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Show Me Your Face: Towards
an Automated Method to Provide Timely
Guidance in Visual Analytics
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Abstract—Providing guidance during a Visual Analytics session can support analysts in pursuing their goals more efficiently. However,
the effectiveness of guidance depends on many factors: Determining the right timing to provide it is one of them. Although in complex
analysis scenarios choosing the right timing could make the difference between a dependable and a superfluous guidance, an analysis
of the literature suggests that this problem did not receive enough attention. In this paper, we describe a methodology to determine
moments in which guidance is needed. Our assumption is that the need of guidance would influence the user state-of-mind, as in
distress situations during the analytical process, and we hypothesize that such moments could be identified by analyzing the user’s
facial expressions. We propose a framework composed by a facial recognition software and a machine learning model trained to detect
when to provide guidance according to changes of the user facial expressions. We trained the model by interviewing eight analysts
during their work and ranked multiple facial features based on their relative importance in determining the need of guidance. Finally, we
show that by applying only minor modifications to its architecture, our prototype was able to detect a need of guidance on the fly and
made our methodology well suited also for real-time analysis sessions. The results of our evaluations show that our methodology is
indeed effective in determining when a need of guidance is present, which constitutes a prerequisite to providing timely and effective

guidance in VA.

Index Terms—Guidance, visual analytics, emotions, facial analysis, machine learning

1 INTRODUCTION

Visual Analytics (VA) aims at enabling a better collab-
oration between humans and analytical systems by means
of interactive visual interfaces [1]. Despite being straightfor-
ward to understand, the VA process hides challenges at any
of its steps making it difficult to apply in practice.

For this reason, in parallel to the development of VA
methods, scientists have been studying approaches to help
analysts using them. The science of assisting analysts has
roots in interaction science and visual interface design [2],
[3]. All their nuances can be grouped together under the
term guidance [4]. As new guidance methods are being de-
veloped, new challenges arise whose solution is vital for the
instantiation of effective assistance. Among these, detecting
the most appropriate moment for providing guidance is
crucial, but mostly unaddressed [5]. However, as analytical
methods become more and more complex, timely guidance
cannot be disregarded anymore. Since different guidance is
needed at different moments of the VA process, choosing
the right timing is crucial to make the guidance effective.
Conversely, choosing a wrong timing may mislead and
sway the analyst and interfere with the analysis as a whole.

Until now, research in VA has mainly considered the
analyst’s interactions for detecting what the user may need
during the analysis. For instance, if a certain incorrect be-
havior is detected, some countermeasures — such as pro-
viding guidance — could be taken. However, when such
guidance should be provided is a problem that has not
been sufficiently addressed in VA. To determine the right
timing for providing guidance, at least two ingredients
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are needed: First, there should be a need for guidance.
Second, the user should be ready to accept it. While the sec-
ond problem entails the consideration of subjective factors
and specific nuances of the single user’s personality e.g.,
stubbornness in rejecting guidance, the first one relies on
common psychological mechanisms. Within this context, we
present a methodology to determine if and when a need for
guidance is present, thus making important steps towards
determining the correct timing for providing guidance.
Our research is grounded on the recognition of specific
facial expressions that can be seen as a doorway to the analyst’s
state of mind and hence can be directly associated to a need
for guidance [6]. Facial expressions are a direct consequence
of changes of the analyst’s state-of-mind as, for instance, in
response to distressful situations during the analysis. Thus,
in this work, we propose a framework to analyse a user’s
face and detect such changes on the fly, hence identifying
moments when guidance is potentially needed. We describe
and evaluate an implementation of our approach with three
methodologies. The results obtained show that our method
is effective in determining when the user needs guidance
and shed light on the steps needed to make guidance
accepted (and hence, effective) in VA. Our contributions are:

o We present a proof-of-concept solution for detecting
the moment when guidance is needed exploiting
facial expressions of analysts doing VA.

e We describe the training and use of a machine learn-
ing model (ML, Random Forrest) to analyze facial
expressions and automatically identify the need for
guidance in real time (Section 4).
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e We evaluate our methodology by evaluating the
trained model with both test data and in a real-
time analysis scenario (Section 5) discussing its ad-
vantages, possible limitations, and illustrating how
subjective traits, such as the willingness of a user to
accept the guidance, are factors that play a crucial
role in determination of the most appropriate timing
to initiate guidance (Section 6).

2 RELATED WORK

In this section, we describe related research in cognitive
sciences, human emotion recognition and HCL

2.1 Guidance in VA

Prior research has defined the goal of guidance as helping
the analyst to overcome a knowledge gap [4], [7], [8]. This
knowledge gap is related to the difficulties the analyst faces
when solving tasks. For instance, exploring the data, or
choosing appropriate analytical methods are common issues
that guidance aims to alleviate. One of the first approaches
providing guidance is GADGET [9]. GADGET supports ana-
lysts while creating their own visualizations. GADGET sug-
gests possible additions to the visual design by confronting
the data and a description of the tasks with a knowledge
base of previously created visualizations. On the same line
is VisComplete [10], which also aids analysts in creating
visualizations. The system is built upon a knowledge base
comprising typical visualization pipelines. Focusing on the
user’s interaction, the system is capable of suggesting viable
visualizations. Gotz et al. [11] proposed a guidance method
to suggest the most appropriate visualizations for a given
task. The system automatically extracts a descriptor of the
current task the analyst is pursuing, based on the interac-
tion, and proposes them possible additions to enhance the
current analysis process.

While we described just a few guidance approaches,
many more exist in literature [5]. Accordingly, existing ap-
proaches do not really consider what the most appropriate
moment to initiate guidance could be. Usually, such ap-
proaches are more interested in determining what type of
guidance could be appropriate and provide it right away,
which, as we will see in Section 3, may not always be a
good strategy.

2.2 Recognizing Human Affects

Affect recognition refers to the process of identifying human
emotions. Although the accuracy in discerning emotions
varies from subject to subject, the ability to roughly say what
a person is feeling is typically an innate ability that is tied to
our evolution [12].

