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Abstract
The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time
series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a
different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several
dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance-based abstraction
(Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the
original. Utilizing this distance-based cycle plot in an interactive exploration environment, we enhance the Visual Analytics
capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we
employ coordinated multiple views that juxtapose a distance-based cycle plot with Cleveland’s original cycle plots of the
underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate
periodic time series.

Categories and Subject Descriptors (according to ACMCCS): Mathematics of Computing [G.3]: Probability and Statistics—Time
Series Analysis; Information Interfaces and Presentation [H.5.2]: User Interfaces—Graphical user interfaces

1. Introduction

In this paper we propose an interactive environment utilizing cy-
cle plots to explore patterns and to detect multivariate as well as
univariate outliers. For the construction of our distance-based cycle
plot we use an abstraction based on a multivariate distance measure
(Mahalanobis distance), to visualize patterns in multivariate sea-
sonal time series, like trends and seasonal cycle. We build upon the
established and effective cycle plot by Cleveland [Cle93], which is
limited to univariate time series.

Time series often follow a periodically reoccurring pattern, called
periodic or seasonal pattern. An example are monthly averages of
temperatures over multiple years, with a yearly low, a yearly high,
and smooth transitions in between. Such seasonal time series appear
in various domains, like ecology, economics, or health. Examples
of seasonal time series may be univariate, like number of influenza
cases, butmany real world examples aremultivariate, like number of
deaths caused by cardiovascular disease connectedwith air pollution
data, or water quality measures [BD10].

An important objective in time series analysis is the detection
of outliers, which in multivariate seasonal time series requires to
consider seasonal pattern and trends, both for the several underlying
variables and for the multivariate space. The cycle plot described by
Cleveland [Cle93] is an effective visualization technique, which fa-
cilitates the identification of these seasonal pattern and trends in uni-

variate data, and it allows for comparing data points within the same
seasonal cycle (e.g., month of year) in close proximity. These sub-
groups within the seasonal cycle enable the detection of outliers and
extreme values within the groups or whole groups that do not follow
the behavior of the seasonal pattern. To achieve the same effect for
multivariate seasonal time series, each variable can be represented
by one original cycle plot. Although this allows the human analyst
to analyze seasonal patterns, trends, and extreme/outlying values of
each dimension, building an overview mentally by observing mul-
tiple cycle plots is a difficult, time-consuming, and unreliable task.
Single data pointsmay behave abnormal in just some or even none of
these dimensions, but stand out in multivariate space. Furthermore
considering multiple such cycle plots for each variable separately
takes additional time and increases cognitive load to combine and
transfer the individual dimensions in a multivariate mental model.
For detecting anomalies like outliers in the multivariate space, the
aid of further abstraction, introduced in Section 5, allows to ease
this reasoning, as illustrated in Section 6 and discussed in Section 7.
Empirical evidence for an increased performance of our approach
is beyond the scope of this paper, but we consider comprehensive
user studies of the task performance in future work. The main con-
tributions of this paper are:

• The construction of aMahalanobis-distance-based cycle plot that
– involves an additional abstraction step based on generalized

multivariate distances and
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– uses amodified visual encoding for these distances, but retains
the idea of the original cycle plot.

• An interactive exploration environment of coordinated multiple
views combining the distance-based cycle plot with original cycle
plots to
– identify outliers in multivariate time series considering the

seasonality,
– support the interpretation of multivariate outliers,
– reduce the information loss inevitably accompanying the mul-

tivariate data abstraction.

2. Related Work

A variety of approaches have been proposed to visualize time-
oriented multivariate data [AMST11]. Suitable approaches can be
categorized into techniques, which provide (1) visualizations for
multivariate data, mainly using projections and other aggregation
methods, (2) visualizations, which take the structure of time into
account, and (3) statistical methods for outlier detection.

Visualizations forMultivariateData. A frequently used approach
is using several line plots [Pla86] either in one coordinate system
or as small multiples [Tuf83]. An alternative, already introduced
by Playfair in 1786, is the stacked graph [Pla86, BW08]. Wu et
al. [WWS∗16] incorporate additional information in the stacked
graph and discuss clustering and visual arrangement for detecting
multivariate patterns. For using small multiples, space-efficient vi-
sualizations are well-suited, like Horizon Graphs [Rei08, Few08]
and Qualizon Graph [FHR∗14]. Javed et al. [JME10] compare the
traditional line plot, small multiples, Horizon Graphs, and a new
visualization called braided graphs. Another space-efficient visual-
ization for multivariate data are CloudLines [KBK11], which are
inspired by ideas of EventRiver [LYK∗12]. Tominski et al. [TAS04]
compare axes-based visualizations with radial layouts (for exam-
ple, the time wheel) and discovered that all approaches are suitable
for showing multiple variables at the same time and temporal trend
detection, but are less appropriate for seasonal cycles. Another tech-
nique going back to Playfair et al. [Pla86] for the special case of
bivariate data are connected scatter plots, for example Haroz et
al. [HKF16]. A very similar concept called trajectories is used in
small multiples by Schreck et al. [SBVLK09]. Visually similar are
time curves [BSH∗16] that project time series in a 2D space based on
similarity measures. It is a strong visualization method for finding
both regular and irregular temporal patterns. However, the projec-
tion makes it hard to compare the length of intervals, and there is no
visual representation of the data underlying the distance measure.

The Structure of Time in Visualization. While the structure of
time has many different aspects [AMST11], the aspects of gran-
ularities and cycles are the most important ones in the context of
our work, as the cycle plot [Cle93,Cle94] supports them (see Sec-
tion 3 for a detailed explanation). For pixel-based visualizations,
the original work by Keim et al. [KKA95] (which also includes
multivariate data), as well as related work by Van Wijk and van
Selow [vWvS99], has been the basis for several further publica-
tions [SFdOL04,LAB∗09,KJL14]. Borgo et al. [BPC∗10] evaluate
the performance of pixel-based visualizations according to the task

complexity and cognitive load. Even though they only tested uni-
variate data, we assume that including multiple variables is a task
aspect that creates exactly a task complexity that worsens perfor-
mance of pixel-based visualizations. Besides the visual represen-
tation of periodicity as in the approaches above, it is possible to
isolate the seasonal component of time series and to perform fur-
ther analysis such as detection of abnormal events [CTB∗12] on
residuals. Such seasonal time series models can as well be used for
prediction [BAF∗15,MHR∗11].

