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ABSTRACT
Characterizing the problem domain and understanding users’
practices and processes are recognized as important steps in
order to design and validate visualization, but are often dis-
regarded in practice, also because of their complexity. We
introduce the nested workflow model for design and valida-
tion of visual analytics, aimed at providing designers with
a powerful and expressive modelling tool. This model en-
ables the description of visual analytics processes, at differ-
ent design levels, in terms of tasks, data, and users, including
complex workflow patterns, data and knowledge flows, and
collaboration between users. We discuss its application to
two visual analytics projects, demonstrating its usefulness
for their design and validation.

CCS Concepts
•Human-centered computing→Visualization design
and evaluation methods;

Keywords
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1. INTRODUCTION
The nested model by Munzner [27] provides a robust and

sound methodological framework for design and validation of
visualization. It features four layers: (i) characterization of
the problem domain, (ii) abstraction of tasks and data from
a domain-specific to a domain-independent form, (iii) design
of visual encodings and interaction techniques addressing the
tasks and data, and (iv) creation of algorithms to implement
the visual encodings and interaction techniques.

These level are nested, thus the output from an upstream
level above is input to the downstream level below. Since
each level faces its own threats to validity, Munzner’s model
helps visualization designers with positioning their contri-
bution in the right level, choosing the adequate validation
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strategy for that level, and understanding assumptions and
implications with regards to other levels. In particular, the
nested model highlights the importance of the problem char-
acterization level, which is usually underrepresented in the
visualization literature.

The nested blocks and guidelines model (NBGM) [25]
extends the four-level nested model, and complements its
methodological grounding with operational directions. In
particular, the NBGM adds a finer-grained structure within
each level by means of blocks, which can be either identified
or designed. The blocks of the domain level are identified,
since they represent the understanding of domain situations
by designers; conversely, the blocks of other levels are de-
signed, since they represent the outcomes of design choices
taken within each level. Within-level guidelines enable com-
parison between blocks at the same level, while between-level
guidelines represent mapping rules between blocks at adja-
cent levels. As a result, the NBGM helps designers with
representing and discussing design rationales.

Grounded within the four-level methodological framework,
we propose a nested workflow model for design and valida-
tion of visual analytics. It is inspired by the NBGM, and
features nested blocks as components of the analytical work-
flow. Our model is aimed at supporting designers with the
characterization of the problem domain, by capturing users’
practices and processes with respect to three aspects: tasks,
data, and users. The formulation of the proposed model has
been mainly driven by a reflection on our experiences with
the problem domain level, but its nested structure presents
implications for other levels as well.

The main contribution of our work is the introduction
of the nested workflow model. In the following, we re-
call workflows concepts and terminology; then we introduce
our model and discuss how it addresses the problem do-
main characterization and the other nested levels, with par-
ticular consideration of tasks, data, and users; finally, we
demonstrate its application to two visual analytics research
projects: identification of unexploded ordnance risks and
shared decision-making about medical treatment plans be-
tween cardiologists and patients.

2. WORKFLOWS: CONCEPTS AND TER-
MINOLOGY

Our nested workflow model for visual analytics leverages
concepts and terms from business process modelling and
workflow management, which we want to mention before de-
scribing our model. In the context of workflow management,
a workflow is defined as “the automation of a business pro-



cess, in whole or part, during which documents, information
or tasks are passed from one participant to another for action
(activities), according to a set of procedural rules” [47, page
8]. In the context of business process modelling, the term
workflow can be also used as a synonym for process [41]; we
use this acceptation, since we are interested in the modelling
of processes but not in their full automation (see also Sec-
tion 3). A workflow consists of a number of tasks. A task is
a unit of work that is carried out as a single whole by one or
a group of actors (also known as participants or resources),
and an actor is either a person or a machine performing
specific tasks [41].

