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Abstract—Visual analytics tools integrate provenance recording to externalize analytic

processesor user insights. Provenancecanbecapturedonvarying levels of detail, and

in turnactivities canbecharacterized fromdifferent granularities.However, current

approachesdonot support inferringactivities thatcanonlybecharacterizedacrossmultiple

levelsof provenance.Weproposea taskabstraction framework that consists of a three

stageapproach, composedof 1) initializingaprovenance taskhierarchy, 2) parsing the

provenancehierarchybyusinganabstractionmappingmechanism, and3) leveraging the

taskhierarchy inananalytical tool. Furthermore,we identify implications toaccommodate

iterative refinement, context, variability, anduncertainty duringall stagesof the framework.

Wedescribe ausecasewhichexemplifies our abstraction framework, demonstratinghow

context can influence theprovenancehierarchy to support analysis. Thearticle concludes

withanagenda, raising anddiscussing challenges that need tobeconsidered for

successfully implementing sucha framework.

& VISUAL ANALYTICS TOOLS support exploration

and reasoning over relatively large datasets using

visual representations of data for rapid,

incremental interaction. With an emphasis on

enabling analytical reasoning, Visual Analytics pla-

ces the user in the loop of analysis. Within the

field, there has been increasing interest in the idea

of recording both data exploration and accompa-

nied human reasoning. Referred to as insight

provenance1 or analytic provenance,2 such
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information presents opportunities for presenting

interaction suggestions to the analyst, retrospec-

tively auditing the quality and coverage of existing

analyses, tracing the origins of insights and

assumptions, supporting collaboration between

analysts, or simply providing an analyst with a

record as a source of reflection and planning.

Gotz and Zhou1 argue that scalable approaches

to representing complex analyses are likely to

involve the automated capture of low-level interac-

tion histories. However, processing such exten-

sive and detailed histories into hierarchical

representations from which analysts might derive

meaning presents a further step. In considering

this problem, they point out that activities can be

characterized at multiple levels of granularity,

and, hence, they frame the problem as one of infer-

ring (semantically richer) higher level tasks from

large numbers of lower level actions, i.e., a prob-

lem of task abstraction. For such abstraction to be

automated, one must hypothesize a mechanism

by which low-level operations or actions can be

inferentiallymapped to higher level intents.

In this article, we propose our vision for how

this problem could be addressed in the future.

Our proposed approach involves analyzing low-

level events into higher level actions and activi-

ties. We posit that by considering provenance

and the nature of task abstractionmore generally,

analytical systems can better model and leverage

interaction provenance. In the Task Abstraction

Framework section, we describe our proposed

framework, beginning with assumptions or con-

straints on what we see as good solution. These

include the idea that high-level actions can be

realized in multiple ways, and that the role of low-

level actions depends on the context of those

actions. As a result, mapping using a priori task

hierarchies would be overly simplistic. We pro-

pose what we refer to as an abstraction mapping

mechanism (AMM) to enable ad hoc parsing of

interaction streams into abstract tasks and infer-

ring upcoming actions.

We present the approach as a three-stage

framework: a) Initializing—developing a mapping

mechanism (rules or model); b) Parsing—applying

the mechanism to a given interaction stream to

form an interpretation; and, c) Leveraging—

applying the resulting interpretation in some

useful way. The proposed framework design

supports variability allowing the integration of

context (e.g., in the form of externalized domain

knowledge) and iterative improvement. When

parsing and leveraging the framework in a live

scenario, users could be prompted if the recom-

mended actions were actually useful, and feed-

back could contribute in changes of AMM task

probabilities. In online hierarchy parsing and

leveraging scenarios, users might be prompted if

the recommended actions were actually useful,

and feedback could contribute in changes of AMM

task probabilities. We conclude by motivating an

agenda that points out the shortcomings of cur-

rent approaches toward the development of such

a framework, elaborating research needed to

accomplish it.

In summary, we make the following

contributions:

1) We further clarify and define the problem of

inferring the users reasoning process as a

hierarchy of the user’s data analysis tasks

and subtasks.

2) We propose a conceptual framework for infer-

ring the user’s data analysis tasks from log

data and relevant metadata, involving three

stages: initializing, parsing, and leveraging.

3) We provide concrete examples demonstrating

how our proposed framework could be devel-

oped using existing techniques, connecting

our ideas to related problems in other

research areas (e.g., natural language pro-

cessing). The proposed framework utilizes

context, variability, and iterative refinement

to more appropriately map the reasoning

process.

4) We discuss opportunities to advance visual

and interactive analytics research with our

proposed framework.

BACKGROUND

Task Abstraction

Within the visualization literature, the notion

of “task abstraction” is often discussed in the con-

text of taxonomies of task descriptions, which

might be generalizable and yet specific enough to

support the analysis of user activity and design.3

At the heart of task abstraction is the idea that

low-level operations can be grouped into sets that
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can themselves be usefully considered as unified,

purposeful units of action. These units of action

may then be grouped into still larger units of

action and so on. Hence, any given coherent

sequence of operations can be described in terms

of an abstraction hierarchy in which higher level

actions supervene over lower level action. Implicit

in this is the idea that coherent user-activity can

be analyzed at multiple levels of granularity, yet

can also be decomposed into means (i.e., “how”)

and aggregated intomotivations (i.e., “why”).

