualization design and validation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):921–
928, 2009.

[MWN+19] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin,
Adam M. Smith, Bill Howe, and Jeffrey Heer. Formalizing Visual-
ization Design Knowledge as Constraints: Actionable and Extensible
Models in Draco. IEEE Transactions on Visualization and Computer
Graphics, 25(1):438–448, 2019.

[Nie92] Jakob Nielsen. Finding usability problems through heuristic evaluation.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’92, page 373–380, New York, NY, USA, 1992.
Association for Computing Machinery.

[Nie16] Frank Nielsen. Hierarchical clustering. In Introduction to HPC with
MPI for Data Science, pages 195–211. Springer, 2016.

93

[NMSL19] Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex. The
state of the art in visualizing multivariate networks. Computer Graphics
Forum, 38(3):807–832, 2019.

[OPT13] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The sealion has
landed: An ide for answer-set programming—preliminary report. In
Hans Tompits, Salvador Abreu, Johannes Oetsch, Jörg Pührer, Dietmar
Seipel, Masanobu Umeda, and Armin Wolf, editors, Applications of
Declarative Programming and Knowledge Management, pages 305–324,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[RKMG94] Steven F. Roth, John Kolojejchick, Joe Mattis, and Jad Goldstein.
Interactive graphic design using automatic presentation knowledge. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’94, page 112–117, New York, NY, USA, 1994. Association
for Computing Machinery.

[SCD+00] Helmut Simonis, Trijntje Cornelissens, Véronique Dumortier, Giovanni
Fabris, F. Nanni, and Adriano Tirabosco. Using Constraint Visualisation
Tools, pages 321–356. Springer Berlin Heidelberg, Berlin, Heidelberg,
2000.

[Sch11] Hans-Jorg Schulz. Treevis.net: A tree visualization reference. IEEE
Computer Graphics and Applications, 31(6):11–15, 2011.

[SDS12] João Miguel Santos, Paulo Dias, and Beatriz Sousa Santos. Implementa-
tion and evaluation of an enhanced h-tree layout pedigree visualization.
In Proceedings of the 16th International Conference on Information
Visualisation, IV ’12, pages 24–29, 2012.

[SH13] Hans-Jörg Schulz and Christophe Hurter. Grooming the hairball-how to
tidy up network visualizations? In Proceedings of the IEEE Information
Visualization Conference, INFOVIS ’13, 2013.

[SHH03] Dietmar Seipel, Marbod Hopfner, and Bernd Heumesser. Analyzing and
visualizing prolog programs based on xml-representations. In Proceedings
of the 13th International Workshop on Logic Programming environments.
Citeseer, 2003.

[Shn03] Ben Shneiderman. The eyes have it: A task by data type taxonomy
for information visualizations. In The Craft of Information Visualiza-
tion, Interactive Technologies, pages 364–371. Morgan Kaufmann, San
Francisco, 2003.

[Sip97] Michael Sipser. Introduction to the theory of computation. Thomson
Course Technology, Boston, MA, USA, 1997.

94

[SM00] Heidrun Schumann and Wolfgang Müller. Visualisierung - Grundlagen
und allgemeine methoden. Springer-Verlag, Berlin Heidelberg New York,
2000.

[SML+18] Bahador Saket, Dominik Moritz, Halden Lin, Victor Dibia, Çagatay
Demiralp, and Jeffrey Heer. Beyond heuristics: Learning visualization
design. CoRR, abs/1807.06641, 2018.

[SMWH17] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and
Jeffrey Heer. Vega-lite: A grammar of interactive graphics. IEEE
Transactions on Visualization and Computer Graphics, 23:341–350,
2017.

[SN98] Timo Soininen and Ilkka Niemelä. Formalizing configuration knowledge
using rules with choices. Helsinki University of Technology, 1998.

[Spe07] Robert Spence. Information Visualization: Design for Interactions.
Pearson Education Limited, Essex, UK, 2nd edition, 2007.

[SS05] Jinwook Seo and Ben Shneiderman. A rank-by-feature framework for
interactive exploration of multidimensional data. Information visualiza-
tion, 4(2):96–113, 2005.

[SS06] Hans-Jörg Schulz and Heidrun Schumann. Visualizing graphs - a gen-
eralized view. In Proceeding of the 10th International Conference on
Information Visualisation, IV ’06, pages 166–173, 2006.

[SZ00] John Stasko and Eugene Zhang. Focus+ context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations.
In Proceedings of the IEEE Symposium on Information Visualization,
INFOVIS ’00, pages 57–65. IEEE, 2000.

