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Kurzfassung

Zeitreihen sind in unterschiedlichen Forschungsbereichen présent, sei es in Wirtschaft, Na-
turwissenschaften, Medizin und dergleichen mehr. Diese Art von Daten wird aufgezeichnet,
um Messungen festzuhalten, zu analysieren und basierend darauf, Entscheidungen zu treffen.
Periodizitit ist eine Eigenschaft von Zeitreihen, die durch die natiirliche Struktur der gemessenen
Phidnomene oder durch dahinterliegende Kalenderstrukturen bedingt ist. Diese strukturelle Eigen-
schaft der Zeit zeigt sich in vielen Datensédtzen durch periodisch wiederkehrende Muster. Fiir die
Analyse von Zeitreihen ist eben diese Eigenschaft von Vorteil, solange die Periodizitat erkannt
und richtig abgebildet wird. Dann kann sie helfen, passende Zeitreihenmodelle auszuwihlen,
Vorhersagen besser zu interpretieren, geschitzte fehlende Werte zu beurteilen und Ausreiler zu
erkennen. Die periodischen Muster konnen direkt aus dem Zusammenhang der Daten gegeben
oder in den Daten selbst versteckt sein. Um solche zu identifizieren, besteht eine Moglichkeit
darin, sie mittels geeigneter visueller Darstellungen zu erkennen oder die Daten mithilfe von
Visual Analytics zu explorieren, um die darunterliegenden Muster identifizieren und untersuchen
zu konnen.

In der vorliegenden Dissertation werden verschiedenste Herausforderungen in der Zeitreihen-
analyse betrachtet. Diese Herausforderungen betreffen im Speziellen periodische Zeitreihen und
umfassen das Explorieren von Zeitreihen, die Auswahl moglichst passender Zeitreihenmodelle,
die Unterstiitzung in der Parametrisierung, das Uberpriifen der Vorhersagequalitit der Modelle,
das Berechnen und Ersetzen von fehlenden Werten sowie das Erkennen von Ausreif3ern. Fiir all
diese Schritte wird die Anwendbarkeit von Visual Analytics-Methoden untersucht und es wird
ermittelt, wie Nutzer*innen in diesen Aufgaben bestmoglich unterstiitzt werden konnen bzw. wie
die Verflechtung neuer visueller Betrachtungswinkel auf periodische Zeitreihen gemeinsam mit
menschlicher Wahrnehmung, mit Interaktionstechniken und mit statistischen Berechnungen, die
herausfordernde Analyse von Zeitreihen positiv beeinflusst.

Als ersten Schritt stellen wir einen Visual Analytics-Ansatz vor, mit dem der gesamte Modellaus-
wahlprozess unterstiitzt wird. Dazu ermoglicht der Ansatz die visuelle Analyse der Zeitreihe, bietet
eine Orientierungshilfe fiir die Auswahl der Modelle und Modellparameter sowie fiir die genaue
Diagnose beziiglich Angemessenheit der Modelle fiir die Daten. Weiters untersuchen wir die
Zusammenfiihrung der Vorhersagemoglichkeiten der gewéhlten Modelle und Modellparameter in
den Modellauswahlprozess. Im néchsten Schritt verwenden wir eine spezielle Darstellungsform fiir
periodische Zeitreihen (Zyklengraph bzw. cycle plot), um die Imputation, das heif3t, die passenden
Schitzungen von fehlenden Datenpunkten, zu verbessern und diese zu vervollstindigen. Danach
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zeigen wir unter Verwendung einer neuartigen Datenabstraktion, wie dieser Zyklengraph mithilfe
dieser Abstraktion fiir multivariate Zeitreihen konstruiert und fiir das Erkennen von Ausreiflern in
multivariaten periodischen Zeitreihen verwendet werden kann. Fiir jeden dieser vorgeschlagenen
Ansitze wurden iterative nutzer*innenzentrierte Designprozesse verwendet sowie Nutzen und
Anwendbarkeit der Ansitze durch Nutzer*innenszenarien und griindlich beschriebene Funktiona-
litdtstests bestétigt. AbschlieBend werden die Auswirkungen dieser Ansétze beschrieben sowie
offene Fragestellungen und weitere Forschungsmdglichkeiten diskutiert. Das Miteinbeziehen von
vorhandener Periodizitdt in der visuellen Darstellung erlaubt bei Visual Analytics-Ansétzen ein
besseres Verstehen und Nachvollziehen von angewandten Zeitreihenmodellen, von Vorhersagen,
von Imputationen und Ausreiflern. Die Forschungsergebnisse zeigen, dass diese visuellen Darstel-
lungsformen gemeinsam mit der passenden Datenabstraktion bei gleichzeitiger Beriicksichtigung
der speziellen periodischen Struktur der Zeit fiir die Analyse von Zeitreihen andere Sichtweisen
auf die Daten bieten. Damit wird die Auswahl angemessener Modelle bzw. Modellparameter, das
Miteinbeziehen der Vorhersagemoglichkeiten im Modellauswahlprozess, die Imputation fehlender
Werte sowie das Identifizieren von Ausreilern verbessert bzw. erst ermoglicht.
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Abstract

Time series data are essential in many fields, like economics, natural sciences, and medicine,
to name a few. Measuring and recording these data allow us to document, analyze, and make
decisions. One of the most natural structures in time series across all areas is periodicity, which
stems from either the natural phenomena measured or the underlying calendar structure. One
finds the structural property of time in many of these time series by periodic reoccurrences. In a
time series analysis, these properties are mostly beneficial, if identified correctly and modeled
adequately, for tasks like model selection, prediction, imputation, and outlier detection. These
periodic patterns can be obvious due to the context or hidden in the data itself. Visualization
is one way for human perception to identify such patterns easily and allow for the exploration,
identification, and investigation of such underlying patterns using visual analysis.

In this dissertation, we consider the different stages of time series analysis for periodic time series,
starting with exploring the time series, selecting appropriate time series models, supporting the
parametrization, examining the prediction performance, imputing missing values, and detecting
outliers. For all these steps, we investigate how visual analytics can support users in these tasks
and how intertwining new perspectives on periodic time series using visualization together with
user perception, interaction techniques, and statistical computations fosters the user in analyzing
periodic time series.

We first propose a visual analytics approach for supporting the whole process of selecting
appropriate time series models, allowing the visual exploration of time series while guiding the
model selection, parametrization, and model diagnostics. We then investigate how to integrate
the prediction capabilities of the model into the model selection process. Next, we employ a cycle
plot representation to support the imputation of missing values in periodic time series. Thereafter,
we present a novel abstraction method to use a cycle plot representation for multivariate time
series as well in order to use it for outlier detection in periodic time series. For each of the
proposed solutions, we employed an iterative user-centered design process; we showed the utility
of the approaches in usage scenarios and thoroughly illustrated walk-throughs. Furthermore,
we discussed the implications of such methods and concluded with open challenges in these
topics. Integrating additional focus on visualizing periodicity into the visual analytics approaches
allows for better comprehending the applied models, predictions, imputations, and outliers. The
results indicate that adequate visual representation and abstraction, when considering the periodic
structure of time, allows for the analysis of time series from different perspectives and provides
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CHAPTER

Introduction

(13
Once upon a time, statisticians only explored. Then they learned to confirm

exactly—to confirm a few things exactly, each under very specific circumstances.
As they emphasized exact confirmation, their techniques inevitably became less
flexible. The connection of the most used techniques with past insights was weakened.
Anything to which a confirmatory procedure was not explicitly attached was decried
as ‘mere descriptive statistics’, no matter how much we had learned from it. [...]

Today, exploratory and confirmatory can—and should—proceed side by side.”

John W. Tukey, 1977. [[Tuk/’7, p. vii]
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1.

INTRODUCTION

1.1 Motivation and Problem Analysis

No one can escape time. Everybody has to deal with it. Time is everywhere and everything. “The
temporal entity [time] is a true enigma that neither scientists (from any field) nor philosophers even
know how to define exactly” [CB14} p. 250]. “The fundamental phenomenon of time has always
been of interest for mankind [... and is] discussed over literally thousands of years in philosophy,
mathematics, physics, astronomy, biology, and many other disciplines” [AMST11l, p. 45]. The
oldest sources of documenting and structuring time are simple calendar concepts [AMST11! p.
46]; although these calendar concepts are human made, this very interesting periodic behavior of
time is found everywhere in nature and in all kinds of natural phenomena.

Because time is so central to life, it is the basis of a vast amount of data collected and measured,
from weather data of the past centuries to huge amounts of transaction data nowadays. “Data
obtained from observations collected sequentially over time are extremely common” [CCO8| p. 1].
Collecting these data, as well as analyzing the data for meaningful information and knowledge,
is more important than ever and requires appropriate techniques to do so. In mathematics,
specifically in statistics, this area of research and application is called time series analysis. A time
series is a set of sequential measurements of variables over time [[CCO8| |Cle94]]. There is a great
history of statistical analysis of time series data and generations of statisticians have contributed
to this field. According to Tsay [[Tsa00] time series analysis reaches back to 1927, although he
states that forecasting has an even longer history.

According to Bisgaard and Kulahci [BK11], many practitioners find time series analysis compli-
cated and frustrating. Time series analysis is applied “in many different fields such as finance,
economics, engineering, healthcare, and operations management, to name a few” [BK11, p. 1]. In
a brief history of time series and forecasting, Tsay listed the main purposes of time series analysis
used in business and economics: “(a) to study the dynamic structure of a process, (b) to investigate
the dynamic relationship between variables, (c) to perform seasonal adjustment of economic
data [...], (d) to improve regression analysis [...], and (e) to produce point and interval forecasts
[...]” [Ts5a00, p. 638]. According to Tsay, the 1970 landmark work by Box and Jenkins, Time Series
Analysis: Forecasting and Control [BJ70], “was an important milestone [...] It provided a system-
atic approach that enables practitioners to apply time series methods in forecasting” [[Tsa00, p. 639].
The suggested model selection approach by Box and Jenkins is used in most textbooks on time
series analysis, such as [BJROS,BD91,ICCO8,ISS11,[Ham94, I BK 11, BD02,/CMO09, |Pfa08, Bro11].

In his famous book The Visual Display of Quantitative Information, Tufte defines data graphics
as “visually display[ing] measured quantities by means of the combined use of points, lines, a
coordinate system, numbers, symbols, words, shading, and color” [Tuf83| p. 9]. As Cleveland
states, “[d]ata display is critical to data analysis. Graphs allow us to explore data to see overall
patterns and to see detailed behavior; no other approach can compete in revealing the structure of
data so thoroughly. Graphs allow us to view complex mathematical models fitted to data, and they
allow us to assess the validity of such models” [Cle94, p. 5]. Cleveland further argues that “[t]he
visualization of statistical data has always existed in one form or another in science and technology.
[...] But with the appearance of John Tukey’s pioneering 1977 book, Exploratory Data Analysis,
visualization became far more concrete and effective [Tuk77]. Since 1977, changes in computer
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1.2. Data Analysis and Visualization

systems have changed how we carry out visualization, but not its goals” [Cle93| p. 2]. Going
back to an original quote by Tukey himself, “[a] basic problem about any body of data is to make
it more easily and effectively handleable by minds—our minds, her mind, his mind” [Tuk77, p. v].
Tukey’s proposed solution to make it more easily and effectively manageable was to introduce
exploratory data analysis; a central aspect of exploratory data analysis is a visual representation of
data, whether it is called statistical graphs or plots. As Cleveland explains, “[v]isualization is
critical to data analysis. It provides a front line of attack, revealing intricate structure in data that
cannot be absorbed in any other way. We discover unimagined effects, and we challenge imagined
ones” [Cle93, p. 1].

Time series analysis is a tedious and challenging task that involves data, computations, visual
representations, and practitioners—generally experts—in the application domain of the data at
hand. Usually the purposes of time series analysis, as previously mentioned, are achieved by
exploring the data numerically and visually, visualizing the data, computing metrics, adjusting
data, visualizing these metrics, combining the insights with domain knowledge about the
time series models, selecting adequate models, deciding on initial parameters of the models,
computing/estimating model parameters, checking the model outcome, looking at model results,
applying the models, looking at the outcome of these model applications, reselecting other models
and/or adjusting the model parameters, and repeating this cycle. This kind of workflow is often
repeated multiple times until an adequate model is found. Essentially, this described process asks
not only for a combined exploratory and confirmatory data analysis, like Tukey demands in his
famous book [[Tuk77, p. vii], but also for combining computations and visual representations as
well as multiple runs with iterative adjustments of this process. While presenting his famous
Anscombe’s quartet, Anscombe—another famous statistician—stated that “[a] computer should
make both calculations and graphs. Both sorts of output should be studied; each will contribute
to understanding” [[Ans73, p. 17]. He also argued that a “[g]ood statistical analysis is not a purely
routine matter, and generally calls for more than one pass through the computer” [Ans73| p. 17].

To deal with such challenges, the highly interdisciplinary research area of visual analytics
[TCOSL I KKEM10] was introduced with the general idea to combine and intertwine computation,
visualization, and interaction. The advancement of computation and interactive computer systems,
together with research progress made in data visualization, human computer interaction, and visual
analytics, have allowed completely new approaches and techniques to support such challenges, as
apparent in time series analysis.

The aim of this dissertation is to present visual analytics approaches that support solutions to
some of these challenges in the field of statistical time series analysis, including model selection,
parametrization, exploration, outlier detection, imputation, and prediction.

1.2 Data Analysis and Visualization

As previously mentioned, in statistics, Tukey [[Tuk77]] introduced the area of exploratory data
analysis, where the main idea was to shift the focus from mainly confirmatory data analysis—
basically testing hypotheses based on the data—to also consider exploratory data analysis, where
the central point is to look at the data (graphically or numerically) and determine the results in
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order to generate hypotheses that can then be tested in order to confirm or reject them. Tukey’s
contributions to statistics, including the concepts of exploratory data analysis are central and still
valid in data science nowadays. The technological and scientific advancement in mathematics,
statistics, and computer science allowed for the creation of advanced visualizations, including
advanced interactions, to create more complex yet powerful techniques, although the main aspects
and goals of Tukey’s ideas on exploratory data analysis still hold today.
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Figure 1.1: Possibly the first time series graph found in literature, author unknown, published by
Funkhouser [Fun36]]. It shows planetary orbits as a function of time. It dates from the 10" or
possibly 11% century.

Image Source: Funkhouser (1936) [Fun36, p. 261], Osiris ©1936, courtesy of the University of Chicago
Press.

According to Cleveland, as quoted earlier, the history of “visualization of statistical data has always
existed in one form or another in science and technology” [Cle93| p. 2]. The literature about the
history of graphical representations [RG10, [Fun36l [Fun37|] and information visualization, such as
[Tuf83L IAMSTT11], as well as in textbooks about statistical time series analysis [[CCO8]], all refer
to a graph “meant to represent a plot of the inclinations of the planetary orbits as a function of
time” [Fun36, p. 260] from the tenth or possibly eleventh century, which seems to be a “compiled
text for use in monastery schools” [Fun36, p. 260]. The fascinating thing about this graph, shown
in Figure|1.1, is that it not only uses this form of inclinations of the orbits as a function over time,
essentially representing a time-line graph, but also captures the periodicity of many phenomena
in nature, like the planetary orbits, and shows them in relation to each other. The x-axis is chosen
in a way to show one full period of the longest periodic duration, which is by Venus, and one can
easily recognize that the periodic pattern is meant to repeat on the left of the graph, when the line
ends at the right.

For Tufte this oldest known graph “appears as a mysterious and isolated wonder in the history of
data graphics, since the next extant graphic of a plotted time-series shows up some 800 years
later”[Tuf83] p. 28]. Tufte refers to work by William Playfair and Johann Heinrich Lambert in the
late 1700s, who are generally seen as the inventors of modern graphical design in the literature,
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Figure 1.2: Time series line graph showing the imports and exports between England and Scandi-
navian countries, Playfair [Pla01]]. Playfair’s line graphs are considered the first representation
of time series as we know and use it today. The first edition of his book The Commercial and
Political Atlas was published in 1786. This graph is taken from the third edition published in
1801. The graphs improved over the years, but the core elements are the same.

Image Source: Playfair (1801) plate 12]. Image retrieved from archive.org: https://archive.org/details/
PLAYFAIRWilliam1801TheCommercialandPoliticalAtlas|(last visited on Sept. 24, 2020)

contributing to graphical representations of statistical data, specifically representing time series in
the way we still use it today [AMSTTI].

According to Funkhouser, William Playfair “may be called the father of the graphic method in
statistics” p. 273] and as the “[a]pparent Inventor of Statistical Graphs” p. 280].
To clarify the significance of Playfair’s work, Funkhouser explains that Playfair published his
first edition of The Commercial and Political Atlas in 1786, a time when “[t]he term statistics
had not yet appeared in the English language, few collections of reliable quantitative data were
available and the development of statistical method was still far in the future [...]” p. 280].
He essentially contributed line graph, circle graph, bar graph, and pie diagram as we still know
and use them nowadays for the visualization of data (see Figure 1.2). In addition, he accompanied
these charts “with pointed expositions of the advantages of the new method for the discovery and
analysis of economic trends” p. 280].

Tilling, in her article about early experimental graphs [Til73], discusses in detail Lambert’s work
and contributions to graphs for presenting or analyzing experimental results. One notable graph
is the graphical analysis of periodic variation, as shown in Figure 1.3, which shows the variation
in soil temperature. This graph by Lambert again focuses on the periodic pattern of a natural
phenomenon. Tilling also refers to a paper by Lambert titled Theorie der Zuverldssigkeit (roughly
translated as Theory of Steadiness), in which Lambert introduced graphical representations to
detect a periodic variation and determine its period [Til75} p. 201].

Essentially, both Playfair and Lambert are presumed to be the first to apply visual data analysis,
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Figure 1.3: Periodic variation represented as line chart, Lambert [Lam79]]. This graph is showing
a graphical analysis of periodic variation of temperature in different depths of soil.

Image Source: Lambert (1779) p. 407], provided by Bayerische Staatsbibliothek Miinchen, 4
Phys.sp. 150, p. 407, Figure 39, Plate VII, urn:nbn:de:bvb:12-bsb10058497-5.

because they not only visualized the data at hand, but also used them for “[the] discovery
and analysis of economic trends” 280] (Playfair) and to “detect a periodic variation
and to determine its period” [Til75, p. 201] (Lambert). Lambert not only displayed his
data in a graph, but as shown in Figure |1.3| “was accustomed to interpose a smooth curve
amongst the observations” [Til75}, p. 201] and in other graphs “used the technique of graphical
differentiation” p. 201]. “Lambert was particularly aware of the necessity, as a step in
scientific reasoning, of a careful examination of the goodness of match between theory and
data” p. 204]. These findings suggest that he was already combining visualization and
computation, as we are used to doing today in visual data analyses and how Tukey postulated it
for exploratory data analysis and Cleveland for visualizing data for data analysis:

“It was an early lesson that we gain a lot by plotting the points. It was a later
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1.2. Data Analysis and Visualization

lesson, not emphasized as hard as it should be, perhaps, that you often do not learn
enough until you smooth or middle the points. Plotting the points is often not
enough.” [Tuk77, p. 665]

“There are two components to visualizing the structure of statistical data—graphing
and fitting. Graphs are needed, of course, because visualization implies a process in
which information is encoded on visual displays. Fitting mathematical functions to
data is needed too. Just graphing raw data, without fitting them and without graphing
the fits and residuals, often leaves important aspects of data undiscovered.” [Cle93|

p. 1]

As discussed earlier, Tukey’s introduction of exploratory data analysis is widely considered as
the cornerstone for modern visual data science. It is also well accepted in the visual analytics
research community, cf. [KKEMI10, p. 3], that the first step toward visual analytics research was
moving from confirmatory data analysis to exploratory data analysis, as stated by Tukey [Tuk77]].
Before we proceed with introducing the field of visualization briefly and visual analytics in more
detail in the next section, we first want to quote some important statements from Tukey’s book
that are still very relevant in visual analytics and visual data science in general:

“The greatest value of a picture is when it forces us to notice what we never expected
to see.” [Tuk77, p. vi]

“Exploratory data analysis can never be the whole story, but nothing else can serve
as the foundation stone—as the first step.” [Tuk77, p. 3]

“Summaries can be very useful, but they are not the details.” [Tuk77, p. 27]

For the following sections, it is important first to specify what visualization in general actually
means. According to some great researchers in the field of information visualization, the definition
of visualization is “[t]he use of computer-supported, interactive, visual representations of data
to amplify cognition” [CMS99, p. 6]. They then distinguish between the field of scientific
visualization and information visualization, where the difference lies in the data that is visualized.
For the first, it is scientific data, which is usually based on physical data; for the latter abstract data,
it is nonphysical, abstract information, with no obvious spatial mapping. The field of information
visualization is then defined by Card et al. in the same way as visualization, only changing data to
abstract data [CMS99, p. 7]. For a definition of visualization, Keim et al. [KMS*08] refer to
Colin Ware [WarO0], who understood the term visualization as “a graphical representation of
data or concepts” [WarQO]. Over the years the (sharp) separation among the fields of information
visualization, scientific visualization, and visual analytics (which we will introduce below)
crumbled and broke off, and the fields moved closer to liaising with each other. There is a rumored
tendency of combining all three of these fields under the term visualization. For the last several
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years (at least since 2017), the major IEEE VIS conference has been advertised as “premier forum
for advances in visualization”.!| Although it still has separate conference tracks for the three fields
of visualization, in some near future this will likely change.

Thus far, we have already expressed our focus on challenges in time series analysis and dealing
with the periodic structure of time. In the field of information visualization, a corresponding
strain of research copes with challenges in how to visualize time and time series data as well as
how to deal with the specific challenges in analyzing this type of data. In their terminology they
call this type of data time-oriented data [AMM*07, [AMST11]]. The foundation of visualizing
time-oriented data was set by Aigner et al. [AMM?*07] when introducing a systematic view on
diverse methods for visualizing this data and most importantly introduce a categorization that
provides structure and supports in selecting appropriate visualization techniques for different
purposes. These contributions were later extended and published in a book [AMST11]] to provide
a comprehensive view of the topic of visualizing time-oriented data. Most relevant for the content
in this dissertation is the categorization into the structure of time, specifically linear and cyclic
time.

The research area of information visualization contributes to Tukey’s idea of seeing the data and
the results. With novel graphical interfaces and interaction techniques for building a dialogue
between data and users, advances in exploratory data analysis were made in a fashion never
possible before. In the following section, we extend on these foundations and introduce the field
of visual analytics.

1.3 Visual Analytics

Thus far, we have shown that the problem of data analysis and the visualization of (statistical)
data have a long history of being a relevant topic in research and applications. Because of the
technological advancement in computation, the demand to cope with the massive amount and
increased complexity of the collected data, and the demand to make sense out of it, the research
field of visual analytics was established; within this research field, scientists contribute to data
analysis problems in many domains.

Thomas and Cook first defined the term visual analytics in 2004 as “the science of analytical
reasoning facilitated by interactive visual interfaces” [TCO3, p. 4]. This first book defining and
describing the research and development agenda was heavily motivated, influenced, and focused
on homeland security and the identification of terrorist threats. Within a few years, the research
and application field of visual analytics evolved, and a European research community formed and
contributed to research in the field. A paper about the scope and challenges of visual analytics by
Keim et al. [KMS*08] was an important initial contribution to specify the field of visual analytics
further. This was basically also the cornerstone for a two-year European Commission-funded
project called the VisMaster initiative, in which experts from European academic and industrial
R&D contributed a detailed review of all aspects of visual analytics from the European perspective
to a consortium [KKEM10].

Thttp://ieeevis.org/ (last visited on Oct. 11, 2020)
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Figure 1.4: The scope of visual analytics, Keim et al. [KMS*08]. Tllustration of the involved
research and application fields in the scope of visual analytics.
Image Source: Keim et al. (2008) [KMS*08|, p. 79], courtesy of Springer © 2008.

Keim et al. [KMS*08] adapted and extended the famous information-seeking mantra “overview
first, zoom/filter, details on demand” [Shn96), p. 337] for visually exploring data to transform it
into the visual analytics mantra of: “Analyze first, show the important, zoom/filter, analyse further,
details on demand” [KKEM10), p. 11], first defined in [KMS*08| p. 82]. Keim et al. [KKEM10,
p. 11] later argued that this adaptation is necessary because, when we are dealing with massive
datasets, it is often not possible to create overview visualization without losing interesting patterns.
In this case, we need to first analyze what the interesting aspects in these data are, show what
seems to be important, allow interactions (e.g., zoom), and filter to drill down the analysis until
we get to the details necessary.

Keim et al. [KMS*08]] argue that visual analytics, by evolving from information and scientific
visualization, is now much more than only visualization. Rather, the scope is a field that combines
visualization, human factors, and data analysis. They illustrate the involved topics and areas by
defining the detailed scope of visual analytics (cf. Figure 1.4). This indicates that visual analytics

is a highly interdisciplinary field and covers a broad scope of challenges and opportunities.

The ultimate goal of visual analytics is to “gain information, insights, and assessments from
complex data” [ALA™18, p. 275]; to do so involves combining the strength of machines, or
the computational power, with the strength of humans, like perception and cognition. The
core elements in the computational automatic analysis part are data mining, machine learning,
databases, statistics, and mathematics, whereas complementing these strengths with human
capabilities to perceive, relate, and conclude is one of the reasons why visual analytics grew into
a flourishing field of research [KMS*08].

In 2010, the results of the VisMaster initiative were published in the book Mastering the
information age: Solving problems with visual analytics [KKEM10]. In this book, based on
practical experience in visual analytics research, Keim et al. defined visual analytics with a more
specific definition than Thomas and Cook as “visual analytics combines automated analysis

11
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Figure 1.5: The visual analytics process, Keim et al. [KAFT08]]. It shows an abstract overview of
different stages and transitions in a visual analytics process.
Image source: Keim et al. (2008) [KAF*08| p. 156], courtesy of Springer © 2008.

techniques with interactive visualizations for an effective understanding, reasoning and decision
making on the basis of very large and complex datasets” [KKEM10, p. 7]. They also defined the
goal of visual analytics by the creation of tools and techniques, which serve the goal to enable
people to

“1. Synthesise information and derive insight from massive, dynamic, ambiguous,
and often conflicting data.
2. Detect the expected and discover the unexpected.
Provide timely, defensible, and understandable assessments.
4. Communicate these assessment[s] effectively for action.” [KKEMI10, p. 7]

»

In their book, Keim et al. [RKEM10] defined a high-level process for achieving these goals by
proposing a visual analytics reference model. A predecessor of this process (see Figure 1.5)
was previously published by Keim et al. [KAF*08l [KMS*08]] in 2008, at the beginning of the
VisMaster project. Essentially, this process describes a combination of automatic and visual
analysis methods with a tight coupling involving human interaction in an iterative fashion to
gain knowledge and insights from the data. Extending on this process definition for visual
analytics, Sacha et al. [SSS*14] expanded the knowledge-generation process of human cognition
activities. They argued the distinction between the computer and human parts and, in addition
to the earlier process model, illustrated in more detail the knowledge-generation process of the
human user. Sacha et al. emphasized the recent claims by Endert et al. [EHR*14] to go beyond the
“human-in-the-loop” thinking to a “human-is-the-loop,” so that the human work processes need to
be directly integrated and recognized in the analytics. Sacha et al. [SSS*14] distinguished among
an exploration, verification, and knowledge-generation loop, which comprise the overall reasoning
process by human users of a visual analytics system (see Figure 1.6). The basic idea of modelling
the knowledge generation in loops is to allow several loops in parallel, because analysts’ cognitive
processes are often rather chaotic and spontaneous, and they can work on different hypotheses,
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tasks, or findings in parallel. The exploration loop is applied to generate new visualizations or
models in order to analyze the data and allowing data exploration to find something interesting
and build hypotheses. These findings and hypotheses are confirmed or new ones are formed with
the combination of exploration and verification loop, whereas the verification provides guidance
for the exploration. During this process insights are formed, which are collected and combined in
the knowledge-generation loop to new knowledge, after the analysts have gained trust into these
insights and hypotheses during the verification loop.