Human emotions are complex mental states associated
with our nervous system [13]. There is not yet a commonly
accepted definition of emotion. However, there is a consen-
sus that emotions are strongly connected to experiences and
events that we live. In general, many studies showed how
emotions occur as a consequence of internal and external
stimuli, namely, emotion elicitors, causing physiological and
psychological changes in our bodies [14].
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This very same sequence event — emotions — bodily reaction
is also at the base of the way we interpret others” emotions.
For instance, feeling anger can be deduced from how others
articulate their speech or the tone of their voice. This the-
ory has inspired many researchers to look for methods to
automatically extract emotions from visual e.g., images and
videos, and non visual stimuli, e.g., skin conductance and
hearth beat [15].

In visual data analysis, a big part of literature high-
lights the importance of maintaining an appropriate state of
mind during the analysis to foster insights [16], [17]. Data
analysis can be considered an emotion elicitor, like many
other activities we perform. Executing tasks and performing
data analysis has a direct impact on the emotions and
on analysts’ state of mind. Sensations of being lost may
arise, for instance, when facing difficulties but also feeling
frustrated or sad might also be a sign of issues during the
analysis process [18], [19]. In this paper, we make a step
forward exploiting such emotions to our advantage. We
present an automatic method that detects analysts” emotions
by analyzing their facial expressions, identifying distress
situations, and subsequently initiate guidance.

The Facial Action Coding System (FACS) [20], [21], [22]
has been for years the main method for categorizing facial
expressions. Emotions have a direct effect on facial traits
which are expressed by the simultaneous movement of mul-
tiple facial muscles. In this respect, the FACS enumerates the
so called Action Units (AUs) which represent movements
of single facial muscles. Hence, AUs are a systematic way
to study facial configurations and human affects. Emotions
can be seen, in fact, as the simultaneous presence of multiple
muscle movements (AUs).

The paper by Ekman and Friesen described sixty-four
action units (AUO1 to AU64) [20], [21]. Nowadays, frame-
works for facial analysis are able to extract most of them
in real time and also determine the intensity of the de-
tected movements [23]. For instance, AU14 (see Figure 1c)
is connected to the action of the buccinator muscle and
it is involved in the appearance of mouth dimples. If a
person when thinking or talking uses such muscles, the
corresponding presence of AU14 will be positive and its
intensity related to a numerical value, e.g., 1-5. A list of
further AUs can be found in Table 2 and Figure 1. As
we will see, different AUs have a different importance in
determining a need for guidance.

2.3 Detecting Interruptibility

Detecting a need for guidance is closely related to the re-
search area of interruptibility, which investigates how users
can be interrupted as they perform different duties [24].

In human-computer interaction (HCI), the system devel-
oped by Tsubouchi et al. [25] analyses the user’s activity
with a smartphone to detect appropriate moments to send
notifications. They further show how providing notifica-
tions on time is the key to obtain a suitable response from
users. Similarly to the previous paper, Ziiger et al. [26]
investigated when software developers could be interrupted
during their work day. Differently from the previous papers,
the authors consider a larger set of input to decide when
users can be interrupted. Specifically, biometric data (e.g.,
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(a) AUO1 Brow Raiser

(b) AUO7: Lid Tightner

%,

(c) AU14: Dimpler (d) AU26: Jaw Drop

Fig. 1: Facial expressions associated with a need for guidance. Events and experiences, like issues occurring during VA,
have a direct effect on our mental state and emotions. When emotions occur our body reacts to them and our facial traits
change. We can analyse facial traits (AUs) and use them as hints to initiate guidance. (a) AUO1 is associated with the brow
raiser muscle; (b) AUO7 is related to the lid tightener; (c) AU14 regulates the appearance of dimples; (d) AU26 regulates

the movement of the jaw.

heart beat) and interaction data are employed to obtain ac-
curate predictions. Interruptions can be counterproductive
for learners, i.e., students. Qu et al. [27] investigated when
students can be interrupted as they learn new concepts.
The authors utilize a combination of different input sources
derived from the students’ interaction with the learning
environment and eye-gaze activity to detect their focus
and attention span. Finally, also Barral et al. [28] exploited
eye-gaze data to enhance and support the exploration of
narrative visualizations in users with different levels of
visualization literacy.

Whereas these approaches show how “negative” emo-
tions and the disruption of the workflow are the result of
choosing to interrupt the user at the wrong moment, our
aim is to investigate if and when those emotions can be
instead a signal for guidance.

Interruptibility in the Visualization Field. Moving to
visualization, most of the literature is not concerned with
deciding if a user can be interrupted. Conversely, visual-
ization approaches assume that users can be indeed inter-
rupted because they are already stuck and need assistance.
In other words, the visualization literature is more focused
on detecting what guidance may be needed instead of when
this should be provided. For instance, Cook et al,, [29]
exploited task descriptors to assist the completion of mixed-
initiative VA tasks. In a study that is more closely related
to ours, Fan et al. [30] used ML techniques to analyze the
speech of users using a visual interface. Using speech anal-
ysis, the system provides feedback to interface designers.
Conversely to our purposes, this method works only with
speak aloud protocols and during the design phase, for
usability and testing purposes. Thus, it requires an active
effort of the end-user. In our work, we do not focus on
the design process but rather in analysing users’ visual
appearance during the analysis, so that no active effort is
required from them to express their need for guidance.

3 TowARDS TIMELY GUIDANCE IN VA

While the research in HCI showed us how choosing an
inappropriate moment can have dire consequences for the
user activity [31], the guidance approaches we described
in Section 2.1 are mostly concerned with deciding what
guidance the user might need to continue the analysis.

We argue that typical analysis scenarios are generally
more complex than those described in the aforementioned

studies on guidance. Typically, many events take place be-
tween the start of the analysis and moment when guidance
is needed. Hence, at a certain moment, guidance may or
may not be needed at all depending on how the analysis
developed until that point. In such complex situations, the
aforementioned guidance approaches would probably fail
in determining if the guidance is needed with the conse-
quence that their efficacy would be compromised.

An early work tackling the problem of timely guidance
has been authored by Mark Silver [2]. Silver states that
guidance should be provided when there is an opportunity.
Such an opportunity is related to the existence of a deci-
sional moment in which the analyst is required to make
a “discretionary judgement”, like deciding about the next
step to make. For instance, in VisComplete [10], the analyst
has to decide how to complete the visual design and only
then the system provides guidance. In absence of such
moments, Silver argues the benefits of providing guidance
are minimal.