The idea of task embedding has a long history

in ergonomics and HCI. Possibly the best known

example appears in hierarchical task analysis

(HTA), which according to Stanton4 was first

described by Annett et al.5 HTA uses the idea of

task embedding to underpin an approach to task

analysis that organizes clusters of ordered activity

into hierarchically structured models of goals and

subgoals. Lower level subgoals are expansions of

higher ones, with goal statements augmentedwith

plans to specify subgoal order and conditions.

The uses of HTAs range from the design of interfa-

ces, operating procedures, and training to the

analysis of workload andmanning levels.4

Task abstraction is also a central concept in

the abstraction hierarchy, which forms part of

cognitive work analysis (CWA).6 CWA is a frame-

work for modeling complex socio-technical

systems, emphasizing the integration of techni-

cal functions with human cognitive capabilities

to support the design of interfaces, communica-

tion systems, training teams, and management

systems.

CWA prescribes a series of analysis and

modeling steps, each with its own modeling con-

ventions, in which a socio-technical design prob-

lem is described in progressively finer detail.

This description progresses from an explanation

of the work domain as a whole to an analysis of

individual competencies and decision making.

The abstraction hierarchy is a multilevel repre-

sentation framework combining both physical

and functional models of a cognitive worksystem

at the top level is functional purpose. Below this

are abstract functions, a decomposition from

the system to the subsystem level. Following

this are further decompositions to generalized

functions, then physical functions (states of indi-

vidual components), and finally physical form,

describing the appearance, condition, and loca-

tion of the components.7 Aside from the final

layer, each level represents a purpose, which is

realized by the layer below and explained by the

layer above. One interesting departure from the

conventions of HTA is that in the abstraction

hierarchy, any functions can be linked to multi-

ple explanatory or supporting functions.

Similar analyses have been described within

the visualization literature. For example, to better

understand how analysts decompose analysis

goals into tasks, Lam et al.8 designed a representa-

tion (in this case, a framework) of a goals-to-task

decomposition, based on a review of visualization

design papers.9 However, current provenance-

based analyses focus on extracting only the data

needed to achieve very specific goals. For exam-

ple, Lam et al. intentionally focus on higher level

goals and highly focused tasks, leaving out other

information such as individual interactions. In

contrast, Brown et al.10 focus on low-level interac-

tion patterns in their provenance analysis, and

ignore hierarchical structure and higher level

tasks. Battle et al.11 consider the relationship

between goals and interaction sequences in the

context of panning and zooming interactions. Due

to the difficulty of inferring tasks, the instrumenta-

tion of provenance in visual analytics applications

often concerns only subtasks of analysis.

Provenance

Ragan et al.12 characterized various types of

provenance used in visualization and data analy-

sis as well as their application for analysis

purposes. They distinguished between data, visu-

alization, interaction, insight, and rationale prove-

nance, as a way of delineating different types of

provenance arising from the use of analytic sys-

tems. In computational workflows, there is some

history of recording provenance information.

Davidson and Freire,13 for example, argued for

storing and leveraging provenance information

from different sources, including information

about where it was generated and what type of

provenance it is. In considering the recovery

of the reasoning information from provenance

interaction, Dou et al.14 argued that in highly

interactive systems, interactions alone lacked the

context of the visual representations present to

infer underlying reasoning.

Provenance Analysis for Sensemaking
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Herschel et al.15 presented a survey to identify

what types of provenance are captured and for

what purpose. However, they did not address the

issue of howmultiple types of provenance can be

combined to determine dependencies of individ-

ual tasks that generate or utilize provenance.

Andrienko et al.16 suggested methods for con-

ducting model externalization, including prove-

nance collection among others. While they

acknowledged different types of provenance,

they also argued that knowledge derived through

annotation only represents a fraction of the

intent and mental model of the user. They

described the difficulties of externalizing the

entire mental model and motivated the auto-

mated construction of such knowledge models.

Further, they identified the need for distinguish-

ing between building, evaluating, developing, and

reflecting on the model with formal measures of

both the effectiveness of the model and user

judgments.

A TASK ABSTRACTION FRAMEWORK
Like any (more or less) coherent and pur-

poseful activity, visual analysis can be described

as multiple, hierarchically connected levels of

description. However, current approaches for

capturing provenance information tend to focus

only descriptions with limited depth. Using a sin-

gle organizational structure that represents the

full hierarchy of an analysis session, including

the high-level goals, the intermediate tasks, and

the individual interactions, is helpful for describ-

ing an analysis in a more complete yet compre-

hensible way. We refer to this structure as a task

hierarchy. Referring back to work noted in

Section Task Abstraction, having direct access

to this task hierarchy for a series of analysis

sessions could have provided direct access to

the goals and tasks of interest to Lam et al.,8 the

sequences of interactions of interest to Brown

et al.,10 and the relationships between the two

sought by Battle et al.11 In this section, we pres-

ent such a task abstraction framework. We argue

that this framework can aid system designers in

understanding how user intent is inferred and

how provenance can be extracted from the

structure, ultimately enabling systems to under-

stand and support users in their tasks. Having

direct access to such an underlying task

hierarchy would be of great use to the visualiza-

tion community.