Computer Human

l HypotheS|s

Knowledge

Flndlng Knowledge

Generation
Verification Loop
Loop
Exploration
Loop

Figure 1.6: Knowledge-generation model for visual analytics, Sacha et al. [SSS*14]]. In addition
to the earlier visual analytics process definition, this process model illustrates the knowledge-
generation process of the human in more detail.

Image Source: Sacha et al. (2014) p. 1604], courtesy of IEEE © 2014.
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Figure 1.7: A visual analytics workflow for viewing visual analytics as model building, Andrienko
et al. [ALA*18]. This visual analytics workflow illustrates how the final product—i.e., the
expected results, or a model, as some piece of reality—of a visual analysis is created.

Image Source: Andrienko et al. (2018) p- 276], courtesy of the Eurographics Association and
John Wiley & Sons Ltd. © 2018.

v
Generate
initial model

v

Answer
| .
“ | questions

Another addition to the family of visual analytics process definitions focuses on the hypothesis and
model generation during a visual analytics process specifically for time-oriented data [LAB*11].
We show this process in Chapter|2 (especially Figure2.4), where we use this process to describe the
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visual analytics process for time series model selection, applying the Box-Jenkins methodology
(cf. Section 2.3.1) in Chapter 2). This visual analytics process definition by Lammarsch et
al. [LAB*11]] can be considered an intermediate step, moving from the previously discussed
general visual analytics process by Keim et al. [KKEM10] to a more recent visual analytics
process definition by Andrienko et al. [ALA*18]] that focuses on the final product (i.e., the
expected results) of a visual analysis. Compared to the previous process definitions, the main
idea is to complement existing definitions and conceptual frameworks proposed with this view,
because these other processes instead focus on the activities performed and types of techniques
used by analysts in visual analytics. Usually, the final product of visual analytics activities is
described using the terms information, knowledge, or insight, which are rather general terms and,
according to Andrienko et at. [ALA*18]], do not clearly define the expected product but instead
refer to the process of activities of a visual analytics analyst. They argued that visual analytics is
a “purposeful activity directed to achieving a certain previously stated goal” [ALA*18| p. 275].
Consequently, the result should not be “any trustworthy insight but a knowledge product satisfying
the analysis goal” [ALA™ 18| pp. 275-276]. They defined the overall goal of analysis, which is the
product/result that needs to be created, or a model, as some piece of reality. Another emphasis
in this work is that “the primary interest of the analyst is not the data per se but the reality
reflected in the data” [ALAT18, p. 283]. Essentially, in their process definition the model is a
generalization of the data and cannot represent all aspects, relationships, or details. An important
step for complex models is to externalize and offload parts of the model because, in a complex
model, it is occasionally difficult for an analyst to keep it fully in mind. The power and main
benefit of visual analytics methods are that they allow for this process because visual analytics
is exactly built around this idea. An important declaration in this paper is that the knowledge
gained during the process of analysis is based on the built model of the subject, whether it is
completely in the mind of the analyst or offloaded and distributed via different media. Using
this concept of model building in visual analytics promotes better understanding of what kind
of model development, evaluation, and externalization needs to be supported. To give more
guidance for visual analytics researchers and developers for the design of visual analytics methods,
procedures, and tools, Andrienko et al. [ALA* 18] provided a summarized action list to perform.

Using visual analytics process definitions, like those by Andrienko et al. [ALA*18]], Sacha et
al. [SSS*14], Lammarsch et al. [LAB*11]], and Keim et al. [KKEM10] as framework for defining
and proposing visual analytics methods and solutions is already one part to the puzzle of the used
research methodology in this dissertation. In addition, to consider the process definitions and
follow the proposed frameworks as the guiding structure in visual analytics research, we will
discuss the additional research methodology applied in this dissertation in the following section.

1.4 Methodology

In the field of visual analytics research, there is a reasonably accepted set of methodologies to
follow for doing visual analytics research and proposing visual analytics methods, techniques,
and solutions. The work in this dissertation is based on these methodological foundations.
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Figure 1.8: Design triangle framework, Miksch and Aigner [MA14]. It supports visual analytics
researchers and designers in specifying requirements using a data—users—tasks paradigm together
with expressiveness—effectiveness—appropriateness as quality criteria for interactive visual analytics
methods.

Image Source: Miksch and Aigner (2014) [MA14] p. 286], courtesy of Elsevier © 2014.

Data-Users-Tasks Framework. By definition, a central part in each visual analytics solution
is to validate whether the proposed solution can handle the large and complex data of the problem,
which is useful for the user to gain insights, and satisfies the required tasks applied by the users
facing the problem. For this reason, Miksch and Aigner [MA14] introduced the design triangle
shown in Figure 1.8|as a high-level framework to support the design of interactive visual analytics
methods, with a focus on time-oriented data. The idea is to use the design triangle to clarify
the data with which the user is working, describe the user who will use the method, and specify
the tasks that the users are about to apply to the data at hand. Specifying and answering this
data—users—tasks abstraction gives indications of appropriate visual representations and what
analytical and interaction methods are applicable. In the triangle in Figure 1.8, the authors
also specify the major quality criteria for visual analytics methods, like expressiveness [Mac86],
effectiveness [Mac86], and appropriateness [vVWO06]. In order to get useful visual analytics
methods, Miksch and Aigner [MA14] ask for (a) only visualizing exactly what is contained in
the data (expressiveness); (b) visualizations that are intuitive, recognizable, and interpretable
(effectiveness); and (c) visualizations that help solve the given task and reach the defined goal
(appropriateness).

Task Abstraction. Special focus needs to be put on the definition and abstraction of the tasks
during the design of visual analytics methods. This is an important step in order to support the
intended user in generating an appropriate interactive analysis of the given data and deriving
insights and knowledge. To abstract and describe the tasks to be supported appropriately, a number
of taxonomies and typologies are presented in the visual analytics and related literature. The most
notable ones mentioned within the design triangle framework by Miksch and Aigner [MA14] are a
set of taxonomies for visualization in general. These are the famous task by data type taxonomy for
information visualization by Ben Shneiderman [[Shn96]] as well as the contributions by Brehmer
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and Munzner [BM13]] and Schulz et al. [SNHS13]]. More specifically considering time-oriented
data is the task typology by Andrienko and Andrienko [AAQ6G]. These task taxonomies/typologies
help visual analytics researchers structure, select, and describe information from the large set of
possible tasks applied during an analytical reasoning process.

domain problem characterization =
data/operation abstraction design v —
encoding/interaction technique design v

’ algorithm design ;I

Figure 1.9: Nested model for visualization design and validation, Munzner [MunQ9]]. This model
provides guidance for visualization designers by splitting the design process into four nested
layers and suggests evaluation methodologies for possible threats to validity in each level.
Image Source: Munzner (2009) [MunQ9| p. 922], courtesy of IEEE © 2009.

Nested Model. In addition to the visual analytics process models, an important aspect in visual
analytics techniques is the human factor and, by definition, the tight integration of the user into the
process. This requires a user-centered approach when designing and evaluating visual analytics
methods. For this reason, Munzner introduced her nested model for visualization design and
validation in 2009 [MunQ9]. The general idea of this nested model, as shown in Figure 1.9, is
to guide visualization designers in the design process by splitting it into four nested levels and
provide suggestions for distinct evaluation methodologies for each level. The outer level is to
characterize the domain problem space, like defining the tasks and data with the vocabulary of
the domain. The second level’s goal is to abstract the tasks and data into operations and data
types. In the third level, the visual encoding and interaction techniques are designed, and the
last level considers the definition of algorithms that need to execute these techniques efficiently.
Munzner also identified possible threats to validity at each level and recommended evaluation
methodologies to appropriately validate the different design choices. The possible threats to
validity are also categorized into four levels: wrong problem, abstraction, encoding/interaction,
and algorithm [Mun09, p. 921].

Design Study Methodology. During the years of visualization research, design studies—a
form of problem-driven research—has become increasingly popular, and Sedlmair, Meyer, and
Munzner condensed this ongoing practice into a design study methodology in 2012 [SMM12]].
They proposed a holistic methodological approach for conducting design studies more effectively
and provided guidance for applying their proposed nine-stage design framework. One important
precondition for the suitability of design study methodologies is the clarity of the tasks to
support and the location of the information with which to work. These preconditions can be
best summarized in their task clarity and information location chart, as shown in Figure |1.10.
The yellow area indicates the regions where design studies are a possible methodological choice.
Sedlmair et al. defined a design study as a form of problem-driven research, where the researchers
are working with real users and try to solve their real-world problems. Specifically, they define a
design study as:
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Figure 1.10: Design study methodology—task clarity and information location chart, Sedlmair et
al. [SMM12]]. The colored areas indicate where a design study methodology is (yellow) or is not
(red and blue) suitable.

Image Source: Sedlmair et al. (2012) [SMMI12| p. 2433], courtesy of IEEE © 2012.

“a project in which visualization researchers analyze a specific real-world problem
faced by domain experts, design a visualization system that supports solving this
problem, validate the design, and reflect about lessons learned in order to refine
visualization design guidelines.” [SMMI12, p. 2432]

In addition to defining a design study methodology, Sedlmair et al. proposed their nine-stage
framework to help researches conduct design studies with a specific process. The nine-stage
framework is illustrated in Figure 1.11. The framework consists of three phases: the precondition
phase for personal validation, the core phase for inward-facing validation, and the analysis for
outward-facing validation. The framework follows a highly linear process with overlapping stages,
but includes backward jumps for adapting and refining ideas and forming understanding. Each of
the stages is described with practical guidance based on reflections on earlier design study projects
by the authors and other authors in the visualization community. The authors also discussed
possible pitfalls in each of the stages. Munzner already contributed some critical aspects about
design studies in her 2008 paper [Mun08]], in which she discussed major pitfalls. Sedlmair et
al. [SMM12] further elaborated on these pitfalls and structured them according to the design
study methodology, especially in the nine-stage framework. They also provided strategies to avoid
these pitfalls in the relevant stages.

Evaluation Methods. To validate visual analytics solutions, they need to be evaluated adequately.

Because the human user is such a central figure in visualization and visual analytics, many aspects
from the human—computer interaction field are relevant and are transferred to visualization and
visual analytics, especially in the design and evaluation process of visual analytics solutions. Lam
et al. [LBI"12]] contributed a scenario-based look at the evaluation techniques of information
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Figure 1.11: Design study methodology—a nine-stage framework for conducting design studies
in research, Sedlmair et al. [SMMI12]. The framework is considered linear, but because stages
often overlap and the process is highly iterative, jumping backwards is very common to refine
ideas and form understanding.

Image Source: Sedlmair et al. (2012) [SMM12| p. 2434], courtesy of IEEE © 2012.

visualization, proposing seven guiding scenarios for the evaluation. They derived these scenarios
from extensive literature reviews and provided guidance in selecting appropriate evaluation
techniques for a given information visualization. For each of these scenarios, they described
the goals and outputs of evaluation in this type of scenario. They also provided possible sets of
questions to be answered in such an evaluation as well as an overview of possible methods to
apply and give examples to illustrate the practical application of each scenario. This work is
widely used and considered a reference work in most evaluations in the field of visualization.

Another addition to the seven guiding scenarios by Lam et al. [LBI"12] is the systematic review on
the practice of evaluating visualizations by Isenberg et al. [IIC*13]]. The seven guiding scenarios
are primarily focused on the literature of information visualization and, therefore, do not reflect
the entire visualization community, which should also include scientific visualization and visual
analytics. Isenberg et al. filled this gap by contributing their observations from their literature
search covering the entire visualization field. They reported on the practices in evaluating
visualizations and identified an emphasis on the evaluation of algorithmic performance and
qualitative result inspections in the literature. They also drafted some trends in the evaluation
practices, like the evaluation of user experience and user performance as well as reports on
environmental and work practices as well as how a new visualization eases data analysis and
reasoning. They still identified a lack of rigor in the evaluation of visualization solutions, although
there was an improvement over the years.

Together, the papers by Lam et al. [LBI*12] and Isenberg et al. [IIC*13] provide a foundation
for grounding the methods used and applied for evaluating visualizations and visual analytics
solutions. They provide guidance on how to plan the evaluation as soon as the design phase
and help carry out the evaluation in order to validate the visualization design and study the
effectiveness and appropriateness of a proposed visual analytics approach.
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Bridging from Goals to Tasks. A more recent addition to the previously mentioned set of
papers is the contribution by Lam, Tory, and Munzner [LTM18] to help visualization and visual
analytics researchers better bridge goals and tasks. They argued that the existing abstract task
classifications and the usually applied bottom-up approach for task specification are in practice
very challenging, because these low-level actions only make sense when put in perspective of the
higher-level context of the analysis goals and the whole analysis process. The proposed framework
relates the main analysis goals to lower-level tasks. This allows researchers to keep the bigger
picture in mind when defining the low-level tasks during the design of visualizations.

In all our proposed visual analytics solutions discussed in Chapters 2, 3| 4, and 5, we used and
applied the methodologies presented here. For all of them, we used the design study methodology
and performed a task abstraction as well as described the data and the user by applying the
previously discussed data—user—task framework. For the interactive model selection environment
in Chapter |2/ as well as the extension integrating the prediction capabilities in Chapter |3, we used
a visual analytics process definition model, like the ones introduced in Section 1.3, For these two
and the multivariate cycle plot for outlier detection in Chapter S, we showed the utility through a
illustrative walk-through and applied usage scenarios.

Following our discussion on the research methodology, we give some required background in
time series analysis in the following section.

1.5 Time Series Analysis

Tsay [Tsa00] introduced the term time series analysis as the statistical analysis of time series data,
with a history reaching back to Yule in 1927 [Yul27]]; one of the goals of time series analysis—
namely, forecasting—reaches back even longer. Tsay summarized the goals of time series analysis
as analyzing the dynamic structures of the process, analyzing the dynamic relationship between
variables, performing seasonal adjustment, improving regression analysis, and applying for
forecasting. In addition, he identified the advances in methods and computing as having a major
impact and allowing for outlier analysis and detection of structural breaks to get a central part in
model diagnostics.

In the history of time series analysis (cf. [[Isa00, IDGHO6]), it is generally accepted that the
breakthrough and most significant milestone was the book Time Series Analysis: Forecasting
and Control published in 1970 by Box and Jenkins [BJ70], which even today in its fourth edition
remains a reference work [BJROS]. Box and Jenkins integrated knowledge about time series
analysis at that time and “delivered a coherent, versatile three-stage iterative cycle for time series
identification, estimation, and verification” [DGHO6, pp. 446—447]. It allowed practitioners to
apply time series analysis by delivering this systematic approach, and it had an enormous impact
on modern time series analysis and forecasting in terms of both theory and practice. We later
employ this so-called Box-Jenkins methodology and use visual analytics techniques to support
this kind of iterative model selection process (cf. Chapter 2).

There are many great and important textbooks on time series analysis, which build the basis of
this section and are used as a foundation to most content in this dissertation. The main ones
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are [BJROS, IBDI1,ICCO8,SS11},|[Ham94, BK11,BD02, Tsal0[]. These are mostly based on the
landmark work of Box and Jenkins [BJ70]. Before we give some details on model selection,
we want to specify and define what we mean by time series data and what the terms periodic,
seasonal, and cyclic time series mean. The exact definition and description of a time series varies
in the vast number of books about time series analysis, but generally a time series is considered to
be data collected or measured over time. These measurements can be a single value or multiple
values and are, therefore, univariate or multivariate time series, respectively. According to the
literature on statistical time series analysis, a time series is composed of 3 (or 4) components,
which are trend, periodic, and irregular components [Cle93! |Cle94, BD10, HA18]]. The periodic
component is the frequency of the number of observations before a periodic pattern repeats.
By using the terms periodic, periodic time series, periodic component, etc., we subsume both
periodic components—namely, the seasonal and cyclic components. According to Hyndman
and Athanasopoulos [HA18], it is important to distinguish the terms trend, seasonal, and cyclic
very carefully. In the following, we use the definitions of these terms from Hyndman and
Athanasopoulos:

“Trend A trend exists when there is a long-term increase or decrease in the data. It
does not have to be linear. Sometimes we will refer to a trend as ‘changing direction’,
when it might go from an increasing trend to a decreasing trend. [...]

Seasonal A seasonal pattern occurs when a time series is affected by seasonal
factors such as the time of the year or the day of the week. Seasonality is always of a
fixed and known frequency. [...]

Cyclic A cycle occurs when the data exhibit rises and falls that are not of a fixed
frequency. These fluctuations are usually due to economic conditions, and are often
related to the ‘business cycle’. The duration of these fluctuations is usually at least 2
years.” [HA18]?

In addition to this definition, it should be noted that a possible seasonal and cyclic component
could occur on any granularity level, such as days, weeks, years, decades, or centuries. The
claimed duration of the fluctuation for a cyclic component of 2 years, should be defined more
generally at a duration of at least 1.5-2 times the seasonal component. In addition, periodic
components may occur nested on multiple granularity levels, such as seasonality on a daily level
during a week and on a weekly/monthly level during the year. In summary, a seasonal time
series has a fixed periodic length whereas a cyclic time series is a sequence with varying periodic
lengths.

Historically, the field of time series analysis was originally divided into two schools of approaches:
the time domain and the frequency domain [Tsa0OO0f]. The main idea of the time domain approach
is to rely on the use of autocorrelation function and parametric models, whereas the frequency
domain focuses on spectral analysis or power distributions. According to Tsay [Tsa00], the
separation is gone and the determination of which approach to use is now actually based on the

2Website of the book by [HA18]. Quote from Section 2.3: Time series patterns, https://otexts.com/fpp2/
tspatterns.html|(last visited on Sept. 16, 2020)
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objective of the analysis and the experience of the analyst. In the following, we focus on the time
domain aspect of time series analysis and apply parametric models, as proposed and popularized
by Box and Jenkins [BJ70]. These models are known as autoregressive integrated moving average
(ARIMA) models. The systematic approach Box and Jenkins proposed allows practitioners to, quite
simply, apply time series method for forecasting, and the success of these ARIMA models led to
substantial research of time series analysis [[Isa00]. The basic model selection process by Box and
Jenkins was a simple iterative process that included model identification, model estimation, and
model diagnostics. We will describe this process in more detail later in Section 2.3.1|of Chapter 2.
There we also elaborate on the challenges in the process of finding an adequate model for a
given time series, but essentially it is necessary to find a “useful” and “adequate” model [BJ70]
that can then be used and applied for tasks, like outlier detection, imputation, and prediction.
In that chapter, we use and apply not only the previously mentioned ARIMA model, but also
the extension for periodic time series, which are the class of seasonal ARIMA (SARIMA, or
S-ARIMA) models. In this way we can fit the time series model to seasonal time series data.

In addition to the major impact by Box and Jenkins in 1970, Tsay identified advances in computing
and time series methods as a reason for important developments around 1986—1988. In this period,
there was a transition from “traditional” time series analysis to more advanced model diagnostics.
This was achieved by integrating outlier analysis, applying the detection of structural breaks, the
usage of model selection criteria, and some important advances in pattern identification methods
[Tsa00]. In Chapter 2| we apply and use such model selection criteria to support the identification
of adequate models. In addition to those criteria, we apply the model and use the results of the
predictions as an integral part of the visual analytics model selection environment in Chapter 3.

In real-world applications and real-world data, data quality issues are of major concern [KHP*11),
Sadl13) [Das13l]. We focus in this dissertation on the issues of missing observations/data and
outliers. As there is also a demand for still using time series analysis methods/models on such
data, Tsay [Tsa00] mentioned the introduction of Kalman filters to time series analysis in order
to cope with missing observations. The major contributions for handling such missing data
in ARIMA models comes from the work based on alternative parameter estimation methods
proposed by Jones [Jon80|]. Jones was also concerned with using the time series models for
unequally spaced time series and proposed similar techniques to apply such models in this case
[Jon85]. The general idea of these techniques is to use specialized methods, like Kalman filtering,
for the maximum likelihood estimation when estimating the model parameters. In addition, there
are techniques to fill the missing values with arbitrary values and use a maximum likelihood
estimation with additive outliers [GMPn99]. Another approach would be to apply imputation to

fill in more appropriate estimated values for the missing ones instead of using arbitrary values.

For this reason, in Chapter 4, we propose visually and statistically guided imputation by using
visual analytics to better support the challenging task of imputation. We focus on seasonal time
series data and apply a cycle plot representation, which allows for better judging the estimated
value in relation to the seasonal structure in the time series.

Periodicity in time series data has always been of major interest in time series analysis. As
mentioned before, Tsay [Tsa00] named Yule 1927 as the start of statistical analysis of time series
data. In the referred paper [[Yul27], Yule proposed a method for investigating periodicities, using
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Figure 1.12: Seasonal decomposition of a periodic time series. The stacked line charts show the
observed data, season, trend, and irregular components.

Image Source: Generated by Markus Bogl using R and ggplot2.

Data Source: The classical AirPassengers dataset by [BJROS], retrieved from the R datasets package.

the still well-known sunspot observation data. This dataset, which dates back to 1849, was
introduced by Professor Wolf in Ziirich [[Yul27,Mor77]]. The sunspot activity is known to have a
periodic cycle of approximately 11 years [Mor77]] and even in 1927 Yule [[Yul27] was centrally
concerned with the interesting periodic patterns in the sunspot data. He proposed a method to
determine the periodic length of the sunspot cycle, but his method was challenged by the impact
of the disturbances and fluctuations in the data. He stated that he was “attacking a problem which
[...] was a new one, and used the methods that seemed best at the moment” [Yul27, p. 295].

Using our terminology of periodic—cyclic—seasonal, as defined before, dealing with periodic
time series was and is a central concern in time series analysis. Dealing with cyclic periods that
are not fixed in length was already considered from the beginning of the time series analysis.
Dealing with seasonality, which means with fixed periodic length, is much more prominent and
widely used and of major interest in many applications. There are seasonal fluctuations in many
application domains, from economics over natural sciences to the health domain. Barnett and
Dobson [BD10, p. vii] stated that “seasonality in disease was first recognised by Hippocrates
(460-370 BC),” based on the information that “[a]ll kinds of diseases are produced in all seasons
the year, yet some are caused and exacerbated rather in one than in another” [ST08|, p. 55].

The common approach to dealing with seasonality in time series analysis is to apply seasonal de-
composition [DGHOGO] for seasonal adjustment [CT82] to compensate for the seasonal fluctuations.
Most of the economic time series data presented to us in different media, like unemployment rates,
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Figure 1.13: Seasonal subseries plot, later know as cycle plot, Cleveland and Terpenning [CT82].

This graph allows for investigating the seasonal pattern as well as the behavior in each subseries.
Image Source: Cleveland and Terpenning (1982) [CT82, p. 55], courtesy of the Journal of the American
Statistical Association © 1982.

price indices, production numbers, and shipments, are usually presented in this seasonally adjusted
version [[CT82]]. The general idea is to separate the three components of a time series into trend,
periodic (seasonal in most cases), and irregular (or remainder/residuals). In 1982, Cleveland
and Terpenning [[CT82] proposed some graphical methods for seasonal adjustment, where a first

useful step is to show the results of the decomposition in a single display, as shown in Figure |1.12.

A more detailed discussion on such displays and seasonal decomposition is presented in the later
books by Cleveland [Cle93, ICle94]. Cleveland and Terpenning then introduced the so-called
seasonal subseries plot, as shown in Figure 1.13| which allows for investigating the overall pattern
of the seasonal component—in this case, the yearly pattern—as well as the behavior within each
subseries plot—in this case, for each month. This type of graph was later adapted by Cleveland
[Cle93. ICle94]], who used the term cycle plot.

Bertin had already proposed a first indication of representing time series with obvious periodicity
in a similar way in 1967 [Ber83| p. 214] (see Figure 1.14). He suggested that, “[i]f there is
obvious periodicity [...], and the study involves a comparison of the phases of each cycle, it is
preferable to break up the cycles in order to superimpose them [...]” [Ber83, p. 214]. Speaking in
terms used in the visualization community today, Bertin is suggesting that the graph illustrates
superimposition by stacking the lines above each other because superimposition would actually
overlay the five lines in the correct position of the points on the y-axis. In contrast, the cycle plot
proposed by Cleveland actually superimposes the data points and uses lines to connect the points
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Figure 1.14: Showing obvious periodicity in cycles, Bertin [Ber83]]. As early as 1967 Bertin
[Ber83|] suggested breaking up obvious periodicity and superimposing it to compare the phases
of each cycle.

Image Source: Redrawn with different data by Markus Bogl, based on the graph by Bertin (1983, first
published in 1967) [Ber83|.

in a different way than Bertin is doing. In a cycle plot, the points in the same phase of the periodic
cycle are connected (e.g., each month of a year). Together with the line representing the mean
of each group, each of them actually represents small multiples of line charts, with the correct
position on the y-axis and, like Bertin suggested, a restructured and differently arranged x-axis
based on the periodicity.

We are using these techniques of representing periodic cycles in such a way in our proposed
solution for visually and statistically guided imputation in Chapter 4. Because of the usefulness of
this technique and the limitation of using univariate time series data, we propose a generalization
to allow the usage of cycle plots for multivariate time series in Chapter|5. We then show the utility
of this novel approach by applying it for multivariate outlier detection.

1.6 Research Questions

Thus far, we have illustrated and discussed the problems and challenges that have arisen in the
field of time series analysis. We have also introduced the research field of visual analytics and the
history of visualization, as statistical graphs, in time series analysis and exploratory data analysis.
Applying visual analytics to the problem and challenges in time series analysis opens up numerous
research opportunities. In this dissertation, we will answer the following research question:

How can visual analytics support the challenges in statistical time series analysis of
model selection, parametrization, prediction, imputation, and outlier detection?

In order to answer this comprehensive research question, it is necessary to break it down into
sub-questions before consolidating them to answer the main question. These derived sub-questions
are:

Sub-Question 1: Is visual analytics an adequate support for the challenges in statistical time
series analysis dealing with periodic time series for both univariate and multivariate time series
data?
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1.7. Aim and Contributions

Sub-Question 2: How can visualization and interaction improve the process of model selection
and parametrization for time series prediction tasks?

Sub-Question 3: Is an adequate visual representation of periodic time series beneficial for
imputation and outlier detection tasks in univariate and multivariate time series?

1.7 Aim and Contributions

The aim of this work is to provide an understanding of challenges in statistical time series analysis,
introduce the principle ideas of visualization and visual analytics, and then apply visual analytics
to provide support in visual time series analysis, applied to the problem of model selection,
parametrization, prediction, imputation, and outlier detection. The larger structure of this thesis
is encapsulated into a form inspired from classical music structure in music theory [MV15]
p- 149]—namely, the sonata form of exposition, development, recapitulation, and coda. The
background of this idea is that the classical sonata form is composed of these four parts, each of
which has a specific purpose, as it is required in the structure of a dissertation. In the exposition,
the thematic material is presented and introduced to prepare for the development, the lengthy main
part where the themes are developed in great detail. In the development, the themes are changed,

variegated, metamorphosed, contrasted, and opposed until they transform into recapitulation.

The intention of recapitulation is to repeat and treasure the main thematic material and transfer it
to the final part with no frills. The coda is the final part that, simply put, concludes the work.

In the first main part, exposition, we laid out the foundation by introducing the topic of visual
analytics of periodic time series data in Chapter|1. After motivating the topic in general and
describing the problem space, we provided the background on data analysis and visualization and
offered a short history of time series analysis. We briefly summarized historic time series graphs
and then focused on visualization in general before introducing visual analytics. We continued
providing a foundation of the scientific methodology. Thereafter, we introduced some basic

definitions in time series analysis, differentiating between periodic, cyclic, seasonal, and trend.

Next, we stated our research questions tackled in this dissertation and described the aim of the
work before summarizing the contributions together with an overview of the remaining structure
of this document.

We then take the step to the second main part, development, were we propose our solutions for
the problems stated earlier. The first chapter in this part covers the role of visual analytics for
model selection in time series analysis in Chapter 2. The content of this chapter was published
in Bogl et al. [BAF"13]. As previously explained, the first step in time series analysis is to find
an appropriate model for the given data. There is a lack of adequate support for selecting such
models and allowing parameter adjustment with immediate feedback on the fit of the model for
the data. We introduce visual analytics methods to guide users in finding such adequate models
and judging the adequateness of the model by incorporating visual cues for model diagnostic
together with information criteria computations. We show that our prototype supports this model
selection task through interactive visual interfaces with short feedback cycles.