Statistical Oriented Approaches. Outlier detection has been con-
sidered a foremost challenge in statistics for a long time and visual
methods a possible solution. There are varying definitions of the
term outlier in literature [Agg13,BL98,BG05]. They can be sum-
marized by “an outlier is a data point which is significantly different
from the remaining data” [Agg13]. A broad spectrum of methods
for outlier detection in time series is available. Primarily, we refer to
surveys, taxonomies, or other works which cover the breadth of the
topic. Hodge andAustin [HA04] provide a good starting point for an
overview on different types of methods, namely statistical models,
neural networks, machine learning, and hybrid systems for outlier
detection. The recent work by Aggarwal [Agg13], gives an in depth
overview on outlier detection in general, with a particular part on
outlier detection in time series. Ben-Gal [BG05] gives an overview
and a taxonomy on statistical methods for outlier detection. The
Mahalanobis distance is a distance-based outlier detection method
in the class of parametric outlier detection methods [BG05]. It is
an established method and commonly used in statistics to handle
multivariate outliers [BG05,HA04,PnP01]. To avoid the influence
of outliers on the estimation of the required variables, robust proce-
dures have to be used to identify multivariate outliers [FGR05]. For
analyzing and visualizing more than 3 dimensions with basic visu-
alization methods, dimensionality reduction methods can be used,
e.g., principal component analysis [Agg13] or multidimensional
scaling [BBH11]. However, applying dimensionality reduction, the
context of time, especially the periodicity, is lost, and the meaning
of the principal components is difficult to interpret intuitively.

In summary, we could identify visualization approaches, which
take into account the structure of time and different approaches for
multivariate data. Moreover, we found several statistical approaches
for multivariate outlier detection, specifically the well-established
Mahalanobis distance. We could not find methods that can deal
with the structure of time in relation within multivariate time series,
neither visualize them in an intuitive and compact way, nor include
both at the same time in a statistical oriented approach.

3. Background

Before we explain how to compute and construct the distance-based
cycle plot, we briefly introduce the original cycle plot by Cleveland
[Cle93] and define some variables.

3.1. Cycle Plot

The cycle plot is a representation described by Cleveland [Cle93]
for time series that contains a reoccurring cycle, like a seasonal
cycle, and a trend component, which often appear in time series. It
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Figure 1: Explanation of Cleveland’s original cycle plot (adapted
from Aigner et al. [AMST11]). Each individual day is labeled with
the same letter in the conventional line plot (left) and the cycle plot
(right). In the cycle plot the days within one group are connected to
form a line. The average value for this day of week is indicated by a
horizontal line.

was presented as an alternative visualization for this type of data
based on the seasonal subseries plot by Cleveland and Terpenning
[CT82]. Cycle plots [AMST11, Cle93] are used to investigate the
seasonal cycle and the trend along time granularities. The concept
of granularities is explained in detail by Bettini et al. [BJW00].
Essentially, a granularity is a grouping of discrete points in time to
larger units. For example, hours can be grouped into days. ‘Day’ is
a granularity, while each specific day is called one granule of the
granularity ‘day’. The cycle plot inverts the order of grouping of two
granularities: we illustrate this in Figure 1, using the granularities
‘day’ and ‘week’. In the conventional line plot (see Figure 1, left)
each granule of the granularity ‘week’ is used to create the tickmarks
on the horizontal axis. The data points are shown for each granule of
each granularity, following the normal order of time. In the cycle plot
(see Figure 1, right) the horizontal axis is grouped by day of week
(Monday, Tuesday, etc.). Hence, the group ‘Monday’ contains all
Mondays of these fourweeks. All other days of theweek are grouped
accordingly. Aigner et al. state that the objective of the cycle plot is:
“Tomake seasonal and trend components visually discernable”, and
the individual trends are shown “as line plots embeddedwithin a plot
that shows the seasonal pattern” [AMST11, p. 176]. In earlier work
by Cleveland and Terpenning [CT82], the values of the subseries
are plotted using vertical lines on the horizontal line representing
the mean, in the later work by Cleveland [Cle93], a line is used
for the subseries, like it is commonly known and used today. Yet
Cleveland’s original cycle plot represents univariate time series data
only. In the following we use the term original cycle plot, whenever
we want to explicitly refer to the original technique [Cle93] as
described in this section.

3.2. Variable Specification

For the remaining part of the paper we specify variables and sets for
the explanations. We will refer to p-dimensional time series data by
X = {x1, . . ., xn}measured at time point t1, . . ., tn. For simplification
we use xk to refer to the p-dimensional measurement at time point
tk , for k = 1, . . .,n. Given a seasonal length (s), time points ti+j∗s ,
where i = 1, . . ., s and j = 0, . . ., b n−1

s c are in position i of the seasonal
cycle and adding j ∗ s gives a time point in the same position, but
j times further in the coarser granularity, such as the same month
in different years. For instance, given monthly measurements xk
over 8 years, s = 12 represents the 12 months assembling a year.

For i = 1 and j = 0, . . .,7, xi+j∗s would represent 8 January values:
one measurement for each January of these 8 years. Likewise, the
measures for month February, March, and April would be indexed
by i = 2,3,4 respectively. In the following we refer to these bins as
groups (Xi) within the seasonal cycle. By writing Xi we indicate
the data points within one of the i = 1, . . ., s groups, where Xi ⊆ X ,⋂s

i=1 Xi = ∅ and
⋃s

i=1 Xi = X . In our example above, the groups
represent the months of a year: {X1 = January, X2 = February, . . .,
X12 = December}. For each of the groups we can define a group
reference point µ1, . . ., µs , which can be the mean or median of the
data points within the group and will be referred to as group center
(µi). Moreover, we define a global reference point µ, named global
center (µ) for mean or median of the whole dataset.