The execution of tasks can be arranged according to a
number of structural patterns [40]: e.g., sequence (the exe-
cution of one task starts after the completion of the previous
one), parallelism (several tasks can be executed in paral-
lel), synchronization (several tasks can be executed in par-
allel, but they all need to be completed before another one
can start), selection or choice (the workflow splits in several
branches, and only one branch is executed), iteration (a task
or a set of tasks can be repeated).

In order to perform tasks, humans need knowledge [40],
which can be either tacit (prior knowledge acquired by ex-
perience and stored in their minds) or explicit (formalized
and externalized knowledge, that can be accessed and re-
trieved from external sources).

Workflows can be divided into business workflows and sci-
entific workflows, with two relevant differences in this con-
text: the interaction with participants and the flow paradigm.
As for the interaction with participants, the tasks of busi-
ness worflows can be generally executed by humans or ma-
chines, while scientific workflow consist of data processing
tasks that are generally performed by machines, under the
control of humans [22]. As for the flow paradigm, the or-
der of tasks in business workflows is determined by a set of
procedural rules and conditions, which do not relate neces-
sarily to inputs and outputs of each task, or to the nature of
transformations performed within each task (especially for
those performed by humans). Within a scientific workflow,
conversely, data transformations and dependencies have a
crucial importance. In other words, business workflows fo-
cus on control flows, described in terms of procedural rules
and conditions; scientific workflows focus on data flows, de-
scribed in terms of data dependencies [1, 48].

3. THE NESTED WORKFLOW MODEL
We propose a nested workflow model aimed at providing

a fine-grained description of a visual analytics solution at
different levels of abstraction and composition, and at any
phase of design or validation. The main components of our
workflow model are tasks, users, and data (Figure 1). They
correspond to the domain blocks (also known as situations)
in the NBGM by Meyer et al. [25], as well as to the ver-
tices of the design triangle for visual analytics by Miksch
and Aigner [26]. This workflow model allows designers to
capture the structure of relationships and interdependen-
cies between blocks, such as synchronization between tasks
that are performed by the same technique or algorithm, or
fusion of data sources and collaboration between users to
solve a given problem. At the same time, the nested struc-
ture of each block enables the representation of identified or
designed properties of that block at the different levels. In
particular, task blocks have up to four levels of nesting, from

User

Problem Domain Abstraction Technique Algorithm

Data/Knowldedge Task Data/Knowldedge

Figure 1: The three main components of the nested
workflow model: tasks, data/knowledge blocks (in-
put/output of the tasks), and users (who perform
tasks, indipendently or in collaboration). The work-
flow components present up to four nesting lev-
els [27]: problem domain, data and operation ab-
stractions, visual encoding and interaction tech-
niques, and algorithms.

the problem domain (the outermost level), trough the ab-
straction and the encoding, to the algorithms (the innermost
level). Data blocks have up to two nesting levels: the do-
main problem (outer level), and the abstraction level (inner
level). We name these blocks more properly data/knowledge
blocks, as explained in Section 3.3. User blocks obviously
represent situations at the problem domain level, but they
are characterized in terms of prior knowledge, which can be
abstracted into inner levels. It is worth noting that, when
applying the workflow model to represent real scenarios, not
all blocks must necessarily present all levels. For example,
part of the workflow might consist of simple tasks, such as
data preparation and data quality checks, processed by a
generic user without involvement of domain knowledge.

By comparing our workflow model with other workflows,
we observe that tasks are a common component of both
business and scientific workflows, users correspond to the
resource component of business workflows, while data rep-
resent the main focus of scientific workflows. Indeed, our
workflow model for visual analytics is different from both
business and scientific workflows in terms of interaction with
participants and flow paradigm. In particular, it differs from
business workflows because it focuses on data flow (and also
extends it, see Section 3.3); it differs from scientific work-
flows because it considers only humans as actors.

