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Abstract. Several techniques for visualization of dynamic graphs are
based on different spatial arrangements of a temporal sequence of node-
link diagrams. Many studies in the literature have investigated the im-
portance of maintaining the user’s mental map across this temporal se-
quence, but usually each layout is considered as a static graph draw-
ing and the effect of user interaction is disregarded. We conducted a
task-based controlled experiment to assess the effectiveness of two basic
interaction techniques: the adjustment of the layout stability and the
highlighting of adjacent nodes and edges. We found that generally both
interaction techniques increase accuracy, sometimes at the cost of longer
completion times, and that the highlighting outclasses the stability ad-
justment for many tasks except the most complex ones.
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1 Introduction

Dynamic graphs can be used to model different complex real-word phenomena
and, therefore, are collected and analysed in various disciplines. Visualization
is an indispensable mean to make sense of this type of time-oriented data and
gain valuable insights about the phenomena they represent. In recent years, the
research about visualization of dynamic graphs has seen a rapid growth, with
many novel approaches, techniques, and systems, as surveyed by recent reviews.
Likewise, many evaluation studies have investigated those visualizations, to un-
derstand which are the key design factors, how they are perceived by users,
and how they can support users in analysing data and solving their tasks. The
evaluation of dynamic graph visualization has focused mainly on two aspects:
comparing animation versus static views, and assessing the importance of the
mental map preservation. These studies have often found conflicting results, or
a high variability of results depending on different tasks. The use of interac-
tion, in order to control the amount of mental map preservation, or to switch
from animation to static views, has been proposed as a means to increase the
applicability of a given visualization to diverse tasks. Nevertheless, few evalua-
tion studies have focused on the role of interaction in dynamic graph visualiza-
tion: usually static views are considered as noninteractive, while for animated
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views the most contemplated interaction is the playback control. To fill this gap,
we focused on the mental map preservation and its interactive control, which
we empirically evaluated in comparison with another common interaction such
as highlighting. Thus, the contribution of this paper is a controlled task-based
experiment to quantitatively evaluate two interaction techniques for dynamic
graph visualization, namely the interactive control of the mental map and the
interactive highlighting of adjacent nodes and links. In the following, we review
the related work; list the hypotheses, the design, and the settings of our study;
present the results and discuss their implications.

2 Related work

Herman et al. [23] provide an early survey on graphs in information visualization,
focusing on layout algorithms for both the general case and special subclasses
(e.g., planar graphs, trees) as well as on techniques for interactive navigation,
in particular focus+context and clustering. The state of the art report by von
Landesberger et al. [41] offers an updated and extensive review of the field; it
has a particular focus on issues and solutions for large scale graphs, but contains
sections on dynamic graphs as well as interactions. Kerracher et al. [25] explore,
and outline a structure of, the design space of dynamic graph visualization. Ar-
chambault et al. [3] also review the field, discussing in particular multivariate and
temporal aspects of networks. A comprehensive survey on visualizing dynamic
graphs is found in Beck et al. [10].

The layout stability Many existing algorithms for drawing dynamic graphs
ensure the layout stability in order to preserve the user’s mental map of the
graph [30]. This stability can be seen as an additional aesthetic criterion for dy-
namic graphs, prescribing that the placement of nodes should change as little as
possible [16]. The utility of this dynamic aesthetics has been highly disputed in
literature and several evaluations have been conducted, from both the algorith-
mic and the perceptual perspective. As for the algorithmic evaluation, Brandes
& Mader [14] compare three approaches: aggregation (fixed nodes positions are
obtained from the layout of an aggregate of all graphs in the sequence, achiev-
ing maximum stability), anchoring (nodes are attracted by reference positions),
and linking (nodes are attracted by instances of themselves in adjacent time
slices of the sequence). Their results suggest that the generally preferable ap-
proach is linking, that is also the most computationally demanding; a faster
alternative is anchoring to an aggregate layout initialized with the previous one
in the sequence. Many user studies have been performed to empirically assess
the importance of mental map preservation for readability, memorability, or in-
terpretability of dynamic graphs. Archambault & Purchase [6] review many of
them. In an early study about readability of direct acyclic graphs (DAGs), Pur-
chase et al. [34] found that the layout stability is beneficial for several tasks.
Conversely, a similar study about readability of DAGs by Zaman et al. [46]
found no significant effect of the layout stability. Purchase & Samra [35] tested
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several interpretation tasks for directed graphs and found that extremes (no
stability or maximum stability) are better than a medium stability. Conversely,
Saffrey & Purchase [37], by investigating readability and interpretability of di-
rected graphs, found that the layout stability does not provide any advantage
and can be even harmful for certain tasks. While all the evaluations mentioned so
far were conducted on timeline based visualization, Ghani et al. [20] studied the
effects of layout stability in readability of animated node-link diagrams, finding
that a fixed layout (maximum stability) outperforms a force-directed layout with
no stability. Analogously, by studying the memorability of animated node-link
diagrams, Archambault & Purchase [5] found that maximum layout stability was
the best condition.