In Chapter 3, we extend the model selection process and propose the integration of prediction
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INTRODUCTION

[\
(@)}

capabilities of time series models to improve the model selection process. The content of this
paper was published in Bogl et al. [BAF"15]]. In addition to the previous contribution, we extend
the model diagnostic part for model selection and apply the model to compute prediction and
provide the prediction visually in the context of the input time series to give additional insights
into the adequateness and parsimony of the model for the model selection task.

We continue with introducing visually and statistically guided imputation of missing values in
univariate seasonal time series in Chapter 4. The content of this paper was published in Bogl et
al. [BEG™15]]. The general idea of this contribution is to provide intuitive guidance for the task of
imputing missing values in a time series. We utilize a cycle plot representation for visualizing
results of statistical imputation for periodic time series data to benefit from different perspectives
on the data and allow for a visual judgment of the adequateness of the computed values.

Finally, we propose extending the cycle plot representation to multivariate time series in Chapter 5
and utilize that for outlier detection in multivariate periodic time series data. The content of
this paper was published in Bogl et al. [BEG™17]]. In this contribution, we take the imputation
idea using a cycle plot representation a step further and generalize the cycle plot for multivariate
time series. We use a Mahalanobis-based distance measure to allow for multiple variables and
represent this in our multivariate cycle plot. We then employ this representation to explore and
interpret multivariate and univariate outliers and investigate seasonal cycles.

Following the main part of this dissertation is the recapitulation and coda, in which we summarize,
conclude, and discuss in Chapter |6/ the main contributions of this thesis, answer the research
questions, and propose open challenges and future research directions. We end with a list of
relevant publications together with an overview of the contributions to these papers of the author
of this dissertation, Markus Bogl.
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CHAPTER

Visual Analytics for Model Selection in
Time Series Analysis

Model selection in time series analysis is a challenging task for domain experts in many application
areas such as epidemiology, economy, or environmental sciences. The methodology used for this
task demands a close combination of human judgement and automated computation. However,
statistical software tools do not adequately support this combination through interactive visual
interfaces. We propose a Visual Analytics process to guide domain experts in this task. For this
purpose, we developed the TiMoVA prototype that implements this process based on user stories
and iterative expert feedback on user experience. The prototype was evaluated by usage scenarios
with an example dataset from epidemiology and interviews with two external domain experts in
statistics. The insights from the experts’ feedback and the usage scenarios show that TIMoVA is
able to support domain experts in model selection tasks through interactive visual interfaces with
short feedback cycles.

The content of this chapter was published in [BAF*13]]. © 2013 IEEE. Reprinted, with permission,
from the authors. We modified “[...] we refer to [SS11, p. 121-140]" to “[...] see [SS11l p.
121-140]” in the last sentence of the last paragraph on page |36/to prevent a pagebreak within the
citation.

Markus Bogl, Wolfgang Aigner, Peter Filzmoser, Tim Lammarsch, Silvia Miksch, and Alexander
Rind. Visual analytics for model selection in time series analysis. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2237-2246, 2013.

The original version is available at https://doi.org/10.1109/TVCG.2013.222
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Figure 2.1: TiMoVA provides visual guidance for domain experts in the task of model selection,
by (1) enabling to choose a certain range of interest in the time series, (2) supporting the model
selection interactively via the visual interface, and (3) visualizing the model transitions and giving
immediate visual feedback of the model output for the iterative refinements. For more details see
Figure 2.5,

2.1 Introduction

Statistical time series analysis is a challenging task performed by experts in different domains.
A practical application scenario is, for example, a public health official predicting the number
of people that need to be treated because of cardiovascular reasons in the next year. Another
scenario is to be prepared for the number of patients suffering from seasonal flu. The datasets
to be analyzed are obtained from observations collected over time, optimally at periodic and
equally spaced intervals and ideally without missing values. Such a dataset is called a time series.
A range of methods, algorithms, and models to analyze these time series exist in the literature
[BK11,BJ70, BJROS., ICCOS, ISS11]]. Moreover, they are implemented in most common software
tools for statistical computing. In our work we focus on the most prominent and large class of
models, namely ARIMA and seasonal ARIMA models [BJROS]. These models are applied in a
variety of practical application domains. The huge amount of work discussing ARIMA models
reflects the importance of this model class [BK11}BJ70, BJROS| ICCO8| [Ham94,|SS11]] and there
exists an established process for model selection known as Box-Jenkins methodology [BJ70]]. We
present and discuss this methodology and the theoretical underpinnings briefly in Section [2.3|
However, currently available software tools do not appropriately support the workflow of the
Box-Jenkins methodology, as we argue in Section 4.2, Therefore, support for domain experts
would be beneficial for working on model selection in time series analysis.

A potential way to overcome the above-mentioned shortcomings is, in the spirit of Visual
Analytics (VA), to “combine automated analysis techniques with interactive visualizations’
[KKEMI10, [TCOS]]. This raises the question of how to use VA methods to support the task
of model selection for time series analysis. According to the characteristics of design studies
[MunO8},[SMM12]], we need a comprehensive understanding of the domain problem. We provide
its characterization to judge our solution and analyze the tasks in Section 2.3. In Section 2.4 we
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2.2. Related Work

identify the target users, formulate the requirements for the tasks, and specify the data used in
time series analysis.

The main objective of this work is to use well-established information visualization techniques
[AMST11}|Cle93]] and apply them to the particular target problem. For this reason, we defined a
VA process based on existing VA process descriptions [KKEM10, LAB*11] and implemented a
prototype to facilitate it. The design and implementation of the VA process and the prototype were
iteratively refined and judged by experts in information visualization and statistics using formative
evaluation of user experience [LBI*12]. We present the results of this refinement process in
Section 2.5, where we discuss the VA process description and our prototype. We named our
prototype TiMoVA, which is an abbreviation of Time series analysis, Model selection, and VA.

In addition to the formative evaluation and the iterative design, we evaluated the final version of
the prototype by defining usage scenarios and applying the prototype to an example dataset. We
present the evaluation in Section 2.6, where we apply the usage scenarios on an example dataset.
Furthermore, we also evaluated the user experience by performing a feedback session with two
external domain experts. We used this informal user feedback to argue how our target users assess
TiMoVA [LBI"12]. In the discussion of the results (Section 2.5) and the evaluation (Section 2.6),
we describe the visual encodings and interaction mechanisms used in the prototype and how they
fulfill our requirements.

In particular, the main contributions of our paper (Section [2.7) address issues of interactive visual
guidance to ease the model selection in time series analysis by

* selecting the model order inside the autocorrelation and partial autocorrelation function
plot, where the domain experts get the information about the model order,

 providing immediate visual feedback of the model results to the domain expert while
adjusting the model order, and

* visualizing the model transitions to enable the domain experts to decide whether or not the
model improves.

2.2 Related Work

Following the design study methodology [MunO8, SMM12], we apply existing and known VA

methods and process descriptions to the domain problem of model selection in time series analysis.

We based our work on the techniques for visualizing time-oriented data [AMST11,|Cle93] and
use state-of-the-art VA process descriptions [KKEM10, LAB* 11, [TCO03].

All major mathematical and statistical software tools implement the state-of-the-art methods
and models for time series analysis, which we describe briefly in Section 2.3, We considered
tools, like the R project for statistical computing [R C20]], SAS JMP [SAS12], MATLAB [Thel0],
EVIEWS [IHS13]], Mathematica [Woll13|], Stata [Stalll], and Gretl [[CL13]]. Except for the R base

package all these tools support time series analysis and models by menu driven user interfaces.

The separate calculations and visualizations need to be initiated by the user either by menus
and input forms, or by command line methods. What all these approaches are missing, is the
guidance to browse and visually compare models directly when selecting the model. Instead it is
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(4) Diagnostic Checking
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Figure 2.2: Box-Jenkins Methodology. An iterative process for model selection of time series
[BJROS]|. See Section[2.3.1] for details about the process.

necessary to either decide on a set of models or compute a whole bunch of models and arrange
them in visualizations by hand to compare them. To summarize, they do not support the repeated
execution of the separate steps in the iterative Box-Jenkins methodology well.

One notable solution is the x12GUT package for R. It offers an interactive graphical user
interface for the x12 package, which provides a wrapper function to the X-12-ARIMA
software. The focus of their approach is to explore the time series and the results of the seasonal
time series adjustment as well as to enable the user to do interactive manual editing of outliers
[KMST12]. However, the user interface supports the user in selecting a time series and adjusting
the parameters for the X-12-ARIMA call using form-based input only. It also provides a history
for computed models, which allows for loading previous settings but not to browse and directly
compare them.

Because we have the very specific target problem of model selection in statistical time series
analysis, to our knowledge, there is only distantly related work in VA, as for example TimeSearcher
[BAP*05,BPS*(7] and the work for visual-interactive time series preprocessing [BRG*12]]. Both
approaches apply VA methods to time-oriented data, but differ in the tasks and their solutions.

Motivated by these findings, we give the necessary background information in the following
section to characterize and specify our target problem in more detail and ground our motivation
further.

2.3 Problem Characterization

In this section we provide the characterization of the domain problem and discuss the
tasks necessary for the model selection.
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2.3. Problem Characterization

Example Dataset and Task. An important domain where time series analysis is used is public
health and epidemiology. We have chosen a dataset from this domain for the evaluation in
Section 2.6.1/ and illustrate a possible analysis task in the following. The dataset contains the
daily number of deaths from cardiovascular disease of people aged 75 and older in Los Angeles
for the years 1987 to 2000 from the NMMAPS study [PWO04,[SDZ*00]. A possible scenario is
that a public health official needs to predict the expected number of death from cardiovascular
disease to start a prevention program. To do the prediction, the health official has to find a model
based on the given data. The Box-Jenkins methodology is a standard method to solve this task.
We describe this methodology in Figure 2.2|and in the following.

2.3.1 Box-Jenkins Methodology

The Box-Jenkins methodology [BJ70] is an iterative process to select an adequate model for
a given time series (see Figure 2.2)). It has been widely used in time series analysis and is an
established method for model selection [BK11, BJROS, [CCO8.SS11]]. To find or select a model
for a given time series, it is according to Box et al. [BJROS|| necessary to:

(1) Use the incomplete theoretical knowledge about the underlying mechanisms and the experience
from theory and practice to consider a useful general class of models. By general class of
models Box et al. [BJROS|| mean any subclass combination of ARIMA and seasonal ARIMA
model components. Fitting these models directly to data, would be too extensive and time
consuming.

(2) Apply methods to select an appropriate parsimonious (see below) model by deciding on the
model order. This determines the number of parameters in the model and gives some rough
estimates for them.

(3) Fit the model to the data and estimate its parameters.

(4) Finally, check the model with diagnostics to uncover possible lacks of fit and find their causes.

These steps are repeated until an adequate model is found, which can subsequently be used for
forecasting (see Figure 2.2).

The method is sometimes reduced to a simplified version [CCOS], where the decision for a general
class of models (1) and the identification of a model that can be tentatively entertained (2) are
combined and entitled as model specification. Step (3) is renamed to model fitting and step (4) to
model diagnostics. We present a more detailed description of these separate steps in Section 2.3.3,
2.3.4, and2.3.5.

The crux of model selection is summarized in the famous quote of George Box that “Essentially,
all models are wrong, but some are useful” [BD87, p. 424]. When introducing the Box-Jenkins
methodology, Box and Jenkins [BJ70] use a language that indicates that there is a “useful” and
“adequate” model for a time series, but we cannot assume that it is a “true” or “correct” model.
The uncertainty of such models is put straight by using the term “tentatively entertaining a model”
[BK11]] (see Section 2.3.4).

Principle of Parsimony. An important principle in the model selection process is the principle
of parsimony [BJROS]|. It is described by the paraphrased quote of Albert Einstein “everything
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should be made as simple as possible but not simpler” [BK11, p. 18]. In the process of model
selection this means that if there are different candidate models to adequately represent the time
series, the model with the least parameters is preferable [CCOS8]].

In this section, we presented the methodology how to find an adequate model for a given time
series. This methodology was introduced for a specific class of models [BJ70], which we describe
in the following section.

2.3.2 ARIMA and Seasonal ARIMA Models

With classical regression it is often not possible to explain a time series sufficiently [SS11]].
Therefore, alternative models exist. We briefly describe the key ideas of the different models
and explain them without presenting the full details of the formal definition of these models.
These formal definitions and the details are not necessary to understand and argue the design
choices and explain the interpretation of the visual representations in Section 2.5 and [2.6.
For more details and the formal definitions we refer to the literature in time series analysis
[BK11}BJ70, BJIROS! [CCO8,[SS11]].

Autoregressive (AR) models explain the current value x; as a function of p past values in the time
series. The number of past values p is also called model order, therefore an AR(p) model is an
autoregressive model of order p. Moving average (MA) models explain the current value x, as a
linear combination of the current white noise term and the g past white noise terms. The number
of past white noise terms is again called the model order, therefore, an MA(g) model is a moving
average model of order g.

In some cases it is problematic to model a time series with only AR or only MA models, because
it would demand a high-order model with many parameters. This is in conflict with the principle
of parsimony. For these cases, Box and Jenkins [BJ70] presented autoregressive moving average
(ARMA) models. To achieve parsimony, ARMA models combine the ideas of AR and MA models.
An autoregressive moving average ARMA((p, ¢) model of order p and ¢, is the combination of an
AR(p) model part of order p and a MA(q) model part of order ¢. It is possible to apply this class
of models if the time series is stationary, which means that there is no seasonal effect or trend.

In many practical cases, a time series is non-stationary due to trends. It is possible to transform
this time series to a stationary time series by applying a differencing operation, sometimes called
detrending. To recover the original time series, the differenced time series needs to be aggregated,
or also called integrated. These models are called autoregressive integrated moving average
(ARIMA) models. An ARIMA(p, d, g) means that the dth difference of the time series is an
ARMA(p, g) model.

To include seasonal terms in a model it is necessary to combine an ordinary non-seasonal ARIMA
model with an ARIMA model that is extended to the seasonal period s. Therefore, the AR and
the MA models are extended to the time shifts, called lag, of the seasonal period s and use capital
letters P and Q for the seasonal model order. The seasonal difference D is also applied like the
non-seasonal difference d, but with time shifts of the seasonal period s, called seasonal lag. Thus
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2.3. Problem Characterization

the additive seasonal effects are removed. The resulting models are called seasonal autoregressive
integrated moving average (SARIMA) models and are denoted as ARIMA(p, d, q) X (P, D, Q).

After introducing the Box-Jenkins methodology in Section 2.3.1 and the class of models used in
that methodology in this section, we discuss the separate steps of this iterative model selection
process in the following Sections 2.3.3,|2.3.4, and 2.3.5.

2.3.3 Model Specification

For the task of model specification, the goal is to decide on a class of models that could be
appropriate for the given time series, select the level of differencing and determine the order of
the model which specifies the number of parameters used in the model. The first step to achieve
this goal is to take a look at the given time series. Usually this is done by viewing the time series
in a line plot. After applying all required transformations, such as a difference operation or log
transformation, the autocorrelation function (ACF) and partial autocorrelation function (PACF)
plots are checked to support the decision of the model order.

ACEF/PACF Plot. The ACF plot is a spike graph, which is a special type of bar chart, of the
ACF as a function over lags. The PACF plot is likewise the PACF as a function over lags. For the
formal definition of the ACF and the PACF we refer again to the literature in time series analysis
[BK11, BJ70, BJROS, ICC08, SS11]] and give a description of the basic ideas in the following:
The ACF is the correlation between any two values in a time series with a specific time shift,
called lag. The PACF is the correlation between any two points with a specific lag, where the
linear effects of the points in between is removed. This PACF plot combined with the ACF plot,
where this linear dependence is included, is called ACF/PACF plot and enables us to choose
the number of parameters for the model. In addition to the time series plot, the ACF/PACF plot
provides a first idea for the level of difference and seasonal difference. In Figure 2.3 we show
an example ACF/PACF plot. The ACF and PACF are plotted on the y-axes and the lags on the
x-axes. In this case the labels are seasonal lags, which means that one lag represents one seasonal
cycle. The non-seasonal lags are fractions of one, depending on the seasonal length. For example,

Table 2.1: ACF and PACF Behavior for ARMA and Seasonal ARMA Models [SS11]]. The
behaviors of the ACF and the PACF indicate which class of model and what number of parameters
could be adequate for the non-seasonal and seasonal part of the model.

AR(p) MA(q) ARMA((p, q)
ACF | Tails off Cuts off after lag ¢ Tails off
PACF | Cuts off after lag p  Tails off Tails off

AR(P), MA(Q)s ARMA(P, Q)s
ACF#* | Tails off at lags k - s Cuts off after lag Qs Tails off at lags k - s
PACF* | Cuts off after lag Ps Tails off at lags k - s Tails off at lags k - s

* where k - s are multiples of s, for k = 1,2,...
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Figure 2.3: ACF and PACF over Lags. The behavior of the lags enables domain experts to decide
on the order of the model according to Table 2.1. This plot displays the example dataset (see
Section 2.6) from the NMMAPS study [PW04, 'SDZ*00].

in a dataset with 12 months in one year and a seasonal length of 12, the seasonal lags are 1,2, ...

1 2
and the non-seasonal lags are 15, 3, . . . -

Using the definitions of the autoregressive models, moving average models, ACF, and PACF it is
possible to identify the basic behavior of the ACF and the PACF for AR, MA, and ARMA models
[SS11]. Likewise, it is possible to describe the behavior for the seasonal component of the model
in a similar way. The behavior is shown in Table 2.1. If we consider the seasonal lags 1,2, . ..
in Figure 2.3, we notice that the ACF plot is tailing off and in the PACF plot cuts off at lag 2.
According to Table 2.1/ this indicates, that an adequate model for the seasonal component could
be an AR(2);; model. Continuing this for the non-seasonal lags, we get a set of possible adequate
models.

2.3.4 Model Fitting

In the previous section, we discussed how we select and configure the model order. The result is a
model, for example a seasonal ARIMA(p, d, g) X (P, D, Q) model, where the level of difference
d, the level of the seasonal difference D, the seasonal length s, the number of parameters p
and ¢, as well as the number of seasonal parameters P and Q are set according to the steps
presented above. Note that the parameters p, g, P, and Q determine the order of the model,
which is the number of parameters. The differences d and D are transformations to the time
series. Box et al. [BJROS]|| use the term tentatively entertained model for this. Once the model is
identified, it is fitted to the time series data to estimate the unknown parameters of the model.
There are several methods to estimate the parameters. The most important one is the maximum
likelihood-estimation. Other methods are the method of moments, the least squares estimation,
and the unconditional least squares. For details and theoretical discussion see [SS11} p. 121-140].
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2.4. Requirements Analysis

2.3.5 Model Diagnostics

To evaluate how well the model represents the underlying time series, model diagnostic methods
are applied. The model is diagnosed by analyzing the residuals, which means the remaining part
that is not explained by the model. The exploratory analysis of the residuals is done by plots as
shown in (4a-d) of Figure [2.5. If the model is well fitted to the time series, the remaining part is
expected to behave like white noise. This is assessed in four ways: (4a) The standardized residuals
are plotted over time. Any non-random episodes can unveil a remaining underlying process. (4b)
The ACF of the residuals is calculated and plotted over the lags to check that there is no remaining
structure in the residuals. (4c) If the model is well fitted, the standardized residuals are expected
to be standard normally distributed. This distribution is checked by the quantile-quantile plot
[Cle93]]. (4d) The plot of the Ljung-Box statistic [BP70,|[LB78]| is a test that helps to check if
the residuals for each lag are independent. If for all lags the p-values are not significant for a
pre-specified significance level, indicated by the dashed line, it can be assumed that there is no
remaining autocorrelation within the residuals. If all this is fulfilled, the model is well specified,
otherwise the model needs to be readjusted. A clear decision is often not possible and is based on
human judgement and experience.

Information Criteria. In addition to the diagnostic plots it is possible to examine information
criteria. They provide a good basis to decide on the fitness of the model. Criteria that are often
used include Akaike’s information criterion (AIC), its bias corrected form, the AICc, and the
Bayesian information criterion (BIC) [SS11]]. In contrast to the AICc, which does behave very
well for smaller samples, the BIC is well suited for larger samples. In order to get an adequate
model, as introduced in Section 2.3.1} the goal is to select a number of parameters for the model,
thus minimizing the criteria. Based on these values for different models, it is possible to decide

on one of them tentatively. For more details on the information criteria we refer to [SS11] p.

50-53]. We show such information criteria in the graphical user interface of TiMoVA in area (5)
of Figure 2.5.

According to our findings about the domain problem, related work, and expert feedback, we
conclude that these tasks are currently cumbersome to execute by domain experts. It is evident,
that combining the computations and visualizations with additional intuitive interactions and
visual feedback improves the way to accomplish these tasks and supports the domain experts
in their work. To achieve this, we analyzed the requirements and present them in the following
section.

2.4 Requirements Analysis

In this section we explicitly describe our target users, distill the tasks and challenges for model
selection discussed in Section 2.3|and formulate them using user stories as well as present the
data used.

Target Users. Our target users are domain experts in any field using time series analysis, for
example biology, chemistry, epidemiology, economy, or environmental research. The users have
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to be knowledgeable in statistics and time series analysis. These skills are required to interpret
and understand the visual representations of the time series and the time series models as well as
the model fitting and the selection criteria.

Tasks. User stories help to formulate the requirements in a way that is easy to use in discussions
within the project team, with customers, or other stakeholders. User stories evolved from the
extreme programming (XP) software development methodology [Bec00] and have an important
role in other lean and agile software development methodologies [[Coh04,|Coh10]. Usually in the
beginning only high-level goals and requirements with a broad coverage are known. These goals
and requirements are formulated as user stories. Through the process of refinement, the high-level
user stories are broken down iteratively to smaller user stories until they are very specific. The
high-level user stories with the broad coverage are also called epics [Coh04, |(Coh10].

We formulated and refined the user stories in the repetitive meetings of the project team and
throughout the formative evaluation. We used these user stories to formulate the VA process and
implement the prototype. The stories are written from the perspective of our target users. The
high-level goal is formulated in the following epic:

As a domain expert (user), I want to find an adequate model for a given time series so that I
can use that model for different purposes, e.g., forecasting.

User stories are defined to get a more detailed understanding of the requirements [[Coh10J:

* As a domain expert (user), I want to select a certain region in the time series so that I can
use any subregion of the time series for the model selection step.

* ..., I want to see all important visualizations of the time series and the model so that I can
decide on the model and assess how well the model fits the time series with one glimpse.

e ..., I want to adjust the model orders at the place where the visualization provides the
information about these model orders so that I can intuitively find an adequate model.

* ..., I want to include and exclude the seasonal components of the model and the seasonal
parameter inputs so that I can compare the seasonal influence and if no seasonal components
are needed, they do not distract me.

* ..., I want to see how a new selected model compares to the previous model so that I can
decide if one model is better than the other.

Time Series Data. The considered data for our work are time series as introduced in Section 4. 1.
We assume to have univariate data values observed at equidistant discrete time intervals without
missing values.

2.5 VA for Model Selection in Time Series Analysis

In Section 2.3 we discussed the characterization and tasks of the problem domain. We identified
VA as a basis to define a VA process description to overcome the stated problems. In this section
and the following Section |2.6 we rely on our findings to present the main contributions and results
of our work. To do so, we provide the description of a tailored VA process in Section 2.5.1| that is
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2.5. VA for Model Selection in Time Series Analysis

used for the implementation of the prototype. In Section 2.5.2 we provide the final design and a
discussion of the design choices and interaction techniques in the prototype. These results are
designed and implemented to fulfill the requirements specified in Section 2.4.

2.5.1 VA Process Description for Model Selection

The basis of our VA process description for model selection is the Box-Jenkins methodology
presented in Figure 2.2| and discussed in Section 2.3.1. The process description we show in
Figure 2.4/is the application of the VA process for time-oriented data [LAB*11]] on the domain
problem of model selection in time series analysis. The goal of the process is to select an
adequate model for a given time series. The details of the theoretical underpinnings of this
process in statistical time series analysis are briefly discussed in Section 2.3 In the following
we describe the VA process for model selection in detail to prepare the reader for the discussion
in Section 2.5.2| about the connection between the graphical user interface of the prototype
(Figure 2.5)), the VA process description for model selection (Figure 2.4) and the Box-Jenkins
methodology (Figure 2.2).

The time series in Figure 2.2|is Data provided as Input in Figure 2.4. The Domain Knowledge is
based on experience and Prior Analyses. The Interactive Visual Interface is used to visualize
the Data (D;) to decide on the class of models and adjust the number of parameters as well as
the level of differencing. To interpret the Interactive Visual Interfaces, the Domain Knowledge
about time series analysis (K;) and about visualizations of time series and time series models
(Kp) is used. Based on this knowledge and the visual representations of the time series and time
series model, the Hypotheses are formed (V;). By adjusting the level of differencing (A4) and
the order of the model (A ), the Hypotheses are refined. Based on the Hypotheses the model is
estimated with the given parameters (B,,) to build a model based on the input Data (A;). The
resulting model is analyzed using the Domain Knowledge about time series models and model

Hypotheses

Prior Analyses /3%
| R

Domain Cl A\
Knowledge | d Vi 4 Bn I
SR\ )
Interactive 7
Visual Interfaces v

Va

) ‘ Model that fits
:\ 74 the data “best”
Input i Models —

Area of User Interaction

Data

Figure 2.4: VA Process for Model Selection. The figure shows the VA process for selecting the
model iteratively, to find an adequate model for a given time series. This process description is
based on the VA process for time-oriented data [LAB*11]).
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Figure 2.5: TiMoVA Overview. The figure is showing the coordinated and multiple views in the
user interface, where (1) is the time series plot (input data), (2) the model selection toolbox, (3)
the ACF/PACEF plot as well as further model selection, (4a-d) the residual analysis plots, and (5)
the model history including the information criteria. The plots in the area for the residual analysis
are (4a) the standardized residuals over time, (4b) the ACF of the residuals over the lags, (4c) the
quantile of the standardized residuals against the quantile of the standard normal distribution, and
(4d) the p-values of the Ljung-Box statistics over lags.

diagnostics (Kj,,) as well as the visualizations of the standardized residuals, information criteria,
and model parameters (V). In this iterative refinement of the process, Insights are gained by (1)
interpreting the Interactive Visual Interfaces (I,)) deciding the fitness of the underlying model
that is visualized, (2) the parameter estimations which lead to the adequate model (/,,,), and (3)
the refinement process of the Hypotheses building (/). The result is a model with estimated
parameters, that is adequate for the given time series, and can be used for forecasting. The Area
of User Interaction is highlighted in gray and indicates the process steps, where the user is part of
the process through user interaction.

2.5.2 TiMoVA Prototype

Based on the VA process description above and the user stories (Section |[2.4) we implemented
our TiMoVA prototype. We refined our design along with the formulation of the user stories to
quickly develop a working prototype and acquire user feedback [SMM12]. Here we present the
final version.

Implementation Choices

Before we discuss the design choices and implementation ideas in detail, we highlight the most
important design decisions for our prototype. We implemented the prototype in Java. For
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2.5. VA for Model Selection in Time Series Analysis

the dynamic visualizations, we used the software framework prefuse [HCLOS]. As an API for
time-oriented data we used TimeBench, a software library for time-oriented data [RLA*13]].

One important decision was to use the R project for statistical computing [R C20] as a compre-
hensive toolkit for time series analysis and other calculation tasks. R provides a broad variety
of methods known from literature and our prototype is designed in a way that allows us to use
these methods for the statistical computations. Using Java/R Interface (JRI) enables us to use R in
combination with Java. JRI is part of the rJava package [Urb20] in R. We chose Java, because with
prefuse, we have more possibilities regarding interactivity than implementing in R. Furthermore
the extensibility and interconnectivity of our other projects using TimeBench is given.

Because the calculations in time series analysis can be very time-consuming, especially with large
datasets, it is important that the user interface is still responsive to user input, while calculations
are carried out. This is achieved by using Java threads and caching, which allow the computer to
pre-compute models and provide them upon request. As a result, the user interface shows good
reaction times for user input, even when the calculations are running in the background.

