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ABSTRACT
User tasks play a pivotal role in visualization design and
evaluation. However, the term ‘task’ is used ambiguously
within the visualization community. In this article, we criti-
cally analyze the relevant literature and systematically com-
pare definitions for ‘task’ and the usage of related terminol-
ogy. In doing so, we identify a three-dimensional conceptual
space of user tasks in visualization, referred to as the task
cube, and the more precise concepts ‘objective’ and ‘action’
for tasks. We illustrate the usage of the task cube’s dimen-
sions in an objective-driven visualization process, in differ-
ent scenarios of visualization design and evaluation, and for
comparing categorizations of abstract tasks. Thus, visual-
ization researchers can better formulate their contributions
which helps advance visualization as a whole.
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1. INTRODUCTION
Tasks are an issue discussed frequently in the visualiza-

tion community as they are pivotal to how we design and
evaluate our work. In many, if not all, scenarios of empirical
visualization research [25; 19] tasks are either central to the
study setup (e.g., in controlled experiments or case studies)
or an emergent study result (e.g., transcription of observed
visual data analysis and reasoning processes). This is fur-
ther illustrated by the role of tasks in widely used design
frameworks such as the Data–Users–Tasks Design Triangle
[34] or the Nested Model [35].

However, there is continuing confusion about what the
term ‘task’ means in a visualization context. Even if we
consider tasks only for visualization users and neither for
developers of visualization systems nor for the audience of
a presentation, there are many nuances of what such a vi-
sualization task can be. It may be as open-ended as ‘detect
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anomalies in recent public health data’ or ‘identify the main
drivers of climate change’ but also as crisp as ‘find yester-
day’s most profitable product’ or “buy a train ticket” [56,
p. 2433]. Already in 1994 it was widely acknowledged that
“the notion of ‘task’ is increasingly difficult to pin down”
[44, p. 410] and nowadays the word ‘task’ is still regarded
as “deeply overloaded in the visualization literature” [35, p.
921]. Based on our own experience throughout multiple vi-
sualization design and evaluation projects and inputs from
fellow researchers, we regard this confusion as unsatisfac-
tory. A commonly agreed understanding and terminology
of tasks are needed.

Therefore, this article investigates user tasks in visualiza-
tion design and evaluation using the three conceptual dimen-
sions, referred to as the task cube, as a theoretical compass:

• The primary contribution of this article is the concep-
tual space and its dimensions perspective, abstraction,
and composition, which we define and describe in the
section of the same title. We also compare our dimen-
sions systematically to definitions from relevant litera-
ture in visualization and human-computer interaction
(HCI).

• Furthermore, we emphasize the central role of tasks in
visualization in the next section. On the one hand,
we present visualization as a task-driven endeavor by
putting objectives and actions to the foreground of vi-
sualization processes. On the other hand, we illustrate
the role of tasks in different scenarios of visualization
design and evaluation.

• Finally we survey 37 categorizations of abstract tasks
found in theoretical frameworks and state-of-the-art
reports and systematically compare these categoriza-
tions along the dimensions of the task cube.

Thus, instead of proposing a categorization of individual
tasks, the task cube and its dimensions help visualization
researchers navigate the conceptual space of task catego-
rizations – in particular when working on theoretical task
frameworks and collecting state-of-the-art reports. In addi-
tion, the reduced ambiguity allows visualization researchers
to better formulate their contributions. This manuscript
builds on contributions presented in a previous workshop
article [47] with revised definitions, an objective-driven vi-
sualization process, an illustrative example, and a survey of
abstract task frameworks as major extensions.
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Figure 1: Overview of the conceptual space of user
tasks in visualization with composition, perspective,
and abstraction as orthogonal dimensions.

2. CONCEPTUAL SPACE
In an effort to clear the aforementioned confusion around

the term ‘task’, we analyzed the scientific literature in HCI
and visualization for definitions of what tasks are and what
roles they play in visualization (see section on Compari-
son to Literature). In addition, we surveyed and compared
task categorizations published in theoretical frameworks and
state-of-the-art reports (see section on Categorizations of
Abstract Tasks). Our materials have a focus on visualization
and visual analytics of time-oriented data and graph data.
Visual analytics [63] has a particular emphasis on develop-
ing a science of interaction [2] and to support higher-level
reasoning. Nevertheless, we consider our results applicable
to the visualization field in general.