User interaction in dynamic graph visualization User interaction is, by
definition, a crucial aspect of Information Visualization [15, page 6]. Various
motivated calls have been issued to establish a “Science of Interaction” to com-
plement Information Visualization [32]. Yi et al. [45] propose a taxonomy of inter-
action in Information Visualization based on the notion of user intent; Lam [27]
introduces a theoretical framework to understand and possibly reduce the costs
of interaction. Nevertheless, the importance of user interaction in dynamic graph
visualization is generally underestimated in literature [10]; timeline approaches
are generally considered as sequences of static (i.e., non interactive) drawings,
while the most discussed interaction for animation approaches deals with an-
imation control (e.g., play/pause, or time seeker). Wybrow et al. [44] review
interaction techniques for multivariate graphs and propose a classification based
on the Information Visualization Reference Model [15], distinguishing among
view level, visual-representation level, and data level. Notable examples include
a technique for selecting and manipulating subgraphs [29] or a network-aware
navigation integrating “Link sliding” (guided panning when dragging along a
visible link) and “Bring & Go” (bringing adjacent nodes nearby when pointing
to a node), with the latter having the best performance [31]. Another example
of evaluating interaction in dynamic graph visualization is provided by Rey &
Diehl [36], who investigate the effects of two interaction techniques for animated
visualization: interactive control of the animation speed and a tooltip showing
details on demand. They found that the speed control does not provide a sig-
nificant benefit, and the tooltip is outperformed by a visualization having labels
always visible.

Given the high variability in the importance of the mental map (depending on
tasks, user preferences, and possibly other factors), some scholars have proposed
an interactive control of the layout stability, to let the user fine-tune it [8], [19].
According to the taxonomy of interaction by Yi et al. [45], intaractive control of
stability can be understood as a Reconfigure interaction, corresponding to the
user’s intent: “Show me a different spatial arrangement”. It falls into the class
of user-controlled adjustments of the layout, which are very common visual-level
interactions for graphs [44]. Bach et al. [8] evaluated this stability slider in the
context of a specific technique (GraphDiaries) featuring staged animations of
node-link diagrams, but they did not consider it as an independent factor in the
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study design. Smuc et al. [38] also evaluated a graph visualization featuring a
stability slider, but without a specific focus on it.

Layout stability has been also described as a form of spatial highlighting,
where position is used to identify different instances of the same node over
time [7]. Highlighting, in the stricter sense, is a brushing interaction technique,
originally developed for scatter plots [11], and then extended and applied to
other visualization techniques. Brushing is a “change in the encoding of one or
more items essentially immediately following, and in response to, an interaction
with another item” [39, p. 235]. In particular, in the case of highlighting, the
change may affect hue, brightness, or color. Brushing operates within a view
or across multiple views; in the latter case, the interaction technique is better
known as linking and brushing [24]. Highlighting makes some information stand
out from other information; it effectively exploits pre-attentive processing [42],
which is the human capability to process visual information prior to, or in the
early stage of, focusing conscious attention. Linking and brushing techniques
support two user’s intents: Select, i.e., “Mark something as interesting” and
Connect, i.e., “Show me related items”, according to the interaction taxonomy
by Yi et al. [45]. In the context of graph visualization, highlighting of adjacent
nodes upon selection of a certain node (for example, by mouse hovering) is a
common interaction technique, also known as connectivity highlighting [21]. An
experiment by Ware & Bobrow has shown that interactive highlighting can effi-
ciently support visual queries on graphs [43]. In the case of timeline visualization
of dynamic graphs, the highlighting technique can be extended in order to fulfil
the need of visually linking and synchronizing multiple instances of the same
graph entities in different time slices [10], by considering adjacency not only
across the graph structure, but also along the time dimension.