However, detecting decisional moments is not always
possible. Battle et al. [32] state that performing exploratory
analysis is a clear example of such situations. Other ex-
amples of problematic situations are, for instance, stalled
analyses. In stalled analyses, it is usually not immediately
clear if analysts are simply doing something else or if they
just do not want any assistance. Finally, analyzing the inter-
action history alone, which represents the solution adopted
by many literature approaches could also not achieve a
sufficient level of accuracy.

In summary, looking for interaction patterns and
analysing task descriptors, as described in Section 2.1, may
be useful to detect what guidance the user may need
but show their limitations when applied to decide when
guidance has to be provided. Our argumentation is that
providing guidance on time is a complex decision, which
partly involves the presence of a real need for guidance and
the user’s willingness to accept it. While user’s propensity
to receive help is more strictly related to the problem of
interruptibility and tied to specific traits of the single user’s
personality, e.g., stubbornness in rejecting help, tackling the
first challenge instead has more to do with how humans
deal with data analysis and how they face problematic
situations. In this paper, we describe a novel solution to
tackle the latter problem.

Our hypothesis is that changes of facial expres-
sions could be exploited to determine if guidance
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is needed at a given moment.

Therefore, we describe how we built and evaluated
a framework to detect a need for guidance by detecting
specific facial features, thus shading light on a possible time
span to safely provide it to the user.

4 A ML APPROACH TO TIMELY GUIDANCE

Our method can provide an answer to the question — “Does
the analyst require guidance?” — by analyzing a video stream
of the analyst’s face. In the following, we describe the
procedures we set up to collect and label data for training
and testing purposes.

4.1 Overview of the Training Procedure

We provide a short overview of the training process, which
is portrayed in Figure 2. To collect training data, we set up a
set of tasks to be performed on a large dataset using Tableau
Desktop’. Using a webcam, we collected a video of the ana-
lysts’ face while performing tasks. We employed OpenFace
v2.0, a state-of-the-art tool for facial expression analysis [23]
on the recorded footage to extract the analysts’ facial fea-
tures. The participants could ask for guidance when needed
using a button. When this happened, the software stored
the corresponding time which was used to label the data.
An evaluator assisted the process and could add additional
labels. The evaluator was positioned in a deferred position
and s/he did not interact with the participants except for
moments when they explicitly requested guidance. Finally,
the labeled data was fed to a ML algorithm for discerning
moments when guidance was needed. A detailed descrip-
tion of the training process follows.

4.2 Task and Dataset

Task Requirements. When designing the task and the eval-
uation procedure, we defined three requirements we wanted
to meet: (1) The task should include open exploration and
there should be multiple alternative ways for solving it, so
that not all users would face the same problems at the same
time. (2) The task should be general enough to demonstrate
the applicability of our methodology to multiple VA sce-
narios. (3) The task should not be too simple not to require
guidance.

Given the requirements, we settled for an open-ended
exploratory data analysis scenario [33]. This allowed us to
focus on the definition of a generic analysis goal rather than
on defining a precise list of tasks. This also allowed us to test
our methodology in a situation in which other strategies
usually fail — see [32]. In summary, we let analysts free of
choosing the strategy they wanted.

Dataset. For the analysis, we chose a dataset of re-
ported wildlife incidents with aircraft?. The dataset consists
of approximately 180k rows describing wild animals, e.g.,
birds, striking aircraft. The dataset is regularly maintained
by the Federal Aviation Administration and contains many
dimensions, like the weather conditions, the type of aircraft
and animals involved, etc..

1. https:/ /www.tableau.com, accessed:05/2021
2. https:/ /wildlife.faa.gov, accessed:05/2021
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Fig. 2: The procedure we set up to train a ML model:
(1) we collected facial features of analysts performing data
analysis; (2) we labeled this data according to the reported
moments in which they needed guidance; and (3) using this
labeled data, we trained a ML model to automatically detect
a need for guidance.

Open-ended Task. We asked the analysts to solve the
following task:

You are put in charge by an institution (e.g., the government,
or an national aviation agency) to analyse the data using a VA
tool, understand the phenomenon and find a possible solution to
the problem of animal striking aircraft.

We asked them to analyze the data and produce a set of
guidelines or suggestions to possibly reduce the number of
events. For instance, participants tried to analyse if accidents
were caused by specific animals or on the time of the
day. On the base of such findings, they imagined possible
solutions, like installing birds dissuaders or make aircraft
parts undergo deeper maintenance routines.

The task we chose is open to many solutions and multi-
ple resolution strategies. The dataset allows users to explore
multiple data dimensions. Also, the topic does not require
specific domain knowledge and can be easily grasped by
non-experts. Still, to be sure everyone understood the task,
we prepared supplementary material comprising a descrip-
tion of all the data fields and three newspaper articles
describing aircraft accidents due to wildlife strikes, each one
focusing on different aspects of the problem to get them
involved in the task. We handed them this material before
the study began.

4.3 Participants and Software Environment

We asked eight visualization experts to take part in the data
collection procedure (i.e., recording their facial expressions
when trying to solve the given task). They are all part of our
research group and experts in using visualization tools.
After signing a consent form concerning the video
recording, we asked them to perform the open-ended task
using Tableau. We chose this tool because it offers a direct
way to explore data, create visualizations and it fits our
requirement for open-ended exploration. Whereas none of
the involved participants used Tableau with assiduity, many
of them were already familiar with it. However, to be sure
all participants had a similar knowledge of the environment
before starting the study, we provided all of them an in-
troductory tutorial to the tool, using a different dataset —
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Fig. 3: Following a standard training procedure: (1) raw data
was produced by OpenFace. (2) we labeled the data, either
manually and automatically. (3) we pre-processed the data
keeping only features relevant to our study. (4) we trained
the ML model. Eventually, we repeated (3) and (4) to refine
the model and obtain higher accuracy.

the Super Store dataset integrated in Tableau. Through the
tutorial, we guided them through the main characteristics of
the tool. For instance, the tutorial asked them to create a bar
chart by selecting two dimensions, the sales of a shop and
the sales” date, and later asked to filter out some data (i.e.,
display all but the sales related to chairs and office supplies).