A Hierarchical Provenance Structure

Provenance data can take on many forms

characterized by both modality and resolution.

For example, provenance can be recorded in

the form of a log file. A low-cost, low-resolution

version may record user input events or

screen captures at predetermined time inter-

vals in text format, while other approaches

require integrating provenance capture

directly into the analytical system. Regardless

of the method used to record and archive

provenance data, this data must be abstracted

in order to make it both accessible and man-

ageable to users and designers.

Provenance can be recorded at various levels

of abstraction, whereby higher level provenance

can be inferred from lower level abstractions,

resulting in a hierarchical structure (see Figure 1).

At the lowest level (Level 0) of abstraction lies

the original, machine-recorded archive of both

user and software behavior (cf., the physical

form of the CWA), for example, a log file contain-

ing thousands or millions of events. This lowest

level may contain information about all activities

executed while the system was active, represent-

ing basic data and interaction provenance. A

level above (Level 1) can then group such activi-

ties, associating them to functions performed by

the system (cf., physical functions of the CWA). A

still higher level (Level 2) could cluster these

sequences into coherent actions from function

calls (cf., Generalized Functions of the CWA), gen-

erating visualization provenance via derivation

of the previous data and interaction provenance.

At this level, we may start to infer very basic user

tasks, such as a drag-and-drop operation. The

next level (Level 3) groups these basic user tasks

into higher level user tasks, such as a series of

drag-and-drop operations, to a higher level of

abstraction, such as editing a figure or diagram

(cf., abstract functions of the CWA). The highest

levels in the provenance abstraction hierarchy

(Level m ... Level n, cf., functional purpose of the

CWA) represent the user intent or goals. For

example, the user is creating a figure or writing a

report. Information could be drawn from the

overall views that are used by the users. These
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higher levels of structure can contribute to give

lower levels of provenance meaning, and in

turn lower level provenance also can give more

meaning to insight and rationale provenance

(as defined by Ragan et al.12).

Abstraction Mapping Mechanism

At the heart of our proposed task, abstraction

framework is the abstractionmappingmechanism

(AMM). The AMM is a conceptual encoding of task

hierarchy, mapping low-level interaction sequen-

ces to intermediate user tasks, which in turn

support higher level goals. While the AMM is a

hierarchy, it is not necessarily a tree structure.

Instead, the AMM represents a complex set of rela-

tionships between processes and data at any level

of abstraction. The AMM is also not a structure

that remains constant; newly discovered patterns

can be dynamically inserted into the AMM to

update the structure in an iterative refinement

process. In the following sections, we discuss

the creation of an AMM from interaction data,

complementary bottom-up and top-down parsing

procedures, and interactionwith the AMM.

Initializing

Provenance log data does not automatically

come with tasks and goals labeled for analysis.

Instead, a task hierarchy must be inferred from

the logs. Thus, the first goal is to develop a pro-

cess for inferring the AMM from low-level interac-

tion data. To inform the development of such a

process, we look to existingwork for the guidance.

As part of analyzing visualization system

interactions, researchers often manually anno-

tate low-level provenance data with higher level

information about intents. This annotation pro-

cess may be informed by extant models used as

coding frameworks, analysis-specific, and emer-

gent issues, as well as a review of task abstrac-

tion theory from the literature.1,9,17 For example,

Battle et al. used a coding scheme based on the

information-seeking mantra18 to label phases of

analysis in their collected log data.11 As such,

researchers often utilize a top-down approach in

designing rules for constructing task hierarchies.

There also exist examples of analyzing low-

level provenance logs to identify interaction

subsequences and other low-level patterns, such

as through trainingmachine learningmodels (e.g.,
10,11). We argue that the initializing process can

benefit from both top-down and bottom-up analysis

of provenance data (see Figure 2) unified by the

AMM. Combining these corpora of varying granu-

larity into a task hierarchy allows estimating

abstract tasks by inferring mappings in a top-down

and bottom-upmanner at later stages in our frame-

work. An analysis process of this form requires

both contextual input for known, high-level task

structures (i.e, inferring encodings of structures

from the literature), as well as a sufficiently large

corpus of detailed provenance log data to support

data-driven analysis techniques, such as training

machine learning models (e.g., including interac-

tion information, tool parameters, etc.).

To exemplify these concepts, consider the

process of creating an email client capable of

forming new sentences, suggesting the next word

Figure 1. Provenance can be recorded in different types12 and

at different levels of granularity.1 The dependencies between the

different granularities can be mapped into a hierarchical structure.

Figure 2. In the initializing stage, captured provenance is

annotated, mapped into a task hierarchy—by constructing an

AMM, and associated across different granularity levels into a

hierarchical structure.