Evaluation of other aspects in graph visualization Besides the importance
of preserving the mental map in node-link diagrams, another issue which attracts
the interest of scholars is the comparison between animation approaches and
timeline approaches, the latter being usually based on small multiples in a jux-
taposition arrangement. The controlled experiment by Farrugia and Quigley [17]
found that static drawings outperform animation in terms of task completion
time. Archambault et al. [4], in an analogous user study, found that small mul-
tiples are generally faster, but more error-prone for certain tasks; moreover,
mental map preservation has little influence on both response time and error
rate. Boyandin et al. [13] also conducted a comparative evaluation of animation
versus small multiples in the context of flow maps. They found that with ani-
mation there were more findings of changes in adjacent time slices, where with
small multiples there were more findings about longer time periods. Moreover,
they suggest that switching from one view to the other might lead to an in-
crease in the numbers of findings; we see this consideration in analogy with the
mental map case, where the introduction of a stability slider might allow the
user to adapt the layout to a particular task and possibly increase the overall
visualization effectiveness.
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Task taxonomies A profound understanding of analytical tasks is a necessary
prerequisite to design novel visualization techniques as well as evaluate existing
ones. Ahn et al. [1] propose a task taxonomy for dynamic graphs along three
different axes: graph entities, temporal features, and properties (structural and
domain-specific). According to Bach et al. [8], each task can be understood as
a question containing references to two dimensions and requiring an answer in
the third one. In this way, they distinguish between topological tasks, tempo-
ral tasks, and behavioural tasks. Archambault and Purchase [3] structure their
taxonomy along two dimension, mostly aiming at assessing the importance of
the mental map. They distinguish between local and global tasks, and between
distinguishable and undistinguishable tasks (depending on whether graph en-
tities need to be distinguished from each other or can be aggregated). A task
taxonomy for multivariate networks can be found in [33].

Open challenges Summarizing our review of related work on visualization of
dynamic graphs, we can observe that many techniques have been designed and
evaluated, but the research community lacks final and well-established results
about highly disputed issues, such as the importance of the layout stability, or
the comparison between animation and timeline approaches. In both cases, it
has been suggested that enabling users to interactively switch between different
views might broaden the number of tasks that they can efficiently solve. Hence,
there is a commonly recognised need of understanding the role of interaction in
the context of dynamic graph visualization, but only few studies have specifically
focused on the evaluation of interaction techniques.

3 Our evaluation

Addressing the aforementioned need, we performed a user study to explore in-
teraction in the context of dynamic graphs visualization. In particular, we con-
sidered a timeline visualization with the juxtaposition approach, where several
node-link diagrams are arranged along a horizontal timeline (Figure 1). We eval-
uated two interaction techniques. The first one is the interactive control of the
layout stability, which is executed by the means of a slider control (thus, for the
sake of brevity, we will refer to it as the Slider). The second interaction is the
highlighting of adjacent nodes, adapted for dynamic graphs (in the following,
Highlighting). In this section we detail the study design, the stimuli, the tasks,
and the settings of our empirical experiment.

Study design We designed our user study as a quantitative controlled task-
based evaluation, with two observed dependent variables: time and error. We
considered two factors, i.e. independent variables: the presence of the Slider
interaction (2 levels: off/on), and the presence of the Highlighting interaction
(2 levels: off/on). In other words, we considered four different interfaces: no-
interaction, only Slider, only Highlighting, and both interactions. We chose this
design in order to compare the two interaction with each other and with the non-
interactive baseline, and also to assess how the two interactions work together.



6 P. Federico and S. Miksch

Fig. 1: The remote evaluation software displays stimuli, provides instructions,
and measures time and error.

We tested 6 task types. The full factorial design led to a total amount of
N = Task×Slider×Highlighting = 6×2×2 = 24 conditions. To mitigate the
effects of personal skills and preferences, we chose a within-subject design; each
subject tested 24 conditions, by solving a different task for each of the six task
type and for each of the four interfaces. In order to lower the cognitive effort
of switching between different interfaces, we grouped conditions by interface. To
mitigate the effects of learning and fatigue, we used a Latin square arrangement
of the interfaces and we randomized the order of the tasks within each interface.
Moreover, we randomized the initial slider position.