4.4 Model Training

During the study, we captured facial features of the analysts
which we used for training. The training pipeline is repre-
sented in Figure 2 and 3.

4.4.1 Data Labeling

The whole open-ended analysis lasted between 30 to 40
minutes per participant, introduction and tutorial excluded.
At the end of the process, the video of each participant was
processed with OpenFace for extracting the facial features
(see (1) in Figure 2). The video was captured at a resolution
of 1920x1080 pixels and 30 frames per second. Each frame
was analysed to extract a feature vector, which corresponds
to a row of the training dataset.

Afterwards, we labeled the data (see (2) in Figure 2),
i.e., each row was identified with one of two labels. The
labeling was performed, in first instance, by using labels
created by the user during the study. Additional labels were
inserted manually, in a subsequent moment, as detailed in
the following paragraphs.

Automatic Labeling. During the analysis, we encour-
aged participants to ask for guidance when needed by
pressing a button we positioned on the top-right corner of
the Tableau interface. When pressed, the button stored the
time. Thanks to the timestamp recorded, all the data falling
in the instants preceding the timestamp were automatically
labeled as instants in which guidance was needed. The
guidance could be requested at any time and any number
of requests could be submitted during the whole procedure.
The actual guidance support was then provided by the
evaluator. Typically, the participants asked the evaluator
how certain functions of Tableau could be accessed or used.
The evaluator pointed them to the requested functions, or
to the menus to access them. Other times, the participants
could not understand how to interpret certain graphs. In
those rarer occasions, the evaluator suggested them how to
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change visualization, or read the graph. The provision of
guidance affected participants’ feelings as a stark decrease of
the need for guidance.

Manual Labeling. We complemented the initial labeling
with additional labels. During the procedure, we encour-
aged participants to think aloud. In particular, we asked
them to talk about their current analysis goal and if they
were facing difficulties while pursuing it. Hence, the eval-
uator was always aware of the analysis status and could
possibly help and provide guidance if necessary. The partic-
ipants were already familiar with talk-aloud protocols and it
was perceived as a natural behavior, especially when users
experienced issues. In case we noticed they were silent for
protracted periods, the evaluator encouraged them to talk
by asking simple questions, as “what are you doing right
now?” or “what are you trying to achieve?”.

The think-aloud protocol was not used directly as an
input to the ML model. However, it helped us detecting
additional moments in which guidance was potentially
needed, i.e., when the button was not used. To detect such
moments, we payed attention to cues and subtle requests
for guidance, like analysts exclaiming “I am experiencing
problems doing this...” or “I do not know how to do that...”.
When this happened the evaluator marked the correspond-
ing timestamp which was later considered as an additional
moment when users needed guidance. This was done be-
cause we noticed that the guidance button was pressed just
in extreme situations, like for instance, when the analysts
were really unnerved or when they could not continue the
analysis. This procedure allowed us to consider also those
moment in which guidance was not directly requested, but
some lower level of guidance could have been advised. In
average the button for requesting guidance was pushed
five times per session. In addition, the evaluator noted on
average three additional moments per session.

Guidance
Requested

Encounter
Problems

Increasing Distress

Guidance needed A

'ﬁr;e' """" '\"""""' """"" o >

90s

Normal Analysis

g ©

Guidance NOT
needed

©

Fig. 4: The labeling scheme. We label the data as “"guidance
is needed” in correspondence of moments of increased
distress. Remaining data frames were labeled “guidance not
needed”.

Labeling Scheme. The timestamps detected with the
aforementioned procedures were used to label the data.
The labeling was performed using R®. The labeling scheme
is portrayed in Figure 4. Specifically, we chose a binary
scheme: “Guidance is needed” and “Guidance is not needed”.

We assumed that in the moments preceding the press of
the button, the symptoms of distress would have resulted

3. https:/ /www.r-project.org accessed: 05/2021
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in evident facial expressions. Hence, we labeled the data
collected in such intervals as “Guidance is needed”. The
precise time interval was set to 90 seconds, i.e., all the data
collected in the 90 seconds interval preceding the actual push
of the button was marked with this label. The negative label
was assigned to all the other frames. In this way we put in
correlation facial expressions and guidance requests.

The 90 seconds interval was chosen because we noticed
that in that time analysts started to show signs of distress.
For instance, many started to frown. For the sake of being
exhaustive, we also tried shorter and longer intervals. In
the end, the 90 second interval proved to be the most
appropriate.

4.4.2 Preprocessing

In the third step of our pipeline (see Figure 3), we applied
a dimensional reduction to check for unnecessary dimen-
sions, while testing the accuracy of the resulting model.
The raw data coming from OpenFace includes more than
five-hundred dimensions and fifty-five AUs. Besides the
AUs, a myriad of other low-level data corresponding to
facial characteristics and position of facial landmarks are
captured, including the x,y, and z coordinates of the single
points composing them. For our purpose, most of such
dimensions were redundant, as for instance, the position of
single landmarks and their coordinates. Therefore, although
we wanted to take initially into consideration a higher
number of features, at the end of this phase, we kept only
the fifty-five AUs captured by OpenFace.

The dataset was generally very tidy. However, we had
to take care of the rows corresponding to video frames that
OpenFace was not able to interpret (less than 1% of the total
rows). This happened, for example, when the analyst’s face
moved outside the video frame. Usually, this situation lasted
no more than a couple of seconds. A negative value in the
“success” dimension was sufficient to identify such cases.

The AUs describe the presence (or absence) of facial
features as categorical values (AU present/not present). For
a correct training — most of the ML algorithms work better
with numbers — these dimensions were transformed into
numerical values using a one-hot encoding. Also the values
representing the intensity of the AUs were normalized to
values between zero and one for better processing.

Finally, we performed a feature selection. Theoretically,
it exists a subset of dimensions that contributes the most
to determine if guidance is needed or not. Appropriate
feature selection also helps to avoid the risk of over-fitting
the model, since it avoids unnecessary dimensions. Feature
selection can be done either automatically i.e., an algorithm
chooses what features to keep based on a ranking of their
importance, or manually, where the control over which
feature to keep is kept by the analyst. We decided for mix
of automatic and manual selection. In other words, we ran
the automatic feature selection algorithm, we inspected the
results and decided which dimension to keep.

