
Visually-supported graph traversals for exploratory analysis
Albert Amor-Amorós, Paolo Federico, and Silvia Miksch *

ABSTRACT

Many real-world problems appearing in diverse application domains
involve large multivariate interrelated data. For this reason, graph-
based data models have gained popularity in recent years. Graph
traversal is a powerful computational paradigm addressing the chal-
lenges of graph data management; yet, its complexity and specificity
might hinder its use for interactive data exploration by non-expert
users in absence of appropriate interfaces. We have designed and im-
plemented a system for visually-supported graph traversal, featuring
(1) a graphical block metaphor for traversal formulation and execu-
tion, and (2) data probes providing relevant visual feedback about
the results. The proposed approach aims at enhancing the usability
of graph querying and retrieval techniques, in order to assist users
with gaining and interpreting insights during exploratory analysis.

Keywords: Graph traversal, visual querying, large graph explo-
ration, graph visualization, graph querying, exploratory analysis.

1 INTRODUCTION

Graph-based data management techniques have become increasingly
popular over recent years, due to their expressiveness for modelling
and manipulating interrelated data, i.e., they facilitate the design
of logical schemas in a close match with conceptual schemas. In a
graph model, data is represented as a collection of relations (graph
edges) between pairs of entities from a given set (graph vertices),
typically with elements of both types having a number of attributes.
In combination with the large scale characteristic of modern appli-
cations, the inherent complexity of this form of data can turn the
analytic process into a very challenging problem. Improving the scal-
ability of existing visualization techniques in order to provide better
overviews of large graphs has been one of the major topics in graph
visualization research. However, providing a complete overview
for a large multivariate graph is often unfeasible, and sometimes
also unnecessary: many scenarios only require local exploration,
since the analytic focus starts on a fraction of the data, and follows
specific paths over the graph structure on the basis of intermediate
findings [6].

In order to address the specific needs of this form of analysis, we
have designed and implemented an interactive system that supports
the exploration of large graphs through the specification of graph
traversal workflows in a visually-supported graphical environment.

2 PROBLEM DESCRIPTION

Visual systems designed to support exploration on large multivariate
graphs have started to appear in recent years [3, 6]. Search fre-
quently constitutes the initial step in these approaches, and, once a
starting point has been chosen, expansion around a node of interest
is typically the main supported interaction, enabling the user to in-
corporate into the visual representation hidden parts of the graph.
These approaches usually feature an intuitive interface that combines

*Albert Amor-Amorós, Paolo Federico, and Silvia Miksch are with the
Institute of Software Technology and Interactive Systems, Vienna University
of Technology. E-mail: {amor,federico,miksch}@ifs.tuwien.ac.at

a well-known visual metaphor (e.g., node-link diagrams) with a sim-
ple interaction model (e.g., clicking on a node to retrieve the nodes
adjacent to it). The simplicity and intuitiveness of these approaches
clearly constitute strong points in simple cases, but they can also
turn into important limiting factors in more complex analytical sce-
narios. For example, these visualization and interaction models
tend to focus on individual targets instead of classes of equivalent
elements; for this reason, the simultaneous manipulation of multiple
elements (e.g., selecting the set of adjacent elements, given a set of
nodes) is generally not supported. Furthermore, the user has little
means to specify interesting paths on the basis of their individual
characteristics or intermediate computational results.

These enhanced analytic capabilities, such as a rich set of op-
erations and a higher degree of user-control, are the main advan-
tages of graph querying tools [2, 5]. Such systems are the preferred
choice amongst advanced users, but they present a number of us-
ability issues that make them less suitable for non-experts. Graph
querying tools are usually operated within a command-line interface,
requiring the user to enter every request in the form of text-based
statements expressed in a formal language. In order to use this kind
of interface, a user must be familiar with the grammar of its query
language, i.e., what are the elements that compose it, and how are
they combined into coherent statements. Accordingly, one of the
fundamental challenges is enabling users to formulate requests in
a more natural and effective way. Additionally, these tools tend to
provide limited feedback, forcing the user to rely on mental models
and a priori knowledge. This is particularly problematic in large
scale scenarios with high data complexity, where a data consumption
approach based exclusively on retrieval and display actions is not
feasible. In order to successfully steer the exploration process, users
need frequent and accurate feedback regarding both the characteris-
tics of the selected data subset, and the outcomes of the operations
performed on it.

3 VISUALLY-SUPPORTED GRAPH TRAVERSALS

We have designed and implemented a system for the exploration of
large multivariate graphs that combines the full analytic power of a
graph querying tool, with the enhanced usability and cognitive am-
plification effect of graphical user interfaces and data visualization.
We have grounded this approach in the so-called graph traversal
pattern, a computational paradigm in which graph problems are
represented as traversals, i.e., “visiting elements (i.e., vertices and
edges) in a graph in some algorithmic fashion” [4]. In the following
we describe the two main components of the system, which are
displayed side-by-side forming the user interface (see Figure 1): the
graphical query composition component, and the visual data probing
component.

Graphical query composition In practice, a graph traversal
specification consists of a series of steps that represent low-level data
manipulation operations. Examples of such operations are: moving
the selection focus to the set of edges incoming to a given set of
vertices, or filtering out elements with values outside of predefined
range for a given attribute. A graph traversal specification defines a
data transformation pipeline; accordingly, graph traversal languages
typically embrace a dataflow paradigm, in which the output of one
step constitutes the input for the next one. Our design communicates
this intuitive behaviour with a graphical metaphor in which individ-
ual steps are represented as blocks, that can be attached to each other
by means of drag-and-drop interactions in order to specify a pipeline.



Figure 1: The two main components of the interface: on the left side,
the traversal composition canvas; on the right side, the visual probing
component.