Graphical User Interface

The graphical user interface of the prototype is based on the workflow of the VA process description
we defined in Section 2.5.1, The visualizations are inspired by the visualizations used in R and by
well-established visualization techniques [AMST 11}, |Cle93]]. We extended these visualizations so
that the user is able to interactively select the models. The result is a prototype that implements
the VA process for model selection in time series analysis.

The TiMoVA prototype consists of coordinated and multiple views [Rob07]. An overview of the
graphical user interface and the five areas is shown in Figure 2.5 and in the supplementary video
of the usage scenarios in Section 2.6.1. In Figure 2.5, (1) displays the time series plotted over time
(time series plot). In this view it is possible to explore the time series and select a certain range
that is used for the model selection. This range selection is shown in the upper left corner (1) of
Figure |2.1. The details of the interactions for the range selection are discussed in Section 2.5.2.
The toolbox in area (2) and the ACF/PACF plot in area (3) are used for the model selection. In the
ACF/PACEF plot (3) the user can adjust the number of model parameters directly within the plot.
The plots in area (4a-d) show the results of the parameter estimation as the plots for the residual
analysis. The table in area (5) displays the model history including the information criteria.

In Figure 2.6 the model selection toolbox (2) and the ACF plot (3) are shown in more detail.
These are the areas for the configuration of the model order. In the toolbox the max lag input
changes the number of lags in the ACF/PACF plot below and in the ACF plot of the residuals in
area (4b). The Include Seasonal Parameters check box enables or disables the configuration of the
seasonal component in the model, which also enables or disables the input for the Seasonal Span,
as well as the Seasonal Difference slider. With the Difference slider and the Seasonal Difference
slider the numbers for the parameter d and seasonal parameter D are selected. The continuous
vertical lines in Figure 2.6/ can be dragged along the x-axis to select the order of the model, which
is synonymous with the number of parameters. There is one vertical line for p, which is the order
of the autoregressive part of the model AR(p). There is another vertical line for ¢, which is the
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order of the moving average part of the model MA(q). If the seasonal components are enabled by
the check box, two additional continuous vertical lines appear, one for P, which is the order of
the autoregressive part of the seasonal component of the model AR(P),, and another one for Q,
which is the order of the moving average part of the seasonal component of the model MA(Q);.
The seasonal span s can be adjusted using the Seasonal Span spin box in the toolbox.

TiMo VA shows visual representations for the model diagnostics (4a-d) and (5), in order to evaluate
the fitness of the model for the given time series. In this area the results of the parameter estimation
are shown. We discussed the model diagnostics and the visual representations used for this task
in Section [2.3.5. The goal is to visually explore the remaining part of the time series that is not
described by the model, and check if it is likely to be white noise. The visual representation of the
standardized residuals in the user interface of the prototype is inspired by the representation used
in R. In Figure [2.5|the area displaying the plots for the analysis of the residuals are numbered with
(4a-d). See Section 2.3.5/for the details on these plots.

In addition to the residual analysis, we included the information criteria, as introduced in
Section [2.3.5, in the design of TiMoVA. The information criteria table (5) in Figure [2.5/shows a
history of previously selected models. The first column represents the color used in the transitions
of the residual plots. The second column describes the model and the other columns show the
values of the model information criteria. The cells of the model criteria are colored according to
their value indicating whether this criterion for this model is better (minimum) or worse compared
to the others in the model history. The legend is shown below this table.

Residual analysis and tests for white noise, which are essentially tests for the randomness of a
dataset, are manifold in statistics and there are many implementations of these methods in R. In
our implementation of the prototype we focused on the standard tests and visualizations used
in the literature for time series analysis [BK11l [BJ70, BJROS,|CCOS8, |SS11]]. It is desirable to
enable the user to adjust and customize which tests and visualizations she or he wants to use in
the process. This is a possible feature to include in the future work.

Connecting the VA Process Description and the Box-Jenkins methodology

In this paragraph, we describe how the VA process description defined in Section 2.5.1) is
implemented in TiMoVA. We explain in detail how the user interface facilitates the VA process
and creates short feedback cycles for the task of model selection. For each transition in the process,
we provide the corresponding labels from Figure 2.4, the number of origin from the original
Box-Jenkins methodology in Figure 2.2, and the number of the affected area in the user interface
in Figure [2.5. By viewing the plots in the user interface, we decide on a general class of models
(Figure 2.2: (1); D;, V;). By adjusting the level of difference and the number of model parameters
(Figure 2.5: 2, 3; Ag, Ap, V;), we identify a so called tentatively entertained model (Figure 2.2:
(2); By,). The adjustment of the relevant faders triggers the system to estimate the parameters
of the model (Figure 2.2: (3); A;) and show the resulting diagnostics immediately in the user
interface (Figure 2.5: 4a-d, 5; Figure 2.2t (4); V4, D;, V;). The insights gained (1, I,,, ;) and
the application of the domain knowledge (K;, K, K,;,) are part of the user interaction, but not
part of the user interface.
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Figure 2.6: Model Selection Toolbox and ACF Plot. The toolbox at the top and the four continuous
vertical lines are used to select the time series model. In this figure they are setto p =2, g =1,
Q =0, and P is currently moved from P = 1 to P = 2, which is the final model configuration for
this time series. The user interface supports the user to focus on the seasonal lags by changing the
color and reducing the opacity at the non-seasonal lags.

Interactive Guided Model Selection Environment

In Section |2.5.2 we introduced the time series plot and the range selection as shown in the upper
left corner (1) of Figure 2.1, The main interaction in this area is the navigation through the time
series and the selection of a specific time interval. The horizontal range slider on the bottom
allows the user to zoom in and navigate through the time series. When changing the zoom level on
the range slider, the time axis is adjusted to show a suitable resolution of time. Details about the
time points are provided on demand when moving the mouse cursor to its position. It is possible
to specifically select a time interval that is used for the model selection. The user can select,
resize, move, and remove the selection using the mouse cursor. The user can select whether or
not the selection is connected to the other views using the Synchronize Displays button shown
in Figure [2.6. If it is linked to the other views, they are recomputed and the visualizations are
updated as soon as the region changes. This feature enables the user to select a certain smaller
region of interest from a larger time series for the model selection task and keep a fast reaction
time for the model parameter estimation even for larger time series.

Another important design requirement was to visualize the change in the plots when adjusting
the model order and give the user the control over these transitions. This is supported by
direct manipulation [Shn83|] using sliders for the level of difference and continuous vertical
lines for the model parameters. To focus on the change in the resulting plots, we use animated
transitions [HRO7] and different colors that are consistent in the coordinated and multiple views
[Rob07]]. This process is shown in Figure 2.7 and the supplementary video. Once the slider or
a vertical line is dragged from one value in the direction of the next value, the parameters of
the new model are calculated and the plots are seamlessly faded from one display to another
by using alpha blending of the bars, points, and lines. The colors for the plots are selected by
using ColorBrewer2 [HBO3]]. We used this tool to get a qualitative color scheme, which is easy to
distinguish on a screen. This set of colors is used as an endless cyclic sequence for the coloration
of the plots. This ensures that each parameter combination is a different color, and the fading
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Figure 2.7: Transitions of Model Selection in Elected Residual Plots. We show the change
when selecting a new model in two elected residual visualizations, the ACF and the normal
quantile-quantile plot of the standardized residuals. This enables the user to evaluate whether or
not the new model improves. Each numbered row represents one transition.
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2.5. VA for Model Selection in Time Series Analysis

process uses always two separate colors.

The toolbox to adjust the parameters and the continuous vertical lines in the ACF/PACF plot are

shown in Figure 2.6. By default the check box to include the seasonal parameters is disabled.

In this case, the seasonal span and the seasonal difference input are disabled and the vertical
lines for the order of the seasonal autoregressive and the moving average component of the
model are not visible. This ensures that the user does not accidentally fit a seasonal model, if a
non-seasonal model is needed. By ticking the check box the inputs are enabled and the vertical
lines in the ACF/PACEF plot for the seasonal order appear. That also ensures to first consider
simpler non-seasonal models according to the principle of parsimony and keep the users attention
to the relevant class of models.

In Figure [2.7, we show the fading process when changing the order of the model by dragging
one of the continuous vertical lines in the ACF/PACF plot. When sliding the vertical lines for
the seasonal order P and Q in the ACF/PACF plot shown in Figure 2.6, the prototype supports
focusing the seasonal lags in the ACF/PACEF plot by setting the non-seasonal lags to another color
and opacity level. Thus the user can more easily decide the seasonal order of the model. When

adjusting the level of differencing we also change the underlying data for the ACF/PACF plot.

In this case the ACF/PACF plot and the residual plots are fading from the current to the new
configuration.

All four residual analysis plots, area (4a-d) in Figure 2.5, are included in the interactive fading
process presented before. When the user modifies the model configuration, the residual plots are
fading from one to the other continuously. This enables the user to see the changes of the model
configuration and evaluate if the model fitness improves or worsens. This process is shown in
Figure 2.7.

The information criteria for all previously and currently selected models are shown in area (5) of
Figure 2.5|as described in Section 2.5.2. This history stack is filled during the model selection
process. The coloring to immediately find the minimal information criteria is readjusted if a new
model is added to the table. So for each transition we can see the values of the criteria which are
supported by the color if it is better or worse than the previous one. Additionally, it is possible to
see which are the best models according to the information criteria at each point in the model
selection task.

Discussion of Design Rationales

The key idea for the layout of the TiMoVA user interface is to map the Box-Jenkins methodology
and its workflow. This way of working and thinking is well-established and known by our target
users, the domain experts. The main intention to use established standard visualization techniques
for the separate steps in the Box-Jenkins methodology, is to avoid confusion and benefit from the
experience the domain experts already have. By using familiar visualizations that they know really
well, the domain experts can profit from the combination, layout, and especially the interactions
of TiMoVA. In this stage of our work this was our goal and is our contribution. For future work it
would be exciting to experiment with more advanced visualization techniques, use and include
them in TiMoVA in order to further improve the task of model selection in time series analysis.
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Another requirement was to use appropriate interactions in TiMoVA, so that it is easy and intuitive
for the target users and they can concentrate on their task of model selection. According to Heer
and Robertson [HRO7]] animated transitions in statistical data graphics are a way to engage the
users and improve the perception of changes. They also suggest using alpha blending as a solution
for possible occlusion. Because of their findings, we apply animated transitions in TiMoVA
and use alpha blending because occlusions may occur in the transitions. These transitions are
triggered and steered directly by the user inside the ACF/PACF plot.

One limitation of showing the transitions with animated diagnostic plots is that you actually
compare the current model to one of the next possible models. Usually this is good enough
because you immediately see if the more specific sub-model you think of is better or worse and by
this preview the domain expert can decide if it is worth to go into this direction. To overcome
the limitation of comparing only two models we provide a history table with all previously and
currently considered models and the corresponding information criteria as shown in area (5) of
Figure 2.5/ and in more detail in the supplementary material. With this overview it is possible to
compare more than two models according to their information criteria. In our design we planned
for future work to enable the user to select up to three models and load their standardized residuals
in the diagnostic plots to directly compare them visually. This should be sufficient, because
according to Nazem [Naz88, p. 307] in about 87% of the time series only one or two models
remain in the shortlist for adequate models and in about 97.6% three or less models remain.

2.6 Evaluation

During the design and implementation phase we evaluated the results by formative evaluations
during repetitive meetings of the design team. This iterative refinement process was judged by
the team members, experts in information visualization and statistics, and the user experience
[LBI*12] was discussed by performing demonstrations. In addition to this repetitive internal
assessment, the user experience was evaluated by informal user feedback [LBI*12] consulting
two external domain experts. Besides this first level of evaluation, we evaluated the prototype
by defining usage scenarios and applying the prototype on an example dataset. We explain the
example dataset below and apply the usage scenarios in Section|2.6.1. We discuss the insights
gained from both levels of evaluation, what we learned, and how we can improve our solution
further in Section 2.6.2. Accordingly we assess the usability and applicability of our solution for
its target users.

Example Dataset. In Section 2.3 we introduced the example dataset of the daily number of
deaths from cardiovascular disease from the NMMAPS study [PW04, ISDZ*00]. The original
dataset contains the data of different cities in the United States of America, but we focused on the
number of cardiovascular disease deaths in Los Angeles only. The relevant columns in the dataset
are date and cvd, which is the daily number of deaths from cardiovascular disease. There are no
missing values in the dataset. For the evaluation of the prototype, we aggregate the time series to
get monthly sums.
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2.6. Evaluation

2.6.1 Usage Scenarios

Based on the requirement analysis in Section 2.4 we used the user stories and defined two usage
scenarios for the evaluation. The first one is the high-level task of model selection. The second
one is the task of selecting a range in the time series before selecting a model. We describe how
the prototype is applied on the example dataset to solve these tasks. We demonstrate the usage
scenarios from the perspective of a fictional domain expert. Because it is difficult to show the
interactivity and visual feedback in static pictures, we support the textual description with the
transitions in two of the residual plots in Figure 2.7. To clarify the interactions and how all visual
representations behave during the transitions, we provide a supplementary video!| with audio
narration. Another supplementary material shows the model diagnostic area from TiMoVA for
each of the five transitions that we discuss in the following.

Model Selection

Following the Box-Jenkins methodology presented in Section [2.3.1}, we first consider the time
series plot and the autocorrelation function (ACF) and partial autocorrelation function (PACF)
plot. According to the time series plot in TiMoVA (Figure [2.5), we assume that no differencing

operation (see Section 2.3.2) may be needed, because the time series seems to be stationary.

Moving the difference slider confirms that the change in the ACF/PACF plot, as well as the
residual analysis plots is marginal and, therefore, supports this hypothesis.

We evaluate the ACF/PACF plot, (3) in Figure 2.5, according to the behavior of the non-seasonal
order of the model in Table 2.1. We show the transitions of this usage scenario in Figure 2.7
beneath each other with the color code explained in the information criteria table in area (5) of
Figure 2.5. For the non-seasonal component of the model we decide to have a mixed ARMA
model. When sliding the parameter p, the diagnostic plots shows that the adjustment of the
non-seasonal AR model to order p = 1 results in a more random appearance of the residual
time series plot, a more straight line behavior in the normal quantile-quantile plot, and lower
lags in the non-seasonal lags of the ACF plot (Transition 1 in Figure 2.7). In addition to further
improvement of those residual plots, the Ljung-Box statistics shows more lags with p-values
significantly different from zero, if the order is changed to p = 2 (Transition 2 in Figure 2.7). See
the supplementary image and video for further details on this. For both transitions we can see in
area (5) of Figure 2.5 how the information criteria improve. The result is the model configuration
p = 2, which is an AR(2) model. By adding a MA component of order ¢ = 1 to the model
(Transition 3 in Figure 2.7) we get the diagnostic plots for the assumed mixed ARMA model
with p =2 and ¢ = 1. This configuration advances the model to show more randomness in the
diagnostic plots of the standardized residuals, which strengthens the assumption that they are
standard normal distributed. The information criteria in area (5) of Figure |2.5 get minimal worse
when adding the MA component g = 1, but according to the behavior of the ACF/PACF plot in
Figure 2.5/ we assume a mixed ARMA model for the non-seasonal part. To see more details of
these transitions, we provide all of them for the diagnostic plots in a supplementary image and in
the supplementary video.

Thttp://www.cvast. tuwien.ac.at/TiMoVA (July 30, 2013) [revisited on Oct. 12, 2020]
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The seasonal behavior is not covered by the model yet. Therefore, the next step is to adjust the
seasonal parts of the model. We consider an autoregressive model, because sliding the parameter
P highlights the seasonal lags and unveils the cut off on seasonal lag 2 in the PACF. This indicates,
when consulting Table 2.1/ for the behavior of the seasonal order of the model, that the seasonal
component is likely to have order P = 2. Sliding from seasonal order P = 0 to P = 1 (Transition
4 in Figure 2.7) and from P = 1 to P = 2 (Transition 5 in Figure 2.7), shows the improvement
of the selected model. In area (5) of Figure 2.5 we also recognize the abrupt improvement in
the information criteria when including the seasonal component with P = 1 and the gradual
improvement for the transition from P = 1 to P = 2. With this configuration, we get a seasonal
model of the following form:

ARIMA(p =2,d=0,g=1)x(P=2,D =0,0 = 0)5=12
Including the estimated parameters of the model, we get the following time series model:
(1 -0.3068B'% — 0.5444B°*)(1 + 0.3143B — 0.3112B%)x, =
(1-0.9072B)w;

In addition, the information criteria in area (5) of Figure 2.5 indicate that we found an adequate
model. We selected the model with the minimum values for the AIC, AICc and BIC using
TiMoVA. This goes along with the diagnostics based on the visualization of the standardized
residuals.

Range Selection

TiMoVA enables the user to select a range of the time series, as we show in the upper left corner
(1) of Figure 2.1, A possible usage scenario is to select a trend that starts and ends at a defined
point in the time series and to consider only this trend for model selection.

In the following usage scenario we want to consider only the range starting with November 1994
and ending with the last data point in the time series. We select the model as described in the
previous section. Compared to the complete time series we get a slightly different model, which is
simpler and with fewer parameters. We get an intermediate model with p = 2 and seasonal P = 1.
The ACF plot of the residuals indicates a remaining seasonal autocorrelation. In this case we
consider a seasonal difference of D =1 as a possible solution to remove this autocorrelation in
the residuals. Sliding the seasonal difference fader, improves this model. Finally, we get a model
with the following configuration:
ARIMA(p =2,d=0,g=0)x(P=1,D =1,0 = 0)5=12

Consulting the information criteria for this model supports that we have found an adequate model.

In addition to the insights gained from the application of TiMoVA in these two usage scenarios,
we discuss the results of the user feedback in the following section.

2.6.2 Evaluating User Experience

For the evaluation of the user experience [LBI"12] we rely on the insights gained from the internal
formative evaluation and iterative design during the design and implementation phase, where
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2.6. Evaluation

we had repetitive meetings and discussions on the intermediate stages, and on the demonstration
session with two external domain experts who are employed as scientists in an institution for
statistics research. They both hold a master in mathematics and one a PhD in statistics. The
informal evaluation [LBI*12] was performed by demonstrating the prototype with a well-known
dataset for time series analysis. The domain experts gave immediate feedback to the features of
TiMoVA. This feedback was noted on paper and reflected after the demonstration session, which
lasted about one hour. We included the feedback in the design and implementation. We discuss
the remaining suggestions in this section and consider them for future work in Section 2.7, In this
reflection our findings from the usage scenarios are included as well.

A very useful feature according to the domain experts is the overview displaying all separate
steps of the Box-Jenkins methodology. It provides all information necessary to decide on an
adequate model. Because the model selection relies on the behavior of the ACF/PACF plot, it is
very helpful to directly select the model order inside this ACF/PACF plot using the continuous
vertical lines. The visual support of focusing on the seasonal lags for the selection of the seasonal
component in the model was considered very beneficial. Another beneficial feature according
to the domain experts is the immediate visualization and preview of the model results when
changing the model order and especially the visualization of the transition from one model to
another. This enables the domain experts to directly compare the current model to the new model
and decide whether the model improves or not. A further benefit is the possibility to select a
certain region of interest from a larger time series and consider only this subregion for the model
selection task. This is not only very nice for selecting a representative or interesting subregion,
but also to have faster reaction times even for originally larger time series.

There are also suggestions to further improve our work. The domain experts would like to see
more statistics of the residuals on demand. The numbers are available in memory as a result of

the computations and including them in the graphical user interface is going to be future work.

Domain experts sometimes prefer to perform different tests and statistics for the residual analysis
and would like to customize the selection from a set of test statistics using the graphical user
interface. Our solution is prepared for this kind of request and implemented in a way to ensure
exchangeable test statistics.

One suggestion during the iterative design and implementation phase was to include a history
of the previously selected models and enable the user to get an overview and reload certain

models. We included this concept in the design and the result is shown in area (5) of Figure 2.5,

This feature of getting an overview on the previously selected models and compare more than
two models on a more abstract level is very beneficial. The concept of loading certain models
as an overlay in the diagnostic plots is considered as useful and a way to further improve the
implementation.

Another feature demanded, is to show how the model performs. This is usually done by taking the
first part of the time series and use the model to forecast a certain time range or repetitive single
step ahead forecasts. This forecast is then shown along the given time series with the according
confidence boundaries. At the moment we focused on the first part in time series analysis, which
is finding an adequate model, and not the application of this model. Although the extension of
using these forecasts as overlay in the time series plot is considered for further work.
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What we learned from the evaluation is that for the target users, with at least a basic knowledge in
statistics and time series analysis (ARIMA models), TiMoVA is easy to learn and understandable.
For others it is necessary to study time series analysis in order to understand and interpret the
visualizations. We achieved this in TiIMoVA, as discussed already in Section 2.5.2, by focusing
on the knowledge and experience the domain experts already have and support them with a
well-established way of working and thinking, familiar visualizations, and appropriate interactions.

2.7 Conclusion and Future Work

The goal of our work is to use VA to support domain experts in the process of model selection.
We identified that for the class of ARIMA and seasonal ARIMA models in the Box-Jenkins
methodology there is no technique or tool that supports the workflow of the process in an intuitive
and user-friendly way. Applying VA methods to this domain problem showed that we can support
this task with interactive visual interfaces, short feedback cycles, and the visualization of the
model transitions.

By evaluating our work, we discovered that the resulting VA process description and the TiMoVA
prototype enables the domain expert to do easy and intuitive visual exploration and selection of
time series models. These benefits are achieved by

* enabling the domain expert to select the model order interactively via the visual interface,
inside the ACF/PACF plot, which provides a first idea of the model order,

 giving the domain expert immediate visual feedback of the model results while selecting
the model order, and

* helping domain experts with the visualization of the model transitions to decide whether or
not the model improves.

We also showed that the interactions are appropriate for the task and that the domain experts profit
from the usage of a well-established model selection methodology and visualizations from their
domain.

In Section |2.6.2|we discussed the insights gained from the evaluation of our results and developed
ideas for future work. One improvement was to include information criteria measures in the
graphical user interface in a history. Another idea for future work is to enable using this history
to load any previous model and compare two of them. Further improvement is to extend the
prototype to directly support different statistical methods for the residual analysis and enable the
user to customize the residual analysis for their needs. The diagnostic of the time series model is
currently limited to the diagnostic plots. For future work, it would be interesting to include the
performance of the model for forecasting the diagnostic step.

Our solution is limited to data with equally spaced time series without missing values. In practical
applications, the data often contains missing values and/or are not equally spaced. For future
research we consider these limitations as inspiration to apply VA for model selection in time
series with missing values and provide visual support for the methods to estimate them. Another
interesting challenge for future work is to foresee the model selection support for multivariate
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2.7. Conclusion and Future Work

time series. Therefore, it is necessary to consider appropriate visualization techniques for this
kind of data.

The final model we found in our usage scenarios is rated as a rather complex model by our
domain expert. Finding this model using existing statistical software tools would have been
very cumbersome and time consuming. Working with TiMoVA reduced the number of models
considered, because the immediate visual feedback excluded already certain subclasses of models
early in the model selection process.

Based on the insights from the evaluation, we discovered that the well-established visualizations
used in the prototype have the benefit that the domain experts are used to work with these visual
encodings. Therefore, they can focus on the task of model selection, which is guided by TiMoVA
and improves their work.
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CHAPTER

Integrating Predictions in Time Series
Model Selection

Time series appear in many different domains. The main goal in time series analysis is to find a
model for given time series. The selection of time series models is done iteratively based, usually,
on information criteria and residual plots. These sources may show only small variations and,
therefore, it is necessary to consider the prediction capabilities in the model selection process.
When applying the model and including the prediction in an interactive visual interface it is still
difficult to compare deviations from actual values or benchmark models. Judging which model fits
the time series adequately is not well supported in current methods. We propose to combine visual
and analytical methods to integrate the prediction capabilities in the model selection process and
assist in the decision for an adequate and parsimonious model. In our approach a visual interactive
interface is used to select and adjust time series models, utilize the prediction capabilities of
models, and compare the prediction of multiple models in relation to the actual values.

The content of this chapter was published in [BAF"15]]. © 2015 Eurographics. Reprinted, with
permission of the authors, in accordance with the retained rights defined in the Eurographics
exclusive license form. All parts of the article are used without revision or modification to the
content, it was only adapted to fit to the overall formatting style of this dissertation. Original full
bibliographic reference:

Markus Bogl, Wolfgang Aigner, Peter Filzmoser, Theresia Gschwandtner, Tim Lammarsch,
Silvia Miksch, and Alexander Rind. Integrating predictions in time series model selection. In
Proceedings of the 6th International EuroVis Workshop on Visual Analytics, EuroVA @ EuroVis
2015, Cagliari, Sardinia, Italy, May 25-26, 2015, pages 73—77. The Eurographics Association,
2015.

The original version is available at https://doi.org/10.2312/eurova.20151107
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3.1 Introduction

In time series analysis, the main goal is to find a model for a given time series and to apply
this model to predict future values [BK11, [BJROS]|. In previous work [BAF*13]], we introduced
a Visual Analytics (VA) approach to support domain experts in the task of selecting adequate
seasonal autoregressive integrated moving average (ARIMA) models. This class of time series
models are widely used for prediction tasks, for instance predicting electricity prices [CENCO3],
system failure analysis [HXGO2], and in different financial and medical domains [SS11]].

During evaluation of the prototype it became apparent that including the possibility to perform
actual prediction would improve the model selection process considerably. Integrating the
prediction capabilities into the exploration environment offers another perspective on the adequacy
of the model for a given time series and raises the confidence in the resulting model. In addition
to our previous work [BAF*13]], we integrate the prediction functionality in the model selection
process (Section [3.2). This work is a refined and extended version of our preliminary ideas
presented in [BAF"14]. Based on feedback and discussions we focus our contribution to integrate
the prediction capabilities in the model selection process and to compare the prediction of multiple
model candidates. We demonstrate the benefit of this approach in a usage scenario using a dataset
about the water quality in the San Francisco bay [JC14]] (Section 3.3).

To support domain experts in the task of model selection, we propose a VA approach that utilizes
the prediction capabilities of the models. Our approach therefore provides visual interactive
means to

* explore different types of predictions,
* explore differences of predicted and actual values, and
» compare the prediction of multiple time series models.

This helps to adjust and re-select the time series models.

3.2 Visual Analytics Approach

In our VA approach we propose a close coupling of the prediction capabilities with the visual
model selection interface. Including predictions in the interactive exploration environment during
the iterative model refinement enables domain experts to judge the prediction capabilities and
select a parsimonious model with fewer parameters. The principle of parsimony [BJROS]] needs
to be considered during the model selection, to prevent models from getting too complex.

Our approach is based on the Box-Jenkins methodology [BJROS]|, which describes how to find
an adequate ARIMA model for a given time series. A seasonal ARIMA(p, d, q) X (P, D, Q)
model combines a non-seasonal ARIMA(p, d, g) with a seasonal ARIMA(P, D, Q); model
multiplicatively. Both have an autoregressive component (AR(p), AR(P)), a moving average
component (MA(q), MA(Q)), a difference transformation (d, D). The seasonal length is specified
by s. The parameters p, P and g, Q describe the model order of the AR and MA components
and specify the number of parameters that are estimated by, for instance, a maximum likelihood
estimator. For more details about the ARIMA models cf. [BJROS,[SS11]].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

3.2. Visual Analytics Approach

wam 3
H

(2e)

Figure 3.1: Interactive model selection environment, displaying the example data used in the
usage scenario (Section 3.3). (2a-e) shows our prototype, where (2a) is the time series display
showing the prediction of future values, (2b) is the toolbox for model selection and prediction,
(2c¢) are the autocorrelation and partial autocorrelation plots for selecting the model orders, (2d)
are the diagnostic plots for the residual analysis, (2e) is the model selection history including the
information criteria. In our approach users can change the view of (2a) to the Qualizon Graph
view, as shown in (la-c) for visualizing the difference between the one-step-ahead prediction and
the actual values. Each line, (1a, 1b, 1¢c) shows these differences for a different model (m1, m2,
m3) respectively. In Section 3.3 we discuss the interpretation of these three possible models.