Our literature review confirmed that the term ‘task’ is not
consistently defined but refers to different concepts. Conse-
quently, our analysis concentrated on characterizing these
concepts and we identified three dimensions – abstraction,
composition, and perspective – spanning the task cube (Fig-
ure 1). For this purpose, we treat composition and abstrac-
tion as continuous dimensions along with the why/how di-
chotomy for perspective. Thus, a concept of task can be
placed either on the top or on the bottom plane of the figu-
rative cube. As we demonstrate below these dimensions are
nonredundant and sufficiently expressive to explain the con-
ceptual variety of user tasks in different visualization design
and evaluation scenarios.

Next we present these dimensions in a consolidated ter-
minology distilled from our literature analysis:

Abstraction. On the one hand, concrete tasks describe
what needs to be done in a specific application context,
such as ‘find the quarter of Google’s largest revenue’. On
the other hand, abstract tasks describe an aim on a more
generic level, such as ‘find maximum’. To generalize the con-
cept behind a concrete task, they can be abstracted and ex-
pressed using generic categories from task frameworks. For
example, Andrienko and Andrienko [7] would classify this as
the abstract task ‘indirect lookup’. Thus, abstraction and
task frameworks allow systematic study and facilitate the
reuse of visualization methods for tasks of the same abstract
category.

Composition. Tackling a task, it is common practice
to break it down into smaller subtasks [16; 44]. Thus, the
level of composition can range from long-term challenges like
‘end poverty’ to small steps like ‘find outliers in economic
data’. By the same token, task frameworks often distinguish

high-level, low-level, and sometimes levels in-between [5; 9;
48]. The compositions of tasks form hierarchies for which
we propose a continuous scale from high-level to low-level.

Abstraction can be clearly distinguished from composi-
tion: a low-level task is a part of a high-level task, whereas
an abstract task is a more generic category of a concrete
task. This is illustrated as a low-level task demands fewer
steps to perform than a high-level task encompassing it. In
contrast, if an abstract task describes a given concrete task
more genericly, both tasks still require the same steps. These
dimensions conform to the subclass-of and part-of relation-
ships found e.g. in object-oriented programming and ontol-
ogy languages.

Perspective. On the one hand, high-level visualization
tasks are typically non-routine objectives such as ‘find sus-
picious patterns’ or ‘what explains this behavior’. For these,
the technical term ‘objective’ is adopted from Roth [48] be-
cause other terms such as ‘problem’ or ‘goal’ are understood
differently in our community. We define it as:

An objective is a question on data that the user
raises for inquiry, consideration, or solution while
aiming to solve a problem or satisfy a curiosity.

On the other hand, tasks using interactive features of visual-
ization artifacts and categories of some low-level task frame-
works are formulated as executable actions such as ‘map
time to y-axis’ or ‘zoom to the orange cluster’. The techni-
cal term ‘action’ is widely used and we derive its definition
from Gotz and Zhou [17]:

An action is a discrete step towards addressing
an objective.

Since there is usually no direct relation – no decomposition
– between objectives and actions, it makes sense to distin-
guish between a why perspective and a how perspective and
to have two distinct terms to explicitly address these per-
spectives.

Both objectives and actions can be composed or decom-
posed at different levels: On the why perspective, users
break down large objectives to increasingly smaller subob-
jectives intentionally or unintentionally in order to make
ill-defined objectives manageable using visualization tools
[16; 38]. On the how perspective, blocks of consecutively ob-
served actions can be combined to action sequences, at mul-
tiple levels of composition. With experience, users will de-
velop action strategies to solve common subobjectives with a
tool and it is possible to analyze such strategies by observing
users [43]. In addition, actions can be decomposed further
to a level below intentional problem solving such as individ-
ual user interface events [17]. Even though the composition
hierarchies of objectives and actions are connected, it makes
sense to draw a clear line between them along the why/how
dichotomy because objectives and actions are different con-
cepts with different properties. Furthermore, actions can
be found at the same composition level as intermediate- to
low-level objectives with the mapping varying largely de-
pending on visualization tools. For example a specialized
tool for electronic health records might have the affordance
to select all critical patients by a single intermediate-level
action whereas a general purpose time series analysis tool
requires a sequence of low-level actions to achieve the same
objective.
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Figure 2: Visual task decomposition of the Kronos
Incident as described in the Example section.

Neither could we subsume perspective under abstraction
because both objectives and actions can be described at
different levels of abstraction. Above, we mentioned the
concrete objective ‘find the quarter of Google’s maximum
revenue’ and classified it as the abstract objective ‘indirect
lookup’. Likewise, the action of changing the y-axis of a
scatter plot to a different variable can be abstracted as ‘re-
configure’ [70], ‘arrange’ [9], or ‘visualize’ [18].