3.1 Characterizing the problem domain: work
practices and processes

The need of studying real settings (i.e., a given problem
domain with a number of users, real datasets, and realistic
tasks) has been identified as one of the challenges for val-
idation of visualization [30]. Munzner’s nested model [27],
by eliciting its four levels, has also revealed that these lev-
els have not received the same amount of attention by re-
searchers: the problem domain level, in particular, is the
most neglected one (with notable exceptions, both early [16,



39] and more recent ones [43, 45]). In the context of visual
analytics research, Endert et al. [8] also highlight the need
of recognizing analysts’ work processes, and seamlessly fit-
ting analytics into that existing interactive process. Lam
et al. [21], considering seven scenarios for empirical stud-
ies in information visualization, note that only few works
have addressed the Understanding Environments and Work
Practices (UWP) scenario; therefore, they observe that stud-
ies about people and their processes are rare. Isenberg et
al. [17], in their review on evaluation of visualization based
on the seven-scenario classification, also note that very few
papers have addressed the UWP scenario. They group the
UWP scenario together with the Visual Data Analysis and
Reasoning (VDAR) scenario, which is considered in an even
lesser number of papers. UWP and VDAR scenarios are
grouped becasue they both aim at understanding domain
experts’ analysis processes and practices. However, UWP
focuses on understanding the current practices and is assim-
ilable to a requirements analysis, while VDAR focuses on the
use of a newly introduced visualization tool by a group of
domain experts. In other words, UWP is traditionally seen
as a scenario for formative evaluation, while VDAR is under-
stood as a scenario for summative evaluation, according to
the categories introduced by Ellis and Dix [7]. In our experi-
ence within applied research projects, we observed that the
difference between UWP and VDAR scenarios has been get-
ting smaller. Visualization and visual analytics have become
more mature disciplines, commercial products exist and or-
ganization have started to adopt and use them. Domain
experts do not provide only problems and data to design-
ers and ask for solutions from the scratch; they might also
show their existing solutions and ask for redesign, extension,
or improvement. As a result, in our nested workflow model
the distinction between identified and designed blocks is less
strict, and also abstractions, techniques, and algorithms can
be identified by observing users’ analytical workflows already
in place. Moreover, also in a pure UWP scenario (i.e., before
the introduction of a running prototype or system), the in-
ner levels of workflow components in our model can be pop-
ulated with existing artifacts and interactions. Tory and
Staub-French [39], for example, also characterize a prob-
lem domain in terms of artifacts (e.g., sticks, notes, and
sketches), and manual interactions (e.g., five-finger pointing
gesture to indicate an area, two-finger pointing gesture to
indicate the distance between two points). In summary, the
proposed nested workflow model aims at accompanying the
NBGM, by complementing design guidelines with a mech-
anism which allows designers to understand the structure
of existing workflows, identify components that can be im-
proved (by introducing newly designed blocks or redesigning
existing ones), and validating interventions by before/after
comparisons.

3.2 Tasks
The central components of our nested workflow model are

tasks. In the visualization literature, there is not even a con-
sensus about the terminology, and researchers use several
terms with overlapping or conflicting meanings: task, ques-
tion, problem, objective, activity, action, operation. Rind et
al. [32] try to untangle the confusion in terminology, by intro-
ducing a conceptual space of tasks along three dimensions:
abstraction (domain specific/domain independent), compo-
sition (low level/high level), and perspective (how/why).

Brehmer and Munzner [4] consider only abstract tasks, and
identify three perspectives: why, how, and what. How, in
particular, refers to the methods (visual encodings and in-
teraction techniques) by which a task is executed, while what
refers to its inputs and outputs. Our nested workflow model
draws on the why/how/what characterization, but extends
it also along the composition and the abstraction dimen-
sions. In particular, the why refers to the operation abstrac-
tion level but also to the outer level of the problem domain;
the nesting enables mapping between the two levels. The
how is represented by the two inmost levels: visual encod-
ings and interaction techniques, and algorithms. The what
is represented by the data/knowledge blocks as the task in-
puts and outputs. The workflow model enables complex
(de-)compositions of tasks beyond the simple task sequence,
by exploiting several workflow patterns. Figure 1 shows a
branching pattern (it might be a selection, or a parallelism,
for example) and a merging pattern (a synchronization, for
example). It is worth noting that the figure is intended as an
conceptual illustration of the nested workflow model, while
standard visual tools can be used to represent complex pat-
terns, such as UML diagrams [41] or BPMN [28].