In general, the application of an ARIMA model for prediction is based on the available obser-
vations xp, x2, . . ., X, at the time points 1, 3, . .., t,. The predictions of the next m time points
thils - - - > tnem are then denoted by X,41, . . ., X44m, Where m is an integer > 1. Thus, the term
predict refers to the predictions of these values, using the corresponding time series model. If
we want to compare predictions with actual values, we mimic this process: The time series is
split at time point 7, with 1 < k£ < n, the model parameters are estimated based on x, . . ., xg,
and the predicted values %41, ..., %, are computed. These values can be compared with the
observed values xg41,...,X,. A variant is the one-step-ahead prediction, where & is set, e.g., to
n/2 and step-by-step increased by one until k& = n. In each step, the model is fit to the data points
X1, ...,X; and the predicted value Xz, is derived. In that way, prediction is successively done at
only one time point using all previous information. For more details about the estimation of the
parameters and the error terms, cf. [SS11].

To support the ARIMA model selection with the prediction capabilities of the model, we combine
both in our interactive model selection environment. The graphical user interface (cf. Figure 3.1;
for details see [BAF"13])) consists of five main areas: (2a) the time series display showing the input
time series and, if applied, the predicted values, (2b) the model selection and prediction toolbox,
(2¢) the autocorrelation and partial autocorrelation (ACF/PACF) plots (the model selection is
steered by interactively moving the vertical lines), (2d) the residual plots to perform the model
diagnostics and decide for an adequate model, and (2e) the information criteria for the same
purpose as (2d) and for investigating the model selection history.

In this paper, we focus on the relevant elements for the prediction and how the prediction is
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integrated in our approach. After the exploration of the input data, the user iteratively increases
the model order and applies transformations. The model is applied to the time series and the
resulting visual representations to judge the adequateness of the model are consulted. To couple
the prediction with the model selection process, we provide prediction controls. The user can
apply a model candidate to show the prediction of future values and one-step-ahead prediction
that predict values within the given time series. The time series display is used to show the
predicted values. This can be done any time throughout the model selection process. Therefore,
the user selects either the prediction of future values or the one-step-ahead prediction, which
triggers the computation of the predicted values using the currently selected model. For both
types of prediction, the predicted values are represented as points connected with a differently
colored line. In addition a dashed line shows the upper and the lower prediction error boundary,
cf. Figure 3.1.2a.

To emphasize on the accuracy of the prediction, there are several ways to visually support this.
We showed different ways of highlighting the difference between actual and predicted values in
the one-step-ahead prediction [BAF"14]]. There are two limitations we want to address here. First,
it is not possible to judge details on what the difference actually means, mainly in context of the
error boundaries of the prediction. Second, it is limited in the number of model predictions that
can be compared. In Section 3.4, we describe the work by [HIST09, HIM* 11]], where the authors
use a diverging color scale to encode the difference between the predicted and the actual values
with respect to the standard deviation. Using such an accuracy color band, enables to save vertical
space and use this to stack visual representations for multiple models. Usually domain experts are
interested in how much predicted and actual values differ, for example if the distance is small,
medium, or large, considering the standard error of the prediction. Therefore, we suggest to use
a categorical diverging color scale instead of a continuous one, like in CareCruiser [GAK*11],
where the authors use a diverging color scale to highlight the progress of parameter values from
the initial value toward the intended value of applied treatments. They use the full height to
encode the difference with color. Like in [JSMK14], either the background of a plot can be used
to encode the deviation of actual and predicted value, or just a small color band below and/or
above the line to avoid visual clutter.

If multiple model predictions need to be shown, the proposed approach above would limit the
vertical space and skew the line of the line plots. As another variant for analyzing the difference
we propose to display the difference using Qualizon Graph [FHR*14]], as we show in Figure 3.1
(la-c) for three different models. Qualizon Graphs are extensions of Horizon Graphs [ReiO8]]
and two-tone pseudo coloring [SMY™03]] with qualitative abstractions. In our case, we use these
qualitative abstractions for the differences between the predicted and the actual values. By using a
diverging color scale, this can unveil more radical changes.

The benefit of this visual representation is the vertical space-efficiency, which enables the
comparison of predictions of more than one time-series model. In Figure |3.1.1a-c we show how
the stacking of the predictions of multiple models can be integrated in the prototype for model
selection. Each line (1a, 1b, 1c) represents a Qualizon Graph showing the difference between the
one-step-ahead prediction and the actual value of one time series model (m1, m2, m3) respectively.
The user can select the model candidates using the model selection history in Figure 3.1.2e. In
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3.3. Usage Scenario

addition to the residual plots, this graph gives an impression on how well the models are able to
predict the data.

The qualitative abstraction unveils the deviation of the prediction to the actual values in relation
to the standard error of the prediction. The difference d; = X; — x; between the predicted values
X; and the observed values x; for k < i < n is calculated and shown in the Qualizon Graph.
We use a diverging color scale with six colors, as shown in Figure 3.1l1a-c. In the negative
direction, meaning that the predicted value is below the observed value X; < x;, we use three
violet color classes = mm, in the positive direction, meaning that the predicted value is above the
observed value £; > x;, we use three green color classes mm. The directions are indicated in the
labels as 4+ and -. For our example we use two boundary levels. This results in three classes of
difference for each direction (+/-). For the qualitative abstraction we use the distance between the
one-step-ahead prediction and the actual value. Based on the chosen boundaries, in our example
x; = 0.84=standard error and x; + 1.96=standard error, the distance is used to assign the color class
for the difference based on the direction (+/-) and the distance to the actual value. The light color
is used for close predictions, where the difference is within the first boundary. If the difference
is larger, meaning outside the first boundary, but inside the second boundary, we use medium
color mm, and dark color mm for differences where the distance is outside the second boundary. In
the following section, we discuss the details of each line in Figure 3.1.1a-c in a usage scenario.

3.3 Usage Scenario

To illustrate how the prediction of different models are compared and how the prediction is
integrated in the model selection process, we use a usage scenario from the environmental
domain. The dataset is about the water quality in the San Francisco bay area [JC14]. We
use the measurement from one station in depths above 5 meters. We aggregate the data to
monthly averages and interpolate missing month with linear interpolation. We use a calculated
measurement based on the water temperature and salinity of the water from the years 1986 to
2004. In our scenario an analyst from an environmental department in the city council needs to
model the time series to predict the expected water quality based on this measurement.

As a first step the analyst loads the dataset and explores the raw data in the time series display
(Figure [3.1.2a) and the behaviour of the ACF/PACF in the corresponding plot (Figure 3.1.2c¢),
which suggests an AR(p) component with order p = 1. Adding this component improves the
residuals (Figure 3.1.2d) and shows the remaining seasonal dependency clearly. Adjusting the

model order to P = 1 for the seasonal AR(P) component improves the residuals further (m1).

The residual plots (Figure 3.1.2d) indicate a remaining seasonal structure, but the analyst first
applies the model to predict two seasonal cycles in the future (Figure 3.1.2a), which shows already
a good pattern and behaviour. Because of the remaining seasonal structure, the analyst increases
the model order of the seasonal AR(P) to P = 2 (m2). The analyst recognizes in the residuals,
that there may be an improvement of the model by adding an MA(g) component of model order
g = 1 (m3). The residuals show a model that fits the time series adequately.

The analyst applies again the model to predict two seasonal cycles in the future, and recognises
that the error boundary got slightly narrower for this model. Furthermore, in the information
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criteria (Figure 3.1.2e) there are three model candidates quite close together. The analyst selects
these three models and switches the time series view (Figure 3.1.2a) to the Qualizon Graph view
(Figure 3.1.1a-c). In this view the analyst recognizes that there is still a seasonal reoccurring
pattern in the prediction, but interestingly the model (m1) in (1a) has smaller differences in
the one-step-ahead prediction as the others. The models (m2) and (m3), which where superior
according to the residual plots and the information criteria, do not perform so well in the
one-step-ahead prediction. This is visible by the increase in dark colored areas from (m1) to (m2)
and finally (m3).

Although the error boundary for the prediction of future values of model (m3) narrowed compared
to the one of model (m1), it is good enough for the analyst’s purpose and according to the
principle of parsimony [BJROS] the analyst decides for the least complex model (m1) with only
two parameters. Furthermore, the analyst recognizes that all three models underestimate the first
and second quarter, but overestimate the third and fourth quarter of each year. This under- and
overestimation is minor in model (m1) compared to the others, and therefore a better choice for
the analyst.

3.4 Related Work

TimeSearcher [BPS*07] is a visualization tool to search and explore time series data. With
dynamic queries it finds patterns and displays multiple forecasts, provided by similarity-based
prediction. TimeSearcher uses a data-driven approach that needs exceptional events to be excluded
and requires large datasets compared to model driven methods, like ARIMA [BPS*07].

Hao et al. [HIST09, HIM™11]] use a heat-band with a diverging color scale to indicate the accuracy
of the prediction compared to the actual values using the normalized differences according to the
standard deviation. They apply a moving average smoothing with peak preserving algorithm for
the prediction and do not support the selection of ARIMA models. In [JSMK14], the authors use
a similar metaphor to encode anomaly scores along the underlying time series. They use the full
height in the background of the line chart for the more compact stripe view, but can also switch to
encode the anomaly scores in stripes below and above the time series to avoid visual clutter.

The x12GUI [KMST12]] package for R offers an interactive tool for the X-12-ARIMA software
for seasonal adjustment. The focus is on the exploration of the time series and the results of the
seasonal adjustment as well as the manual editing of outliers [KMST12]. For selecting a time
series model and adjusting the parameters for the X-12-ARIMA call, form-based input is used.
For the computed models there is a history, which allows for loading previous settings, but not to
browse and directly compare them. For single models x12GUI provides also the possibility to
predict and visualize future values, but this is not integrated in the model selection process.

3.5 Discussion and Conclusion

Predicting future values is one of the main goals of time series analysis [BJROS|BK11]]. Integrating
the prediction capability of time series models for analyzing and selecting ARIMA models,
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3.5. Discussion and Conclusion

supports users in finding a parsimonious and adequate model. Our approach uses an integrated
analysis workflow with visual feedback on the selected models and human involvement in the
selection process. This enables users to directly examine and judge the prediction capability
of one or more models, and choose an adequate model, even if the residual plots do not show
recognizable structures and the information criteria differ only slightly.

The usage scenario illustrates how our approach supports users in comparing different models
regarding the one-step-ahead prediction. Our approach assists in choosing a model by considering
factors, which have not been taken into account in state-of-the-art tools. The visual comparison
of the prediction of multiple time series models using Qualizon Graphs resulted in a less complex
model, which satisfies the principle of parsimony.

Our approach relies on user expertise to judge the adequateness of the model candidates and
does not automatically propose an adequate model. The approach is also limited to the class
of seasonal ARIMA models and univariate time series. It is possible to enable a comparison
against other time-series models during model selection. A full integration of these models in our
interactive environment might require adaptation of the approach, as they do not follow the same
model selection process. Finally, it is important to assess the prediction quality in our approach
and to evaluate its applicability via user studies with statisticians, and to validate it on new usage
scenarios.
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CHAPTER

Visually and Statistically Guided
Imputation in Univariate Seasonal
Time Series

Missing values are a problem in many real world applications, for example failing sensor
measurements. For further analysis these missing values need to be imputed. Thus, imputation
of such missing values is important in a wide range of applications. We propose a visually and
statistically guided imputation approach, that allows applying different imputation techniques
to estimate the missing values as well as evaluating and fine tuning the imputation by visual
guidance. In our approach we include additional visual information about uncertainty and employ
the cyclic structure of time inherent in the data. Including this cyclic structure enables visually
judging the adequateness of the estimated values with respect to the uncertainty/error boundaries
and according to the patterns of the neighbouring time points in linear and cyclic (e.g., the months
of the year) time.

The content of this chapter was published in [BFG™15]]. © 2015 IEEE. Reprinted, with permission,
from the authors. We fixed one small mistake on page 66 and changed “cyclic” to “seasonal”.

Markus Bogl, Peter Filzmoser, Theresia Gschwandtner, Silvia Miksch, Wolfgang Aigner, Alexander
Rind, and Tim Lammarsch. Visually and statistically guided imputation of missing values in
univariate seasonal time series. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology, VAST — Posters, Chicago, IL, USA, October 25-30, 2015, pages 189-190.
IEEE, 2015. Best Poster Award VAST 2015.

The original version is available at https://doi.org/10.1109/VAST.2015.7347672
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4.1 Introduction

In various application domains data analysts face the problem of missing data. Missing values
constitute a data quality problem that needs to be considered in data wrangling [KHP*11]. For
example, when measuring water quality in rivers, values may be missing because of particles
plugging the sensor.

Missing values cause difficulties for many statistical methods, since they usually rely on complete
data information [AllQ9]]. There are a few specialized methods to analyze data with missing values
[LRO2], but the common way to enable the application of established statistical methods is to
impute these missing values. Imputation methods are categorized by the type of method itself
and the kind of output they provide [AlI09, I(GHO7, HK10,LRO2]. Some methods only impute a
single value and replace the missing value, which neglects the uncertainty that is introduced in
the data. Others apply repeated resampling or use multiple imputation techniques to compute
the imputation uncertainty [LRO2]. In case of repeated resampling it is possible to compute the
standard error from the variability of estimates [LR02]. Multiple imputation techniques, e.g.,
Monte Carlo based simulations allow to compute estimates and confidence intervals [Sch99].
Depending on the method, the appropriate error boundary or confidence interval can be used to
communicate the uncertainty of the imputation.

We propose an approach that makes the uncertainty inherent in imputed values visible and allows
for comparing them to neighbouring values in linear and cyclic time.

4.2 Related Work

In this section we give brief discussion about the background and the relevant related work. We
present the main concept important regarding missing values, the structure of time-oriented data,
and the relevant visual representations used in our approach.

Missing Values are elements in a dataset, where a observation is missing, which means that
it is not available. As discussed in the introduction 4.1, this can be caused by various reasons,
e.g. by a failing sensor measurement. According to the statistics literature about missing data
[LRO2, HKO7, IGHO7, |AIIQ9] there are different types for the source of missing data: missing
completely at random (MCAR), missing at random (MAR), and not missing at random (NMAR).
For the definitions and more details see the relevant literature.

Imputation Methods are on a higher level grouped into 4 categories [LRO2, HKO7]: complete
case/record methods, weighting methods, imputation-based methods, and model-based methods.
Horton and Kleinman [HKOQ7] provide a overview about imputation methods including a discussion
about implementations of these methods. We focus on implementations and packages available in
the R project for statistical computation [R C20]]. Van Burren provides a list of implementations
of multiple imputation methods in the appendix of his book [vB12]] and updates in [vB14].
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4.3. Time-Series Imputation Approach

Time-Series Data is data obtained from observations collected over time. Using time gran-
ularities and the design concept of cyclic time arrangement in our approach, we consider
time-series data related as part of time-oriented data [AMST11]]. The literature in statistics
[Cle93. ICle94, BD10, HA 18| considers time-series as composed by 3 (or 4) components. This
are trend, season, and remaining variation (and cyclic component). If included, the cyclic part is
defined to be a longer duration than the seasonal part, but shorter than a trend (usually more than
1.5 years if the seasonal part is yearly).

Visual Representations used in our approach are straight forward and well-established. To
visually indicate missing values in both views 4.3, time-series line plot with linear time axis
[AMST11]] and cycle plot [[Cle93]], we use color and confidence intervals as used by [HKB11]]
and [TAKP13,ISTA*13]]. To visually explore the missing values or rather the imputations of such,
we use confidence intervals and box-plots [Tuk77]] depending on the imputation method. This
enables to analyse the level of uncertainty in the estimated values. To embrace Keim’s Visual
Analytics mantra [KMS*08] in our approach we apply various interaction techniques [HS12]]
like focus+context, direct manipulation, coordinated and multiple view, as well as linking and
brushing. To facilitate this techniques, it is necessary to use some variations of the box-plots
[Pot06, [PKRIJ10], like a simplified version [Tuf83]], an abbreviated version [PKRJ10], or an
extended, more informative version like the violin plots [HN9S8|]. Another important visual
representation we use is the cycle plot [CT82,|Cle93|]. This makes it possible (1) to discern the
trend and the seasonal component in one single plot [AMST11]] and (2) compare each data value
to the values that are related through their proximity in the seasonal cycle. A cycle plot is shown
in (b) of Figure 4.1.

To the best of our knowledge, there is no approach for visually and statistically guiding analysts
in the imputation of missing values in time-series data. As farther related work, we consider
some graphical user interface (GUI) solutions that support the analysis and exploration of
missing and imputed values for more general data, see [STA*13,ICCH13]]. Amelia [HKBI11] is a
exeptional package that provides multiple imputation methods also for time-series data, but only a
menu-driven and form-based GUI. None of them compares the outcome of different imputation
methods, nor uses the seasonal cycle for additionally judging the adequateness of the estimated
values. This motivates us to propose the TIMI approach.

4.3 Time-Series Imputation Approach

The task we support with our approach, is to impute missing values with a suitable imputation
method and provide visual and statistical guidance for judging the adequateness of the imputed
values.

The general idea is to benefit from displaying the imputed values from two different perspectives,
namely linear and cyclic time. Figure 4.1/ shows the design of our approach. For the two
perspectives, we use coordinated views, (a) the time series line plot, and (b) the cycle plot
[Cle93]. The cycle plot is a technique to visualize the sesonal cycle within time series data
[AMST11,Cle93]]. The seasonal component, e.g. the month in monthly data, is grouped and
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4. VISUALLY AND STATISTICALLY GUIDED IMPUTATION IN UNIVARIATE SEASONAL TIME SERIES
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Figure 4.1: Overview of our approach for visually and statistically guided imputation. Coordinated
views with (a) a time series line plot using a linear time axis, (b) the corresponding cycle plot (for
details cf. supplementary), and (c) a configuration panel. The estimated values (black dots) of
missing values and boundaries (red bars) are displayed. Upon request, more details are shown in
(a) and (b), either by explicitly selecting the level of detail in (c), or by interaction as described in
Figure 4.2. The latter allows the user to adjust the estimated value by dragging the dot up/down.
When clicking a point in one window, (a) or (b), the corresponding point in the other window gets
highlighted as well.

visualized like in our example data in Figure 4.1|(b), showing first values for Jan., then Feb. etc.
More details are explained in the supplementary. The control panel (c) shows a list of imputation
methods with an assigned color to indicate the corresponding error boundary or confidence
interval in the detail view (Figure 4.2). In this panel it is possible to activate/deactivate, as well
as add/remove different imputation methods. Initially, we use a preselected set of imputation
methods implemented in the statistical environment R [R C20] and R packages [HKO7, ivB12].
The missing values are estimated using these initial methods and are shown as black dots together
with the error boundaries or confidence interval, represented by red vertical bars. Combining the
estimated values from the different imputation methods allows to quantify and communicate the
uncertainty of the imputation methods, for instance using error boundaries, confidence intervals
or box-plots [LRO2].

Seasonal time series are very common in real world applications and their behaviour is considered
as a cyclic time structure [AMST11]]. Arranging the data points, especially the missing ones,
in the representation as described above and linking them using coordinated views, allows to
compare them to their neighbouring values in linear time, but also besides the time points close to
each other in a seasonal cycle. This enables the user to judge the adequateness of the imputed
values. To link corresponding points in these views, we apply bi-directional linking and brushing.
When hovering/selecting a point in one view, the corresponding point gets highlighted in the
other view. Hovering/selecting the horizontal bar in the cycle plot representing the month’s mean
highlights all points of this part-of-the-season in the linear time series view.

Details about a specific imputed value can be expanded in both views, by either setting the level
of detail in the configuration panel (Figure 4.1c), by hovering the area around the missing value
with the mouse cursor, or by zooming within the temporal axis. This shows the results of different
imputation methods next to each other (cf. Figure |4.2). These details are represented by error
boundaries, confidence intervals, or modified box-plot versions, depending on the outcome of the
imputation method (e.g., time series models or multiple imputation). Colors are assigned to the
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4.4. Discussion and Conclusion

imputation methods (Figure 4.1¢c), which allows for comparing estimates of different imputation
methods and further fine tune and adjust the imputed values if necessary. For adjusting the
imputed value, the dot can be dragged and moved directly, which also changes the value in the
other view. By highlighting and simultaneously moving the selected value, it is possible to
consider neighbouring values in both the linear and cyclic time.

By providing these details about the uncertainty in different imputation methods, the user can
consider these uncertainties when deciding which value is most plausible. In addition, the user is
aware of the uncertainty involved and can judge the adequateness of the imputed values more
accurately. The user can adjust values through drag-and-drop within the suggested spread of the
imputation methods. It allows comparing how the imputation methods impute values differently,
e.g. if one method has a wider error boundary or one method over- or under-estimates the missing
values.

To preserve the context also in the detailed view (Figure 4.2, step (3)) we use a semantic zoom
using a bifocal display. This provides an overview on the imputed value on a higher level and
details on demand. All these above described interactions are supported in both views. Moving
the mouse to a missing value in the cycle plot or in the line plot shows the details and aids in
adjusting the imputed value accordingly.

4.4 Discussion and Conclusion
We proposed a visually and statistically guided approach for the imputation of missing values in

univariate time series with seasonal cycles. We discussed how our approach enables the user to
gain confidence in how adequate the imputed values are. By combining statistical imputation
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,
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Figure 4.2: Sequence of interactions for more details on demand. This interactions with missing
values and their imputed values, are possible in both views, (a) and (b) in Figure 4.1, To provide
more details, the representation varies according to zoom level and mouse interaction. The
transition in zoom level is shown between image (1) and (2), as well as (1) and (3), depending on
the level of detail requested. The color encodes the imputation method, cf. Figure 4.1¢.
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4. VISUALLY AND STATISTICALLY GUIDED IMPUTATION IN UNIVARIATE SEASONAL TIME SERIES

(o))
@)

methods with an interactive visual interface, we provide a view for displaying the time series with
a linear time axis coordinated with a view in a cyclic arrangement, side by side. Using linking and
brushing helps keeping track of these two different arrangements. The outcome of the imputation
methods is visually embedded directly into both views and provides detailed information about
the uncertainty and variation of the imputed values in box-plot representations. This enables a
better judgement of the adequacy of the imputed values, raise the confidence about these values,
and adjust unsuitable values.

There are several possibilities to extend our approach. For multivariate time series a possible
correlation between the variables can be used to improve the imputed values. For this extension
one needs to think about more appropriate techniques to visually representing the cyclic structure.
One limitation is that imputations based on outliers will not provide a good estimate for a missing
value. Indicating the time points involved in the imputation may help identifying suspicious values,
which may then be excluded in order to improve the imputation. Furthermore, the approach can
be used to impute a suspicious value and compare the outcome of the imputation method to judge
whether the value really is an outlier. Another limitation is that our approach is not applicable in
case the time series has a very strong trend. One idea is to extend our approach and make use of
decomposed time series with several views for each component, for instance, separate views for
trend and seasonal components.

As laid out in the introduction, missing values are a big issue in time series data from real world
applications. Our approach expands on the possibilities of imputation methods by incorporating
domain knowledge and an optimized visual representation for seasonal time series.
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CHAPTER

The Multivariate Cycle Plot

The cycle plot is an established and effective visualization technique for identifying and compre-
hending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually
identify and contextualize extreme values and outliers from a different perspective. Unfortunately,
it is limited to univariate data. For multivariate time series, patterns that exist across several
dimensions are much harder or impossible to explore. We propose a modified cycle plot using a
distance-based abstraction (Mahalanobis distance) to reduce multiple dimensions to one overview
dimension and retain a representation similar to the original. Utilizing this distance-based cycle
plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle
plots for multivariate outlier detection. To enable interactive exploration and interpretation of
outliers, we employ coordinated multiple views that juxtapose a distance-based cycle plot with
Cleveland’s original cycle plots of the underlying dimensions. With our approach it is possible to
judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.

The content of this chapter was published in [BFG"17]. © 2017 Eurographics/Blackwell
Publishing. Reprinted, with permission of the authors, in accordance with the retained rights
defined in the Eurographics/Blackwell Publishing exclusive license form. All parts of the article
are used without revision or modification to the content, it was only adapted to fit to the overall
formatting style of this dissertation. We added “by Aigner et al.” in front of the citation
“JAMST11]]” on page |69 to prevent a overfull line error. Original full bibliographic reference:

Markus Bogl, Peter Filzmoser, Theresia Gschwandtner, Tim Lammarsch, Roger A. Leite, Silvia
Miksch, and Alexander Rind. Cycle plot revisited: Multivariate outlier detection using a
distance-based abstraction. Computer Graphics Forum, 36(3):227-238, 2017.

The original version is available at https://doi.org/10.1111/cgf.13182
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5. THE MuLTIVARIATE CYCLE PLOT
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5.1 Introduction

In this paper we propose an interactive environment utilizing cycle plots to explore patterns and
to detect multivariate as well as univariate outliers. For the construction of our distance-based
cycle plot we use an abstraction based on a multivariate distance measure (Mahalanobis distance),
to visualize patterns in multivariate seasonal time series, like trends and seasonal cycle. We build
upon the established and effective cycle plot by Cleveland [Cle93]], which is limited to univariate
time series.

Time series often follow a periodically reoccurring pattern, called periodic or seasonal pattern.
An example are monthly averages of temperatures over multiple years, with a yearly low, a yearly
high, and smooth transitions in between. Such seasonal time series appear in various domains,
like ecology, economics, or health. Examples of seasonal time series may be univariate, like
number of influenza cases, but many real world examples are multivariate, like number of deaths
caused by cardiovascular disease connected with air pollution data, or water quality measures
[BD10].

An important objective in time series analysis is the detection of outliers, which in multivariate
seasonal time series requires to consider seasonal pattern and trends, both for the several underlying
variables and for the multivariate space. The cycle plot described by Cleveland [Cle93] is an
effective visualization technique, which facilitates the identification of these seasonal pattern and
trends in univariate data, and it allows for comparing data points within the same seasonal cycle
(e.g., month of year) in close proximity. These subgroups within the seasonal cycle enable the
detection of outliers and extreme values within the groups or whole groups that do not follow the
behavior of the seasonal pattern. To achieve the same effect for multivariate seasonal time series,
each variable can be represented by one original cycle plot. Although this allows the human
analyst to analyze seasonal patterns, trends, and extreme/outlying values of each dimension,
building an overview mentally by observing multiple cycle plots is a difficult, time-consuming,
and unreliable task. Single data points may behave abnormal in just some or even none of these
dimensions, but stand out in multivariate space. Furthermore considering multiple such cycle
plots for each variable separately takes additional time and increases cognitive load to combine
and transfer the individual dimensions in a multivariate mental model. For detecting anomalies
like outliers in the multivariate space, the aid of further abstraction, introduced in Section 5.5,
allows to ease this reasoning, as illustrated in Section 5.6/ and discussed in Section|5.7. Empirical
evidence for an increased performance of our approach is beyond the scope of this paper, but
we consider comprehensive user studies of the task performance in future work. The main
contributions of this paper are:

* The construction of a Mahalanobis-distance-based cycle plot that
— involves an additional abstraction step based on generalized multivariate distances and
— uses a modified visual encoding for these distances, but retains the idea of the original
cycle plot.

* An interactive exploration environment of coordinated multiple views combining the
distance-based cycle plot with original cycle plots to
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5.2. Related Work

— identify outliers in multivariate time series considering the seasonality,
— support the interpretation of multivariate outliers,
— reduce the information loss inevitably accompanying the multivariate data abstraction.

5.2 Related Work

A variety of approaches have been proposed to visualize time-oriented multivariate data by Aigner
et al. [AMST11]. Suitable approaches can be categorized into techniques, which provide (1)
visualizations for multivariate data, mainly using projections and other aggregation methods, (2)
visualizations, which take the structure of time into account, and (3) statistical methods for outlier
detection.