Together these three dimensions span the task cube (Fig-
ure 1), a simple yet expressive model of the conceptual space
for user tasks in visualization.

2.1 Example
To illustrate these concepts more deeply, we will follow

an extensive example based on the Kronos Incident, the fic-
tional application context created for VAST Challenge 2014
[12].

The concrete, high-level objective of the Kronos Incident
[12] is to support law enforcement agencies of the fictional
country of Kronos in investigating the disappearance of some
employees of GAStech, a natural gas production company.
The VAST Challenge breaks the objective down to subobjec-
tives of (1) reconstructing the events of the disappearances,
(2) reconstructing networks of people that influenced each
other, (3) finding missing information, and (4) providing the
best way of action for the police force (Figure 2). Of course,
these concrete subobjectives need to be broken down fur-
ther. For example, to specifically analyze the network of
the main suspect, an organization named Protectors of Kro-
nos (POK), we can identify lower -level objectives as (2a)
identifying the leaders, (2b) identifying all members of the
extended network, (2c) analyzing the change of the network
structure over time, and (2d) finding potential connections
between the POK and GAStech.

To break down the concrete subobjective (2a) (identifying
the leaders of POK) even deeper, we follow the solution of
Saraf et al. [50], winners of the Grand Challenge Award.
They first (2a1) located co-occurrences of the terms “POK”
and “leader” in news articles over time. This resulted in
three time ranges when both terms peaked simultaneously.
Then they (2a2) browsed through word clouds of persons
retrieved from named entity recognition of articles in these
time frames.

It is possible to abstract the high-level objective by domain
as a law enforcement objective. The subobjective (2a) iden-
tifying the leaders can be abstracted as ‘discover/explore/

compare’ using the three-level why-typology by Brehmer and
Munzner [9]. We can abstract the low -level objective (2a1)
of finding co-occurrences of the terms over time as ‘discover/
locate/summarize’ [9] or as a ‘synoptic inverse comparison
task’ [7]. The following concrete objective of finding the
most mentioned name in each time frame can abstractly be
considered an ‘elementary comparison’ task according to An-
drienko and Andrienko [7].

Saraf et al. [50] solve the concrete low -level objective (2a1)
by entering the terms in a search box of their visualization
artifact and then use the date range widget for subobjective
(2a2). Both concrete actions can be abstracted as ‘filter’ in
the frameworks of Yi et al. [70] and Gotz and Zhou [17].

2.2 Comparison to literature
In colloquial English a ‘task’ is understood as “a piece of

work that has been given to someone : a job for someone
to do”.1 The Merriam-Webster Dictionary emphasizes that
tasks are characterized as being externally assigned, having
a deadline, and being hard or unpleasant. Surveying the HCI
and visualization literature we can however discover a shifted
focus and a multitude of nuances of this general definition.
Next, we analyze these along the three dimensions presented
above.

Abstraction. The need for abstraction and categoriza-
tion of tasks is widely acknowledged. There are many differ-
ent terms used for abstract tasks in the literature including
‘generic’, ‘general’, but also ‘high-level’. Munzner [35, p.
921] distinguishes between a task formulated in terms of an
application domain, which she calls ‘problem’, and an ab-
stract task, which she denotes as ‘operation’. Apart from
that we are not aware of any term for a concrete task.

Composition. It appears as a general notion that users
break down tasks into smaller, better manageable subtasks
[16]. Preece et al. [44, p. 412] speak of a “decomposition of
goals into subgoals and tasks into subtasks as the user moves
downwards through a hierarchy of systems”. One possible
notation to specify such hierarchical tasks models are Con-
curTaskTrees [41]. In the visualization literature, the terms
‘high-level’ and ‘low-level’ are often used to distinguish such
tasks [9] but there is no consistent understanding.

In addition, some task frameworks introduce explicitly
named composition levels (Figure 3), which contrasts ab-
straction that to our knowledge has no such hierarchies.
Norman [39, p. 15] introduces a composition level above
tasks: “an activity is a coordinated, integrated set of tasks”
and emphasizes that design should be centered on these ac-
tivities. Gotz and Zhou [17, p. 46] describe how “analysts
typically follow a divide-and-conquer approach, performing
several sub-tasks to achieve the requirements of a single top-
level task”.