[TKE12] Raga’ad M. Tarawaneh, Patric Keller, and Achim Ebert. A general
introduction to graph visualization techniques. In Visualization of
Large and Unstructured Data Sets: Applications in Geospatial Planning,
Modeling and Engineering-Proceedings of IRTG 1131 Workshop 2011.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[VBSW13] Corinna Vehlow, Michael Burch, Hansjorg Schmauder, and Daniel
Weiskopf. Radial layered matrix visualization of dynamic graphs. In
Proceedings of the 17th International Conference on Information Visu-
alisation, IV ’13, pages 51–58, 2013.

[VBW15] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. The state of the
art in visualizing group structures in graphs. In Proceedings of the
EG/VGTC Conference on Visualization (STARs), EuroVis ’15, pages
21–40, 2015.

95

[VBW17] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. Visualizing group
structures in graphs: A survey. In Computer Graphics Forum, volume 36,
pages 201–225. Wiley Online Library, 2017.

[VHS+17] Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and
Aditya Parameswaran. Towards Visualization Recommendation Systems.
Proceedings of the ACM International Conference on Management of
Data, 45(4):34–39, 2017.

[VRM+15] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya
Parameswaran, and Neoklis Polyzotis. Seedb: Efficient data-driven
visualization recommendations to support visual analytics. In Proceed-
ings of the VLDB Endowment International Conference on Very Large
Data Bases, volume 8, page 2182. NIH Public Access, 2015.

[VWS+18] Fernanda Viégas, Martin Wattenberg, Daniel Smilkov, James Wexler,
and Daniel Gundrum. Generating charts from data in a data table,
2018. US 20180088753 A1.

[Wal08] Guenter Wallner. Force directed embedding of hierarchical cluster
graphs. In Proceedings of the International Conference on Relations,
ROGICS ’08, 2008.

[WAM+19] Emily Wall, Meeshu Agnihotri, Laura Matzen, Kristin Divis, Michael
Haass, Alex Endert, and John Stasko. A heuristic approach to value-
driven evaluation of visualizations. IEEE Transactions on Visualization
and Computer Graphics, 25(1):491–500, 2019.

[Whe20] David Wheeler. Don’t use iso/iec 14977 extended backus-naur form
(ebnf), 2020.

[Wit09] Johan Wittocx. IDPDraw, a tool used for visualizing answer sets. 2009.

[WMA+16a] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackin-
lay, Bill Howe, and Jeffrey Heer. Towards a General-Purpose Query
Language for Visualization Recommendation. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, HILDA ’16, New York,
NY, USA, 2016. Association for Computing Machinery.

[WMA+16b] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackin-
lay, Bill Howe, and Jeffrey Heer. Voyager: Exploratory Analysis via
Faceted Browsing of Visualization Recommendations. IEEE Transac-
tions on Visualization and Computer Graphics, 22(1):649–658, 2016.

[WQM+17] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang,
Felix Ouk, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey

96

Heer. Voyager 2: Augmenting Visual Analysis with Partial View Speci-
fications. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, CHI ’17, pages 2648–2659, New York, NY, USA,
2017. Association for Computing Machinery.

[WWDW06] Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. Visu-
alization of Large Hierarchical Data by Circle Packing, page 517–520.
Association for Computing Machinery, New York, NY, USA, 2006.

[WYM19] Linda Woodburn, Yalong Yang, and Kim Marriott. Interactive visuali-
sation of hierarchical quantitative data: an evaluation. In Proceedings
of the IEEE Visualization Conference, VIS ’19, pages 96–100. IEEE,
2019.

[Yeh80] Amiram Yehudai. The decidability of equivalence for a family of linear
grammars. Information and Control, 47(2):122–136, 1980.

[YKSJ07] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A. Jacko. Toward a
deeper understanding of the role of interaction in information visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
13(6):1224–1231, 2007.

[ZBA+20] Annamaria Zoppini, Lucia Bongiorni, Nicoletta Ademollo, Luisa Pa-
trolecco, Tamara Cibic, Annalisa Franzo, Marco Melita, Matteo Bazzaro,
and Stefano Amalfitano. Bacterial diversity and microbial functional
responses to organic matter composition and persistent organic pollu-
tants in deltaic lagoon sediments. Estuarine, Coastal and Shelf Science,
233:106508, 2020.

[ZF01] Michelle Xhou Zhou and Steven K. Feiner. Improvise: Automated gener-
ation of animated graphics for coordinated multimedia presentations. In
Cooperative Multimodal Communication, pages 43–63. Springer Berlin
Heidelberg, 2001.