3.3 Data and Knowledge
Similarly to scientific workflows, the focus on data is im-

portant for visual analytics workflows. Data, therefore, rep-
resent the obvious input and output of visual analytics tasks.
Input raw data can be complemented with explicit knowl-
edge (metadata, ontologies), which can be exploited to assist
the visualization [6], but also to drive the automated anal-
ysis and help users interpreting results [3, 9]. As noted by
Chen et al. [6], “a computer representation of a piece of in-
formation or knowledge is just a particular form of data”.

Tacit knowledge can also constitute both an input and an
output of a visual analytics task. The value of visualiza-
tion, indeed, lies in its capability to enable the acquisition
of new knowledge based on the data, the visual perception,
and the user’s prior knowledge of the user [11, 42]. Simi-
larly, during the visual analytics process, analysts formulate
hypotheses on the basis of their prior knowledge about the
problem domain, and gain new knowledge by verifying those
hypotheses [34]. Tacit knowledge, and especially its incre-
ments, are obviously difficult to measure, observe, and rep-
resent. Specific methods of Cognitive Task Analysis (CTA)
might be required to elicit tacit knowledge, such as inter-
views (i.e., asking people questions), self-reports (i.e., peo-
ple talk about their behavior and strategies), observations of
performance or task behavior, and automated collection of
behavioral data [2]. If not externalized during the workflow,
tacit knowledge remains specific to each user and, therefore,
in our model it is represent within the user block (see Sec-
tion 3.4). Nevertheless, in many circumstances tacit knowl-
edge is externalized as part of the analytical process. Shrini-
vasan and van Wijk [35] note the importance of knowledge
externalization within the analytical reasoning process, for
example by annotating insights, hypotheses, and evidences.
Wang et al. [44] describe knowledge conversions (internaliza-
tion and externalization) within a visual analytics process.

Our nested workflow model, therefore, features two-level
knowledge/data blocks, in order to represent not only input
and output data, but also explicit knowledge that is available
at the beginning of a task, or that is made available as an
outcome of the task completion.
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Figure 2: Example of user blocks in the domain of social networks, characterized at different levels.

3.4 Users and collaboration
Users are an obvious component of the problem domain,

and their understanding by designers is essential for the
human-centred design process of interactive systems in gen-
eral [14, 37], and visulization in particular [20]. Differently
from scientific workflows, visual analytics systems make cer-
tainly use of automated methods for data analysis (e.g., data
mining, machine learning), but the human “is always the
ultimate authority in directing the analysis” [19, page 2].
The most recent directions in visual analytics, suggesting a
shift from the human-in-the-loop to the human-is-the-loop
paradigm [8], make the role of the user even more central.
Sometimes, when systems are designed for a single user (or
a single user group), design studies do not necessarily make
an explicit reference to the user, since the user is identified
with the problem domain itself. Conversely, when the design
needs to address diverse users, designers need to character-
ize each of them, as well as their relationships with the other
situations of the problem domain. In our model, users are
characterized in terms of their tacit prior knowledge. In the
context of visualization, by drawing on concepts from artifi-
cial intelligence, we distinguish two types of prior knowledge:
operational knowledge (the knowledge of how to operate the
system), and domain knowledge (the knowledge of how to
interpret the content) [5]. These two types of knowledge
span across the four nested levels. Let us illustrate it with
an example from evaluation of visual analytics of social net-
works [36], see Figure 2. At the problem domain level, users
can have some prior knowledge to interpret a social network,
for example because they are sociology experts, or because
the social network represent themselves and their friends. At
the data and operation abstraction level, experts in graph
theory have the knowledge to understand the modelling of
data as a graph, and to compute graph-theoretic metrics
such as the centrality degree or the network diameter. Nev-
ertheless, only sociologist have the domain knowledge to in-
terpret social network analysis metrics. Graph drawing ex-
perts have the operational knowledge at the visual encoding
and interaction level, and therefore are able to switch to the
most effective layout algorithm to solve a certain task (e.g.,
count the number of clusters). They might also have the
operational knowledge at the algorithmic level to fine tune
the layout parameters.