Provenance Analysis for Sensemaking

50 IEEE Computer Graphics and Applications



a user may want to type, and providing detailed

email templates. This is not intended to be an

analogy of the entire visual analytics process, but

rather serves to communicate the main aspects

of our framework. A common first step for devel-

oping such capabilities is to usemachine learning

to teach the email client the different ways in

which different words are used. Thus, this is a

bottom-up learning approach in which the email

client infers concepts like parts of speech induc-

tively from a series of exemplars. Additionally,

informal taxonomic associations between words

may be formed, such as “pig” and “horse” as

types of farm animal. In contrast, providing a

formal classification structure to learn from

reflects a top-down approach. For instance, pro-

viding the algorithm with grammar rules would

then cause it to learn how to determine the

semantic parts of a sentence. Words from pro-

vided sentences would then be sorted into parts

of speech in a concrete manner. Both bottom-up

and top-down approaches may be interleaved to

provide robust results.

Parsing

The second stage involves the computational

interpretation of logged provenance data into

higher level task descriptions. This is essentially

a parsing operation in which interaction event

sequences are translated into more abstract task

categories, utilizing the AMMgenerated at the ini-

tializing stage (see Figure 3). This mechanism can

produce anything from a strict set of rules to gen-

eral knowledge that is externalized.

There are a number of challenges to such

interpretation. First, the meaning of any sequence

of operations is an emergent property of the

sequence. Low-level operations only have deter-

minatemeaning to the extent that they are related

to other low-level operations. Hence, sequences

must be interpreted holistically. Further, sequen-

ces themselves depend on other sequences for

their interpretation. Any event in the sequence

forms part of the context for every other event.

An additional challenge is the often unpredict-

able nature of user interaction: Interaction with

visual analytics systems is frequently opportunis-

tic and exploratory. Users may do things for no

apparent reason and with no apparent connec-

tion to any previous or future action. They may

begin analysis sequences that they do not finish,

or they may finish them some time later after an

interruption. Hence, the parsing approach strives

to be holistic and resilient to incomplete and

interrupted tasks. Any interpretation would

almost certainly be incomplete, consist of task

stubs, and may vary in terms of the level of inter-

pretation achieved.

As a result, we propose an interpretation pro-

cess that applies both bottom-up and top-down

parse strategies, each being called upon opportu-

nistically. As a bottom-up process, sequences of

low-level operations are considered as instances

of higher level tasks, and sequences of higher

level tasks are considered as instances of yet

higher level tasks. Partially matched tasks can

cue a complementary top-down strategy, driving

the search for lower level tasks/operations that

would complete them (i.e., given a sequence of

user operations, task abstractions can be used to

predict and drive the search for the most likely

subsequent operation).

We anticipate complementary bottom-up and

top-down processes operating at multiple levels

of description concurrently, with each level sug-

gesting higher level interpretations and each

interpretation suggesting lower level events. This

is essentially a hermeneutic circle, required in

order to achieve a holistic and context-sensitive

analysis. Among others, the context for a given

event (or group of events) are its neighbors plus

any candidate interpretations that each nth event

can contribute to the resolution of competing

interpretations. The result of the analysis is a

Figure 3. In the parsing stage, the AMM constructed in the

initializing stage is used to estimate pursued tasks, based on the

captured provenance and known context.

November/December 2019 51



hierarchical structure akin to a parse tree in

which low-level operations are mapped to higher

level interpretations.

Continuing with the email client analogy from

the initializing phase, this stage equates to an

intelligent email client that is able to use a gram-

mar model, drawing inferences about how words

in a message link together to form embedded

grammatical units. A part of this process would

be the client interpreting sequences of words

into “known” embedded structures that it knows

about, thereby using these structures to antici-

pate subsequent words from the user.

Leveraging

The third stage centers around the means by

which a user interacts with the AMM generated

from the previous two stages while using the sys-

tem (see Figure 4). Because each user of an ana-

lytical system will have different goals, different

levels of expertise, and different expectations of

support, the way in which information and sug-

gestions are presented to users will differ.

Starting with a top-down level of support

intended for novice users, the system could gen-

erate a set of templates for how to complete the

required task of the user. The user is then guided

through the steps to, for example, select the data

that they wish to analyze, choose the method by

which they want the data to be evaluated, and

identify the visual structure for presenting the

results of that analysis. The AMM can further

assist in redirecting and correcting the user if

they begin to drift from the template, using the

knowledge stored from previous interactions to

detect when the user begins to perform unex-

pected or unhelpful actions. A similar argument

can be made for detecting the frustration of a

user, who may begin to exhibit such unexpected

behavior as a demonstration of their frustration.

Similarly, the AMM can support bottom-up

processes, building upon individual interactions.

In this case, the system permits the user to begin

interacting with the system, and will provide

suggestions for next operations that will guide

the user toward the completion of their task.

These operations could be suggested at varying

levels within the AMM’s hierarchy, ranging from

individual clicks (e.g., suggesting interactions)

to higher level analysis phases (e.g., offering the

next step in analysis). Here, the AMM uses its

stored knowledge to detect the interactions of

the user, infer the next step in their analytical

process, and then suggest future interactions

based upon the training data.