Stimuli We selected as baseline a spring-embedder layout as implemented in
the Prefuse visualization toolkit [22](Figure 1). According to the linking ap-
proach [14], we added inter-time links to the graph in order to ensure layout
stability. The Slider controls the amount of stability by interactively changing
the relaxed lengths of inter-time springs. In the implementation of the Highlight-
ing technique used for our experiment, when the user moves the mouse pointer
over a node, a different combination of fill and stroke colors is used to highlight
each different type of “adjacent” graph item, as shown in Figure 2.

For the experiment we used real-world datasets: the dynamic graphs of social
relationship between university freshmen collected by van Duijn, consisting of
38 nodes and 5 time points, and the one collected by van de Bunt, consisting of
49 nodes and 7 time points [40]. Through a threshold mechanism we derived two
dynamic unweighted (i.e., binary) graphs from the original dynamic weighted
graphs. Each task involved only subsets of 3 time slices.
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Legend:

Fig. 2: A: a dynamic graph over three time slices; B: the same graph highlighted
on a mouse-over event.

Tasks We selected six different types of tasks (Table 1). As a criterion for
the selection of the tasks, we considered existing studies on the importance
of layout stability and tried to elicit a set of similar tasks, in order to have
comparable results. Furthermore, we considered the task taxonomy by Ahn et
al. [1] in order to have a meaningful and representative set of tasks along its three
axes. As for the graph entities, we included tasks referring to all the levels: the
entity level (nodes, links), the group level (paths, components), and the graph
level (the entire graph). As for the properties, we disregarded tasks referring to
domain properties and only considered tasks referring to structural properties,
which are specific aspects for graphs. As for the temporal features, we included
tasks referring to individual events and contraction & growth, scoping out more
complex tasks, which can be investigated in a follow-up study. In order to better
describe the nature of our tasks and to enable a better interpretation of results,
we also categorized our tasks according to other existing taxonomies [6, 8], as
shown in Table 1.

Table 1: Task types, examples, and classifications

Task Description by [1] [6] [8]

1.NO Node Occurence Event/Node Local/Distinguishable When
e.g., When is the first appearance of node 27?

2.LO Link Occurence Event/Link Local/Distinguishable When
e.g., When is the last appearance of link 6–9?

3.ND Node Degree Event/Group Local/Indistinguishable When
e.g., When does the smallest degree (number of connections) of node 10 occur?

4.SP Shortest Path Event/Group Local/Distinguishable When
e.g., When does the largest geodesic distance between node 7 and node 9 occur?

5.CC Connected Components Growth/Graph Global/Indistinguishable What
e.g., Is the number of connected components increasing, decreasing, or stable?

6.AL All Links Growth/Graph Global/Indistinguishable What
e.g., Is the total number of edges increasing, decreasing, or stable?
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Subjects’ pool and study settings We conducted the experiment remotely by
using the Evalbench toolkit [2] (Figure 1). In order to assess the technical setup,
the estimated overall length of the evaluation session, and the understandability
of textual descriptions of our tasks, we performed two pilot tests with direct
observation of subjects, and then we implemented small adjustments before the
main remote study. For the main study we recruited 64 volunteer subjects among
undergraduate students at the fifth semester of a bachelor programme in Visual
Computing. All the subjects had normal or corrected vision. Right after the
recruiting, we instructed the subjects with a 15 minute briefing, describing the
visualization and the interactions to be evaluated, and recalling the necessary
concepts from graph theory (e.g., the notion of geodesic distance as shortest path,
or the notion of connected components). The subjects were instructed to be fast
and accurate in solving the tasks, without assigning any priority between speed
and accuracy. The evaluation software included a training session for each of the
four interfaces. During the training sessions, the software does not collect data;
it shows the correct answer after completion of each task and allows repetitions
until the subject feels confident of having understood the task types and the
interface. The test, including the training sessions, had an average duration of
20 minutes.

Hypotheses We designed our experiment to test three hypotheses: A) the Slider
reduces error rates at the cost of longer completion times, in comparison with
the non-interactive interface; B) the Highlighting reduces error rates at the cost
of longer completion times, in comparison with the non-interactive interface;
C) the Highlighting outperforms the Slider.