Visualizations for Multivariate Data. A frequently used approach is using several line
plots [Pla86] either in one coordinate system or as small multiples [Tuf83l]. An alternative,
already introduced by Playfair in 1786, is the stacked graph [PIa86, BWO0S8]]. Wu et al. [WWS*16]
incorporate additional information in the stacked graph and discuss clustering and visual arrange-
ment for detecting multivariate patterns. For using small multiples, space-efficient visualizations
are well-suited, like Horizon Graphs [Rei08| [Few08] and Qualizon Graph [FHR*14]]. Javed
et al. [JME10] compare the traditional line plot, small multiples, Horizon Graphs, and a new
visualization called braided graphs. Another space-efficient visualization for multivariate data
are CloudLines [KBK11]|, which are inspired by ideas of EventRiver [LYK*12l]. Tominski et al.
[TASO4] compare axes-based visualizations with radial layouts (for example, the time wheel) and
discovered that all approaches are suitable for showing multiple variables at the same time and
temporal trend detection, but are less appropriate for seasonal cycles. Another technique going
back to Playfair et al. [Pla86]] for the special case of bivariate data are connected scatter plots,
for example Haroz et al. [HKF16]. A very similar concept called trajectories is used in small
multiples by Schreck et al. [SBVLKQ9]]. Visually similar are time curves [BSH*16] that project
time series in a 2D space based on similarity measures. It is a strong visualization method for
finding both regular and irregular temporal patterns. However, the projection makes it hard to
compare the length of intervals, and there is no visual representation of the data underlying the
distance measure.

The Structure of Time in Visualization. While the structure of time has many different aspects
[AMST11], the aspects of granularities and cycles are the most important ones in the context of our
work, as the cycle plot [Cle93|, [Cle94] supports them (see Section 5.3|for a detailed explanation).
For pixel-based visualizations, the original work by Keim et al. [KKA93]| (which also includes
multivariate data), as well as related work by Van Wijk and van Selow [vWvS99|, has been
the basis for several further publications [SFdOL04, LAB*09, [KJI.14]. Borgo et al. [BPC*10Q]
evaluate the performance of pixel-based visualizations according to the task complexity and
cognitive load. Even though they only tested univariate data, we assume that including multiple
variables is a task aspect that creates exactly a task complexity that worsens performance of
pixel-based visualizations. Besides the visual representation of periodicity as in the approaches
above, it is possible to isolate the seasonal component of time series and to perform further
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analysis such as detection of abnormal events [CTB*12] on residuals. Such seasonal time series
models can as well be used for prediction [BAF*15, MHR*11]].

Statistical Oriented Approaches. Outlier detection has been considered a foremost challenge
in statistics for a long time and visual methods a possible solution. There are varying definitions of
the term outlier in literature [Agg13l [BLIS8| IBGOS]. They can be summarized by “an outlier is a
data point which is significantly different from the remaining data” [Agg13|]. A broad spectrum of
methods for outlier detection in time series is available. Primarily, we refer to surveys, taxonomies,
or other works which cover the breadth of the topic. Hodge and Austin [HAO04] provide a
good starting point for an overview on different types of methods, namely statistical models,
neural networks, machine learning, and hybrid systems for outlier detection. The recent work by
Aggarwal [Aggl3|, gives an in depth overview on outlier detection in general, with a particular
part on outlier detection in time series. Ben-Gal [BGO3]] gives an overview and a taxonomy on
statistical methods for outlier detection. The Mahalanobis distance is a distance-based outlier
detection method in the class of parametric outlier detection methods [BGO3]). It is an established
method and commonly used in statistics to handle multivariate outliers [BGOS, HA04, [PnPO1]]. To
avoid the influence of outliers on the estimation of the required variables, robust procedures have
to be used to identify multivariate outliers [FGROS]. For analyzing and visualizing more than 3
dimensions with basic visualization methods, dimensionality reduction methods can be used, e.g.,
principal component analysis [Agg13|] or multidimensional scaling [BBH11l]. However, applying
dimensionality reduction, the context of time, especially the periodicity, is lost, and the meaning
of the principal components is difficult to interpret intuitively.

In summary, we could identify visualization approaches, which take into account the structure
of time and different approaches for multivariate data. Moreover, we found several statistical
approaches for multivariate outlier detection, specifically the well-established Mahalanobis
distance. We could not find methods that can deal with the structure of time in relation within
multivariate time series, neither visualize them in an intuitive and compact way, nor include both
at the same time in a statistical oriented approach.

5.3 Background

Before we explain how to compute and construct the distance-based cycle plot, we briefly introduce
the original cycle plot by Cleveland [Cle93]] and define some variables.

5.3.1 Cycle Plot

The cycle plot is a representation described by Cleveland [Cle93| for time series that contains
a reoccurring cycle, like a seasonal cycle, and a trend component, which often appear in time
series. It was presented as an alternative visualization for this type of data based on the seasonal
subseries plot by Cleveland and Terpenning [CT82]. Cycle plots [AMST11}Cle93] are used to
investigate the seasonal cycle and the trend along time granularities. The concept of granularities
is explained in detail by Bettini et al. [BIWOO|. Essentially, a granularity is a grouping of discrete
points in time to larger units. For example, hours can be grouped into days. ‘Day’ is a granularity,
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Figure 5.1: Explanation of Cleveland’s original cycle plot (adapted from Aigner et al. [AMST11]).
Each individual day is labeled with the same letter in the conventional line plot (left) and the cycle
plot (right). In the cycle plot the days within one group are connected to form a line. The average
value for this day of week is indicated by a horizontal line.

while each specific day is called one granule of the granularity ‘day’. The cycle plot inverts the
order of grouping of two granularities: we illustrate this in Figure 5.1, using the granularities
‘day’ and ‘week’. In the conventional line plot (see Figure 5.1, left) each granule of the granularity
‘week’ is used to create the tick marks on the horizontal axis. The data points are shown for
each granule of each granularity, following the normal order of time. In the cycle plot (see
Figure 5.1, right) the horizontal axis is grouped by day of week (Monday, Tuesday, etc.). Hence,
the group ‘Monday’ contains all Mondays of these four weeks. All other days of the week are
grouped accordingly. Aigner et al. state that the objective of the cycle plot is: “To make seasonal
and trend components visually discernable”, and the individual trends are shown “as line plots
embedded within a plot that shows the seasonal pattern” [AMST11, p. 176]. In earlier work by
Cleveland and Terpenning [[CT82], the values of the subseries are plotted using vertical lines on
the horizontal line representing the mean, in the later work by Cleveland [Cle93]], a line is used
for the subseries, like it is commonly known and used today. Yet Cleveland’s original cycle plot
represents univariate time series data only. In the following we use the term original cycle plot,
whenever we want to explicitly refer to the original technique [[Cle93]] as described in this section.

5.3.2 Variable Specification

For the remaining part of the paper we specify variables and sets for the explanations. We
will refer to p-dimensional time series data by X = {xi,...,x,} measured at time point
t1,...,t,. For simplification we use xj to refer to the p-dimensional measurement at time point
ty, for k = 1,...,n. Given a seasonal length (s), time points #;,;.,, where i = 1,...,s and
j=0,..., L"T‘IJ are in position i of the seasonal cycle and adding j * s gives a time point in
the same position, but j times further in the coarser granularity, such as the same month in
different years. For instance, given monthly measurements x; over 8 years, s = 12 represents
the 12 months assembling a year. Fori =1and j =0,...,7, x;4 ., would represent 8 January
values: one measurement for each January of these 8 years. Likewise, the measures for month
February, March, and April would be indexed by i = 2, 3, 4 respectively. In the following we
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refer to these bins as groups (X;) within the seasonal cycle. By writing X; we indicate the data
points within one of the i = 1,..., s groups, where X; C X, (;_; X; =0 and U;_, X; = X. In
our example above, the groups represent the months of a year: {X; = January, X, = February,
..., X12 = December}. For each of the groups we can define a group reference point uy, ..., us,
which can be the mean or median of the data points within the group and will be referred to as
group center (u;). Moreover, we define a global reference point u, named global center (u) for
mean or median of the whole dataset.

5.4 Task Abstraction and Requirements for Distance Measures

As a basis for discussing the design decisions and reasons for how to apply the additional
distance-based abstraction, we first derive the tasks that are supported by the original cycle plot
(Tasks T1-T5). Then we derive the tasks for outlier detection, going beyond the tasks supported
by the original cycle plot (Tasks [T6-T6)). Theoretically our abstraction is independent from a
specific distance measures, as long as it meets the specified requirements. For our prototypical
implementation we apply the Mahalanobis distance, which is an example that meets these criteria.

5.4.1 Tasks

In the following we will use the terms pattern of the seasonal cycle and behavior within each
group. By pattern of the seasonal cycle, we mean the shape formed by the group center perceived
in the visual representation. For example in the cycle plot of Figure|5.1, the group of Mondays is
generally a lower value followed by an steady increase until the peak on Wednesdays, saddling
lower on Thursday and Friday with a drop to the lowest points on Saturday and Sunday. The
behavior within a group means basically the pattern of the points or bars representing the data
within the group.

The first set of tasks is derived from the tasks supported by the original cycle plot (Cleveland
[Cle93], Cleveland and Terpenning [CT82]]), as well as from our experience in applying the cycle
plot [BEG™135].

T1: Identify the overall pattern of the seasonal cycle. Given a time series with a seasonal
component, one wants to get an idea of the overall pattern of the seasonal cycle. This
corresponds to an analysis of the finer granularity, e.g., patterns of the months’ average
over the year.

T2: Identify the behavior within each group. Beside the overall pattern of the seasonal cycle,
one needs to assess the behavior of the subseries within each group. For univariate time
series, this is often done to identify a larger trend corresponding to the coarser granularity,
e.g., patterns within months over several years.

T3: Compare changes within each group to the seasonal cycle and across groups. Besides
the individual behaviors of these aspects of the time series, one wants to know which of
them drives the patterns of the whole time series and to which extent. It is also interesting
how the behavior of one group compares to the behavior of another group.
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T4: Detect extreme/outlying values within each group. The way the data is arranged in the
cycle plot allows to identify extreme/outlying values with respect to data points within
the same seasonal cycle. One wants to detect such extreme values and consider them as
possible outliers.

T5: Identify whole groups that deviate from the seasonal cycle. When the overall pattern of
the seasonal cycle (T1) is detected, one wants to identify groups within the seasonal cycle
that deviate from this behavior.

Additionally, we specify tasks required for outlier detection in multivariate seasonal time series.
These tasks are derived from domain knowledge about robust statistics and outlier detection both
from literature and from the long-lasting experience of one of our co-authors [EFGROS, [FRGTA14]],
who is a statistician.

T6: Detect multivariate and univariate outliers based on the specified boundary. One wants
to specify a tolerance boundary and easily detect data points outside this boundary. This
needs to be possible for univariate and multivariate outliers.

T7: Detect outliers that are univariate as well as multivariate outliers. Extending task T6,
one needs to detect data points that constitute outliers in both, multivariate and univariate
context.

T8: Detect multivariate outliers and explore the respective data points in the univariate
space. One needs to make selections of data points, in order to explore multivariate outliers
and analyze the corresponding values in the univariate plots.

T9: Detect univariate outliers and explore the corresponding data points in the other
variables as well as in multivariate space. This task is similar to T8, but one wants to
start the exploration with selecting a data point in one (univariate) dimension and see its
position in other dimensions as well as its representation in multidimensional space.

T10: Adjust outlier-boundaries and track the resulting outlyingness of data points. The
boundaries specify what separates normal from outlying data points. One wants to adjust
these boundaries in order to detect borderline outliers.

5.4.2 Requirements for a Distance Measure

To visualize multivariate time series in a cycle plot, we need an additional abstraction step. We
decided to use a distance measure, because they are easy to compute, applicable for multivariate
data, and a well-known concept. Distance measures, also allows us to retain a visual representation
similar to the original cycle plot. Moreover, distance measures are commonly used in outlier
detection. To support the tasks described above, the distance measurement for the data abstraction
needs to meet the following requirements:

RI: Applicable for multivariate data.
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R2: Robust against outliers.
R3: Specific cut-off value exists.

R4: Incorporates the correlation of the data.

5.4.3 Distance Measure

A distance measure quantifies the distance between two points in multivariate space. For our
prototypical implementation we decided to use the Mahalanobis distance [Mah36l], a generalized
multivariate distance, which is an established method in statistics for multivariate outlier detection
[BGOS, [HAO4, [PnPO1]] and meets our requirements on a distance measured described above.

In contrast to a basic distance measure, like the Euclidean distance, the Mahalanobis distance
considers also the correlation of the data, which meets our requirement R4, A covariance matrix
specifies the covariance structure of the data, which involves the correlation and the spread of the
p dimensions. In 2-dimensions the spread can be illustrated with ellipses, see the data points and
ellipses in Figure 5.3a. Given a p-dimensional dataset with n observations, X = {x{,...,x,},
with the data center y, and a covariance matrix X, the Mahalanobis distance between points xg,
for k =1,...,n, and the center u is defined as

MD(xi, ;%) = = )T (ot = o). 5.

The center u and covariance matrix X need to be estimated based on the dataset X. To
estimate them there are different methods, ranging from classical to robust estimation methods
[BGOS, [FRGTA14]. Even though, the specific method is not relevant for the construction of the
distance-based cycle plot, but if used for outlier detection, robust methods are required.

Our main reason for using the Mahalanobis distance is that it is an established distance measure
in statistics and used in multivariate outlier detection. By definition, see Equation (5.1), the
Mahalanobis distance is applicable for multivariate data, fulfilling our requirement R1.

According to Filzmoser et al. [FGRO3], if estimated with robust procedures, the Mahalanobis
distance can be used to identify multivariate outliers, using quantiles of the chi-squared distribution.
In more detail, in case of multivariate normal distribution, the squared Mahalanobis distance of
the data points to the center, with respect to the covariance matrix of the data, are approximately
chisquare-distributed with p degrees of freedom, )(f,. Thus, a potential multivariate outlier has
a higher squared Mahalanobis distance than a certain quantile, e.g., the quantile 0.975, of the
)(12,. We can use this quantile as a boundary for deciding whether a data point is an outlier or not,
which meets the requirement |R3.

The center u as well as the covariance matrix X required to calculate the Mahalanobis distances
need to be estimated based on the data, and when using classical methods for the estimation,
these methods are influenced by outliers. Thus, to avoid the influence of outliers, we use robust
methods for the estimation of u and X, which meet requirement R2. In the statistics literature,
compare [BGOS, [FGRO5! [FRGTA14], the most commonly used methods are the median as a
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robust estimator for the center of the data and the minimum covariance determinant (MCD)
estimator [Rou85] for estimating the covariance matrix.

5.5 Features of the Interactive Exploration Environment

©., o s
Q. S g O I -|| I I [ | . |II e N B

oy
."" :.: "O

Figure 5.2: Transformation of an original cycle plot to a distance-based cycle plot. Considering
the group centers uji, ..., s as points forming a time series line plot and using the distance
to the global center u, we construct the base of the groups, transformation f, as described in
Section |5.5.1. We do the same transformation f, for the pattern within each group. Both, the
group centers and the points within each group, can form different patterns that are comparable to
a seasonal pattern or trend in the original cycle plot.

The main element in our interactive exploration environment is the distance-based cycle plot,
which shows an abstraction of a multivariate time series using distances. This section is aimed to
ease the understanding of the construction of the distance-based cycle plot by first explaining
the transformation of an original cycle plot to a distance-based cycle plot. We then illustrate its
construction in a bivariate case. Finally it is generalized for the multivariate case and integrated
into our interactive exploration environment.

5.5.1 Seasonal Cycle (Inter-Group Distance)

Our goal is to support the same tasks as the original cycle plot, but for multivariate seasonal time
series, cf. Section 5.4.1. The original cycle plot shows the pattern of the reoccurring cycle, like
the season over the year, which is required for tasks|T'1, T3, and T5|in the distance-based cycle
plot. The identification of this overall pattern is supported by showing vertical lines that indicate
the group centers yy, .. ., ys, see Figure 5.1.

In the original cycle plot, each group center is a real number, where the absolute value can
be considered as distance between this group center and the zero line. Instead of the zero
line as central reference, we use by default the global center of all groups u for constructing
distance-based cycle plot. During the exploration process this global reference point can be
changed interactively (see Section|5.6)). In particular, we compute the Mahalanobis distance MD
between each group center u;,i = 1,..., s, and the global center y. The result is one horizontal
line for each group, serving as group base line. In Figure 5.2 we use the original cycle plot to
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illustrate how the distance-based cycle plot is constructed. In the original cycle plot (Figure 5.2a),
the global center y is indicated by a horizontal dashed line. We compute the distance of each
group center ui, ..., Mg to this global center (indicated by the colored vertical lines). For the
construction of this generalized distance based cycle plot, we apply these distances (group ;
to global center u) on the y-axis. Thus, the global center is represented by the x-axis itself
(see transformation f; in Figure 5.2). This is due to the fact that these distance measures are
always non-negative. The distinction between ‘above’ and ‘below’ the global center may be
applicable in the univariate example given in Figure |5.2| but does not make sense in an actual
multivariate scenario (as explained in Figure 5.3). We discuss this information loss due to the
data abstraction Section 5.7 and describe how our interactive exploration environment allows to
reduce this information loss.

In Figure 5.3|we show the construction in the bivariate case. We consider a small example of daily
measurements of two variables: temperature and humidity. In this example the seasonal cycle
s = 2 is grouping the data points into measurements during the day and measurements during
the night. For each group — day and night — we calculate a bivariate average for temperature and
humidity values combined, which is equivalent to the group centers iqay and ppighe. In addition,
we calculate the global center u of the whole dataset, i.e., the bivariate (temperature and humidity)
mean of all data points (8 days and 8 nights combined). In this bivariate example these two group
centers and the global center are points in two-dimensional space (see Figure|5.3a). Given the
group centers fday and ppighe, the global center u, and the covariance matrix X (see Section |5.5.4),
we calculate the Mahalanobis distance MD (unight, 4, ) of the night-group center fiyign to the
global center p and MD(ugayu, ) of the day-group center pgqy to the global center u. This
distance is used as the position of the group-base line on the y-axis shown by transformation g,
and g3 in Figure 5.3b.

In case of more than two dimensions, the group centers ;, the global center u, and distances
between them are calculated accordingly. By using these distance values, we are able to represent
p-dimensional datasets in our distance-based cycle plot. For example, consider the monthly
temperature (see Figure 5.4b’): there are low values in winter, high values in summer, and average
values in spring and fall. This seasonal pattern is reflected in the position of the group center lines
in a similar pattern like in the distance-based cycle plot (see Figure 5.4a). The winter months,
like January as coldest month, and the summer months, like August as hottest month, have large
distances to the global center and, therefore, appear as peaks in the distance-based cycle plot,
whereas the average spring/fall months have small distances from the global center and therefore
are closer to the x-axis.

5.5.2 Data Within Groups (Intra-Group Distance)

For representing the data points xy, . . ., x, within the groups X; _,, we apply a similar approach,
like in the original cycle plot. In the original cycle plot, the data points are represented by points
on a line following the order of the coarser granularity, and the position on the y-axis given by
their values. One feature of this representation in the original cycle plot, is that it is possible to
see the trend over the coarser granularity, for example over the years. For the distance-based cycle
plot we compute the Mahalanobis distance of the data points in X; to their group center u;. In
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Figure 5.3: Construction of the distance-based cycle plot with a bivariate example. The
construction of the bivariate cycle plot on the right is based on Mahalanobis distances of the
bivariate data points to the respective group center (e.g., transformation g;) and on Mahalanobis
distances of the group centers to the global center (transformation g, and g3). The usage of
distance measures that are applicable to p-dimensional space, is a key aspect applied in our data
abstraction. The ellipses illustrate the spread of the data captured in the covariance matrix.

contrast to the original cycle plot we represent distances instead of actual data points, and thus, we
chose to use bars instead of connected points. This also picks up the original design by Cleveland
and Terpenning [CT82], using vertical lines.

In Figure 5.1| we illustrate how the data points are binned and arranged in the original cycle
plot. With univariate data the transformation to the distance-based cycle plot is similar to the
construction of the horizontal lines for the group centers. Using the illustration from Figure 5.2,
the data points in each group form a time series line plot with a horizontal line representing the
group center. Computing the distance of each point to this group center allows to draw them as
bar chart within each group, like we illustrate for one group in Figure |5.2c by transformation f,.

In the bivariate example (Figure |5.3) we compute the Mahalanobis distance of each data point
from the subset of measures during day x; € X4,y and night x,,, € Xp;ens, Wwhere [,m =1,...,8,
to the respective group centers faay, Hnight» MD(X1, faay,2) and MD(x,,, tnighs, ). These
distances are ordered according to the coarser granularity, in our example calendar days, and
represented as bars within their group, as shown by transformation g; in Figure 5.3b. As discussed
before, the distance can be computed for any p-dimensional multivariate data set. However, in

contrast to the original cycle plot, the seasonal pattern and trends need to be interpreted differently.

In the following section we discuss the interpretation of these patterns in the distance-based cycle
plot.

5.5.3 Design and Interactions

In Figure 5.4/ we show the design of our interactive exploration environment. Our goal is to support
users in exploring seasonal patterns and trends as well as detecting and exploring univariate
and multivariate outliers (see tasks T1-T10 in Section 5.4.1). Using distances to construct the

distance-based cycle plot (Figure 5.4a) allows for representing an arbitrary number of dimensions.

To gain further insights into the multivariate dataset, we provide interactive exploration means
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Figure 5.4: Prototype implementation of our interactive exploration environment utilizing the
Mahalanobis-distance-based cycle plot. The prototype employs coordinated multiple views with
the distance-based cycle plot (a) next to the underlying univariate plots: an original cycle plot
(b) followed by the univariate time series line plot (c). In this screenshot we use space-efficient
sparkline representations, in order to provide a comprehensive overview. The small plots on the
right side (b+c) can be changed to a more detailed view with a scroll bar for detailed exploration.
The bottom left shows the control panel for interactive exploration (d). Color encodes the type of
outlier and sliders are used to specify outlier-boundary values. (b’) is the original cycle plot of
variable temperature, used as example in Section 5.5.1.

that allow for switching back and forth between the distance-based visualization and the multiple
underlying univariate representations. For visualizing the multiple variables of the multivariate
time series, we provide the original cycle plot next to a time series line plot. This allows two
perspectives on the same univariate dimension, like it is used by Bogl et al. [BEG™15] for time
series containing missing values. In Figure 5.4, we show sparklines [[Tuf06] for the univariate
visualizations (b & c), to fit more variables on the screen. In the control panel (d), the user can
switch between detailed view and sparkline view and adjust parameters. In the detailed view, the
sparklines are replaced by more detailed line plots.

To explore patterns and outliers in the multivariate space and the underlying univariate dimensions,
we provide multiple linked views with highlighting triggered by hovering and selection, including
multiple selection. Highlighting and selection are supported in each of the visualizations. To
allow the exploration of more dimensions, the univariate plots are scrollable.

We encode three types of outliers using color. We selected three distinguishable colors according
to the L*a*b* color space and maximized the perceptual distance of the selected colors, compare
[HSA™10]. The three types of outliers and respective colors are: (1) univariate outliers represented
by cyan m, (2) multivariate outliers represented by orange m, and (3) outliers in univariate and
multivariate represented by magenta m.

Our interactive exploration environment is independent of a specific method for computing


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.6. Usage Scenario

univariate or multivariate outliers. For doing so, a lot of methods exist in statistics literature,
see [BGOS,HAO4] for an overview. In our environment, we highlight the identified outliers in
univariate as well as multivariate space and allow to adjust the parameters for outlier detection.
For example, in Figure 5.4d the user can adjust the boundaries used for outlier detection. In the
following section, we will give details on the calculations used for our prototype.

5.5.4 Robust Calculations

We use the median to compute the global center u = colMedian(X), and the group centers
u; = colMedian(X;). For constructing the distance-based cycle plot, there are two possibilities to
estimate the covariance matrix X. Either to estimate a separate covariance matrix for each of the
groups X;, or to center the data points on their group median and estimate a global covariance
matrix X using the centered data points X = X; — u;. Testing with some data sets showed an
instability in the estimation of separate covariance matrices ;. This is due to an often low number
of data points in each group compared to the number of dimensions. Therefore, we apply the
MCD method to compute the global covariance matrix ¥ = covMcd(X) with all centered data
points X. For a dataset with L"T‘IJ > p one can decide for any of these methods as needed.

For univariate outlier detection, we use a similar approach as described above. If the covariance
matrix X is estimated robustly, the diagonal consists of robust estimates of the variance o> for
each variable r = 1, ..., p in the p-dimensional dataset. Using the centered data points X, the
center of X, U =0, and the variance o-rz, we compute the outlier based on the selected quantiles
of the underlying univariate distribution. In case the absolute value of a centered univariate data
point is higher than a certain quantile, it is identified as univariate outlier. If the univariate data is
normally distributed, we compute the quantile of N (u, 0-2). Like for the multivariate boundary,
we provide an interactive slider in our exploration environment for selecting the quantile, see

Figure|5.4d.

Note that the assumed distributions (chi-square, normal) for the distances will most likely not

be met because the observations are time-dependent, and thus not independent from each other.

However, the quantiles of these distributions still serve as an indication of outlyingness of the
data points. The goal of outlier detection is thus more in an exploratory context, namely to draw
the attention of the user to these highlighted points.

5.6 Usage Scenario

We implemented the interactive exploration environment utilizing the distance-based cycle plot
in a prototype and apply the prototype in a usage scenario. We use this usage scenario to
illustrate how the distance-based cycle plot visualizes real data and how the interactive exploration
environment advances the possibilities to explore patterns and outlying values in multivariate
seasonal time series data. Throughout the usage scenario, we refer to the related tasks T1-T10
described in Section 5.4.1. We support the reader in following the usage scenario with additional
figures provided in the supplementary material and refer to our prototype available online at
http://cycleplot.net.
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Mortality & Air Pollution Dataset. The dataset is about the mortality, air pollution, and
meteorological data for major cities in South Korea [LOK13]]. It is available in the R project for
statistical computing [R C20] as library named HEAT [LOK13]]. The dataset contains several
air quality indicators together with meteorological data as well as the number of deaths caused
by cardiovascular diseases and respiratory diseases. The dataset consists of daily measurements
for several years (2000-2007). For the illustration, we select a subset of 6 variables, cardio
(deaths caused by cardiovascular diseases), SO, (Sulfur dioxide), NO, (Nitrogen dioxide), PMq
(particulate matter), temperature, and humidity from the city Seoul aggregated to monthly
averages.

User. As apossible user is a public health official, who analyzes and explores the seasonal pattern,
trends, and the outliers in the dataset described above.

Goal/Tasks. The overall goal is to get insights into the seasonal patterns, trends, extreme, and
outlying values of the dataset. For details on the particular tasks to achieve this goal, we refer to
the tasks T1-T10 described in Section 5.4.1.

As a proof of concept, we separated the preprocessing of the dataset and the prototype of the
interactive exploration environment. The preprocessing of the dataset (HEAT library [LOK13])
was done in R [R C20]. The computation of global and group centers, Mahalanobis distances,
and outlyingness values was done as described above (see Sections 5.4.3| and |5.5.4). The
implementation of the interactive exploration environment was done as web application using
JavaScript, where we imported the precomputed data file. For future work, one may combine the
computations in R with the interactive visualization in a web application, by using appropriate
libraries to connect them.

The user first wants to get an overview of the seasonal behavior of the time series in the multivariate
space (compare Task T1). According to the group centers of the months, see Figure 5.4a, the
user identifies that there are peaks in summer as well as in winter. This means that summer and
winter months are on average more extreme than the global center, which basically represents an
average month, e.g., spring (April) or autumn (October). Selecting one month center as the global
reference point, e.g., January, shows that the other winter months are closer to January than the
summer month (see the supplementary material for more details). Considering the transitions
between high and low peaks of the season in the original cycle plot representation of each variable,
the seasonal pattern of the Mahalanobis-distance-based abstraction follows a similar smooth
behavior. The user then considers the behavior within the groups according to their position in
the seasonal cycle (Tasks T2 & [T3)). He/She identifies a tendency in some of the peak months
(Dec., Jan., & Feb.), that the data values within the group vary more than in others. Especially,
when comparing to the other peak in summer, the user detects this additional variation with larger
distances to the group center (Task [T4)). Next, the user compares the variations within the groups
and across groups in more detail (Tasks T2|& T3). When looking at the months June and March,
he/she spots distances with roughly the same length, except for the first year. These months seem
to be quite stable months across all dimensions. Even without highlighting the user can easily
identify extreme values by large bars, that may be possible outliers (Task T4). Amongst others,
the user considers the last year in January, first in June, and several in December, as possible
outliers. In our example, the user cannot find any group that deviates from the seasonal cycle
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(Task 'TS)), but one can imagine one whole month, that stands out of the multivariate seasonal
pattern.