Further, an analytical system can combine the

knowledge of the user and the history of previous

tasks to optimize the visual interface, attempting

to maximize the efficiency of the user by hiding

unnecessary functionality and focus their attention

on the interactions that will enable them to reach

their goal. The AMMcould also be presented to the

system developers, permitting them a glimpse at

how users are actually behaving in the system. If a

developer can identify the pain points in their cur-

rent implementation by seeing where users most

often run into difficulty, they can work to resolve

these issues in future versions of the system.

Using our intelligent email client example to

demonstrate these ideas, the system at this stage

would be able to anticipate the next word that the

user may want and suggest it automatically. That

is, the word processor does not just understand

what new sentences may be formed, but it is also

capable of determining probablewords or phrases

that may be used next. Other examples of this can

be found in the tab completion functionality of

IDEs and software such as overleaf, which are

capable of learning and adapting to user-defined

Figure 4. In the last stage of leveraging the task hierarchy,

actions can be initiated based on inferences, leveraging detected

analysis tasks. Depending on the levels of provenance and

detected tasks, actions can then be initiated on the same level but

also on higher/lower levels accordingly.

Provenance Analysis for Sensemaking
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functions and commands. Alternatively, the email

client may provide a template for users to lever-

age, walking them through the template interac-

tively to form awell-written email. These examples

involve both top-down and bottom-up processes,

leveraging the capabilities and understanding

formed by the previous two steps. However, this

step does not involve changing the AMM hierar-

chical structure; rather, the AMM is simply lever-

aged here to support advanced features. This

does not mean that such changes are impossible;

itmerelymeans that such changesmustbe accom-

plished by revisiting the previous steps in the pro-

cess as appropriate.

IMPROVING THE FRAMEWORK
Previous sections described the major stages

of the framework. There are inherent complexities

in the design and implementation of a multistage

task hierarchy and the AMM described in this

article: 1) iterative refinement of the AMM, and 2)

the explicit mapping of context and variabil-

ity. Specifically, users and systems are situ-

ated in a variety of contextual settings that

include tasks, dataset uncertainty, and others.

In this section, we discuss the influencing

factors on our proposed approach. Continu-

ous improvement and refinement are neces-

sary to accurately determine these factors,

and minimize erroneous mapping.

Iterative Refinement of the Task Hierarchy

It is rare to be able to accurately infer a user’s

intent on the first try, and the same is true of

provenance analysis. Andrienko et al.16 expressed

the demand for performing model evaluation and

adaption to reflect the accuracy of mentalmodels,

specifically. As such, the process of constructing

an AMM will need to be performed iteratively,

where each iteration will involve revisiting all

stages of the framework in both the top-down and

bottom-up approaches. For example, new pat-

terns discovered in the low-level interaction

sequences may lead the application to identify a

more relevant high-level task structure from the

literature (e.g., perhaps a particular goals-to-tasks

structure suggested by Lam et al.8 is nowmore rel-

evant than the information-seeking mantra18).

Similarly, when mapping a new high-level task

structure to the low-level data, the task structure

can help the application predict what low-level

tasks or interactions may appear next in the data-

set. Figure 5 provides an example demonstrating

how newly discovered patterns can feed back into

the different stages of the framework. Successive

iterations could be computed until a convergence

threshold is reached, representing only minimal

changes to the current task hierarchy data struc-

ture in later iterations. Ambiguity and misclassifi-

cations can lead to indecision in the system.

By prompting users with disambiguation efforts

during online provenance collection and parsing,

this ambiguity can be resolved. While this is not

possible for offline AMM parsing, ambiguous pat-

terns can be disambiguated by developers antici-

pating actions.

Revisiting our example of developing an email

client capable of suggesting the next word to

type, the trainedmachine learning algorithmmay

Figure 5. Overview of the framework’s three stages and how discovered patterns can be processed and iteratively

change the hierarchy: 1) New context is added into the parsing stage, 2) the model is extended with a new activity, which is

3) consecutively parsed into a new rule.
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misclassify or misunderstand certain words. For

example, the meaning of the word “land” can

vary greatly depending on context, ranging from

a plot of land that an individual owns to simply

meaning firm ground anywhere on Earth (i.e., not

water). Therefore, if the algorithm is only given

example sentences where words like “land” are

used in a single context, the machine learning

algorithm may misinterpret the higher level

meaning of a new sentence that uses the word in

a different context. If the algorithm is provided

feedback to correct this error, then it can learn

this new context.

The Role of Context, Variability,

and Uncertainty

In all three stages of initializing, parsing, and

leveraging the task hierarchy, we noted that

information can be inferred from either a top-

down or bottom-up structure. Depending on the

information that can be obtained and meaning-

fully interpreted, there is the danger of the AMM

to be insufficiently expressive. We argue that the

expressiveness of the AMM is associated with

the ability to consider context, variability, and

uncertainty.

Accounting for context to disambiguate out-

comes in the AMM can be based on a number of

factors, including but not limited to individual

usage (e.g., level of expertise using a VA tool),

environmental dependencies (e.g., various views

or restrictions of VA systems), the application/

analysis domain, or the user profile operating the

system. In this way, enriched sensemaking of the

provenance data allows for the inference of vari-

ous interaction patterns, permitting a system to

better interpret the multidimensional data and

user actions. Over time, context-enriched prove-

nance history data can refine the system’s under-

standing of what the user is trying to accomplish.