4. Task Abstraction and Requirements for Distance Measures

As a basis for discussing the design decisions and reasons for how to
apply the additional distance-based abstraction, we first derive the
tasks that are supported by the original cycle plot (Tasks T1-T5).
Thenwe derive the tasks for outlier detection, going beyond the tasks
supported by the original cycle plot (Tasks T6-T6). Theoretically
our abstraction is independent from a specific distance measures,
as long as it meets the specified requirements. For our prototypical
implementation we apply the Mahalanobis distance, which is an
example that meets these criteria.

4.1. Tasks

In the following we will use the terms pattern of the seasonal cycle
and behavior within each group. By pattern of the seasonal cycle,
we mean the shape formed by the group center perceived in the
visual representation. For example in the cycle plot of Figure 1, the
group of Mondays is generally a lower value followed by an steady
increase until the peak onWednesdays, saddling lower on Thursday
and Friday with a drop to the lowest points on Saturday and Sunday.
The behavior within a group means basically the pattern of the
points or bars representing the data within the group.

The first set of tasks is derived from the tasks supported by the
original cycle plot (Cleveland [Cle93], Cleveland and Terpenning
[CT82]), as well as from our experience in applying the cycle plot
[BFG∗15].

T1: Identify the overall pattern of the seasonal cycle. Given a
time series with a seasonal component, one wants to get an idea
of the overall pattern of the seasonal cycle. This corresponds to
an analysis of the finer granularity, e.g., patterns of the months’
average over the year.

T2: Identify the behavior within each group. Beside the overall
pattern of the seasonal cycle, one needs to assess the behavior of
the subseries within each group. For univariate time series, this is
often done to identify a larger trend corresponding to the coarser
granularity, e.g., patterns within months over several years.

T3: Compare changes within each group to the seasonal cycle
and across groups. Besides the individual behaviors of these
aspects of the time series, one wants to know which of them
drives the patterns of the whole time series and to which extent.
It is also interesting how the behavior of one group compares to
the behavior of another group.
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T4: Detect extreme/outlying values within each group. The way
the data is arranged in the cycle plot allows to identify ex-
treme/outlying values with respect to data points within the same
seasonal cycle. One wants to detect such extreme values and
consider them as possible outliers.

T5: Identify whole groups that deviate from the seasonal cycle.
When the overall pattern of the seasonal cycle (T1) is detected,
onewants to identify groupswithin the seasonal cycle that deviate
from this behavior.

Additionally, we specify tasks required for outlier detection in
multivariate seasonal time series. These tasks are derived from
domain knowledge about robust statistics and outlier detection both
from literature and from the long-lasting experience of one of our
co-authors [FGR05,FRGTA14], who is a statistician.

T6: Detect multivariate and univariate outliers based on the
specified boundary. One wants to specify a tolerance boundary
and easily detect data points outside this boundary. This needs to
be possible for univariate and multivariate outliers.

T7: Detect outliers that are univariate as well as multivariate
outliers. Extending task T6, one needs to detect data points that
constitute outliers in both, multivariate and univariate context.

T8: Detect multivariate outliers and explore the respective data
points in the univariate space. One needs to make selections of
data points, in order to explore multivariate outliers and analyze
the corresponding values in the univariate plots.

T9: Detect univariate outliers and explore the corresponding
data points in the other variables as well as in multivariate
space. This task is similar to T8, but one wants to start the explo-
ration with selecting a data point in one (univariate) dimension
and see its position in other dimensions as well as its representa-
tion in multidimensional space.

T10: Adjust outlier-boundaries and track the resulting outly-
ingness of data points. The boundaries specify what separates
normal from outlying data points. One wants to adjust these
boundaries in order to detect borderline outliers.

4.2. Requirements for a Distance Measure

To visualize multivariate time series in a cycle plot, we need an
additional abstraction step. We decided to use a distance measure,
because they are easy to compute, applicable for multivariate data,
and a well-known concept. Distance measures, also allows us to re-
tain a visual representation similar to the original cycle plot. More-
over, distance measures are commonly used in outlier detection. To
support the tasks described above, the distance measurement for the
data abstraction needs to meet the following requirements:
R1: Applicable for multivariate data.
R2: Robust against outliers.
R3: Specific cut-off value exists.
R4: Incorporates the correlation of the data.

4.3. Distance Measure

A distance measure quantifies the distance between two points in
multivariate space. For our prototypical implementation we decided
to use theMahalanobis distance [Mah36], a generalizedmultivariate
distance, which is an establishedmethod in statistics formultivariate

outlier detection [BG05,HA04,PnP01] and meets our requirements
on a distance measured described above.

In contrast to a basic distance measure, like the Euclidean dis-
tance, the Mahalanobis distance considers also the correlation of
the data, which meets our requirement R4. A covariance matrix
specifies the covariance structure of the data, which involves the
correlation and the spread of the p dimensions. In 2-dimensions the
spread can be illustratedwith ellipses, see the data points and ellipses
in Figure 3a. Given a p-dimensional dataset with n observations,
X = {x1, . . ., xn}, with the data center µ, and a covariance matrix Σ,
the Mahalanobis distance between points xk , for k = 1, . . .,n, and
the center µ is defined as

MD(xk, µ,Σ) =
√

(xk − µ)TΣ−1(xk − µ). (1)

The center µ and covariance matrix Σ need to be estimated based
on the dataset X . To estimate them there are different methods, rang-
ing from classical to robust estimation methods [BG05,FRGTA14].
Even though, the specific method is not relevant for the construction
of the distance-based cycle plot, but if used for outlier detection,
robust methods are required.