Blocks representing operations that require some kind of user input
in the form of parameter specification can be enhanced with selec-
tion controls appropriate to the nature and size of the corresponding
parameter space. Some examples of these are bargrams, lists, auto
completing text boxes, or range sliders. New steps are added to the
pipeline by choosing from a list of operations that are applicable in
the given context. In some cases, a description of a graph traversal
in terms of individual low-level operations might be too specific,
and, therefore, the user might be interested in abstracting some of
these details. This can be achieved by defining a composite step that
combines the functionality of a particular sequence of operations in
a single step. In our approach, we enable the user to perform this
abstraction by collapsing a particular sequence of selected blocks
into a single one that represents the respective composite operation.
The reverse transformation, i.e., the expansion of a composite block
into its constituents, might also be of interest to the user, e.g., for
examining the internal structure of the composite block, or changing
some of its parameters. Moreover, we have also introduced a persis-
tence mechanism that enables the user to name and store composite
blocks for the sake of reusability, facilitating the automation of parts
of the analytic workflow in future sessions. Finally, we have also
incorporated a parser that automatically translates textual statements
into its respective graphical representation, for its study or use in
further elaboration.

Visual data probes Our system provides up-to-date feedback
in response to any changes on the pipeline, i.e., the addition, removal,
or modification of a transformation step by the user. In order to
address the challenges associated with the high complexity and
large scales of the data, we have introduced the concept of data
probes, which provide the user with multiple alternative methods for
consuming output results. These methods take into account relevant
aspects in a particular context, providing information summaries on
the basis of aggregates, metrics, or more complex analytic models.
For example, visualizing an output consisting of several thousand
graph vertices with multiple attributes might be not just challenging,
but also particularly ineffective if the user is only interested in the
distribution of values for some attribute or metric. We have designed
an extensible probing system that supports the definition of new
data probes with minimal effort. In our current solution, the set
of active probes has to be configured a priori, by linking context
conditions, reduction mechanisms, and visual representations within
a configuration file. However, we are currently working on the
design of a graphical interface that enables the definition of new
probes by the user within the analysis session. We provide a basic
set of visual representations that can be used in the probes, including
bar charts, node-link diagrams, and several other, as well as a tabular
view. One of the advantages of relying on an explicit representation

of the data transformation workflow is the availability of provenance
information. We have enabled probing of results to be perfomed
retrospectively at any step of the workflow (and not just to the output
of the last operation), by simply pointing to the corresponding block.
Such a representation of the workflow might lead the user to perform
changes to previous steps in the pipeline, e.g., the modification of
some parameter, or the insertion of a new block. Such upstream
changes will, in general, affect the data flow through the pipeline;
in particular, they might load to an empty output from one block,
resulting in an empty input for one or more subsequent ones. In order
to assist the user in identifying and assessing this sort of issues, we
have introduced small visual cues on each of the blocks indicating
their execution state by means of color with a traffic-light metaphor.

Implementation We have implemented this design in a soft-
ware prototype with a client-server architecture built on the foun-
dations of the Apache TinkerPop framework [1]; its cornerstone,
the Gremlin language and traversal engine, constitutes the de facto
standard amongst graph traversal languages. On the client side, we
have built an AngularJS web application following an MVC pat-
tern: the graphical block composition subsystem acts as controller
for defining a query model, which in turn results in updates of the
view provided by the probing subsystem. We have used an adapted
version of the Blockly library for building the graphical query com-
position subsystem, as well as d3.js for the visualizations used in the
probing subsystem. On the server side, a standard Gremlin Server
instance running a compatible graph database backend (e.g., Neo4j).
Finally, client-server communication relies on the gremlin-javascript
library, which provides synchronous and asynchronous connectivity.

4 CONCLUSION

The scale and complexity of large multivariate graph data hinder the
application of top-down analytic techniques for exploratory analy-
sis. Approaches following an exploration paradigm based on search
and directed expansion through the graph have proven effective in
different scenarios. We have designed and implemented a visually-
supported environment for graph traversal that combines graphical
composition using a drag-and-drop block metaphor, with a visual
data probing mechanism for consuming data at large scales and dif-
ferent output contexts. In future work, we aim at achieving a tighter
integration of the traversal composition canvas and the probing com-
ponent, as well as providing a complete provenance description of
the traversal process by including a representation of the history of
block modification and removal actions.

ACKNOWLEDGEMENTS

The authors wish to thank Johannes Mauerer, Lukas Mayr, Andreas
Roschal, and Xiashuo Lin, who contributed parts of the implementa-
tion, as well as their partners within the research project EXPAND
(EXploratory Visualization of PAtent Network Dynamics), funded
by the Austrian Research Promotion Agency (FFG), grant number
835937.

REFERENCES

[1] Apache Tinkerpop. http://tinkerpop.apache.org/. Accessed
August 5, 2016.

[2] Cypher Query Language. http://neo4j.com/developer/cypher/.
Accessed August 5, 2016.

[3] Linkurious. http://linkurio.us/. Accessed August 5, 2016.
[4] M. Rodriguez and P. Neubauer. Graph Data Management: Techniques

and Applications, chapter The Graph Traversal Pattern. IGI Global,
2011.

[5] M. A. Rodriguez. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database
Programming Languages, pages 1–10. ACM, 2015.

[6] F. van Ham and A. Perer. “Search, show context, expand on demand”:
Supporting large graph exploration with degree-of-interest. IEEE TVCG,
15(6):953–960, Nov 2009.

http://tinkerpop.apache.org/
http://neo4j.com/developer/cypher/
http://linkurio.us/

	Introduction
	Problem description
	Visually-supported graph traversals
	Conclusion