However, it also implies that provenance captured

in the task hierarchy has a context dependence,

which makes the interpreted structure inherently

biased to its source context. In our running email

client example, the phrase library can only store

phrases captured from previous sessions and cat-

egorize themwith user actions or clustering.

To maintain robustness of the task abstrac-

tion framework, the variability of a system,

actors, and domains should be represented in

the AMM and during all stages of the framework.

Iterative refinement can appropriately deal with

this variability if the AMM is accurately mapping

these factors. Within an analysis system, the set

of possible actions and interactions is predeter-

mined, and hence variability can be narrowed

down to smaller sets. To give these actions addi-

tional meaning, context and variability can be

used to derive a more expressive structure. For

example, expanding a context menu will limit the

user to execute one of the available menu item

operations. Capturing, relating, and leveraging

these dependencies in the AMM can lead to

more appropriate identification and generaliza-

tion of user intents and actions.

Returning to the email client example which

has been trained to suggest the word “land” only

within the context of a plot of land, assume that a

new user of the email client is a flight instructor.

As a result, the emails from this user only incor-

porate “land” in the context of “how to land a

plane.” Without factoring in these context and

variability factors, the machine learning algo-

rithm would repeatedly misinterpret the use of

the word. However, if the framework supports

iterative, contextual refinement, feedback from

the user can be collected to adapt the meaning of

the word, as well as to prioritize the newmeaning

over the old.

We now discuss details on influences of vari-

ability and context in the different stages of the

framework.

In Initializing In order for context to be benefi-

cial in the initializing stage of the framework, cap-

turing and inferring structure can account for

domain-specific customs. In order to more accu-

rately find and subsequently interpret patterns,

information about user profiles, application con-

text, and analysis goals can be employed in ini-

tializing the hierarchy. For example, provenance

data captured from both analysis and system

interactions can be annotated with information

provided by system developers (e.g., computing

additional performance metrics, filtering input,

associating a function or method with a specific

task/goal).

Variability is a further factor that can influ-

ence framework initialization. In visual analyt-

ics systems, variability is influenced by 1) the
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set of available interactions, 2) user expertise

and guidance, 3) the set of pursued and recog-

nized, and tasks, and 4) data characteristics

and dimensionality.

We propose that influences of variability can

be quantified in the AMM in the form of probabil-

ities, e.g., uncertainty measures. During initializ-

ing, these uncertainties can be used to direct

inferences, yielding a more flexible representa-

tion of user intents.

In Parsing In the previous initializing stage,

context and variability were introduced to aid

interpretation, and uncertainties comprise the

probability of an action being part of a sequence

that subsequently comprises a task. Further-

more, contextual cues can be used to concisely

eliminate ambiguity (e.g., selecting a specific

data point and closing a view indicates that the

user deliberately ended the selection process). In

the parsing stage, methods can be employed that

identify, capture, and explicitly incorporate con-

text in the AMM. This can be done on various lev-

els, e.g., estimating analysts’ expertise based on

the pace of interactions and overall time spent in

the VA system.

In contrast, variability must be adapted con-

stantly when interpreting the hierarchy. In the

previous phase, variability could only be esti-

mated. When parsing, estimated probabilities

can be validated and adapted based on captured

provenance, and ambiguous hierarchies can be

altered. User intents can vary widely among a col-

lection of users, including in their methodology,

expertise, and initiative. Most commonly, pursued

tasks can be suspended or dropped in favor of

another due to a branch in the analysis process.

However, the possibility that a user will return to

a certain task cannot be outruled, so task estima-

tions can run in parallel to estimate upcoming

actions. This also introduces a temporal aspect

into the task hierarchy, where variability in

actions progressively influences ambiguity of

tasks that are possibly pursued.

To deal with uncertainty arising from poten-

tial incompleteness and ambiguity, interpreta-

tions may be assigned probabilities depending

on factors such as how completely they integrate

task primitives (i.e., how much of the “evidence”

has been accounted for) and the relative depth of

an analysis. These probabilities may be used as

heuristics for the adjudication between compet-

ing interpretations for further search/expansion.

An additional possibility to improve interpreta-

tion plausibility is to permit users to explicitly

assess the mapping outcome following a set of

interactions. Such feedback can be used for con-

tinuous adaption, thereby supporting contextual

circumstances that would lead to different inter-

action-intent mappings.

In Leveraging When using the task hierarchy,

variability and uncertainty can be leveraged to

improve an analysis outcome. For example, this

can be accomplished by methods ranging from

actively recommending likely outcomes of tasks

to anticipating costly computations and running

them in advance. Continuously improving the

task hierarchy by adapting variability of out-

comes and corresponding uncertainties can lead

tomore complete and effective analysis, support-

ing users by anticipating future actions through

the hierarchy. When parsing and leveraging the

framework in a live scenario, users could be

prompted if the recommended actions were actu-

ally useful, and feedback could contribute in

changes of AMM task probabilities. In online hier-

archy parsing and leveraging scenarios, users

might be prompted if the recommended actions

were actually useful, and feedback could contrib-

ute in changes of AMM task probabilities. Domain

knowledge can be actively added into the system

by users. Referring to our email client example,

users might add slang words to the dictionary

they frequently use that should not be autocor-

rected. Another aspect can be the retrospective

analysis of provenance logs by developers and

designers to understand how context and vari-

ability affected probabilities in the AMM in practi-

cal use cases, and if both existing tasks are

matched without ambiguity and new tasks can be

inferred from ambiguous sequences.