Our main reason for using theMahalanobis distance is that it is an
established distance measure in statistics and used in multivariate
outlier detection. By definition, see Equation (1), the Mahalanobis
distance is applicable for multivariate data, fulfilling our require-
ment R1.

According to Filzmoser et al. [FGR05], if estimated with ro-
bust procedures, the Mahalanobis distance can be used to identify
multivariate outliers, using quantiles of the chi-squared distribu-
tion. In more detail, in case of multivariate normal distribution,
the squared Mahalanobis distance of the data points to the center,
with respect to the covariance matrix of the data, are approximately
chisquare-distributed with p degrees of freedom, χ2

p . Thus, a poten-
tial multivariate outlier has a higher squared Mahalanobis distance
than a certain quantile, e.g., the quantile 0.975, of the χ2

p . We can
use this quantile as a boundary for deciding whether a data point is
an outlier or not, which meets the requirement R3.

The center µ as well as the covariance matrix Σ required to
calculate the Mahalanobis distances need to be estimated based on
the data, and when using classical methods for the estimation, these
methods are influenced by outliers. Thus, to avoid the influence
of outliers, we use robust methods for the estimation of µ and Σ,
which meet requirement R2. In the statistics literature, compare
[BG05,FGR05,FRGTA14], the most commonly used methods are
the median as a robust estimator for the center of the data and
theminimum covariance determinant (MCD) estimator [Rou85] for
estimating the covariance matrix.

5. Features of the Interactive Exploration Environment

The main element in our interactive exploration environment is the
distance-based cycle plot, which shows an abstraction of a multi-
variate time series using distances. This section is aimed to ease the
understanding of the construction of the distance-based cycle plot
by first explaining the transformation of an original cycle plot to
a distance-based cycle plot. We then illustrate its construction in a
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Figure 2: Transformation of an original cycle plot to a distance-based cycle plot. Considering the group centers µ1, . . ., µs as points forming
a time series line plot and using the distance to the global center µ, we construct the base of the groups, transformation f1, as described in
Section 5.1. We do the same transformation f2 for the pattern within each group. Both, the group centers and the points within each group,
can form different patterns that are comparable to a seasonal pattern or trend in the original cycle plot.

bivariate case. Finally it is generalized for the multivariate case and
integrated into our interactive exploration environment.

5.1. Seasonal Cycle (Inter-Group Distance)

Our goal is to support the same tasks as the original cycle plot, but
for multivariate seasonal time series, cf. Section 4.1. The original
cycle plot shows the pattern of the reoccurring cycle, like the season
over the year, which is required for tasks T1, T3, and T5 in the
distance-based cycle plot. The identification of this overall pattern
is supported by showing vertical lines that indicate the group centers
µ1, . . ., µs , see Figure 1.

In the original cycle plot, each group center is a real number,
where the absolute value can be considered as distance between
this group center and the zero line. Instead of the zero line as
central reference, we use by default the global center of all groups
µ for constructing distance-based cycle plot. During the exploration
process this global reference point can be changed interactively (see
Section 6). In particular, we compute the Mahalanobis distance MD
between each group center µi , i = 1, . . ., s, and the global center µ.
The result is one horizontal line for each group, serving as group
base line. In Figure 2 we use the original cycle plot to illustrate how
the distance-based cycle plot is constructed. In the original cycle plot
(Figure 2a), the global center µ is indicated by a horizontal dashed
line. We compute the distance of each group center µ1, . . ., µs to
this global center (indicated by the colored vertical lines). For the
construction of this generalized distance based cycle plot, we apply
these distances (group µi to global center µ) on the y-axis. Thus, the
global center is represented by the x-axis itself (see transformation
f1 in Figure 2). This is due to the fact that these distancemeasures are
always non-negative. The distinction between ‘above’ and ‘below’
the global center may be applicable in the univariate example given
in Figure 2, but does not make sense in an actual multivariate
scenario (as explained in Figure 3). We discuss this information loss
due to the data abstraction Section 7 and describe howour interactive
exploration environment allows to reduce this information loss.

In Figure 3 we show the construction in the bivariate case. We
consider a small example of daily measurements of two variables:
temperature and humidity. In this example the seasonal cycle s = 2
is grouping the data points into measurements during the day and
measurements during the night. For each group – day and night – we
calculate a bivariate average for temperature and humidity values
combined, which is equivalent to the group centers µday and µnight.
In addition, we calculate the global center µ of the whole dataset,
i.e., the bivariate (temperature and humidity) mean of all data points
(8 days and 8 nights combined). In this bivariate example these two
group centers and the global center are points in two-dimensional
space (see Figure 3a). Given the group centers µday and µnight, the
global center µ, and the covariance matrix Σ (see Section 5.4), we
calculate the Mahalanobis distance MD(µnight, µ,Σ) of the night-
group center µnight to the global center µ and MD(µdayµ,Σ) of
the day-group center µday to the global center µ. This distance is
used as the position of the group-base line on the y-axis shown by
transformation g2 and g3 in Figure 3b.

In case of more than two dimensions, the group centers µi , the
global center µ, and distances between them are calculated ac-
cordingly. By using these distance values, we are able to represent
p-dimensional datasets in our distance-based cycle plot. For exam-
ple, consider the monthly temperature (see Figure 4b’): there are
low values in winter, high values in summer, and average values
in spring and fall. This seasonal pattern is reflected in the position
of the group center lines in a similar pattern like in the distance-
based cycle plot (see Figure 4a). The winter months, like January
as coldest month, and the summer months, like August as hottest
month, have large distances to the global center and, therefore, ap-
pear as peaks in the distance-based cycle plot, whereas the average
spring/fall months have small distances from the global center and
therefore are closer to the x-axis.
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Figure 3: Construction of the distance-based cycle plot with a bivariate example. The construction of the bivariate cycle plot on the right
is based on Mahalanobis distances of the bivariate data points to the respective group center (e.g., transformation g1) and on Mahalanobis
distances of the group centers to the global center (transformation g2 and g3). The usage of distance measures that are applicable to
p-dimensional space, is a key aspect applied in our data abstraction. The ellipses illustrate the spread of the data captured in the covariance
matrix.