97

Appendix

ASP Grammar

Listing L1: Modified ASP grammar of ASP-CORE-2 standard in EBNF notation
1 program ::= statement* query?
2
3 statement ::= rule | fact | integrity_constraint | comment | NL
4 query ::= classical_literal QUERY_MARK
5
6 fact ::= head DOT WS* NL?
7 rule ::= head WS* CONS WS* bodies? DOT WS* NL?
8 integrity_constraint ::= CONS WS* bodies? DOT WS* NL? |
9 WCONS WS* bodies? DOTSQUARE_O weight_at_level

10 SQUARE_C WS* NL?
11 comment ::= MULTI_LINE_COMMENT WS* NL? | COMMENT WS* NL?
12
13 head ::= disjunction | choice
14 bodies ::= body+ | FALSE | TRUE
15 body ::= naf_literal WS* COMMA WS* |
16 NAF? WS* aggregate WS* COMMA WS* |
17 naf_literal WS* | NAF? WS* aggregate WS*
18
19 disjunction ::= classical_literal WS* (PIPE WS* disjunction)? WS*
20
21 choice ::= (term WS* binop?)? WS* CURLY_O WS* choice_elements?
22 WS* CURLY_C WS* (binop? WS* term)? WS*
23 choice_elements ::= choice_element WS*
24 (SEMICOLON WS* choice_elements)? WS*
25 choice_element ::= classical_literal WS* (COLON WS* naf_literals?)? WS*
26
27 aggregate ::= (term WS* binop?)? WS* agg_function? WS* CURLY_O WS*
28 agg_elements? WS* CURLY_C WS*
29 (binop? WS* term)? WS* | aggreagte_count_func WS*
30 agg_elements ::= agg_element ((COMMA | SEMICOLON) WS*
31 agg_elements)?
32 agg_element ::= classical_literal? WS* (COLON WS* naf_literals)?
33 WS* | basic_terms? WS* (COLON WS* naf_literals)? WS*
34 agg_function ::= AGGREGATE_COUNT | AGGREGATE_MAX |
35 AGGREGATE_MIN | AGGREGATE_SUM
36 aggreagte_count_func ::= PIPE WS* agg_elements? WS* PIPE

99

37 WS* (binop? WS* term)? WS*
38
39 weight_at_level ::= term WS* (AT WS* term)? WS* (COMMA WS* terms)? WS*
40
41 naf_literals ::= naf_literal WS* (COMMA WS* naf_literals)? WS*
42 naf_literal ::= NAF? WS* classical_literal WS* |
43 NAF? WS* builtin_atom WS*
44
45 predicate ::= ID
46 classical_literal ::= MINUS? WS* predicate
47 (PAREN_O WS* terms? WS* PAREN_C) WS* |
48 MINUS? WS* ID WS*
49 builtin_atom ::= term WS* binop WS* term WS*
50
51 binop ::= EQUAL | UNEQUAL | LESS_OR_EQ | GREATER_OR_EQ |
52 LESS | GREATER
53
54 terms ::= term ((COMMA | SEMICOLON) WS* terms)? WS*
55 term_op ::= arithop WS* term WS* term_op? WS*
56 term ::= NUMBER WS* term_op? WS* |
57 STRING WS* term_op? WS* |
58 VARIABLE WS* term_op? WS* |
59 ANONYMOUS_VARIABLE WS* term_op? WS* |
60 PAREN_O WS* terms? WS* PAREN_C WS* term_op? WS* |
61 MINUS WS* term WS* term_op? WS* |
62 ID (PAREN_O WS* terms? WS* PAREN_C)?
63 WS* term_op? WS*
64
65 basic_terms ::= basic_term WS* (COMMA WS* basic_terms)? WS*
66 basic_term ::= ground_term WS* | variable_term WS*
67 ground_term ::= SYMBOLIC_CONSTANT | STRING | MINUS? NUMBER
68 variable_term ::= VARIABLE | ANONYMOUS_VARIABLE
69 arithop ::= PLUS | MINUS | TIMES | DIV
70
71 NUMBER ::= "0" | [1-9] [0-9]*
72 SYMBOLIC_WITHOUT_STAR ::= [^(a-zA-Z0-9_)]
73 SYMBOLIC_CONSTANT ::= "*" | SYMBOLIC_WITHOUT_STAR
74 UNDERLINE ::= "_"
75 DOUBLE_QUOTE ::= ’"’
76 ID ::= [a-z] [a-zA-Z0-9_]*
77 VARIABLE ::= [A-Z] [a-zA-Z0-9_]*
78 STRING_CONTENT ::= ([#x20-#x21] | [#x23-#x5B] | [#x5D-#xFFFF]) |
79 #x5C (#x22 | #x5C | #x2F | #x62 | #x66 | #x6E |
80 #x72 | #x74 | #x75 HEXDIG HEXDIG HEXDIG HEXDIG)
81 STRING ::= DOUBLE_QUOTE ([^#x22] | #x5c #x22)* DOUBLE_QUOTE
82 HEXDIG ::= [a-zA-Z0-9]
83 ANONYMOUS_VARIABLE ::= UNDERLINE ID | UNDERLINE VARIABLE | UNDERLINE
84 DOT ::= "."
85 COMMA ::= ","
86 QUERY_MARK ::= "?"
87 COLON ::= ":"
88 SEMICOLON ::= ";"
89 PIPE ::= "|"