USE CASE
This section describes a use-case scenario

to demonstrate the application of the concep-

tual task abstraction framework, using it to

interpret a provenance dataset. Alice and Bob

are hobby cyclists who seek to get into shape

for the next season. As a first step, they want to
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determine their base fitness level. They are

using activity trackers to record their rides,

which are then synchronized to the Strava

social sports tracking platform. Strava supports

detailed analysis of their activities, including

comparing their performances to that of other

riders on some segments of the rides. We

recorded Bob’s analysis trail to determine the

average climbing speed from a past ride in

order to compare it to Alice’s climbing speed, a

common task that will be added as an experi-

mental feature to Strava with the help of

our provenance abstraction framework. This

recorded trail of interaction includes both log

data as well as a video of Bob exploring the self-

recorded activity data using Strava. The prove-

nance data captured from the analysis are semi-

structured due to the analysis being broken

down into multiple webpages.

Figure 6 shows an overview of the captured

provenance information, structured into low-level

actions and corresponding high-level tasks. The

high-level tasks are used to abstract the user’s

actions in a top-down fashion. The Strava environ-

ment is confined, allowing only small variations in

analysis scenarios. The provenance hierarchy is

enhanced to accommodate context and variability

in analyses:

1) Switching the activity indicator changes the

scope to elevation analysis.

2) Applying a clustering algorithm on the GPS

track shows three segments: two segments

without elevation gain and one with elevation

gain.

3) Brushing indicates an area of interest. The

selected area is evaluated, and the estimated

trend calculation result is zero, indicating

a circular activity. In the second brushing

action, the trend calculation shows a positive

trend. Since we are looking at elevation over

time, this implies a climb.

4) The mouseover information shows that the

user was interested in the average speed

data. This indicates the user’s interest in

average speed for a selected climb.

Next, we use recommendations to guide Bob

through the analysis of a time trial section, which

shows different characteristics from a climb

section. These recommendations are incorpo-

rated as a new feature in the Strava web interface,

recommending interesting features in the GPS

tracks based on the constructed task hierarchy.

At the beginning, the activity type is selected to be

distance as opposed to elevation, context informa-

tion that implies that elevation gain was not deter-

mined to be relevant to the user. Based on this

assumption, the algorithm segments three unin-

terrupted flat sections in the selected activity,

suggesting them to the user to perform a detailed

analysis. The user dismisses two of them, but

accepts the third. The elevation within this

segment is unchanged throughout; however,

automatic clustering of the trajectory data reveals

a recurring pattern, implying more relevant

Figure 6.Overview of the activity protocol from the Strava activity analysis. It illustrates two levels of provenance (high and

low), with goals abstracted from the high-level provenance data. The high-level analysis goals are annotated, using

analysis goals from Lam et al.8
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contextual information. After the user again inter-

acts with the average speed and estimated power

values, the algorithm determines that the recur-

ring pattern corresponds to a segment (a prede-

fined section to compare performances of users).

The task hierarchy is adapted to incorporate the

newly discovered context, and to search in the

available segments for sections representative of

the current analysis scenario (time trial, or eleva-

tion gain/climbs).

DISCUSSION
Our proposed conceptual task abstraction

framework enables a meaningful mapping

between raw provenance trails and higher level

descriptions of tasks. What distinguishes it from

current approaches is that the mapping allows

data analysts and end users to use provenance

data by leveraging the hierarchy during their

analysis being able to derive tasks and goals.

Decomposed high-level tasks and goals, like by

Lam et al.,8 and low-level interaction patterns10

can be combined, facilitating task inference.

Thus, users can be directed to more meaningful

and accurate data insights.

We note that our proposed framework is con-

ceptual and has not yet been proven in practice.

However, we illustrated the possible application

of the framework in an activity analysis scenario

by showing how the task hierarchy and AMM are

constructed based on a provenance generated

from low-level actions observed from a video

inspection and derived high-level tasks. The con-

structed hierarchy was then applied to support

analysis in a recommendation engine of the anal-

ysis tool.

Significant challenges remain in practical

implementation of the framework, particularly in

learning from a large number of log files or from

historical provenance data in various contexts.

Another challenge is integrating this task abstrac-

tion framework into a visual analytics system and

determining sensible levels of granularity for cap-

turing provenance from interactions, and then

creating expressive links between these levels.

Deep learning and artificial intelligence techni-

ques can help us to solve this challenge by itera-

tively improving the AMM.

We argue that the integration of context and

variability allows for a more flexible and concise

representation when parsing the task hierarchy.