Therefore, in our model users are characterized in terms
of their prior knowledge and are represented by four-level
nested blocks, containing references to knowledge, data, op-
erations, techniques, and algorithms. By using the work-
flow model, designers can quickly check whether users’ tacit
knowledge, complemented with available explicit knowledge

at the task input, fulfils the knowledge requirements to ac-
complish a task, and can adjust possible mismatches.

Collaboration between users is a fundamental principle
of visual analytics. According to the first recommenda-
tion by Thomas and Cook, designers should “build upon
theoretical foundations of reasoning, sense-making, cogni-
tion, and perception to create visually enabled tools to sup-
port collaborative analytic reasoning about complex and dy-
namic problems” [38, page 6]. Golovchinsky et al. [10] pro-
vide a classification of collaboration in information seeking,
an activity that presents analogies with the lower steps of
the foraging loop in the sensemaking process as described
by Pirolli and Card [29]. Collaborative information seek-
ing can be described in terms of forms of collaboration,
and roles in collaboration. The forms of collaboration in-
clude the level of mediation by the system, the concur-
rency (synchronous/asynchronous), and the location (shared
space/individual space). The roles in collaboration create
different configurations: collaboration between peers, be-
tween two experts of two different domains, between an ex-
pert and a novice of the same domain, between a domain
expert and a search expert, and between a prospector (user
interested in an overview) and a miner (user interested in de-
tails). Isenberg et al. [15] define collaborative visualization,
classify it according to the space-time matrix [18] (co-located
or distributed, synchronous or asynchronous), and delineate
research directions. Ribarsky et al. [31] remark the impor-
tance of collaboration for analytical reasoning, and also note
that researchers should identify which artifacts should be
shared, in what form, and at what stage of the reasoning
process. They list three types of collaboration: peers with
different tasks; analysts with other stakeholders; analysts at
different levels within the organization hierarchy. Heer and
Agrawala [12] discuss design considerations for collaborative
visual analytics, and describe the artifacts to be shared in
terms of deixis (reference). The reference can be general,
definite (e.g., by unique id), detailed (e.g., by attribute), or
deictic (e.g., by pointing directly to something). Mahyar et
al. [23] highlight the importance of externalization (for ex-
ample, by taking notes) in collaborative analysis, and the
lack of support in many visualization tools.

However, collaboration has not attracted much attention
in visualization evaluation studies, with few exceptions (such
as [24]). Lam et al. [21] identify two scenarios related to
collaboration between users: the Communication Through
Visualization (CTV) scenario, and the Collaborative Data
Analysis (CDA) scenario. Isenberg at al. [17] in their survey
found no studies for the CTV scenario, and very few studies
for the CDA scenario.
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Inter-task collaboration (sequential) Inter-task collaboration (parallel)

Figure 3: The nested workflow model can represent
different types of collaboration between two users,
such as intra-task collaboration, inter-task collabo-
ration in sequence, inter-task collaboration in par-
allel.

Our model enables the characterization of different as-
pects of collaboration in visual analytics workflows. First of
all, it supports the characterization of multiple users, with
different prior knowledge at all levels and different roles.
Second, the inmost levels of task blocks can represent shared
artifacts (interactive visualization, as well as non-computer-
mediated artifacts). Last, it can model the assignment of
tasks to different users, exclusively or in collaboration. In
particular, since the task block is the central component of
the nested workflow model, we introduce a task-based char-
acterization of collaboration (Figure 3). We distinguish be-
tween intra-task collaboration (multiple users collaborate to
complete the same task) and inter-task collaboration (each
user completes one task, and data/knowledge are shared
across the task boundaries). Different types of inter-task
collaboration are possible, according to different task com-
position patterns (e.g., sequence, parallelism, iteration).