5.2. Data Within Groups (Intra-Group Distance)

For representing the data points x1, . . ., xn within the groups Xi,...,s ,
we apply a similar approach, like in the original cycle plot. In the
original cycle plot, the data points are represented by points on a line
following the order of the coarser granularity, and the position on
the y-axis given by their values. One feature of this representation
in the original cycle plot, is that it is possible to see the trend over
the coarser granularity, for example over the years. For the distance-
based cycle plot we compute the Mahalanobis distance of the data
points in Xi to their group center µi . In contrast to the original cycle
plot we represent distances instead of actual data points, and thus,
we chose to use bars instead of connected points. This also picks
up the original design by Cleveland and Terpenning [CT82], using
vertical lines.

In Figure 1 we illustrate how the data points are binned and ar-
ranged in the original cycle plot. With univariate data the transfor-
mation to the distance-based cycle plot is similar to the construction
of the horizontal lines for the group centers. Using the illustration
from Figure 2, the data points in each group form a time series line
plot with a horizontal line representing the group center. Computing
the distance of each point to this group center allows to draw them
as bar chart within each group, like we illustrate for one group in
Figure 2c by transformation f2.

In the bivariate example (Figure 3) we compute the Mahalanobis
distance of each data point from the subset of measures during
day xl ∈ Xday and night xm ∈ Xnight , where l,m = 1, . . .,8, to
the respective group centers µday, µnight , MD(xl, µday,Σ) and
MD(xm, µnight,Σ). These distances are ordered according to the
coarser granularity, in our example calendar days, and represented
as bars within their group, as shown by transformation g1 in Fig-
ure 3b. As discussed before, the distance can be computed for any
p-dimensionalmultivariate data set. However, in contrast to the orig-
inal cycle plot, the seasonal pattern and trends need to be interpreted
differently. In the following section we discuss the interpretation of
these patterns in the distance-based cycle plot.

5.3. Design and Interactions

In Figure 4 we show the design of our interactive exploration envi-
ronment. Our goal is to support users in exploring seasonal patterns
and trends as well as detecting and exploring univariate and multi-
variate outliers (see tasks T1–T10 in Section 4.1). Using distances
to construct the distance-based cycle plot (Figure 4a) allows for
representing an arbitrary number of dimensions. To gain further
insights into the multivariate dataset, we provide interactive explo-
ration means that allow for switching back and forth between the
distance-based visualization and the multiple underlying univariate
representations. For visualizing the multiple variables of the multi-
variate time series, we provide the original cycle plot next to a time
series line plot. This allows two perspectives on the same univariate
dimension, like it is used by Bögl et al. [BFG∗15] for time series
containing missing values. In Figure 4, we show sparklines [Tuf06]
for the univariate visualizations (b & c), to fit more variables on the
screen. In the control panel (d), the user can switch between detailed
view and sparkline view and adjust parameters. In the detailed view,
the sparklines are replaced by more detailed line plots.

To explore patterns and outliers in the multivariate space and the
underlying univariate dimensions, we provide multiple linked views
with highlighting triggered by hovering and selection, including
multiple selection. Highlighting and selection are supported in each
of the visualizations. To allow the exploration of more dimensions,
the univariate plots are scrollable.

We encode three types of outliers using color. We selected three
distinguishable colors according to the L*a*b* color space and
maximized the perceptual distance of the selected colors, com-
pare [HSA∗10]. The three types of outliers and respective colors
are: (1) univariate outliers represented by cyan �, (2) multivariate
outliers represented by orange �, and (3) outliers in univariate and
multivariate represented by magenta �.

Our interactive exploration environment is independent of a
specific method for computing univariate or multivariate outliers.
For doing so, a lot of methods exist in statistics literature, see
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a b c

d b’

Figure 4: Prototype implementation of our interactive exploration environment utilizing the Mahalanobis-distance-based cycle plot. The
prototype employs coordinated multiple views with the distance-based cycle plot (a) next to the underlying univariate plots: an original cycle
plot (b) followed by the univariate time series line plot (c). In this screenshot we use space-efficient sparkline representations, in order to
provide a comprehensive overview. The small plots on the right side (b+c) can be changed to a more detailed view with a scroll bar for
detailed exploration. The bottom left shows the control panel for interactive exploration (d). Color encodes the type of outlier and sliders are
used to specify outlier-boundary values. (b’) is the original cycle plot of variable temperature, used as example in Section 5.1.

[BG05, HA04] for an overview. In our environment, we highlight
the identified outliers in univariate as well as multivariate space and
allow to adjust the parameters for outlier detection. For example, in
Figure 4d the user can adjust the boundaries used for outlier detec-
tion. In the following section, wewill give details on the calculations
used for our prototype.

5.4. Robust Calculations

We use the median to compute the global center µ= colMedian(X ),
and the group centers µi = colMedian(Xi ). For constructing the
distance-based cycle plot, there are two possibilities to estimate the
covariance matrix Σ. Either to estimate a separate covariance matrix
for each of the groups Σi , or to center the data points on their group
median and estimate a global covariancematrix Σ using the centered
data points X̄ = Xi − µi . Testing with some data sets showed an
instability in the estimation of separate covariance matrices Σi . This
is due to an often low number of data points in each group compared
to the number of dimensions. Therefore, we apply the MCDmethod
to compute the global covariance matrix Σ = covMcd(X̄ ) with all
centered data points X̄ . For a dataset with b n−1

s c � p one can decide
for any of these methods as needed.