The user activates the highlighting of outliers and selects a certain quantile for the univariate and
multivariate boundaries to indicate outlyingness of the data points. The user selects the 0.95
quantile, shown in Figure 5.4, and gets an overview of patterns in the outlyingness that allows
to detect multivariate as well as univariate outliers easily (T6). For example, the user considers
interesting that there are multivariate outliers only in months Oct.—Apr., and an exceptionally
large number in Dec.—Feb. Knowing that, the user detects the same pattern in the original cycle
plots and recognizes that there are more data points in these winter months highlighted in magenta
(T7), indicating outliers in both, uni- and multivariate space. The user immediately recognizes
that the months Nov.—Feb. in the last year are all multivariate outliers. To further investigate
the outlyingness in the univariate space, he/she selects the outliers (T8)), which highlights the
corresponding data points in the univariate plots. This exploration reveals that in some variables,
e.g., cardio and PM, they are indicated as multivariate outliers only, yet in others, e.g., SO,
and NO,, they are highlighted as outliers in both, univariate and multivariate space. Looking at

the original cycle plot for the variable cardio, the user detects two extreme data points in Nov.

and Dec., highlighted in magenta. Selecting them shows that in the distance-based cycle plot,
they can also be recognized as data points with large distance to the center (19). The user also
recognizes that besides being multivariate outliers, the variable cardio is also a univariate outlier
in Nov. and Dec., but the variable temperature is a univariate outlier only in Nov. not in Dec. By
changing the outlier boundary with the slider, the user can track the data points that are borderline
and are indicated as outliers, when the boundary is decreased. For example, the first bar in month
Mar. and Jun. in the distance-based cycle plot, see Figure |5.4a, are only highlighted as outliers,
when changing the threshold from the 0.95 to the 0.9 quantile (T10). This allows to interactively
get an impression about how extreme the outliers are.

In contrast to using only multiple original cycle plots, the user is able to explore the seasonal
pattern and patterns within and across groups directly in the multivariate space. Obviously, it is
required to also consult the underlying univariate visualizations, but combined in the interactive
exploration environment, the distance-based cycle plot is vital for getting insight in the overall
picture of the multivariate seasonal time series.

5.7 Discussion

So far, we introduced our interactive exploration environment for exploring patterns and outliers
in multivariate seasonal time series and explained the construction of the utilized distance-based
cycle plot. We abstracted the tasks relevant to do so together with the requirements for a distance
measure in Section |5.4] and argued the construction of the visualization and the design of our
environment, accordingly (Section|5.5). In these sections we briefly discussed the benefits and
limitations of specific decisions for the construction and the design. In this section we will
continue this discussion of benefits and limitations in more depth, cover the performance of our
approach regarding the specified tasks, and give an outlook on future work.
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5.7.1 Benefits and Limitations

One main benefit of the way we construct the distance-based cycle plot is the independence from
the number of dimensions. This is achieved by constructing a distance based cycle plot using
Mabhalanobis distances (see Sections |5.4.3 and 5.5). This causes a different representation of
patterns (i.e., the seasonal pattern and patterns within groups), and therefore, the distance-based
cycle plot needs to be interpreted differently. A distance is a non-negative number by definition.
As a consequence, all distances are represented above the group center lines (see Figure 5.2). We,
thus, loose the information about the exact position of that data point, for the sake of being able to
represent multiple dimensions. While the information about the actual position appears to be
important for one-dimensional space (maybe even for two-dimensional, and three-dimensional
space), it is very difficult to represent this in multivariate space. One commonly used method in this
case is dimensionality reduction, like principal component analysis [Agg13|] or multidimensional
scaling [BBH11]]. However, one limitation of this technique is, that it is difficult to interpret the
meaning of the principal components, e.g., first and second for 2-dimensional visualizations. By
applying dimensionality reduction, the context of time, especially the periodicity, is lost. Our
approach, i.e. using the Mahalanobis distances, is also a type of abstraction from multivariate
space to less dimensions. To reduce this information loss our interactive exploration environment,
see Section 5.5.3, allows further investigations in both, the distance-based cycle plot and each of
the single dimensions in multiple linked views. By taking the structure of time into account, and
wisely selecting the granularity levels according to the seasonal time series, this abstraction still
retains the temporal context.

While the idea of using intra-group vs. inter-group distances is a well-known strategy, we did not
find this applied in cycle plots for multivariate time series (see Section 4.2). The full explorational
power of our distance-based cycle plot for multivariate time series needs to be seen in context of
the interactive exploration environment, where it is possible to connect the multivariate intra- and
inter-group distances to the visualizations of the single dimensions in original cycle plots and line
plots and thus, to investigate anomalies, like outliers.

Using distances, however, may lead to a setting where the global center has the same distance to
multiple or even all of the group centers. This would result in a representation where all group
base lines lie on the exact same position on the y-axis. In Figure|5.3|the global center u is close
to have the same Mahalanobis distance to both groups, and therefore, the base lines in Figure 5.3b
are nearly on the same horizontal level. It is then difficult to judge if there is no seasonal pattern
at all or if the group centers span a multidimensional sphere around the global center. The same
drawback is true for original cycle plots. In case there is no seasonal pattern in univariate seasonal
time series data, also the original cycle plot would show group centers aligned on a horizontal line.
One way to tackle this problem is to relate the group centers to a different reference point. Instead
of a mathematical global center we can define a global reference point. This reference point could
be, for instance, the basis, the zero point, of the multivariate coordinate system. Another potential
reference point would be choosing one representative group, i.e. a reference month whose group
center line would then lie on the x-axis, and relate the other groups to this reference group. The
same can be applied for group centers, by defining a group reference point instead.
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For both issues mentioned above, we introduced the possibility to select any group center (u;) as
global reference point and therefore investigate the relation of all other groups to the selected
group in our interactive exploration environment. We use the multiple linked views to enable
the selection of single or multiple points either in the distance-based cycle plot or in one of the
univariate representations. Brushing and linking allows to further explore the relations of a point
in the multidimensional space and the connection to the single dimensions. This feature helps
to reduce the information loss introduced by the distance based abstraction. The flexibility of
interactively adjustable global as well as group reference points, allows a further investigation of
relations between data points within and even across groups. The exploration of different aspects
of locality (in linear and periodic time, as well as across groups) is possible because of using
Mahalanobis distances. There is relatively few work done considering this local aspects in outlier
detection, see [FRGTA14].

Another possible limitation is demonstrated by a case in which there are very large distances
between the global center and the group centers and only small variation of the data points within
the groups. A common scale (y-axis) would thus lead to a distance-based cycle plot that shows
mainly long vertical lines representing the distance of group centers to the global center. In
consequence the small variations within the groups would not be visible. However, this can also
happen in the original cycle plot. To tackle this problem, we propose using data transformations,
such as a log scale. Another solution would be to use separate scales. Using one scale for the
distance of group centers to the global center, and another scale for the distances within groups
would allow for exploring the smaller variations within groups, while preserving the overall
picture and comparison between groups.

A problem related to the previous one, would be a very strong trend within the data (e.g.,
monthly data over several years). A steep trend over the years would distort the patterns within
groups of months. This, again, is a problem that affects the original cycle plot as well. In time
series decomposition the time series is split up into trend-, seasonal-, and the error- or irregular-
component [BD10]. These can then be analyzed separately with appropriate visualizations, e.g.,
using our distance-based cycle plot for the seasonal-component. Seasonal adjustment is usually
applied to remove the seasonal component in order to analyze the other components. There are
also recent approaches to seasonal adjustment for multivariate time series (see [GM13]), that can
also be used to separate the seasonal component for a more detailed analysis, which again could
be supported by using our distance-based cycle plot.

5.7.2 Task Performance

A formal cost-benefit analysis of our approach on the basis of Chen and Golan [CG16] is beyond
the scope of this paper, but the following discussion should better explain the benefit of our
approach when performing the task outlined in Section 5.4.

Using only an original cycle plot for each variable (only the plots in column (b) of Figure|5.4), one
can easily identify overall patterns of the seasonal cycle (Task T1)), identify the behavior within
each group (Task T2), and compare changes within each group to the seasonal cycle and across
groups (Task T3), but only for each of the variables separately. For picturing these patterns and
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behaviors within the multivariate space, one can do this to a certain extend by mental aggregation.
If there are very similar and smooth transitions and patterns in each of the variable, one can
imagine or derive mentally a similar pattern in multivariate space. On the other hand, when
using only the distance-based cycle plot (Figure 5.4a) for these tasks, it is possible to identify the
patterns and behavior of the abstraction only. One can identify peaks and transitions as well as
intra- and inter-group similarities in the multivariate space, but it is not possible to break down
any information for individual variables. While the tasks of detecting extreme/outlying values
within each group (Task [T4) and the identification of whole groups that deviate from the seasonal
cycle (Task T5) can be done for each variable separately, multivariate outliers are possibly not
outliers in any of the variables or outliers just in single variables. Also by summarizing mentally
the individual variables, data points that are outliers in single or many individual variables, may
or may not be multivariate outliers (see Section 5.6). For these tasks (Tasks T1-T5) a combination
the distance-based cycle plot (Figure 5.4a) and the several original cycle plots (Figure |5.4b) is
necessary. The support of interaction is also beneficial to keep track of single points, when
switching the focus between the single variables and the distance-based cycle plot.

If we consider the Tasks T6-T'10 for multivariate and univariate outlier detection that are going
beyond the detection of extreme/outlying values only within groups (Task T4) and identification of
whole groups that deviate from the seasonal cycle (Task |T5), one also requires the classic line plot
representation of each variable (Figure 5.4¢) to also identify peaks and anomalies, like possible
outliers, and how they relate to each other in linear time, e.g. the larger values within the last year
of variable NO, and SO, in Figure |5.4b and c. This side-by-side presentation of the same data in
different representations, cycle plot and traditional line chart, adds an additional perspective that
allows to investigate the connections of outliers in each of the variables. Highlighting univariate
outliers in original cycle plots and line plots only, does not allow for investigating data points that
are no outliers in any of the single variables but are multivariate outliers. The distance-based
cycle plot allows to investigate the data points relations with different aspects of locality, e.g. to
data points in the same position of the periodicity, but also the distances compared to other groups
as well as interactively changing global and local (group) reference points. Only the possibility to
select and highlight the data points in these coordinated multiple views of different perspectives,
allows to easily switch from the abstracted multivariate data to the single dimensions, which eases
the external memorization of the analysis. This affects all the tasks for all combinations of only
multivariate or only univariate outliers in one or more dimensions, as well as outliers that are
both, multivariate and univariate outliers in single or multiple dimensions.

The main advantage of the distance-based cycle plot is the aggregated overview of all dimensions
combined, to show directly the patterns and anomalies like outliers in a condensed view. The full
exploration power is only achieved by the interactions, highlighting, and coordinated multiple
views in combination with the twofold visualization of each variable in a classical cycle plot and
a line plot. Another benefit of this combination of different representations and the additional
abstraction of the distance-based cycle plot is, that it enables the investigation of each data point.
First, locally according to the normal linear time scale for each variable, second, locally according
to the periodicity in the several original cycle plots for each variable, and third, locally in context
of the distance-based abstraction from the multivariate data, again according to the periodicity in
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5.8. Conclusion

the distance-based cycle plot.

5.7.3 Future Work

There are several questions with regard to the usability of our approach that remain open. First,
the distance-based cycle plot, although encoding an abstraction using a multivariate distance,
uses a very similar design to the original cycle plot. This may cause confusion and needs to be
learned by the user. Furthermore, we do not know about the performance regarding the abstracted
tasks and whether the combination of different cycle plots discussed above helps users to identify
multivariate outliers. For multivariate time series involving periodicity, this remains an open
question. Only future evaluation with real users can answer these questions. We plan to tackle
this issue first by providing additional use case examples, and by formal user studies focusing
on the correct interpretation of the plots and task performance. Due to the number of tasks and
their complexity, this will require more than one study. For the time being, we demonstrate
the applicability of our approach by the walk-through in the usage scenario (Section 5.6), the
comprehensive discussion above, the provided supplementary material, and the possibility to test
the prototype in an online demo.

5.8 Conclusion

Our interactive exploration environment utilizes a distance-based cycle plot for identifying
seasonal patterns and outliers in multivariate seasonal time series. It revisits and retains a visual
representation similar to the original cycle plot by Cleveland [Cle94]. The construction of the
distance-based cycle plot includes an additional abstraction step using the Mahalanobis distances,
which enables the generalization to an arbitrary number of dimensions. With our interactive
exploration environment we combine statistics and visualization techniques and balance their
benefits and limitations for visually analyzing patterns and outliers in multivariate seasonal time
series, with respect to the structure of time and the relations among multiple dimensions.

85


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

5. Tue MuLtivariaTE CYCLE PLoT

5.9 Appendix: Supplementary Material for Usage Scenario

Supplementary material to support the reader in the usage scenario discussed above in Section 5.6.

Distance-Based Cycle Plot
Considering the transitions between high and low peaks  Psencebasdeiepor
of the season in the original cycle plot representation of
each variable, the seasonal pattern of the Mahalanobis- "
distance-based abstraction from multivariate space
followsa similar smooth behavior compared to the
underlying univariate cycle plots.

Our prototype allowsto change the global reference »

point either to the global center (default) or to any of T Re e kel Mmooy ke G 8 M o
the group centers.

Selecting for example January as global reference point showsthat the other winter monthsare closer to January
than the summer monthsin the multivariate space. Likewise selecting July, summer monthsare closer.

Distance-based cycle plot Distance-based cycle plot

»

i Wy u

The user then considersthe behavior within the
groups according to their position in the seasonal
cycle (cf. tasks T2 & T3). He/ She identifiesa tendency
in some of the peak months (Dec., Jan., & Feb.), that
the data valueswithin the group vary more than in
others. Especially, when comparing to the other peak
in summer, the user detectsthis additional variation
with larger distancesto the group center (T4).

winter summer

Figure 5.5: Supplementary material for the usage scenario, page 1.
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data pointsin these winter months highlighted in magenta (T7), indicating outliersin both, uni- and multivariate
space.
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Figure 5.6: Supplementary material for the usage scenario, page 2.
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Distance-based cycle plot

The user immediately recognizes that the last year
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(2007) in Nov.—Feb. are all multivariate outliers.

I T

Looking at the original cycle plot for the variable cardio, the user detectstwo extreme data pointsin Nov. and
Dec., highlighted in magenta. Selecting them showsthat in the distance-based cycle plot, they can also be
recognized as data pointswith large distance to the center (T9). The user also recognizesthat besides being
multivariate outliers, the variable cardio is also an univariate outlier in Nov. and Dec., but the variable
temperature isan univariate outlier only in Nov. not in Dec.
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Figure 5.7: Supplementary material for the usage scenario, page 3.
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CHAPTER

Conclusion

¢ [...] [W]e believe, [there] is a clear demand that pictures based on exploration of

data should force their messages upon us. Pictures that emphasize what we already
know—‘security blankets’ to reassure us—are frequently not worth the space they
take. Pictures that have to be gone over with a reading glass to see the main point are
wasteful of time and inadequate of effect.

The greatest value of a picture is when it forces us to notice what we never
29
expected to see.

John W. Tukey, 1977. [[Tuk/’7, p. vi]
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“It’s the end of the world as we know it [...]”
— R.E.M. (1987), from the Album Document

In spring 2020, the global world as we knew it started falling apart. People were looking at
line charts showing numbers of infections by SARS-CoV-2 (COVID-19) increasing steeply into
the sky. These charts are omnipresent in the media and are presented by politicians, medical
professionals, and epidemiologists. If somebody had forgotten what exponential growth is, they
now had it illustrated and taught in these charts together with predictions of what the exponential
growth meant for the future. Different measures to intervene were presented together with the
expected outcome in predicted number of cases. Everybody was watching the line in the chart
progress while the message “flatten the curve” was propagated on all different media channels.
Perhaps most famously, the comic by Siouxsie Wiles and Toby Morris was published on Twitter
(see Figure 6.1). Using such illustrative graphs was important to sensitize the public to the
necessity and effects of the measures taken and to be more careful in order to prevent a collapse of
the healthcare system. Suddenly, people had to deal with statistical and epidemiological data and
graphs while often being left alone to interpret them. Therefore, it is important to teach visual
literacy and, more importantly, for those using such charts to communicate their agenda, to use
adequate representations of the message to be conveyed. Furthermore, we also recognized how
important “good” predictions are for decision making and planning and how central the power of
data sovereignty is to convey and control the general public in such pandemic situations.

FLATTEN THE CURVE FLATTEN THE CURVE
K ® A ®
s e
B L HERLTHCARE SYSTEM CAPACTY - HERLTHCARE SYSTEN CAPACTY
TIME SINCE FIRST CRSE > TIME SINCE FIRST CASE )

- WASHING HANDS
2\ - NOT TOUCHING FACE
- STRY HOME WHEN SICK

WHATEVER, 3 -
IT'S JUST LIKE Eaﬁ gEngIRCEFUL )
ACOLD OR FLU. i
2%

Figure 6.1: A comic about flattening the curve of COVID-19 cases, Wiles and Morris. The
illustration was intended to engage people in precautionary measures for this pandemic situation,
thereby preventing the collapse of the healthcare system.

Image Source: Siouxsie Wiles and Toby Morris (2020). Published under the Creative Commons Attribution-Share
Alike 4.0 International license (CC-BY-SA). Images extracted from a gif animation retrieved from Wikipedia Commons: https:

//commons.wikimedia.org/wiki/File:Covid-19-curves-graphic-social-v3.gif|(last visited on Sept. 26, 2020)

Visual literacy is also important to allow for questioning some visual representations while
teaching some skepticism as well. Going back to the “inventor of statistical graphs” [Fun37/, p.
280], William Playfair, we refer to his graph about government spending [Pla01, Plate 20], in
which he wisely chose the aspect ratio of the graph to make the graph look like skyrocketing (see
Figure 6.2/ left). Tufte [[Tuf83]] mentioned that displaying government spending and debt over
years is often done in a printed graphic. Most such information is displayed in a way like Playfair
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used to do, to make them look like rapidly increasing. Tufte also noted that, in the text attached
to this graph, Playfair wrote polemically about the “ruinous folly” [Tuf83} p. 65], meaning the
British government, for financing colonial wars with debt, to underscore this intention. Yet in the
next paragraph, Tufte referred to Playfair’s integrity to have another graph showing the data with
a better aspect ratio (see Figure |6.2 right). For this reason, it is important to consider appropriate
representations of the data. Tufte was not the only one centrally concerned with the correct
aspect ratio and context for graphic integrity of time series graphs; Cleveland [Cle93, [Cle94] also
introduced the concept of banking local segments to an angle of 45° for choosing an adequate
aspect ratio. Ignoring such best practices helps tweak the visualization in a way to tell a different
story as the data actually does and is at best misleading the interpretation of the audience.
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Figure 6.2: National debt of England in two different graphs, Playfair [PlaO1]]. The left one serves
the intention to illustrate the “skyrocketing government debt” due to financing the British colonial
wars p. 65]. Image Source: Playfair (1801) plate 20 & p. 129]. First image retrieved from
archive.org: https://archive.org/details/PLAYFAIRWilliam1801TheCommercialandPoliticalAtlas) (last visited on
Sept. 24, 2020); The second image was retrieved from Wikipedia Commons: https://commons.wikimedia.org/wiki/File:

Playfair_interest_national_debt.png|(last visited on Sept. 24, 2020)

Apparently, time series analysis and prediction as well as imputation and outlier detection are an
important topic. In this dissertation, we applied visual analytics techniques to support users in
doing so and embedded them into the context of historic visual analyses and recent challenges.

6.1 Summary

In the main body of this dissertation, we introduced visual analytics techniques and approaches to
deal with certain aspects of the challenges in statistical time series analysis. In the Introduction
(Chapter (1), we motivated these challenges in time series analysis; we then proposed our

visual analytics techniques and approaches in Chapters 2-5|to provide support in solving them.
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Specifically, we tried to support the tasks of time series model selection, parametrization,
prediction, imputation, and outlier detection partly for univariate and multivariate periodic time
series data. In the following sub-sections, we summarize and discuss our contributions to these
challenges.

Time Series Model Selection. In Section|1.1 of Chapter |1, we presented the challenging and
tedious tasks involved in time series analysis in general and in the iterative model selection process
in particular and illustrated this model selection process, known as Box-Jenkins methodology
(Section2.3.1), and the related tasks, like model specification, model fitting, and model diagnostics
in Section 2.3 The class of ARIMA/SARIMA models is applied in many different domains, such
as epidemiology, economy, and environmental sciences. Essentially, the systematic approach
of model selection proposed by Box and Jenkins [BJ70] demands a highly iterative process
of multiple runs of parameter adjustments, recomputation, and analysis of the outcome, the
model diagnostics, which involves a close intertwining of expert and domain knowledge, human
judgment, as well as automated analysis and computation. We proposed a visual analytics process
for guiding domain experts by combining these parts through interactive visual interfaces. We
implemented our visual analytics process in a prototype and iteratively refined the prototype based
on user stories and expert feedback on user experience. We applied the process and the prototype
using an epidemiological dataset and provided a detailed walk-through using usage scenarios and
experts’ feedback. The results of the evaluation are the basis for answering and validating our
research questions—specifically, sub-questions1|and 2.

Using Prediction in Model Diagnostics. According to Tsay’s history of time series analysis
and forecasting [[Isa00], forecasting has an even longer history then statistical analysis of time
series data, dating back to Yule 1927 [Yul27]. Time series models (e.g., ARIMA) are intended to
produce prediction, which is synonymous with forecasting. In particular, the systematic approach
proposed by Box and Jenkins [[BJ70] allowed practitioners to apply such models for forecasting
[Tsa00]. Using information criteria and residual plots, like we used in the overall ARIMA model
selection process in Chapter 2, may only show small variations. Because the goal is to apply
such a model for prediction, we integrate the prediction capabilities of the model into the process
of model selection in Chapter 3. When including only predictions in the interactive visual
interface, it is still difficult to compare deviations from actual values or benchmark models. In our
visual analytics approach, we combine visual and analytical methods to integrate the prediction
capabilities in the model selection process. This provides guidance in the decision for an adequate
and parsimonious model by enabling the user to examine and judge prediction capabilities directly
for one or multiple models. We proposed using a Qualizon graph representation and demonstrated
in a usage scenario that this integration and adequate representation results in a less complex model
selected. The discussion and the findings from this chapter were used to answer sub-questions |1
and 2| from our set of research questions.

Imputation of Missing Values in Periodic Time Series. In most real-world applications,
missing data is a frequent data quality problem to address [KHP*11]] before analysis methods
can be applied. The issue with missing values for statistical methods is that these usually rely
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on complete data [AlIO9]], and only a few specialized methods are applicable in the case of
missing values [LR02, Jon80]. Imputation is a common way to bypass this issue and replace the
missing values in order to apply established statistical methods. One concern is the uncertainty
introduced in the data that is neglected in most cases of applying imputation to replace the missing
data. Most commonly, repeated resampling [LR0O2]] and multiple imputation techniques [Sch99]
help calculate an error measure; for example, Monte Carlo-based simulations can be used to
calculate confidence intervals. In this way, it is possible to communicate the uncertainty of the
imputation using appropriate error boundaries or confidence intervals. In Chapter 4/ we proposed
an approach to integrate such uncertainty inherent in the imputed values and employed a cycle plot
representation linked with a standard line chart to interactively compare imputed data points in
the context of their neighboring values in linear and periodic time. By using an optimized visual
representation for periodic time, we expanded on the possibilities of imputation and incorporated
domain knowledge and contextualized neighboring values in linear and periodic time for better
judgment of the appropriateness of the imputed values. The contribution of this chapter is directly
linked to research sub-questions |1/ and 3.

Outlier Detection in Multivariate Periodic Time Series. Another issue in real-world data is

the data points that deviate significantly from the other values, which are called outliers [Agg13|l.

We already learned from the benefit of cycle plots for periodic time series to support the task
of missing value imputation (Chapter 4). Based on this experience, we had the idea to apply
cycle plot representations in an interactive exploration environment to identify outliers in periodic
time series. Because analysts in most application domains are dealing with multivariate data, we
extended the idea to support the outlier detection in multivariate periodic time series. The cycle
plot is well established and effective for identifying and comprehending patterns in univariate
periodic time series and allows for visually identifying and contextualizing extreme values and
outliers from different perspectives. Because it is defined only on univariate data, we proposed in
Chapter |5|a modified cycle plot using a distance-based abstraction to reduce it to one overview
dimension and retain the established representation of the original cycle plot. In addition to
the construction of this Mahalanobis distance-based cycle plot, we also integrated this novel
type of cycle plot together with multiple classical cycle plots with multiple coordinated views
in an interactive exploration environment. Using this approach, we could identify outliers in
multivariate time series while considering the periodicity and support the interpretation and
contextualization of multivariate outliers. It also helped reduce the information loss inevitably
accompanying the multivariate data abstraction used. The reflections and lessons learned from
this chapter contribute the last missing part to answer sub-questions 1/ and |3/ as well as the main
research question.

6.2 Research Questions Revisited

We now revisit the research question stated in Section |1.6 and answer them based on the findings
and argumentation presented in the main body of this dissertation. We start by answering the
subordinate questions to subsequently derive from them an answer to the main question.
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Sub-Question 2 How can visualization and interaction improve the process of model selection
and parametrization for time series prediction tasks?

The highly iterative process of the ARIMA model selection, known as Box-Jenkins methodology,
is usually applied in script-based computation environments, such as the R project for statistical
computing, and mainly uses static plots (visualization) and numerical comparison of information
criteria. If these suggest an adequate model, it is used for prediction. Our proposed interactive
exploration environment built upon the R project for statistical computing in order to combine the
strength of both worlds: the computational power of R, including the large amount of available
packages for time series analysis, and an interactive exploration. To improve the model selection,
we introduced intuitive and interactively linked views, known as multiple coordinated views, and
direct comparison possibilities to immediately grasp the improvements in the model diagnostics
when adapting the model’s parameters. In addition, our visual analytics approach allowed us to
incorporate the prediction capabilities and prediction performance during the model selection
process and use additional measures to judge the appropriateness of the model for the given
dataset. This integration of the prediction together with the input time series meant that we could
also check how well the seasonal cycle is reproduced by the seasonal component of a SARIMA
(seasonal ARIMA) model. In Chapters |2 and 3, we showed that these interactive exploration
environments improved the model selection process, including the adjustment of parameters and
integration of the prediction, using the means summarized herein.

Sub-Question 3 Is an adequate visual representation of periodic time series beneficial for
imputation and outlier detection tasks in univariate and multivariate time series?

One common issue in a graphical representation aimed at detecting outliers in multivariate data is
choosing the wrong representations or dimensions, which leads to hiding the outliers in the visual
representation. Tufte [Tuf83) p. 14] used the famous example of a bivariate scatterplot, which
immediately shows an outlier that would otherwise be hidden in the marginal distributions. We
employed a multiple view approach in our interactive exploration environment (Chapter ) to try
to overcome this issue. In contrast to normal distance measures, like the Euclidean distance, the
Mahalanobis distance considers the multivariate distribution of the data to compute the distance.
We employed robust techniques for the calculation of distances so that it is less error prone and
not influenced by outliers. In contrast to using multiple univariate cycle plots for each variable
only, which would be prone in hiding outliers, the addition of the multivariate distance-based
cycle plot allowed a separate perspective of the data and helped overcome this issue. Furthermore,
we could find multivariate outliers that are not outliers in any of the separate variables. By using
this distance-based abstraction together with a known and established visual representation of
periodic time series in our novel multivariate cycle plot, users familiar with this representation can
adapt to the exploration environment easily. It also makes it intuitive for exploring multivariate
periodic time series and identifying possible outliers by comparing neighboring values in linear
and periodic time in the multivariate and each of the univariate dimensions. The distance-based
abstraction can apply this technique to an arbitrary number of dimensions. The combination of
statistical and visualization techniques facilitates the balancing of benefits and limitations for both
to visually analyze patterns and outliers in multivariate seasonal time series. This is done with
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respect to the periodic structure and the relationship among multiple dimensions. Similarly, an
adequate representation of periodic time series helps improve the imputation of missing values.
In Chapter 4, we used the cycle plot to represent estimated values for missing values and similarly
could investigate the imputed values in the context of their neighboring values in linear and
periodic time. Although we introduced this for univariate periodic time series data and showed
that it is an adequate support, we consider the techniques applied in Chapter 5|for outlier detection
to be applicable to imputation tasks in multivariate periodic time series as well, similar to our
work in Chapter 4. Essentially, this argumentation and discussion allows us to answer this research
sub-question with yes.