100

90 NAF ::= "not"
91 CONS ::= ":-"
92 WCONS ::= ":~"
93 PLUS ::= "+"
94 MINUS ::= "-"
95 TIMES ::= "*"
96 DIV ::= "/"
97 AT ::= "@"
98 PAREN_O ::= "("
99 PAREN_C ::= ")"

100 SQUARE_O ::= "["
101 SQUARE_C ::= "]"
102 CURLY_O ::= "{"
103 CURLY_C ::= "}"
104 EQUAL ::= "="
105 UNEQUAL ::= "<>" | "!="
106 LESS ::= "<"
107 GREATER ::= ">"
108 LESS_OR_EQ ::= "<="
109 GREATER_OR_EQ ::= ">="
110 AGGREGATE_COUNT ::= "#count"
111 AGGREGATE_MAX ::= "#max"
112 AGGREGATE_MIN ::= "#min"
113 AGGREGATE_SUM ::= "#sum"
114 FALSE ::= "#false"
115 TRUE ::= "#true"
116 COMMENT ::= "%" ([^*\n] [^\n]*)?
117 MULTI_LINE_COMMENT ::= "%*" ([^*] | "*" [^%])* "*%"
118 NL ::= [#x0A#x0D]
119 WS ::= [#x09#x20]

101

Value Evaluation Statements

Insight

The visualiza�on facilitates answering
ques�ons about the data

The visualiza�on exposes individual data cases and their a�ributes S1

The visualiza�on facilitates perceiving rela�onships in the data like
pa�erns & distribu�ons of the variables S2

The visualiza�on promotes exploring rela�onships between individual
data cases as well as different groupings of data cases S3

The visualiza�on provides a new or
be�er understanding of the data

The visualiza�on helps generate data-driven ques�ons S4

The visualiza�on helps iden�fy unusual or unexpected, yet valid, data
characteris�cs or values S5

The visualiza�on provides
opportuni�es for serendipitous
discoveries

The visualiza�on provides useful interac�ve capabili�es to help
inves�gate the data in mul�ple ways S6

The visualiza�on shows mul�ple perspec�ves about the data S7

The visualiza�on uses an effec�ve representa�on of the data that shows
related and par�ally related data cases S8

Time

The visualiza�on affords rapid
parallel comprehension for efficient
browsing

The visualiza�on provides a meaningful spa�al organiza�on of the data S9

The visualiza�on shows key characteris�cs of the data at a glance S10

The visualiza�on provides
mechanisms for quickly seeking
specific informa�on

The interface supports using different a�ributes of the data to
reorganize the visualiza�on's appearance S11

The visualiza�on supports smooth transi�ons between different levels of
detail in viewing the data S12

The visualiza�on avoids complex commands and textual queries by
providing direct interac�on with the data representa�on S13

Essence

The visualiza�on provides a big
picture perspec�ve of the data

The visualiza�on provides a comprehensive and accessible overview of
the data S14

The visualiza�on presents the data by providing a meaningful visual
schema S15

The visualiza�on provides an
understanding of the data beyond
individual data cases

The visualiza�on facilitates generaliza�ons and extrapola�ons of
pa�erns and conclusions S16

The visualiza�on helps understand how variables relate in order to
accomplish different analy�c tasks S17

Confidence

The visualiza�on helps avoid making
incorrect inferences

The visualiza�on uses meaningful and accurate visual encodings to
represent the data S18

The visualiza�on avoids using misleading representa�ons S19

The visualiza�on facilitates learning
more broadly about the domain of
the data

The visualiza�on promotes understanding data domain characteris�cs
beyond the individual data cases and a�ributes S20

The visualiza�on helps understand
data quality

If there were data issues like unexpected, duplicate, missing, or invalid
data, the visualiza�on would highlight those issues S21

Table A1: Value evaluation statements - reprinted from Wall et al. [WAM+19]

102

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Research Questions
	Methodology

	Related Work
	Recommendation Systems
	Grammars for Answer Set Programming
	Parser Generators for Answer Set Programming
	Visualizations in Context of Logic Programming
	Network-Based Visualizations of Set Relationship
	Hierarchical Data Structure-Based Visualizations
	Summary

	Data Processing and Visualization Approach
	Problem and Requirements Analysis
	Data Extraction and Processing
	Visualization and Interaction Design
	The Final Design

	Implementation
	Prototype Design
	Selected Technology Stack
	Limitations of the Prototype

	Evaluation
	Evaluation of the Grammar
	Evaluation of the Visualization

	Discussion and Future Work
	Contributions
	Generalizability
	Modular Version of Draco
	Limitations
	Future Work

	Summary and Conclusion
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography
	Appendix