Iterative refinement will ensure unexpected inter-

actions and provenance will be used for further

optimizing the hierarchy. Gathering and external-

izing this contextual information and variability

is highly domain- and application-dependent. As

a result, developers of visual analytics systems

will need to account for these factors in a con-

text-dependent method. Assigning uncertainties

to tasks in the AMM is one approach for handling

ambiguity.

We further note that using high-level tasks for

recommending actions to users could be detri-

mental, as many systems are available to users

with various levels of experience, expecting and

accepting different levels of support. The diffi-

culty of deriving high-level tasks also poses an

interesting challenge, with developers having to

resort to demonstrations or training videos to

determine how users actually generate insight in

existing systems and applications. We hope to

provide a framework that accommodates appro-

priate high-level inferences to render thismethod

of determining high-level goals unnecessary,

therebymaking goal estimationsmore accurate.

AGENDA
We have outlined our framework and pre-

sented a concrete use case that exemplifies how

a task abstraction framework from provenance

can be utilized to facilitate analysis, leveraging

interactions and context to derive user intents.

Here, we list some research considerations and

challenges that must be addressed in order to

implement such a task abstraction framework.

Formalizing Levels of Provenance

Perhaps the most significant challenge

involves designing the syntax for describing

tasks, particularly if an AMM is designed with

maximum flexibility in mind. Task abstraction is

an information hiding process in which some fea-

tures are used for classification and others are

ignored. However, details can be retained to a cer-

tain extent through the use of arguments. For

example, if a user adjusts a filter, there is the ques-

tion of which filter was the adjustment. Hence, a

task language might feature a statement of the

form filter_adjust(name, start, end). The optimal

syntax of such a language is an open question.
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A Hierarchical Provenance Standard

Current approaches for capturing and external-

izing provenance in visual analytics systems

resort to idiosyncratic provenance structures and

lack hierarchical structure. Context is often implic-

itly considered, but is rarely externalized as prove-

nance. Further, the incorporation of variability

when feeding provenance back in the system is

rarely supported. As a result, incomplete or ambig-

uous activities cannot be appropriately mapped

to high-level tasks. Establishing a generic prove-

nancemodel that can accommodate a hierarchical

structure and supports the integration of context

and variability would allow developers to leverage

this formalized information, permitting the imple-

mentation of more flexible solutions based on

logged provenance.

High-Level Goals

Constructing a provenance hierarchy has

the goal of determining overall analysis tasks,

which often may be reduced to one single goal.

However, this is rarely the case, especially

when considering feature-rich visual analytics

systems. Capturing insight and rationale prove-

nance requires collecting additional informa-

tion.12 Training videos or paper/publication

videos often demonstrate how to use a tool to

accomplish a specific task. While this task is

typically held outside of any broader goal or

context, it provides a simple yet effective way

of capturing insight and rationale provenance

for high-level tasks. However, better ways for

automatically externalizing tasks as prove-

nance could be immensely beneficial, because

availability of such demonstrations is limited

and highly system specific.

Granularity of Mappings between

Levels of Hierarchy

A challenge in implementing an AMM is deter-

mining the granularity of the mappings between

each level of the hierarchy. Developers trying to

implement an AMM must consider how granular

the mappings between levels of the hierarchy

should be. Some mappings between level pairs

may be finer or coarser than others, depending on

how important the finer-grained information is and

how it might be used. The hierarchy needs to sup-

port such varying granularities of the mappings.

Automated Capture of Context

While we have discussed different means of

determining and integrating context and variabil-

ity into a provenance framework, we still con-

sider the automatic detection of relevant context

as a challenge for future research. Automatic

retrieval of context could significantly increase

the amount of data collected, and subsequently

meaningful information could be concealed by

noisy, irrelevant data, so this retrieval must be

considered carefully. Simultaneously, automati-

cally assessing the variability of provenance can

significantly improve the accuracy of detected

tasks, distinguishing users who are pursuing

different analysis approaches. Accounting for

this could reduce ambiguity and interpretation

bias in the iterative provenance hierarchy.

Guidance from the Task Hierarchy

At a higher level, possibilities for task hierar-

chy usage speak to broad UX and UI challenges.

A significant challenge to user-centered design is

identifying when it is appropriate to present guid-

ance and feedback to users, as well as what form

that guidance should take. The overarching goal

of these interventions is to minimize interrup-

tions and frustrations to the analysis process of

the user, while still remaining helpful enough to

correct any issues faced by the user during their

interactions. The task hierarchy could be lever-

aged to optimize guidance and feedback more

appropriately with less interaction interruption.

CONCLUSION
We presented a conceptual framework that

leverages a hierarchical provenance structure to

generate effective task abstraction across mul-

tiple levels of provenance. The creation of this

provenance structure, which we termed an

abstraction mapping mechanism, consists of

three stages: initialization of the provenance

hierarchy, the parsing of it into a task abstrac-

tion hierarchy, and the leveraging of this task

abstraction hierarchy to aid users of visual

analytics systems. We discussed the effects of

context, variability, and uncertainty of this

framework, and demonstrated a use-case sce-

nario to illustrate the possible application of

the framework. We conclude by outlining an

agenda that discusses challenges associated
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with the implementation of the framework in

practice.
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