At the end of the process, we kept all the AUs and the
AUs intensities but we removed all the dimensions related
to the head pose and eyes position. The eye position, for
instance was removed because we thought it could lead to
a biased model. In our setup, the button for asking for guid-
ance was positioned in the top-right corner of the analysis
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environment. This forced analysts to move the head and
eyes towards that corner before asking for guidance. If we
would have included this dimension, the system could have
learned that when analysts looked at the top-right angle of
the screen they needed help. Hence, we removed them. The
head pose dimension captures the location of the head with
respect to camera, in millimeters, and it was also a potential
source of bias. The values are calculated considering the
camera as the origin of the coordinates system. Since the
position of the camera may vary, we decided to remove also
this feature. Finally, the system also suggested to remove
(i.e., it had a very low ranking) the head pose and position.
Removing such dimensions resulted in increased accuracy.

4.4.3 Training

In a last step, we trained our ML model with the prepro-
cessed data (see (3) in Figure 2): We tested multiple algo-
rithms and compared their prediction accuracy. A random
forest classifier (RF) performed best and was kept for further
evaluation.

Figure 5 shows the results of this comparison, performed
automatically using R, which took care of the whole pro-
cess. With the aim of having a fair comparison R fine-
tunes all of them with a same strategy. We applied a ten-
fold cross validation repeated five times to fine tune the
hyperparameters of all the ML models. To understand what
this strategy means in practice, we can think of how the
RF algorithm works. During the training, while the model
builds multiple decision tree, the tuning process optimizes
the number of trees and the number of variables that are
used to split and branch them [34]. Usually this parameter
is referred to as mtry. In our case, after the tuning, fourteen
variables were chosen (mtry = 14) for the best performing
model. The comparison among the models was based on
the following metrics: (1) The ROC-AUC, which measures
the area under the receiver operating characteristic (ROC)
curve. The curve plots the true positive rate of a model
against its false positive rate. The area under the resulting
curve (AUC) shows how much a model is able to discern
between classes. (2) The sensitivity, sometimes called recall,
measures the true positive rate, which is the proportion of
actual positives cases that are correctly identified as such.
Consequently, high sensitivity of a model means that the
number of false negatives is low. Finally, (3) the specificity
measures a model’s ability to correctly identify negative
cases — in our case, moments when the analyst did not need
guidance. A high specificity is also an indication of few false
positives.

After preprocessing, the dataset still consisted of about
200k+ rows. Training times mostly depended on the algo-
rithm used: Some of the models, like SVMs, are generally
not fitted to elaborate this huge amount of data because its
kernel requires memory space that scales quadratically with
the number of rows [35]. Others, like the Random Forest
algorithm, required less resources and less time.

4.4.4 Class Balance

The data we collected was very skewed. Especially when
shorter intervals were chosen for labeling, e.g., thirty sec-
onds, the classes were mostly unbalanced, with a clear dom-
inance of the negative class. Thus, we adopted two strategies
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Fig. 5: Comparison of multiple ML models in our training scenario. We report the ROC-AUC curve, the specificity, and
the sensitivity of the models we trained. It is possible to notice that the Random Forest model performs the best in
terms of ROC-AUC which can be translated to a high accuracy. List of abbreviations: RF: Random Forest. KNN: K-
Nearest Neighbors. ADA: Adaboost. FDA: Flexible Discriminant Analysis. NB: Naive Bayes. MARS: Multivariate Adaptive
Regression Splines. GLM: Generalized Linear Model. SVM: Support Vector Machines.

to balance the classes. First, we tried to under-sample the
negative class. Second, we tried the Synthetic Minority
Over-sampling Technique (SMOTE) [36]. The SMOTE works
by generating reasonable values for the minority class while
it under-samples the other class until a balance is reached. In
both cases, we aimed for a class balance around 60-40%. The
initial results we obtained showed that the RF model trained
with the data obtained with the two balancing strategies had
similar performance to the one obtained using the whole
dataset (i.e., similar accuracy, sensitivity, and specificity).
Hence, for the final tests we kept the RF model trained with
data obtained with the simple undersampling strategy, as it
was easier to manipulate (less data means a smaller model)
and had faster prediction times.

5 MuULTI STAGE MODEL EVALUATION

In this section, we elaborate on the strategies we used to
evaluate our model.

5.1 Overview and Evaluation Strategies

After training, we ran some tests to evaluate if the model
could detect a need for guidance in different scenarios. Also,
we investigated if the need for guidance could be related to
specific facial features, as hypothesised.

We adopted two standardized evaluation proce-
dures [37] — see Section 5.2. In first instance, part of the
labeled data was used to test the model (80-20 method). In
a second trial, we applied a k-fold cross evaluation. Finally,
we tested our methodology in a real-time analysis scenario
— see Section 5.3. Results are shown in Table 1. For the first
two tests, we report the sensitivity, the specificity and the
F1 measure, which is the harmonic mean of specificity and
sensitivity. F1 values above 50% are generally considered
positive. For the real-time evaluation, we only discuss accu-
racy, since we lacked the ground truth to calculate the other
metrics.

A Base Line for Evaluation. Before performing the
evaluation, we determined a baseline accuracy. Often, this
is referred to as the no-information rate or the probability

of making a correct prediction with a simple guess. If the
accuracy of the model is worse than guessing, it is clear that
the trained model is not working well.

A naive choice would be setting this value to 50%, as
we have two classes. However, since we are working with
a skewed dataset this values can be raised to 56.4%, which
represents the percentage of negative class instances in the
dataset.

5.2 Evaluating Performance: 2 Scenarios
5.2.1 Basic Evaluation

Typically, models are evaluated with a so-called 80-20 strat-
egy: around 80% of the labeled data is used for training
while the remaining 20% is reserved for testing [37].

This is a typical (and easy) evaluation methodology. The
drawback is that it does not tell us how the model performs
with unseen data, since test and training data are taken from
a same dataset. Although the results should be taken with
a grain of salt, they were encouraging. The tests highlight
high accuracy (=~ 98%), as well as high sensibility and
the specificity. We interpreted this result as a sign that our
model can — most of the times — correctly identify a need for
guidance.