For univariate outlier detection, we use a similar approach as
described above. If the covariance matrix Σ is estimated robustly,
the diagonal consists of robust estimates of the variance σ2

r for
each variable r = 1, . . ., p in the p-dimensional dataset. Using the
centered data points X̄ , the center of X̄ , µr = 0, and the variance
σ2
r , we compute the outlier based on the selected quantiles of the

underlying univariate distribution. In case the absolute value of a

centered univariate data point is higher than a certain quantile, it
is identified as univariate outlier. If the univariate data is normally
distributed, we compute the quantile of N (µ,σ2). Like for themulti-
variate boundary, we provide an interactive slider in our exploration
environment for selecting the quantile, see Figure 4d.

Note that the assumed distributions (chi-square, normal) for the
distances will most likely not be met because the observations are
time-dependent, and thus not independent from each other. How-
ever, the quantiles of these distributions still serve as an indication
of outlyingness of the data points. The goal of outlier detection is
thus more in an exploratory context, namely to draw the attention
of the user to these highlighted points.

6. Usage Scenario

We implemented the interactive exploration environment utilizing
the distance-based cycle plot in a prototype and apply the proto-
type in a usage scenario. We use this usage scenario to illustrate
how the distance-based cycle plot visualizes real data and how the
interactive exploration environment advances the possibilities to
explore patterns and outlying values in multivariate seasonal time
series data. Throughout the usage scenario, we refer to the related
tasks T1–T10 described in Section 4.1. We support the reader in
following the usage scenario with additional figures provided in the
supplementary material and refer to our prototype available online
at http://cycleplot.net.

Mortality & Air Pollution Dataset. The dataset is about the mor-
tality, air pollution, andmeteorological data formajor cities in South
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Korea [LOK13]. It is available in theR project for statistical comput-
ing [R C16] as library namedHEAT [LOK13]. The dataset contains
several air quality indicators together with meteorological data as
well as the number of deaths caused by cardiovascular diseases and
respiratory diseases. The dataset consists of daily measurements for
several years (2000-2007). For the illustration, we select a subset
of 6 variables, cardio (deaths caused by cardiovascular diseases),
SO2 (Sulfur dioxide), NO2 (Nitrogen dioxide), PM10 (particulate
matter), temperature, and humidity from the city Seoul aggregated
to monthly averages.
User. As a possible user is a public health official, who analyzes
and explores the seasonal pattern, trends, and the outliers in the
dataset described above.
Goal/Tasks. The overall goal is to get insights into the seasonal
patterns, trends, extreme, and outlying values of the dataset. For
details on the particular tasks to achieve this goal, we refer to the
tasks T1–T10 described in Section 4.1.

As a proof of concept, we separated the preprocessing of the
dataset and the prototype of the interactive exploration environ-
ment. The preprocessing of the dataset (HEAT library [LOK13])
was done in R [R C16]. The computation of global and group cen-
ters, Mahalanobis distances, and outlyingness values was done as
described above (see Sections 4.3 and 5.4). The implementation of
the interactive exploration environment was done as web applica-
tion using JavaScript, where we imported the precomputed data file.
For future work, one may combine the computations in R with the
interactive visualization in a web application, by using appropriate
libraries to connect them.

The user first wants to get an overview of the seasonal behav-
ior of the time series in the multivariate space (compare Task T1).
According to the group centers of the months, see Figure 4a, the
user identifies that there are peaks in summer as well as in winter.
This means that summer and winter months are on average more
extreme than the global center, which basically represents an av-
erage month, e.g., spring (April) or autumn (October). Selecting
one month center as the global reference point, e.g., January, shows
that the other winter months are closer to January than the summer
month (see the supplementary material for more details). Consider-
ing the transitions between high and low peaks of the season in the
original cycle plot representation of each variable, the seasonal pat-
tern of theMahalanobis-distance-based abstraction follows a similar
smooth behavior. The user then considers the behavior within the
groups according to their position in the seasonal cycle (Tasks T2 &
T3). He/She identifies a tendency in some of the peak months (Dec.,
Jan., & Feb.), that the data values within the group vary more than
in others. Especially, when comparing to the other peak in summer,
the user detects this additional variation with larger distances to
the group center (Task T4). Next, the user compares the variations
within the groups and across groups in more detail (Tasks T2&T3).
When looking at the months June andMarch, he/she spots distances
with roughly the same length, except for the first year. These months
seem to be quite stable months across all dimensions. Even without
highlighting the user can easily identify extreme values by large
bars, that may be possible outliers (Task T4). Amongst others, the
user considers the last year in January, first in June, and several in
December, as possible outliers. In our example, the user cannot find
any group that deviates from the seasonal cycle (Task T5), but one

can imagine one whole month, that stands out of the multivariate
seasonal pattern.

The user activates the highlighting of outliers and selects a certain
quantile for the univariate and multivariate boundaries to indicate
outlyingness of the data points. The user selects the 0.95 quantile,
shown in Figure 4, and gets an overview of patterns in the outlying-
ness that allows to detect multivariate as well as univariate outliers
easily (T6). For example, the user considers interesting that there
are multivariate outliers only in months Oct.–Apr., and an excep-
tionally large number in Dec.–Feb. Knowing that, the user detects
the same pattern in the original cycle plots and recognizes that there
are more data points in these winter months highlighted in magenta
(T7), indicating outliers in both, uni- and multivariate space. The
user immediately recognizes that the months Nov.–Feb. in the last
year are all multivariate outliers. To further investigate the outlying-
ness in the univariate space, he/she selects the outliers (T8), which
highlights the corresponding data points in the univariate plots. This
exploration reveals that in some variables, e.g., cardio and PM10,
they are indicated as multivariate outliers only, yet in others, e.g.,
SO2 and NO2, they are highlighted as outliers in both, univariate
and multivariate space. Looking at the original cycle plot for the
variable cardio, the user detects two extreme data points in Nov.
and Dec., highlighted in magenta. Selecting them shows that in the
distance-based cycle plot, they can also be recognized as data points
with large distance to the center (T9). The user also recognizes that
besides being multivariate outliers, the variable cardio is also a
univariate outlier in Nov. and Dec., but the variable temperature
is a univariate outlier only in Nov. not in Dec. By changing the
outlier boundary with the slider, the user can track the data points
that are borderline and are indicated as outliers, when the boundary
is decreased. For example, the first bar in month Mar. and Jun. in
the distance-based cycle plot, see Figure 4a, are only highlighted
as outliers, when changing the threshold from the 0.95 to the 0.9
quantile (T10). This allows to interactively get an impression about
how extreme the outliers are.