Tasks at the leaf-level of the hierarchy are often treated
distinctively. Preece et al. [44, p. 411] define an action “as
a task that involves no problem solving or control structure
component” and is performed by “the human physically in-
teract[ing] with a device”. Tasks at a similar level of com-
position are also referred to as ‘simple tasks’ or ‘unit tasks’
[44]. Fuchs [16, p. 10] uses ‘basic tasks’ for the leaf-level
and differentiates them from ‘actions’, which “describ[e] the
functional properties beyond the conceptual task decompo-

1http://www.merriam-webster.com/dictionary/task, ac-
cessed Aug 27, 2014.

http://www.merriam-webster.com/dictionary/task
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Figure 3: Comparison of composition levels in dif-
ferent hierarchies. The grey area denotes whether
the level is regarded specific to the used tool.

sition”. He defines an ‘action’ as “an atomic operation that
is executed upon an artifact, by an entity that is involved
in the completion of the task (user, computer, . . . )”. Simi-
larly, the action tier of Gotz and Zhou [17, p. 46] represents
“an atomic analytic step performed by a user with a visual
analytic system”. They consider yet another level below
actions: “events correspond to the lowest-level of user inter-
action events (for example, a mouse click or a menu item
selection) which carry very little semantic meaning” [p. 43].
Norman [39, p. 15] describes tasks as “composed of actions,
and actions [as] made up of operations”. ConcurTaskTrees
[41] distinguish at the leaf-level between ‘user tasks’, ‘appli-
cation tasks’, and ‘interaction tasks’. They refer to tasks
composed of such subtasks as ‘abstract tasks’.

The selection of tools also plays an important role in
task decomposition (Figure 3). Both Preece et al. [44] and
Cooper et al. [13] use it to distinguish between ‘goals’ and
‘tasks’. For Fuchs [16] it is the ‘action’ that involves an
artifact such as a task-specific visual representation.

Perspective. The distinction between a why and a how
perspective of tasks stretches across the literature and has
only recently been addressed by Brehmer and Munzner [9]
as ends–means ambiguity.

On the one hand, the why perspective describes a task
by the ends or the intended outcomes. Preece et al. [44, p.
411] define an external task or goal “as a state of a system
that the human wishes to achieve”. Roth [48, p. 2357] dis-
tinguishes further between “an ill-defined task, or goal, mo-
tivating use of the visualization” and “a well-defined task, or
objective, that can support the goal”. In visualization, the
why perspective is often formulated as a question or a query
to be answered based on the data at hand. Andrienko and
Andrienko [7, p. 49] “use the word ‘tasks’ to denote typical
questions that need to be answered by means of data analy-
sis”, Amar et al. [5] categorize tasks by questions or queries
asked, and Munzner [35, p. 921] denotes a task described
in domain terms as ‘problem’. In her book [36, p. 45], she
refers to abstract why tasks as ‘action’. For Gotz and Zhou
[17, p. 46] the “task tier captures a user’s high-level analytic
goals”.

On the other hand, the how perspective addresses the
means or actions by which users perform the task. Preece
et al. [44, p. 411] define a task, in particular an internal task,
“as the activities required, used or believed to be necessary
to achieve a goal using a particular device”. Fuchs [16, p. 10]
understands a task “as a single, conceptually distinguishable
but not necessarily atomic step within a composite activity

or work flow”. Cooper et al. [13, p. 15] write “both activities
and tasks are intermediate steps (at different levels of orga-
nization) that help someone to reach a goal or set of goals”.
For Schulz et al. [52, p. 2366] visualization tasks are “activi-
ties to be carried out interactively on a visual data represen-
tation for a particular reason”, for Brehmer and Munzner [9,
p. 2376] “abstract tasks are domain- and interface-agnostic
operations performed by users”, and Roth [48, p. 2357] dis-
tinguishes a third category: “a system function, or operator,
that may support the objective”.

Discussion. What makes the notion of ‘task’ so hard
to understand are not only the differences in these three di-
mensions (Figure 1) but also their interconnectedness. For
example, when we follow a concrete user session, we could
observe how the user transforms a high-level why task for-
mulated in terms of the application domain into low-level
how tasks matching operations of the visualization system
[17]. Thus, it is difficult to tackle tasks in a more abstract
way needed to draw generalizable guidelines and to charac-
terize tasks on the levels in-between.

Bridging between the extremes and taking an abstract
view on an intermediate level appears as a promising direc-
tion. Yi et al. [70] propose to categorize actions by user in-
tents, i.e., “what users achieve by using the interaction tech-
niques rather than how the techniques provided by Infovis
systems work”. Schulz et al. [52] establish a five-dimensional
design space of visualization tasks that encompasses both
why and how as well as dimensions pertaining to the data
(characteristics, target, cardinality). Likewise, Brehmer and
Munzner [9] represent a task as a triple composed of why,
how and what (data).