4. APPLYING THE MODEL
In this section, we demonstrate the application of the

nested workflow model to two ongoing visual analytics re-
search projects, discussing how its expressiveness helped us
to understand users’ environments, work practices, and vi-
sual data analysis reasoning.

4.1 Visual analytics of unexploded ordnance
risks

In the context of an applied research project, we collab-
orate with a company whose work consists of identifying,
assessing, and reporting unexploded ordnance risks from
World War II, by collecting and analysing data from dif-
ferent sources, such as historical aerial imagery, current or-
thophotos, digital terrain models, militray records, and re-
ports from historians and direct witnesses. In order to char-
acterize the problem domain and understand analytics pro-
cesses in place, we conducted semi-structured interviews [46]
and contextual inquiries [13], and modelled our observation
by using the nested workflow model.

Figure 4 shows an overview of the entire workflow (top),
and a close-up of one of its parts (bottom). For clarity of
exposition, also in the close-up view the model has been
simplified and purged of unnecessary details.

We identified eight high-level tasks: retrieve images, re-
trieve events, filter images (twice), identify suspicious ob-

jects, ortho-rectify and geo-reference images, assess risks,
and report findings. We observed that each high-level task
can be decomposed into low-level tasks, showing different
workflow patterns, in particular selection, iteration, and par-
allelism. Then we abstracted domain specific low-level tasks
into domain-independent data operations.

We also observed a number of artifacts used to perform
the tasks, such as geographic information system (GIS) with
their interaction techniques, text and image databases with
their information retrieval techniques and algorithms, elec-
tronic spreadsheets, simple image viewers, text editors, as
well as emails, paper printouts, and hand-written annota-
tions. In the close-up of Figure 4 (bottom), the technique
level is missing. The reason is that in this part of the work-
flow only simple tools are used (such as text and image
viewers), without any particular visualization, interaction,
or automated analysis technique.

We identified three kinds of users: senior analysts, ju-
nior analysts, and image retrieval experts. We characterized
them in terms of domain and operational knowledge. Both
senior analysis and junior analysts have the knowledge to
operate a GIS software and exploit its visual encodings and
interaction techniques (e.g., semi-transparent layering of dif-
ferent images of the same area, or swiping of upper layers to
show layers beneath, as well as procedures to ortho-rectify
and geo-reference aerial images). We observed that senior
analysts are capable of fast geographic orientation (e.g., find-
ing the area of interest with precise, seamless panning and
zooming interactions). Moreover, senior analysts have the
domain knowledge to understand jargon of military reports
and to interpret terrain features, e.g. to identify craters cre-
ated by exploded bombs and correlate the crater diameter
with the possible bomb types. Junior analysts have enough
familiarity with aerial imagery to assess its quality, accord-
ing to factors such as resolution, lighting conditions, or cloud
cover. Image retrieval experts are capable of operating the
company proprietary tools and algorithms.

By analyzing the workflow, we also identified different pat-
terns of inter-task collaboration, such as sequence, paral-
lelism, and also iteration (i.e., when an analyst cannot de-
cide about an object identification, s/he asks colleagues to
repeat the task and cross-check findings). We observed dif-
ferent types of knowledge externalization and sharing, such
as annotations, collection of evidences for the final report,
email exchanges and file transfers, and occasionally also de-
ictic reference.

Overall, the nested workflow model allowed us to describe
the existing analytic processes (in terms of tasks, users, and
data/knowledge, at different nested levels) and to start the
redesign of parts of the workflow (for example, by intro-
ducing interactive visualization techniques to speed up and
optimize the information retrieval process, or by integrating
computer vision methods, interactively supervised by the
user, in order to improve identification and geo-referencing
of suspicious objects). Morever, the nested workflow model
provides a framework to track redesign interventions, and to
plan adequate post-hoc comparisons and validations.