In contrast to using only multiple original cycle plots, the user is
able to explore the seasonal pattern and patterns within and across
groups directly in the multivariate space. Obviously, it is required to
also consult the underlying univariate visualizations, but combined
in the interactive exploration environment, the distance-based cycle
plot is vital for getting insight in the overall picture of the multivari-
ate seasonal time series.

7. Discussion

So far, we introduced our interactive exploration environment for
exploring patterns and outliers in multivariate seasonal time series
and explained the construction of the utilized distance-based cycle
plot. We abstracted the tasks relevant to do so together with the
requirements for a distance measure in Section 4 and argued the
construction of the visualization and the design of our environment,
accordingly (Section 5). In these sections we briefly discussed the
benefits and limitations of specific decisions for the construction
and the design. In this section we will continue this discussion of
benefits and limitations in more depth, cover the performance of
our approach regarding the specified tasks, and give an outlook on
future work.
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7.1. Benefits and Limitations

One main benefit of the way we construct the distance-based cycle
plot is the independence from the number of dimensions. This is
achieved by constructing a distance based cycle plot using Maha-
lanobis distances (see Sections 4.3 and 5). This causes a different
representation of patterns (i.e., the seasonal pattern and patterns
within groups), and therefore, the distance-based cycle plot needs
to be interpreted differently. A distance is a non-negative number by
definition. As a consequence, all distances are represented above the
group center lines (see Figure 2). We, thus, loose the information
about the exact position of that data point, for the sake of being able
to represent multiple dimensions. While the information about the
actual position appears to be important for one-dimensional space
(maybe even for two-dimensional, and three-dimensional space), it
is very difficult to represent this in multivariate space. One com-
monly used method in this case is dimensionality reduction, like
principal component analysis [Agg13] or multidimensional scal-
ing [BBH11]. However, one limitation of this technique is, that it
is difficult to interpret the meaning of the principal components,
e.g., first and second for 2-dimensional visualizations. By applying
dimensionality reduction, the context of time, especially the peri-
odicity, is lost. Our approach, i.e. using the Mahalanobis distances,
is also a type of abstraction from multivariate space to less dimen-
sions. To reduce this information loss our interactive exploration
environment, see Section 5.3, allows further investigations in both,
the distance-based cycle plot and each of the single dimensions in
multiple linked views. By taking the structure of time into account,
and wisely selecting the granularity levels according to the seasonal
time series, this abstraction still retains the temporal context.

While the idea of using intra-group vs. inter-group distances is a
well-known strategy, we did not find this applied in cycle plots for
multivariate time series (see Section 2). The full explorational power
of our distance-based cycle plot for multivariate time series needs
to be seen in context of the interactive exploration environment,
where it is possible to connect themultivariate intra- and inter-group
distances to the visualizations of the single dimensions in original
cycle plots and line plots and thus, to investigate anomalies, like
outliers.

Using distances, however, may lead to a setting where the global
center has the same distance to multiple or even all of the group
centers. This would result in a representation where all group base
lines lie on the exact same position on the y-axis. In Figure 3 the
global center µ is close to have the same Mahalanobis distance to
both groups, and therefore, the base lines in Figure 3b are nearly
on the same horizontal level. It is then difficult to judge if there
is no seasonal pattern at all or if the group centers span a multi-
dimensional sphere around the global center. The same drawback
is true for original cycle plots. In case there is no seasonal pattern
in univariate seasonal time series data, also the original cycle plot
would show group centers aligned on a horizontal line. One way
to tackle this problem is to relate the group centers to a different
reference point. Instead of a mathematical global center we can
define a global reference point. This reference point could be, for
instance, the basis, the zero point, of the multivariate coordinate
system. Another potential reference point would be choosing one
representative group, i.e. a reference month whose group center line

would then lie on the x-axis, and relate the other groups to this refer-
ence group. The same can be applied for group centers, by defining
a group reference point instead.

For both issues mentioned above, we introduced the possibil-
ity to select any group center (µi) as global reference point and
therefore investigate the relation of all other groups to the selected
group in our interactive exploration environment. We use the multi-
ple linked views to enable the selection of single or multiple points
either in the distance-based cycle plot or in one of the univariate
representations. Brushing and linking allows to further explore the
relations of a point in the multidimensional space and the con-
nection to the single dimensions. This feature helps to reduce the
information loss introduced by the distance based abstraction. The
flexibility of interactively adjustable global as well as group refer-
ence points, allows a further investigation of relations between data
points within and even across groups. The exploration of different
aspects of locality (in linear and periodic time, as well as across
groups) is possible because of using Mahalanobis distances. There
is relatively few work done considering this local aspects in outlier
detection, see [FRGTA14].

Another possible limitation is demonstrated by a case in which
there are very large distances between the global center and the
group centers and only small variation of the data points within the
groups. A common scale (y-axis) would thus lead to a distance-
based cycle plot that shows mainly long vertical lines representing
the distance of group centers to the global center. In consequence the
small variations within the groups would not be visible. However,
this can also happen in the original cycle plot. To tackle this problem,
we propose using data transformations, such as a log scale. Another
solution would be to use separate scales. Using one scale for the
distance of group centers to the global center, and another scale for
the distances within groups would allow for exploring the smaller
variations within groups, while preserving the overall picture and
comparison between groups.