We hypothesize that each interaction reduces error rates in comparison with
the non-interactive interface, because both interactions comply with the rule of
self-evidence and address the adjacency task. The rule of self-evidence for mul-
tiple views prescribes the use of “perceptual cues to make relationships among
multiple views more apparent to the user” [9]. The Highlighting complies with
this rule, by drawing attention to different instances of the same node across dif-
ferent time slices; the Slideralso complies with this rule, by allowing the user to
select the maximum stability and fix node positions across different time slices.
The adjacency task (i.e., “Given a node, find its adjacent nodes”) has been iden-
tified as the only graph-specific task [28]. The Highlighting obviously addresses
this task, as well as the Slider does, by allowing the user to select the mini-
mum stability and exploit the proximity Gestalt principle [12]. Conversely, we
hypothesize that both interactions increase the task completion time in compar-
ison with the non-interactive interface. We make this hypothesis in analogy with
the existing comparative evaluations between animation and (static) timeline
views [17] [4], while we consider interactive timeline views as a middle way. More
specifically, in terms of interaction costs [27], the Highlighting might increase the
completion time because of the physical-motion cost of tracking elements with
the mouse, while the Slider might imply view-change costs of reinterpreting the
perception when the layout rearranges. For both techniques, there might be the
decision costs of forming goals, such as deciding whether the available interaction
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is useful to solve the given task, and how. Moreover, the simple fact that the GUI
provides an interactive option might lead users to explore its use, in order to form
a solving strategy before solving a task, or to possibly increase the confidence
about the solution afterwards. Furthermore, we hypothesize that the Highlight-
ing will have better performance than the Slider. We derive this hypothesis from
the observation that the Highlighting is a common and relatively simple interac-
tion, which at least partially exploits pre-attentive processing, while the Slider
is based on a novel and complex concept. In other words, while the Highlighting
directly addresses the issue of connecting entities along two dimensions (time
and graph structure), the Slider implicitly introduces another dimension, since
the stability lies in the parameter space of the layout algorithm.

4 Analysis

We preprocessed data collected from 64 subjects in order to assess whether they
were eligible for analysis and we had to discard one subject whose logs were cor-
rupted. The analysis was then performed on data from 63 subjects, consisting of
3024 samples in total. We checked the completion times for normality with the
Shapiro-Wilk goodness-of-fit test but the check failed. We then applied a loga-
rithmic transformation to the completion times and checked again the normality
with a positive result. The verification of the Gaussian condition assured the ap-
plicability of parametric tests; we could perform the analysis of variance through
an ANOVA with the subject as a random variable. When the ANOVA found a
factor to have a statistically significant effect, we compared the two levels of that
factor with a pairwise post-hoc Student’s t test; when the ANOVA found the
interaction between factors to be statistically significant, we performed an all-
pairs Tukey’s honestly significant difference (HSD) post-hoc test. The error can
be understood as a dichotomous (i.e. binary) variable, since there are only two
possible outcomes for each data sample (correct, not correct). Hence, we anal-
ysed the error by logistic regression as a generalized linear model (GLM) with a
binomial distribution and a logit transformation as the link function, computing
likelihood ratio statistics. When a factor was found to be a significant effect,
we analysed the contrast between its levels in terms of pairwise comparisons
between estimated marginal means.

5 Results and discussion

Figure 3 shows time and error by Highlighting and Slider, grouped by Task ; time
is represented by box-plots with first, second (median), and third quartile, while
error is represented by bars (mean) and error bars (standard error). Figure 4
shows statistically significant differences. In light of these results, we can verify
our hypotheses.
Hypothesis A is partially confirmed. The Slider decreases the error rate for all
tasks but the easiest one (1.NO), and it increases the completion time for tasks
3.ND and 4.SP only.
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Fig. 3: Time (left-hand side, as box plots) and error (right-hand side, as bars
representing means and error bars representing standard error) by Highlighting
and Slider, grouped by Task. � H0S0 � H0S1 � H1S0 � H1S1

Hypothesis B is partially confirmed. The Highlighting decreases the error rate
for all tasks but the most difficult one (6.AL); it increases completion times for
tasks 4.SP and 5.CC, but it reduces it for task 2.LO, and does not affect the
remaining tasks.
Hypothesis C is partially confirmed. The Highlighting outperforms the Slider
for tasks 1.NO, 2.LO, and 3.ND. For task 4.SP, the Highlighting and the Slider
score equally: each of them decreases the error rate (by the same amount) and
also increases the completion time if used alone, but when used together they
do not increase the completion time, showing a desirable effect interaction. For
task 5.CC, both factors reduce the error rate, but the Highlighting also increases
the completion time when used alone. For task 6.AL, the only significant effect
is that the Slider reduces the error rate.