5.2.2 K-fold Cross Validation

To get a more representative view of model performance,
we performed a k-fold cross validation [38]. The idea of a
k-fold evaluation strategy is simple: repeat multiple times
a given test, each time with different settings and compare
the results. Earlier, we showed how this idea can be applied
to fine-tune the model parameters. This time, instead, we
apply it for evaluation purposes. The evaluation consists
of a few steps: Split the dataset into k£ groups and pick one
for testing. Use the remaining data for training. Check the
accuracy of the predictions and repeat selecting a different
group as test data.

We created the groups manually, each containing the
data of a different analyst. Then, we trained the model k —1
times and applied it to predict the values of the remaining
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Fig. 6: A schematic representation of the procedure we set
up to test the trained model in a real-time analysis scenario.
At first, (1) each video frame is used to extract facial features
of the analyst. Afterwards, the facial features are sent to a
server (2) that instantly produces an answer — “Guidance”
or “No Guidance” required — and sends it back to the client.

fold. We report the average accuracy and other performance
metrics of these iterations in Table 1. The results show an
accuracy of 72.6%, which is much lower than the results of
the 80-20 evaluation. However, it gives us a much better
estimation of how the model would work in practice, since
the model is tested on completely unseen data — including
individual facial features and expressions.

5.3 Real-Time Evaluation

In a last scenario, we assessed how the predictive model
performed in a real-time analysis and if it could detect a
need for guidance “on-the-fly” during the analysis. For this
evaluation, we had to create a new pipeline in order to pro-
cess the data in real time and decide on the fly if guidance
was needed. We adopted this procedure to simulate what
a functioning guidance system would have done during a
normal VA session.

The scheme of the real-time evaluation setting is por-
trayed in Figure 6. The evaluation setup was very similar to
the one used for training purposes: Using the same dataset
we employed for collecting data, we asked five additional
participants to perform the same open-ended task, using
Tableau. Similarly to the training scenario, also these par-
ticipants had previous experience with Tableau and data
exploration.

In comparison to the training setting, though, we set up
a new client/server architecture to process the data as it
was created. In these real-time sessions the participants were
filmed through a virtual conference tool while performing

Evaluation Accuracy Sensitivity Specificity = F1
No-Info Rate 56.4% - -

20% Test Data 97.62% 98.62% 98.09% 98.4%
K-fold Cross Validation = 72.6% 59% 55% 56%
Real Time Analysis ~70% - -

TABLE 1: Performance metrics of the trained ML model.
The first row describes the case of guessing the labels
(guidance/no guidance), i.e., the No Information Rate. We
evaluated the model in multiple ways: We applied a 80-
20 test and a k-fold cross validation strategy (the reported
data is an average of k tests). Finally, we describe how the
model performed in a real time analysis scenario. We report
the accuracy, the sensitivity, specificity, and the F1 combined
metric.

f/u | \ l
LMl 4 Wl

Fig. 7: How the need for guidance developed in a real-time
evaluation. X-axis: the time of the analysis, ~15 mins. Y-axis:
the avg. need for guidance. When the detected need was
higher than 80% we interrupted the analysis and asked the
participants if they needed help. The peaks in the gray zone
were correctly identified as the analyst needing guidance.
The peaks highlighted with the circles were not detected,
although the participant reported that some guidance could
have been necessary at that moment.

the task and the data was sent to a local server for real-
time analysis. This different setup was imposed by the
regulations due to the ongoing COVID-19 pandemic and
the need to avoid close social contacts.

When our prototype identified a need for guidance, we
interrupted the participants and subsequently asked them
two Quick Questions: 1) How would you rate the grade
of interruptibility, on a scale from 1 (not interruptible) to 5
(highly interruptible)? And 2) How would you rate your mental
workload, on a scale from 1 (very low) to 5 (very high)?. If the
participant acknowledged the need for guidance, the pre-
diction was considered correct; false otherwise. Afterwards,
the participants were provided with the requested guidance,
when the detection was correct, and could continue the
analysis.

Architecture of the prototype. As mentioned, the analy-
sis of facial features was done on the fly. To account for this
change, we modified the facial analysis software, so that the
detected AUs would be sent immediately for analysis. We
set up a simple local server accepting GET requests. Once
received, the requests were passed to a R script running
the predictive model and decide if guidance was needed.
Client and server were connected through the same phys-
ical network, to ensure a fast and reliable communication.
However, due to some delays and to prediction times, in
contrast to the offline setting, we were not able to decode
the same amount of frames per second. The compromise for
a stable facial analysis and feature detection was analysing
15 frames per second, which did not prejudice the fluidity
of the study. The whole preprocessing of the data was
performed on the fly by the client.

For each frame sent, the server replied with a textual
answer guidance/no guidance. When a certain amount of
positive answers were detected (see paragraph “Aggre-
gation Strategy” for the details), an evaluator received a
notification on the client side and asked the analyst if this
was really the case, if they really needed guidance, and
asked the aforementioned quick questions. At the end of the
analysis, the participants were asked a further set of After-
study Questions: We asked whether 1) the participants felt the
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guidance was administered at the right time and 2) if they found
it frustrating to be interrupted. Furthermore, 3) if they found
invasive that the guidance was provided them with the voice, or
4) if they would have preferred a different type of notification e.g.,
popups, sounds, etc.. Finally, 5) if they were concerned for their
privacy and if they would have used our method in their daily
workflow.

Aggregation Strategy. With RF models each prediction
is independent from the others. Hence, it could happen that,
according to how the analyst behaves, the prediction could
vary multiple times in a short period of time. To account for
this variability, which would cause confusion if we would
have to notify the user for each change, we employed the
following aggregation strategy.

Predictions received in a fixed temporal interval were
grouped together and the final decision, whether guidance
was needed or not, was based on the average number of
“guidance is needed” labels, as in a majority-voting strategy.
Each group was populated with 15 predictions, as we saw it
did not result in sudden changes of predictions. In practice,
we implemented this strategy using a sliding-window. Pre-
dictions were stored in a queue as they arrived to the client
and when such queue was full, newly arrived predictions
would cause the older ones to be removed. Positive and
negative labels were mapped to 0 and 1 values and their
average calculated. If the resulting value was greater than
> 0.8 the participant was notified..