A problem related to the previous one, would be a very strong
trend within the data (e.g., monthly data over several years). A steep
trend over the years would distort the patterns within groups of
months. This, again, is a problem that affects the original cycle plot
as well. In time series decomposition the time series is split up into
trend-, seasonal-, and the error- or irregular-component [BD10].
These can then be analyzed separately with appropriate visualiza-
tions, e.g., using our distance-based cycle plot for the seasonal-
component. Seasonal adjustment is usually applied to remove the
seasonal component in order to analyze the other components. There
are also recent approaches to seasonal adjustment for multivariate
time series (see [GM13]), that can also be used to separate the sea-
sonal component for a more detailed analysis, which again could be
supported by using our distance-based cycle plot.

7.2. Task Performance

A formal cost-benefit analysis of our approach on the basis of Chen
and Golan [CG16] is beyond the scope of this paper, but the fol-
lowing discussion should better explain the benefit of our approach
when performing the task outlined in Section 4.

Using only an original cycle plot for each variable (only the plots
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in column (b) of Figure 4), one can easily identify overall patterns
of the seasonal cycle (Task T1), identify the behavior within each
group (Task T2), and compare changes within each group to the
seasonal cycle and across groups (Task T3), but only for each of
the variables separately. For picturing these patterns and behaviors
within the multivariate space, one can do this to a certain extend by
mental aggregation. If there are very similar and smooth transitions
and patterns in each of the variable, one can imagine or derive
mentally a similar pattern in multivariate space. On the other hand,
when using only the distance-based cycle plot (Figure 4a) for these
tasks, it is possible to identify the patterns and behavior of the
abstraction only. One can identify peaks and transitions as well as
intra- and inter-group similarities in the multivariate space, but it is
not possible to break down any information for individual variables.
While the tasks of detecting extreme/outlying values within each
group (Task T4) and the identification of whole groups that deviate
from the seasonal cycle (Task T5) can be done for each variable
separately,multivariate outliers are possibly not outliers in any of the
variables or outliers just in single variables. Also by summarizing
mentally the individual variables, data points that are outliers in
single or many individual variables, may or may not be multivariate
outliers (see Section 6). For these tasks (Tasks T1-T5) a combination
the distance-based cycle plot (Figure 4a) and the several original
cycle plots (Figure 4b) is necessary. The support of interaction is
also beneficial to keep track of single points, when switching the
focus between the single variables and the distance-based cycle plot.

If we consider the Tasks T6-T10 for multivariate and univari-
ate outlier detection that are going beyond the detection of ex-
treme/outlying values only within groups (Task T4) and identifica-
tion of whole groups that deviate from the seasonal cycle (Task T5),
one also requires the classic line plot representation of each variable
(Figure 4c) to also identify peaks and anomalies, like possible out-
liers, and how they relate to each other in linear time, e.g. the larger
values within the last year of variable NO2 and SO2 in Figure 4b and
c. This side-by-side presentation of the same data in different repre-
sentations, cycle plot and traditional line chart, adds an additional
perspective that allows to investigate the connections of outliers in
each of the variables. Highlighting univariate outliers in original
cycle plots and line plots only, does not allow for investigating data
points that are no outliers in any of the single variables but are mul-
tivariate outliers. The distance-based cycle plot allows to investigate
the data points relations with different aspects of locality, e.g. to data
points in the same position of the periodicity, but also the distances
compared to other groups as well as interactively changing global
and local (group) reference points. Only the possibility to select
and highlight the data points in these coordinated multiple views of
different perspectives, allows to easily switch from the abstracted
multivariate data to the single dimensions, which eases the external
memorization of the analysis. This affects all the tasks for all com-
binations of only multivariate or only univariate outliers in one or
more dimensions, as well as outliers that are both, multivariate and
univariate outliers in single or multiple dimensions.

The main advantage of the distance-based cycle plot is the ag-
gregated overview of all dimensions combined, to show directly the
patterns and anomalies like outliers in a condensed view. The full
exploration power is only achieved by the interactions, highlighting,
and coordinated multiple views in combination with the twofold vi-

sualization of each variable in a classical cycle plot and a line plot.
Another benefit of this combination of different representations and
the additional abstraction of the distance-based cycle plot is, that it
enables the investigation of each data point. First, locally according
to the normal linear time scale for each variable, second, locally ac-
cording to the periodicity in the several original cycle plots for each
variable, and third, locally in context of the distance-based abstrac-
tion from the multivariate data, again according to the periodicity
in the distance-based cycle plot.

7.3. Future Work

There are several questions with regard to the usability of our ap-
proach that remain open. First, the distance-based cycle plot, al-
though encoding an abstraction using a multivariate distance, uses
a very similar design to the original cycle plot. This may cause
confusion and needs to be learned by the user. Furthermore, we do
not know about the performance regarding the abstracted tasks and
whether the combination of different cycle plots discussed above
helps users to identify multivariate outliers. For multivariate time
series involving periodicity, this remains an open question. Only fu-
ture evaluation with real users can answer these questions. We plan
to tackle this issue first by providing additional use case examples,
and by formal user studies focusing on the correct interpretation
of the plots and task performance. Due to the number of tasks and
their complexity, this will require more than one study. For the
time being, we demonstrate the applicability of our approach by
the walk-through in the usage scenario (Section 6), the comprehen-
sive discussion above, the provided supplementary material, and the
possibility to test the prototype in an online demo.

8. Conclusion

Our interactive exploration environment utilizes a distance-based
cycle plot for identifying seasonal patterns and outliers in multi-
variate seasonal time series. It revisits and retains a visual represen-
tation similar to the original cycle plot by Cleveland [Cle94]. The
construction of the distance-based cycle plot includes an additional
abstraction step using the Mahalanobis distances, which enables
the generalization to an arbitrary number of dimensions. With our
interactive exploration environment we combine statistics and vi-
sualization techniques and balance their benefits and limitations
for visually analyzing patterns and outliers in multivariate seasonal
time series, with respect to the structure of time and the relations
among multiple dimensions.
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