Sub-Question 1 Is visual analytics an adequate support for the challenges in statistical time
series analysis dealing with periodic time series for both univariate and multivariate time series
data?

In Chapter 2, we demonstrated how an interactive visual exploration environment supports the
established Box-Jenkins methodology for ARIMA/SARIMA model selection of univariate data by
closely integrating and visualizing model diagnostics and animated transitions when adapting the
model parameters. We showed how to adequately support the analysis of the model diagnostics
using residual plots and information criteria. Integrating the prediction capabilities, as we
introduced in Chapter 3, extended this approach and added adequate support for prediction tasks of
univariate time series data. We also illustrated that, for periodic time series, the appropriate visual
representation (cycle plot) for imputation tasks (Chapter 4) is inevitably beneficial to compare
the estimated values for missing values in the context of linear and periodic time, which enabled
us to judge the adequateness of the imputed values immediately. Based on the findings from
using a cycle plot for imputation, we extended the cycle plot representation using a distance-based
abstraction in order to use the cycle plot for multivariate data (Chapter 5). We combined such a
multivariate distance-based cycle plot with univariate cycle plots and line charts in an interactive

exploration environment to support the detection of outliers in multivariate periodic time series.

For analysts, this additional perspective into multivariate periodic time series provides a superior
investigation of patterns and outliers in this data. In essence, we can answer this sub-question
with yes.

Main Research Question How can visual analytics support the challenges in statistical time
series analysis of model selection, parametrization, prediction, imputation, and outlier detection?

A close integration of statistical computation into an intuitive, highly responsive, and interactive
exploration environment, using adequate visual representation to support the interactive exploration,
adaptation, and investigation of time series data and models, allows visual analytics to support
the challenges in time series analysis. Specifically, this combination enables better support of
the model selection, adapting the parameters, exploring the time series data, models, and model
diagnostics, as well as integrating and exploring the prediction capabilities. In addition, we
provided visual analytics techniques to explore periodic time series and the estimated values
for imputed values in the relevant context of linear and periodic time and detected outliers
in an adequate visual representation of multivariate periodic time series. Using sophisticated
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data abstractions with well-established visual representations to visualize multivariate periodic
structures, together with the underlying univariate components in linear and periodic time, we
could investigate these outliers and/or find outliers that would otherwise be missed. Applying
visual analytics for challenges in time series analysis extrapolates the idea of Tukey’s ideas on
exploratory data analysis and provides completely new possibilities for supporting the challenges
of model selection, parameterization, prediction, imputation, and outlier detection.

6.3 Conclusion

Using visual analytics together with statistics allows novel solutions to the challenges in time
series analysis that were not possible before. With today’s advanced interactive systems and fast
computation, it is possible to allow reasonably fast responses for even computationally expensive
calculations and make it possible to do model adjustments and previews on the run. Opening
the black box of models is one significant challenge that has been tackled in visual analytics
research for several years already. Although opening the black box fully has still not been achieved,
important steps have already been taken. The adequateness of models, judging the outlying nature
of values and how well imputed values match the patterns in the time series, is better judged by a
human analyst. Therefore, the integration of his/her expertise is critical for success in this regard.
Although much of the outlier detection and imputation ultimately need to be automated, visual
analytics is inevitably useful for adapting and parametrizing the algorithms, methods, and models
for new or different data.

In the main body of this dissertation (Chapters 2, 3} 4, and 5), we specifically showed how visual
analytics contributes to the challenges in time series analysis introduced in Chapter|1, We presented
the answers to our research questions in the previous section, where we stated that applying
visual analytics approaches to model selection and integrating prediction capabilities improve the
process of finding an adequate model for a given dataset by allowing direct investigation of the
diagnostic measures and prediction capabilities for the user. Specifically, for periodic time series,
the adequate representation using cycle plots for univariate data and imputation tasks as well as a
distance-based abstraction to visualize a multivariate cycle plot for investigating outliers in an
interactive exploration environment using robust statistical methods for this abstraction allows
us to detect multivariate and univariate outliers. When dealing with periodic time series, it is
important to consider the periodic structure of time prominently in the visual analytics approach.

6.4 Open Challenges and Future Opportunities

Although we proposed and introduced solutions for solving some of the stated problems in time
series analysis, there are still open challenges that need to be considered, and each of them indicates
research opportunities for future work. Two articles [Isa00, DGHO6] have discussed the history
of time series analysis and forecasting, and both include a discussion about future research in that
field. We consider some of the discussed challenges as great opportunities for visual analytics
research in time series analysis as well. In addition, there are some recent articles about the
vision and challenges in visual analytics research related to the topics covered in this dissertation
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that we consider in the following discussions—namely, spatio-temporal visual analytics [AA20],
visual analytics and machine learning [ERT™ 17, HKPC19, JLC19]], and predictive visual analytics
[LGH*17, KPB16].

Cyclic Time Series Without Fixed Periodic Length. Strictly speaking, our proposed solutions
presented in the main body of this dissertation mainly considered seasonal cycles, meaning
periodic cycles with fixed periodic length (frequency). Although in a large portion of practical
applications and real-world data this is the case, we consider our proposed techniques to be
applicable for periodic time series in general. We expect that adaptations and extensions are
required to deal with cycles having different periodic lengths and consider this to be an opportunity
for further research. Most likely, small variations in periodic length may be possible to handle
with simple adaptations, but for larger variations and/or multiple nested cycles and seasons, it
may require advanced and specialized models and visual representations or even the embedding
of other approaches from, for example, machine learning. Dealing with such advanced models
and methods creates additional challenges, which we discuss in the following sub-section.

Machine Learning and Advanced Models for Prediction. De Gooijer and Hyndman [DGHO06]
dedicated a whole section to artificial neural networks (ANN) for predicting and considering the
model complexity, over-parametrization, and risk of overfitting as major challenges in addition
to their power in forecasting. Since 2006, research in the area of ANN has been enhanced, and
we reached the deep learning arena in the meantime. Although they allow new possibilities for
prediction, the complexity of networks has increased drastically. In recent years, there has been
a strong demand for better explaining and understanding how such complex machine learning
techniques, like deep learning approaches, come to their results while visualization, especially
visual analytics, is a means for communicating that and allows exploration for building an
understanding of how the results are reached. For simpler time series models, like the ARIMA
and SARIMA models we used in our visual analytics approach in Chapter 2, the interactive
adjustment of model parameters and the diagnostic plots allowed a comprehensible understanding
of the model components and how the model maps to the input time series. More research is
needed to find appropriate techniques and methods to achieve this for more complex models. The
ability to explain and understand such complex models is a widely discussed topic, including in
the visualization research community. Interpretability and trust building are of central concern
and challenge to which visualization and visual analytics can contribute. According to Krause et
al. [KPB16], one desirable reason for human involvement in visual analytics is when understanding
and interpretation are required. They identified three main needs of interpretability of machine
learning models, where visual analytics can contribute “data understanding and discovery; trust
building and accountability; model comparison and diagnostics” [KPB16]. Recent state-of-the-art
research on machine learning combined with visual analytics [ERT*17]] provides a more detailed
discussion on enhancing the trust and interpretability as open challenges and opportunities. Jiang
et al. [JLC19] also included the ability to explain in their research challenges about interactive
machine learning. Meanwhile, Andrienko and Andrienko, in their recent vision of spatio-temporal
visual analytics for 2020 [AA20], posed the issue of uncritical trust in results produced by
computers or models. They argued that naive analysts may not be aware of the big changes in
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results when adapting model parameters slightly while experienced analysts may just trust the
numbers and not make the effort to get a better understanding. In this situation, interpretability
and trust building are essential, but the effort to gain that trust and interpretations needs to be
accepted by analysts. Hohman et al. [HKPC19] specifically discussed the issues in understanding
and interpretability using visual analytics in deep learning approaches. Because of the high
complexity and size of deep learning approaches, it is especially challenging to achieve. From
their comprehensive survey, they derived the most pressing challenges, where visual analytics
can contribute to solving them. These are in concordance to the previously mentioned literature
concerned primarily with interpretability, human involvement in interpretability, trust, and bias
detection [HKPC19, pp. 17-18]. When considering extending our visual analytics approaches
using more complex and advanced models and machine learning methods for tasks, like outlier
detection, imputation, and prediction, it is important to pay attention to these extensive challenges
that come with this decision.

Integrating Prior Knowledge and Specifying Objectives for Prediction. De Gooijer and
Hyndman [DGHO6] identified the need for model selection procedures to use the data together
with prior knowledge and also enable the definition of objectives for the forecasts that are
considered in the model selection procedure. A state-of-the-art survey of predictive visual
analytics by Lu et al. [LGH*17] also identified the integration of user knowledge as a challenge
for future research. They also discussed the issues that arise when integrating user knowledge and
allowing them to adapt predictions. Lu et al. specifically raised unanswered questions regarding
how it is possible to “regulate or constrain knowledge integration so that we get the benefits of
domain knowledge, social and emotional intuition, and minimize the costs of introducing bias?
How much human-in-the-loop is the right amount?” [LGH* 17, pp. 554-555] We consider our
contribution in Chapter 3|to integrate the prediction capabilities into the model selection process
as a simple first step into this direction. Our approach simply allows an adaptive way to adjust the
model based on the data and prior knowledge about the data and domain to select the model, but
also to form an informal form of objective and expectation into the prediction capabilities of the
model. It is only a first step because, in their understanding, the objectives to be met need to be
more formally defined and integrated too. We still consider visual analytics methods to be a good
fit for defining, expressing, and judging such objectives as well as integrating prior knowledge
into such a model selection process.

Parametrization of Multivariate Time Series Models. Another challenge mentioned by De
Gooijer and Hyndman [DGHO6] was multivariate time series models. Although extensive research
in theory and practice has already been done and there are methods to use, these are still very
difficult and complex to apply. In particular, there is appropriate software support missing for
applications. In addition, Tsay [Tsa00|] foresaw the mixtures of discrete and continuous variables
in multivariate time series as a challenge for future time series research. One other specific
challenge with existing multivariate methods is the large number of parameters involved and
the resulting difficulty for parameter estimation, computational complexity, and time needed for
computation [DGHO6||. The parametrization of models and algorithms is of central concern in
many applications, and visual analytics research has picked up this issue and provided support in
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parametrization for different methods and application domains. For example, the author of this
dissertation was involved in a work by Rohlig et al. [RLK*15] that employed a visual analytics
approach for segmenting and labeling time series data and investigating the influence of parameters
to the results. With this experience, we can state that visual analytics is a possible solution to
support a large number of parameters and help shape an understanding of the influence of the
parameters on the results. Tsay [[Tsa0O0|] explored the importance of multivariate models in order
to satisfy the interest in investigating the dynamic relationships between variables, and he stated
that, with the advances of computational methods, these vector ARMA and state-spaced models
can be more practically applied. Future research could investigate how visual analytics can be
applied and support the challenges of multivariate time series model selection.

Detection of Interesting Structures in Time Series. In practical applications and real-world
data, there are several interesting other structures in time series that need to be considered. In
this work, we have focused on missing values of equally spaced time series as well as on simple
outlier detection (Chapters 4/ and 5)). Tsay [Tsa00] identified some special features in the data that
challenge existing methods and will require additional research to cope with them. For example,
he mentioned unequally spaced observations as one specific challenge. Tsay also foresaw a trend
to investigate in more detail the time duration between observations in such time series and stated
that the times of occurrence will be more important for the analysis and prediction. In addition
to specific time series model approaches [Jon835]], one possible approach is to apply rastering
to transform such time series. This approach has its own issues and concerns, but allows the
application of standard methods afterwards. The author of this dissertation contributed to a
work providing visual support for such a rastering of unequally spaced time series [BBGM17]],
but there is more research and work to be done. This research should not only look more into
supporting such transformations, but also help investigate and explore such unequally spaced time
series as well as apply specialized models and methods compensating these unequally spaced
time series. Another interesting challenge in addition to outliers is structural breaks, level shifts,
and location shifts [DGHO6]. These structural breaks and shifts essentially mean that a time
series model that would fit some parts of the time series adequately is not appropriate in other
segments, such as exactly around the shifts and breaks or the segments following them. A possible
solution is to partition or segment parts of the time series according to their similarities and
then apply different models to each of the segmented classes. The author of this dissertation
already contributed to some work about such visual support for segmenting and labeling time
series [ABG™ 14} RL.S*14, RLK" 15, BDB* 16, BBB*18, BBGM18]], but this idea of using such
an approach and then applying different time series models for each resulting group, has not been
pursued yet. In addition, with the high-volume and long-term data available nowadays, there is a
higher chance of these kinds of effects in the data. Therefore, it is important to look into methods
to detect and understand them in order to adapt the applied models accordingly. In order to detect
such effects, patterns, and behavior, it is necessary to combine statistical computational methods
with visualization to provide a visual analytics solution for this challenge.

Predictive Visual Analytics. In an extensive survey article on predictive visual analytics, Lu et
al. [LGH*17] presented recent advances in visual analytics support for predictive analytics, where
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predictive analytics is used as an umbrella term for prediction techniques from statistical modeling,
machine learning, and data mining. In addition to their overview on the visual analytics systems
and techniques applied for predictive analytics found in the literature, they also offered an outlook
for future challenges and research directions in predictive visual analytics based on their findings
from the literature survey and internal discussions. Some of their named challenges correspond to
the challenges mentioned herein. They also identified the integration of user knowledge as well as
the scaling to larger and more complex models. Furthermore, Lu et al. considered deep learning
approaches for prediction as a current trend. This trend of such increasingly large and complex
models increases the challenges in interpretability and trust in such models, as we have discussed.
The buzzword explainable Al (artificial intelligence) has been used for research efforts in trying
to deal with the challenge of interpretability and ability to explain in this regard.

Appropriate Tools Depending on Type of User. Lu et al. [LGH"17] raised an important
discussion on the relationship between the type of user interacting with a predictive visual
analytics system and how his/her knowledge can contribute to the process. They identified three
types of users in the scope of predictive visual analytics, depending on their knowledge: end-users,
domain experts, and modeling experts. End-users are neither experts in the specific domain of
application nor have knowledge about predictive models or methods. Domain experts have a
great understanding of the domain and the data involved. Modeling experts, on the other hand,
have advanced knowledge about predictive models and techniques, but no in-depth understanding
of the domain. Visual analytics methods for supporting modeling and prediction can of course
target users with different backgrounds, but this needs to be considered and distinguished from
the beginning of the design. In addition, in visual analytics research, this distinction needs to be
individually investigated and to determine what the appropriate methods and techniques for each
user type are. Failing to do so may lead to faulty results and decisions and, consequently, mistrust.
Andrienko and Andrienko [[AA20] stated the danger of uncritical trust versus being overly critical
of results generated by an analysis algorithm. This can be caused, for example, by mixing up or not
strictly specifying the intended user type and providing an inadequate method or technique for the
wrong type of user. For instance, an end-user might use only an initial parametrization of a model
because s/he is unable to cope with the advance adaptation possibilities of the parametrization and,
as a result, uncritically trusts the outcome. Therefore, Andrienko and Andrienko emphasized the
underlying philosophy of visual analytics, the “primacy of human understanding and reasoning
and awareness of the weaknesses of computers, which cannot see, understand, and think, and thus
need to be led and controlled by humans” [AA20, p. 92]. De Gooijer and Hyndman [DGHO6!, p.
461] also mentioned the danger of the misuse of time series methods, such as if there are outliers
or shifts that are difficult to detect. They suggested that the advances in robust statistics need
to be considered with more attention in the forecasting community. Another related challenge
is availability and accessibility of appropriate practical visual analytics solutions, as discussed
by Andrienko and Andrienko [AA20]]. They claimed that the vast amount of contributions in
visualization and visual analytics techniques is developed as research prototypes and do not
seem likely to be transferred into accessible and reliable software in the near future. Although
there is a current trend in publishing these techniques, methods, and approaches in open-source
libraries, mainly for current state-of-the-art data science languages like R and Python, to make
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6.4. Open Challenges and Future Opportunities

them accessible through web-based environments there is again a danger of misuse, because such
libraries are often adapted by people who lack experience in appropriate visualization and visual
analytics techniques [AA20]. For a broader utilization of the predictive visual analytics system,
Lu et al. [LGH"17] also identified the challenge of improving the user experience, which has a
connection to appropriate support depending on the type of user.

Responsibility—Balancing Human and Machine Effort. Recent papers presenting research
challenges in visual analytics for spatio-temporal data [AA20], machine learning [ERT17,
HKPC19], and predictive visual analytics [LGH"17|] have discussed the issue of economics in
balancing the effort between human and machine in visual analytics approaches. The costs of
effort and time needed between human users and machines are becoming more relevant to consider
when creating visual analytics solutions. Andrienko and Andrienko called it the “effective
division of labor between the human and the computer” [AA20, p. 91]. This challenge has
increased in recent years because of the ever-growing massive amounts of big data available, the
natural limitations of human capabilities to comprehend information, and the centrality of human
involvement (“human-is-the-loop”) in visual analytics. Since the beginning of visual analytics
research, there has already been an emphasis on automated analysis as much as possible and
human involvement where necessary. As prominently represented by Daniel Keim, “[i]n many
cases automated analytics is favored towards interactive visual analysis since getting the user
involved in the analysis process can be an unpredictable and cost-intensive undertaking” [KMTO0O9,
p. 6]. This has been widely discussed in recent papers, including those referred to herein. Endert
et al. [ERT*17] argued that, although there are established methodologies to decompose tasks
and divide them into sub-tasks that are better done by the user or faster by the computer, there is

still no generalizable empirical evidence on how to balance the effort between these two entities.

They even argue the lack of metrics for measuring the effort of users compared to the systems in
such mixed-initiative systems. Andrienko and Andrienko embarked on this discussion with an
exciting topic—what they call “orchestrated automatic model adaptation mechanisms” [AA20,
p. 91] reacting to data dynamics. This idea helps move more tasks to the computer and reduce
the effort of human involvement, costs, and reaction times in changing environments. The basic
idea is not to readjust a model in a visual analytics model building environment every time new
data arrives or data changes and the model no longer maps the data adequately, which would
always require a human analyst to execute the adaption, but rather—based on the knowledge of
the expected changes in the data—to foresee such changes in the model and, if the data changes
accordingly, trigger such model adaptations automatically. This is a fascinating approach that
we could imagine being beneficial in time series modelling and prediction scenarios with data
containing structural breaks and shifts.

We extensively discussed open challenges and future research opportunities that opened up during
the research on this dissertation. As usual in research projects, the further you investigate into
one topic, the more you realize what is left open to be done. In the following section, we list
the publications published by the author of this dissertation, Markus Bogl, during his PhD and
discuss his contributions to each of the papers.

The work on this dissertation took more time and resources than expected and occasionally
dominated the author’s free time, yet the author learned a lot personally, scientifically, and
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occupationally, moving forward plenty of work and overcoming obstacles. The result was a
feeling of accomplishment that evolved in the final phase. Serendipitously, it is nearly complete
now, allowing me to set off for new shores and horizons. To conclude, I want to come back to the
quote from the R.E.M. song from the beginning of this section.

“It’s the end of the world as we know it and I feel
fine—time I had some time alone”

— R.E.M. (1987), from the Album Document

6.5 Publications

The findings of the research conducted by Markus Bogl during his PhD program were presented
at international conferences and symposia, like IEEE VIS, Eurographics (EG) EuroVIS, and
EuroVA, in front of a high-profile scientific audience. The results were published in international
journals, like Computer Graphics Forum and IEEE Transactions in Visualization and Computer
Graphics, as well as in conference proceedings (EG EuroVIS, IEEE VIS). The following list
summarizes the main publications and explains the roles and contributions of the author of this
dissertation in each of the publications. Chapters 2, 3,4, and |5/ are self-contained and are each
based on the research publications listed in the main publications below. In addition, we list
publications to which the author of this dissertation contributed as a co-author during his PhD
program.

6.5.1 Main Publications

[BEG*17] Markus Bogl, Peter Filzmoser, Theresia Gschwandtner, Tim Lammarsch, Roger A.
Leite, Silvia Miksch, and Alexander Rind. Cycle plot revisited: Multivariate outlier detection
using a distance-based abstraction. Computer Graphics Forum, 36(3):227-238, 2017 — Journal

[BAF*15] Markus Bogl, Wolfgang Aigner, Peter Filzmoser, Theresia Gschwandtner, Tim Lam-
marsch, Silvia Miksch, and Alexander Rind. Integrating predictions in time series model selection.
In Proceedings of the 6th International EuroVis Workshop on Visual Analytics, EuroVA @ EuroVis
2015, Cagliari, Sardinia, Italy, May 25-26, 2015, pages 73—77. The Eurographics Association,
2015 — Workshop

[BAF*14] Markus Bogl, Wolfgang Aigner, Peter Filzmoser, Theresia Gschwandtner, Tim
Lammarsch, Silvia Miksch, and Alexander Rind. Visual analytics methods to guide diagnostics for
time series model predictions. In Proceedings of the 2014 IEEE VIS Workshop on Visualization
for Predictive Analytics, 2014 — Workshop

[BEG*15] Markus Bogl, Peter Filzmoser, Theresia Gschwandtner, Silvia Miksch, Wolfgang
Aigner, Alexander Rind, and Tim Lammarsch. Visually and statistically guided imputation of
missing values in univariate seasonal time series. In Proceedings of the IEEE Conference on
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6.5. Publications

Visual Analytics Science and Technology, VAST — Posters, Chicago, IL, USA, October 25-30,
2015, pages 189-190. IEEE, 2015 — Poster

[BAF™13] Markus Bogl, Wolfgang Aigner, Peter Filzmoser, Tim Lammarsch, Silvia Miksch, and
Alexander Rind. Visual analytics for model selection in time series analysis. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2237-2246, 2013 — Journal

Contributions. Markus Bogl was the lead author of all the above listed papers [BFG™17,
BAF*15, BFG* 15, BAF*14, BAF*13] and was responsible for most of the scientific contributions,
including the main idea, visualization design, data abstraction, organization of the paper, writing
of the paper, and the entire submission process as well as the presentation in front of the scientific
community at international conferences. He was also responsible for project meetings about
the respective topics and discussions with co-authors for feedback and iterative improvements.
While writing the papers, he gathered feedback from the co-authors and integrated the suggested
improvements as they fit the overall ideas. For the paper [BEG*17], he implemented the data
abstraction method and computed and prepared the data for the visualization. He advised
the prototypical implementation for the showcase, which was implemented by one of the co-
authors. The supplementary material attached in Section 5.9 to support the reader in following
the discussion on the usage scenario (Section |5.6) was prepared by the same co-author based
on the text and explanations from the main text written by Markus Bogl. For the papers
[BAF*14, BAF"15, BFG*15]], Markus Bogl drafted the figures for the design and computed and
prepared the data for the visualization. For the paper [BAF*13]], he implemented the prototype as
showcased and computed and prepared the data for the visualization. For the paper [BFG*15]],
he designed and prepared a poster for the presentation at the international scientific conference.
This poster was awarded the Best Poster Award at the 2015 IEEE VAST conference in Chicago,
Ilinois, USA.

6.5.2 Additional Publications

[BBB*19] Christian Bors, Jiirgen Bernard, Markus Bogl, Theresia Gschwandtner, Jorn Kohlham-
mer, and Silvia Miksch. Quantifying uncertainty in multivariate time series pre-processing. In
Proceedings of the 10th International EuroVis Workshop on Visual Analytics, EuroVA@ EuroVis
2019, June 3, 2019, Porto, Portugal, pages 31-35. The Eurographics Association, 2019

[BBGM18] Markus Bogl, Christian Bors, Theresia Gschwandtner, and Silvia Miksch. Catego-
rizing uncertainties in the process of segmenting and labeling time series data. In Proceedings
of the 20th Eurographics Conference on Visualization, EuroVis 2018 — Posters, Brno, Czech
Republic, June 4-8, 2018, pages 45—47. The Eurographics Association, 2018

[BBB*18] Jiirgen Bernard, Christian Bors, Markus Bogl, Christian Eichner, Theresia Gschwandt-
ner, Silvia Miksch, Heidrun Schumann, and Jorn Kohlhammer. Combining the automated seg-
mentation and visual analysis of multivariate time series. In Proceedings of the 9th International
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EuroVis Workshop on Visual Analytics, EuroVA @EuroVis 2018, Brno, Czech Republic, June 4,
2018, pages 49-53. The Eurographics Association, 2018

[BBGM17] Christian Bors, Markus Bogl, Theresia Gschwandtner, and Silvia Miksch. Visual
support for rastering of unequally spaced time series. In Proceedings of the 10th International
Symposium on Visual Information Communication and Interaction, VINCI 2017, Bangkok,
Thailand, August 14-16, 2017, pages 53-57. ACM, 2017

[GBFM16] Theresia Gschwandtner, Markus Bogl, Paolo Federico, and Silvia Miksch. Visual
encodings of temporal uncertainty: A comparative user study. /EEE Transactions on Visualization
and Computer Graphics, 22(1):539-548, 2016

[BDB*16] Jiirgen Bernard, Eduard Dobermann, Markus Bogl, Martin Rohlig, Anna Vogele, and
Jorn Kohlhammer. Visual-interactive segmentation of multivariate time series. In Proceedings of
the 7th International EuroVis Workshop on Visual Analytics, EuroVA@ EuroVis 2016, Groningen,
The Netherlands, June 6-7, 2016, pages 31-35. The Eurographics Association, 2016

[RLK*15] Martin Rohlig, Martin Luboschik, Frank Kriiger, Thomas Kirste, Heidrun Schumann,
Markus Bogl, Bilal Alsallakh, and Silvia Miksch. Supporting activity recognition by visual
analytics. In Proceedings of the 2015 IEEE Conference on Visual Analytics Science and Technology,
VAST 2015, Chicago, IL, USA, October 25-30, 2015, pages 41-48. IEEE, 2015

[RLS*14] Martin Rohlig, Martin Luboschik, Heidrun Schumann, Markus Bogl, Bilal Alsallakh,
and Silvia Miksch. Analyzing parameter influence on time-series segmentation and labeling. In
Proceedings of the 2014 IEEE Conference on Visual Analytics Science and Technology, VAST —
Posters, Paris, France, October 25-31, 2014, pages 269-270. IEEE, 2014

[ABG*14] Bilal Alsallakh, Markus Bogl, Theresia Gschwandtner, Silvia Miksch, Bilal Esmael,
Arghad Arnaout, Gerhard Thonhauser, and Philipp Zollner. A visual analytics approach to
segmenting and labeling multivariate time series data. In Proceedings of the 5th International
EuroVis Workshop on Visual Analytics, EuroVA@ EuroVis 2014, Swansea, UK, June 9-10, 2014.
The Eurographics Association, 2014

[LAB*13] Tim Lammarsch, Wolfgang Aigner, Alessio Bertone, Markus Bogl, Theresia
Gschwandtner, Silvia Miksch, and Alexander Rind. Interactive visual transformation for symbolic
representation of time-oriented data. In Human-Computer Interaction and Knowledge Discovery
in Complex, Unstructured, Big Data - Third International Workshop, HCI-KDD 2013, Held at
SouthCHI 2013, Maribor, Slovenia, July 1-3, 2013. Proceedings, volume 7947 of Lecture Notes
in Computer Science, pages 400—419. Springer, 2013
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