Results. The result obtained thanks to this evaluation
method are very encouraging and in line with the ones
obtained with the k-fold cross evaluation. The test reported
an average accuracy of 70% (see Table 1). The accuracy
was calculated by matching how many times in a session
the system correctly detected a need for guidance and the
participant confirmed the detection. Beyond the accuracy,
the evaluation shows how and why our methodology could
effectively detect a need for guidance but also how, some-
times, failed. This mostly occurred due to how we set
the notification threshold, and to a specific will of some
participants in rejecting the guidance. We report on these
specific cases, as well as the results of the questionnaires in
the following paragraphs.

Accuracy of Predictions — A representation of how a typical
real-time evaluation worked is shown in Figure 7. The
figure shows on thee y-axis the average predicted need
for guidance of a participant, calculated according to the
aggregation strategy discussed in the previous paragraph.
What we can see is that the need for guidance was typically
detected correctly in the majority of the cases: we can see
four peaks, in this specific case, falling in the gray detection
zone. Thanks to the talk-aloud protocol, we related those
peaks to moments in which the analyst was not sure how to
pursue a goal, or was actively looking for some command
in the interface.

However, as it can be seen, in a couple of other moments
the analyst might have needed additional support from the
system, but the need didn’t reach the threshold, and thus,
guidance was not provided. This is represented by the two
circled peaks in Figure 7. A first moment, corresponding
to the left-most circle, corresponds to the analyst feeling
frustrated due to some mistakes s/he made when creating
a visualization. In a second case (see the right-most circle)
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the analyst was trying to interpret the meaning of a visu-
alization with no success. In both moments, the average
aggregated need for guidance was ~ 0.75, and hence lower
than the notification threshold.

This happened with a similar pattern also in the other
evaluation sessions and it shows a possible flaw of our
aggregation strategy. We discuss how to solve this problem
with a more sophisticated strategy in Section 6.

Willingness to reject guidance — In two occasions the par-
ticipants rejected the provided guidance. By talking with
them, we related the rejection to their specific will to try and
proceed by themselves, rather than a flaw of our methodol-
ogy. In other words, participants needed guidance, but were
not yet ready to accept it. Reported answers that helped us
clarifying the case were “I need help, it is true, but not now. I
would like to try by myself at first, ask me back in a minute” and
“I really do not know what I should do now, but I am bit stubborn.
I usually try many times before giving up”.

Looking at the precise numbers, when a need for guid-
ance was correctly identified, the participants reported an
average interruptibility value of 1.2 (out of 5), i.e. they
stated to be highly interruptible. At the same time, though,
they reported a high mental workload at the moment of
the notification — average answer 3.5. This means the par-
ticipants were indeed thinking hard how to overcome the
encountered issue, but at the same time they reported to
be open to receive help. A reported answer that clearly
summarizes such situations is “Yes, I was thinking how I
could interpret this visualization, but still, I enjoyed receiving
Quidance”.

General Comments — The final set of questions provided
us with additional means to evaluate the overall soundness
of our methodology. The participants reported they felt the
guidance was given them at the right moment, in most
occasions — see Figure 7 for a discussion of possible missed
detections. Two participants acknowledged that the correct
timing could have been fine-tuned, but recognized that a
need for guidance was indeed present whenever asked by
the system. For what it concerns the way the guidance was
provided, the participants reportedly appreciated that the
notification was given them by voice, and noted that they
were not frustrated with the notification. However, three of
them also recognized that the actual instructions on how to
proceed would have been better if provided visually, with
labels and popups. Finally, we discussed if the participants
had concerns about the privacy. They all noted they care
about their privacy and how their data is treated. However,
they also stated that the intents of the study and how
their data would be utilized were clear from the beginning.
According to them this was sufficient to ease their minds.
Asking whether they would have used our methodology
as part of their workflow, they answered that as far as the
data is kept locally and the user is correctly informed about
the purposes of video capture, they would have accepted to
have their expressions analysed to receive in change system
guidance. One participant additionally mentioned that s/he
would have appreciated an open-source implementation of
the software.
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5.4 Need for Guidance and Facial Expressions

The results reported in the past sections shed light on the
accuracy of our model in detecting a need for guidance.
In addition to these results, we also checked that what we
obtained supported also our initial thought that specific
facial features can be associated to a need for guidance.

With this is aim in mind, we inspected what AUs had
the largest impact in determining a correct prediction, de-
termined if these results made sense and if they were in line
with the literature on this topic. Table 2 shows the impact of
the different AUs.

In summary, what we see is that the need for guidance
can be correctly inferred from facial displays that previous
research associated to difficulties with completing a task [6],
[15]. Our research confirms these findings, extends them to
a VA context and additionally, relates them to a need for
guidance.

Looking at the specific facial expressions, we see that
the presence and frequency of mouth dimples (AU14) had a
great impact in determining a need for guidance. In previ-
ous research, AU14 has been related to learning gains [15],
[39]. Other studies showed that AU14 might also indicate
contemplative states, which could imply that the analyst
is reasoning or deciding what to do next [6]. AU17 (Chin
Raiser) and AU04 (Brow Lowerer) are also associated with a
guidance request (see Table 2). Their simultaneous presence
has been also correlated to thoughtful states [6].

Considering complex facial expressions, the contempo-
rary presence of AUO1 (Brow Raiser), AU02 (Outer brow
raiser), AU0O4 (Brow lowerer), and AU25 (Lips Part/Jaw
Drop), which are all present in our study, have been related
to difficulties during the analysis, in previous literature [18].
AUO07 (Lid Tightner), which also plays an important role
in determining a need for guidance, has been instead con-
nected to states of confusion [40], [41]. Finally, also the
frequency of eye-blinks (AU45) was positively associated
with guidance but it was never highlighted in previous
research.

Action Units = Associated Facial Muscle AU Importance
AU14 Dimpler 100%

AU17 Chin Raiser 92%

AU25-26 Lips Part and Jaw Drop 87%

AU10 Upper Lip Raiser 85%

AU04 Brow Lowerer 75%

AUOT Inner Brow Raiser 68%

AU07 Lid Tightner 58%

AU45 Blink 50%

TABLE 2: Table collecting common AUs, the associate facial
muscle, and their relative importance in determining the
need of guidance. The AU importance is related either to
percentage of moments in which guidance was needed and
at the same time the given AU was also present, as well as
to the weight of the feature in the model.