4.2 Visual analytics for medical shared deci-
sion making

This research project is focused on shared decision-making
in the context of medical treatment of patients with atrial
fibrillation. The management of this condition by anticoag-
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Figure 4: The nested workflow model applied to a study for visual analytics of unexploded ordnance risks.
Top: overview; bottom: close-up of the Filter tasks.

ulant therapy is aimed at reducing the risk of strokes and
other ischemic events, but at the same time it increases the
risk of bleeding. Therefore, physicians need to inform their
patients about the different treatment options and their im-
plications and help them taking critical decisions. The aim
of our project is to provide decision support, in the context of
shared decision making, by means of a visual analytics sys-
tem based on patient-level microsimulations of Markov mod-
els and graphical representation of simulated life paths [33].
We interviewed domain experts in the medical field as well as
in medical decision-support systems, and applied the nested
workflow model. The expressiveness and the flexibility of
the model were particularly useful in this project, which has
peculiar features.

The users are the cardiologist and the patient. The for-
mer is a domain expert, and has the operational knowledge
to manage statistical models and the domain knowledge to
understand medical concepts and understand patient con-
dition data. The latter lacks the domain knowledge, but
is the data owner and also the principal stakeholder. The
large asymmetry in the prior knowledge makes also difficult
to identify the scenario, which lays between Communication
Trough Visualization (CTV) and Collaborative Data Anal-
ysis (CDA). However, the nested workflow model allowed us
to capture the data and knowledge flows.

The main data in this circumstances are the transitions
probabilities of the Markov models, representing the med-
ical evidence derived from previous studies, but the visual

encoding of this data is never shown to the patient. They are
used to run simulations, whose results are then visually en-
coded and shown to the patient. Moreover, the doctor needs
to elicit patients preferences in order to quality-adjusted life
years (QALYs, a measure of life expectancy including both
quantity and quality of lived years).

The nested workflow model helped us with the design
and validation, by allowing us to represent different pro-
cesses of visual communication, knowledge externalization,
and shared analysis, facilitated by analytical methods and
interactive visualizations.

5. DISCUSSION AND CONCLUSION
In this paper, we have introduced the nested workflow

model. Our model builds upon Munzner’s nested model [27],
and inherits its benefits; in particular, it allows designers to
identify the different levels and to consider specific threats
to validity for each level. While Munzner’s work can be seen
as a theoretical and methodological framework, our contri-
bution provides an operationalization of the nested method-
ology focused on the workflow perspective. By comparing
the nested workflow model with the NBGM [25], we observe
that the major commonality is the identification of blocks.
In addition to NBGM data and task situations, our model
also considers user situations; it can represent multiple users
as well as different kinds of collaboration between them.
Moreover, while in the NBGM the relationships between
blocks are guidelines, representing design alternatives and



recommendations, our model concentrates on the structure
of the workflow in terms of tasks, execution patterns, respon-
sible users (alone or in collaboration), data/knowledge flows
and interfaces. Our preliminary experience of applying the
model showed us that the redesign of a block (e.g., changing
visual encodings, or integrating automated data analysis)
sometimes leads to changes also in task execution order and
user assignment; therefore, a representation of the visual an-
alytics workflow also supports designers with validating the
redesign and to compare before/after performances.

More in general, our workflow model is obviously intended
to complement design and evaluation methods discussed in
the visual analytics literature, and not to replace them. We
are also aware that some aspects of our model might reflect
common practices of visual analytics designers, but to the
best of our knowledge they have not been documented as
such. Therefore, we present our nested workflow model as
a contribution towards a common framework for the com-
munity, to ease experience sharing and critical reflection.
Future work comprises specifying a standard graphical rep-
resentation of the conceptual model, as well as eliciting stan-
dard methods to summarize and compare nested workflow
instances.
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