Besides the verification of our hypothesis, which are mostly confirmed, our
user study provides interesting insights about the differences between tasks. First
of all, we observe that the differences in error rate and completion time among
the tasks are significant, hence we can confirm that in general our tasks have
different levels of difficulty. Secondly, we observe that the effectiveness of the
tested interaction techniques varies with the levels of difficulty of the tasks. In a
very brief but accurate summary we can say that, for easier tasks, the Highlight-
ing decreases error rates and in some cases even decreases completion times;
conversely, for more difficult tasks, it is the Slider that decreases error rates.
Moreover, for tasks 3.ND, 4.SP and 5.CC, one technique increases completion
times if used alone, but it does not if used in combination with the other one.
Looking back at the classification of our tasks (Table 1), we can also identify the
relevant aspects. We can observe that, for those tasks involving simpler temporal
features of distinguishable single entities (1.NO and 2.LO), or indistinguishable
groups (3.ND), the Highlighting is more effective. For those tasks that refer to
more complex temporal features at the graph level, even if indistinguishable
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Fig. 4: Statistically significant differences for time and error, by Task. An ar-
row means that the source is faster or, respectively, more accurate than the
destination, with the reported probability. Lines represent all-pairs comparisons
between factor combinations (� H0S0, � H0S1, � H1S0, and � H1S1), as well
as pairwise comparisons by Highlighting (H0–H1, top) and Slider (S0–S1, left).

(5.CC and 6.AL), the Slider is more effective. Task 4.SP is about the changes of
the geodesic distance between two nodes and requires the distinct identification
of several nodes and links along the shortest path. In this case both techniques
are equally accurate; if (and only if) they are used together, they do not even
slow down the analysis. We can conjecture (by also considering our observations
during the pilot experiments) that during the completion of a such complex task,
the Slider can be used to switch back and forth between the minimum stability
(to guess geodesic distances and shortest paths based on Euclidean distances)
and the maximum stability (to identify instances of nodes and links across dif-
ferent time slices), while the Highlighting helps with tracking objects. As for task
6.AL, the Slider resulted to be effective; we hypothesize (by also considering our
pilot observations) that subjects simply set the minimum stability and looked at
the total graph area as an estimator of the density. We would have expected the
Highlighting to be also effective, since the analysis of the degree a few central



12 P. Federico and S. Miksch

nodes might provide a good estimator of the graph density, given the power-law
distribution of real-world networks. The results show that the test subjects did
not exploit this expert strategy.

Design implications Both the Slider and the Highlighting are effective in-
teraction techniques for dynamic graph visualization, and their use generally
improves user performances. In those circumstances where it might be not pos-
sible to include them both (for example, if the color channel is employed to
encode attributes of multivariate graphs, or if the GUI is already overloaded
with many controls), our evaluation provides an indication to designers accord-
ing to the user tasks to be supported. Our results suggest that the Highlighting
is indicated for tasks involving temporal features of distinguishable single enti-
ties or indistinguishable groups, while the Slider is indicated for tasks involving
complex temporal behaviours at the graph level. The joint use of both interac-
tions is beneficial for the most complex task involving temporal behaviours of
connectivity paths.

6 Conclusion

We have presented an evaluation of two interaction techniques for dynamic graph
visualization, namely the interactive control of the layout stability and the inter-
active highlighting of adjacent nodes and links. The results mostly confirm our
hypotheses: both interactions decrease the error rate, in some cases at the cost
of a longer completion time. We observed significant differences between tasks,
with the highlighting performing better for some tasks, and the stability control
performing better for others. We acknowledge the limitations of our experiment,
whose findings might not be directly generalizable to large-scale datasets. The
highlighting interaction for dynamic graphs is much more complex then the stan-
dard connectivity highlighting for static graphs, and may require training to be
understood and used effectively. The stability control might have a different ef-
fect when combined with 3D visualization and interaction techniques (e.g., the
vertigo zoom [18]). However, our study provides preliminary clues for visualiza-
tion designers who need to choose the most appropriate interaction technique
for their users’ tasks. Further studies are needed to obtain a comprehensive un-
derstanding of the role of interaction in visualization of dynamic graphs.
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