6 DISCUSSION

The results of our research show how the selected model
performs in different contexts but it also provides indica-
tions how we could improve it.

10

Accepting Guidance. While the results we obtained are
promising, additional steps are needed to tackle effectively
the problem of providing timely guidance. As mentioned,
although detecting a guidance need allows us to isolate
a possible time window to initiate guidance, it does not
necessarily mean that afterwards such guidance will be
accepted by the user. As shown by the real-time evaluation,
in a couple of occasions the participants in fact rejected the
help, although highlighting that guidance was needed. In
this regard, more research is certainly needed to shed light
on mechanisms to cope with such scenarios, but also to
understand if our methodology has a higher accuracy in
respect to existing literature approaches.

Participants and Performance Analysis. The results
obtained show variability in the accuracy depending on
the applied evaluation strategy. As shown by the metrics
of the basic 80-20 evaluation, the accuracy of predictions
is very high (= 98%). The accuracy, however, is much
lower — 70-72% — in the k-fold cross validation and in the
real-time analysis. This is due to how parts of the same
dataset were used for the first evaluation. In this, the k-
fold cross validation and the real-time evaluation offer a
better view of the performance of our model since employ
the data of unseen analysts. We want to point out that
our work represents only a preliminary study. One of the
most obvious limitations is the small number of participants
involved - eight for training and five for testing. These
results, which are also sustained by high specificity values,
show that in order to make the methodology really effective
in production scenarios, a wider set of user data should
be collected i.e., involving more analysts to encompass for
variable facial expressions, behaviors, and different nuances.
Another consideration we make is that the processing times
for the real-time scenario are not yet suitable to support
a reliable application of our methodology in a production
environment. While we tuned our implementation for fast
and reliable communication, we still had to decrease the
number of processed frames in order to obtain a smooth
processing. In this regard, better hardware, parallelizing the
computation, but also resorting to ensembles of smaller (but
faster) models could all be added to make this approach fit
for production contexts.

Apriori Assumptions. We hypothesized that facial ex-
pressions were indicators for the analyst’s need of guidance.
This lead us to not choose a precise set of tasks, but rather
let the analysts perform an open-ended task. The results,
especially the one associated with the real-time evaluation,
seem to back up our initial assumptions. The predictive
model we built succeeded in detecting guidance in multiple
instances, no matter what the task was. For example, the
system correctly detected the need of guidance when the
analysts did not know how to use certain functions but also
when they had problems interpreting the visualization. In
this, we can see how the predictive model can account for
the lack of both, operational and domain knowledge, which
represent two different types of knowledge gaps [42].

False Negatives. In the real-time evaluation, we chose a
simple strategy to detect when guidance was needed. We
grouped and averaged the predictions the system made
in a certain time interval and if the resulting value was
higher than a predefined threshold, we provided the analyst
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with guidance. However, this strategy as we have seen, can
fail: Two moments when guidance was needed were not
correctly identified (see Figure 7). The strategy of using
a static threshold is error-prone as the actual value can
be subjective. Some people display emotions in a very
subtle way, while others display them very obviously. To
mitigate this problem, a tuning phase could be imagined
to fine-tune the threshold before the analysis starts. More
advanced solutions are also possible. For instance, instead
of choosing a fixed threshold, it is possible to predict the
need for guidance by looking at the steepness of the curve
(see Figure 7) or for how long the average value remains in
a range of values. These approaches have the potential to
further improve our results and are good starting points for
future research.

Privacy Issues. The way our tool detects a need for
guidance may directly open to possible privacy intrusions.
According to the answers we collected, privacy issues are
indeed a problem that should be carefully considered. The
questionnaires point directly to possible solutions: 1) have
an informed consent 2) keep the data local and 3) keep
isolated the elaboration of facial features. These seems to
be sufficient preconditions to ease the mind of most of the
participants, who also stated that under such conditions
they would trade a small amount of their privacy for having
guidance. These answers also highlight how our method
could be improved: In our implementation we demand the
elaboration of some features to a local server, which should
be avoided. In this behavior, however, our approach resem-
bles many other literature approaches which also exploit
user data (e.g., interaction, heart-beat etc.) for detecting
intents, as shown in the related work section.

Binary Predictions. In the current implementation, our
model can predict a binary need of guidance (yes or no).
In future developments, it could be interesting to consider
also the intensity and strength of such a need. Our model
is not able to understand the actual knowledge gap — “what
does the user need?” — that leads to the need of guidance.
Thus, we can identify when an analyst needs assistance, but
we cannot say why, or how to solve it. In our environment,
this was solved by external observers who could just ask the
analyst about the problems they were facing. An automated
solution would probably need to employ task-related strate-
gies. Combining such strategies with our solution poses an
important challenge for future research.

Emotions and Need for Guidance. The intensity of
AUO04 (Brow Lowerer) alone has been related to self-
reported feelings of frustration and thoughtful states [6].
Moreover, AU04 is correlated with contemplative states and
confusion when occurring during the first phases of the
analysis, which may later evolve into frustration if the issues
that caused the confusion remain unsolved. However, in
our approach, the temporal sequence of events was not
a discriminant factor for deciding whether guidance was
needed, and therefore it is not possible to determine if AU04
should be interpreted as a contemplative state or a sign of
unresolved analytical issues. To tackle this problem, the use
of specific Neural Network for video analysis, considering
the actual temporal sequence of the emotions, might help.
In this, we see opportunities for further research.
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7 CONCLUSION

In this paper, we investigated whether facial features can
be used to detect a need for guidance in realistic scenarios.
We explore the use of a ML model in our proof-of-concept
implementation of an automatic system for guidance need
detection. The results of the evaluation show its potential in
interpreting the user’s expressions in offline and real-time
scenarios. Finally, we propose a solution to one of many
important challenges in the context of providing effective
guidance during VA tasks. Our solution for automatically
identifying moments when guidance is needed is an impor-
tant step towards providing timely guidance in VA.
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