In contrast, our work does not aim for such a single in-
termediate level that captures all diverse forms of tasks. In-
stead, it emphasizes the diversity of task concepts. The
task cube can accommodate for different task categoriza-
tions that suit different visualization scenarios and applica-
tion domains. Thus, it proceeds from previous work consid-
ering its dimensions: On the one hand, Munzner [35] pro-
poses a 2x2 matrix of task concepts by abstractions and
composition. On the other hand, Roth [48] distinguishes
between different concepts for why (goal, objective) and
how (operator). Pike et al. [42] combine the why/how di-
chotomy and the level of composition. They describe “ana-
lytic discourse as the relationship between [interaction] tech-
niques and the user’s goals and tasks, which involve low-level
choices about manipulating interactive controls and higher
level goals surrounding the problem being investigated” [42,
p. 265]. Brehmer and Munzner [9] propose three dichotomies
to compare task categorizations: level (high vs. low), tem-
porality (sequences vs. constraints), and specificity (general
vs. specific). What the task cube adds is a more fine-grained
understanding of abstraction and a terminology that can
distinguish between why and how tasks. In particular, we
need to emphasize that visualization often addresses open-
ended objectives. When solving such objectives, the users
can follow different strategies and there are often no definite
mappings between the why and the how. Furthermore, HCI
scholars have long warned against a design approach that
focuses on hierarchical analysis of operational tasks and not
on the goals and characteristics of users [8; 13; 39; 44].

Next, we will explore the role of objectives and actions
both in a concrete process and in different scenarios of design
and evaluation.



3. ROLE OF TASKS IN VISUALIZATION
We conceptualize visualization-supported data analysis as

a process that is largely driven by objectives. This process
combines and extends existing process models by expanding
the gulf of goal formation [24; 38] beyond actions towards
higher-level objectives and by adding emphasis on objectives
and their breakdown to the knowledge generation model [49]
and the hypothesis-driven model by Lammarsch et al. [26].
For this purpose we rely on a few technical terms model,
finding, insight, hypothesis, and knowledge from the knowl-
edge generation model [49].

This visualization-supported data analysis process (Fig-
ure 4) starts with a user, data, and an objective [34]. While
the data resides in a more or less structured form within a
computer, the user brings in the objective and his or her
background knowledge [49; 56]. The objective can originate
from the user’s personal goals, from the goals of the user’s
organization [44], or out of pure curiosity [61].

Under consideration of her or his background knowledge
about the objective, about the data, and about the avail-
able tools, the user breaks the objective down to manage-
able subobjectives. Then he or she develops a plan, which
is a sequence of actions that she or he believes will solve
the subobjective and thus will advance towards addressing
the overall objective [44; 16]. This planning is guided but
also limited by the affordances of the tool(s) used. Such a
tool is typically a visualization artifact providing interaction
with visual representations and models of data. Neverthe-
less, we should keep in mind that in many realistic data
analysis application contexts users have a range of possible
tools at their disposal: e.g., other computing systems, pen
and paper, or mental models.

The user performs the planned actions by activating a
number of events in the visualization user interface that
are interpreted by interaction techniques [17]. For exam-
ple, panning using a scrollbar involves a mouse-down, sev-
eral mouse-drag, and a mouse-up event. Still, we focus on
actions as the discrete steps that represent the lowest level
of activity of which the user is consciously aware. Above
actions we consider action sequences and action patterns as
frequently occurring sequences, e.g., sort, then select top
10. With experience, users can learn strategies involving
such action patterns as generic and low-level plans, to solve
common subobjectives with a tool or family of tools [43].

While performing these actions, the user collects findings,
potentially interesting observations on the data. Insights
arise from accumulating these findings and setting them in
context with the objective and knowledge [49]. These in-
sights often lead to an update of the plan as the user develops
hypotheses that make new subobjectives relevant. Further-
more, the plan will be iteratively updated as the background
knowledge, the availability of tools, or even their goals can
change [44; 37; 38; 13; 42].

3.1 Implications for design and evaluation
Above, we observed, from the users’ point of view, con-

crete objectives and actions in the visualization process.
While users can abstract their objective breakdown and ac-
tion planning from one situation to another and from one
visualization artifact to another, abstraction plays an even
more important role for visualization design and evaluation.
Here, theoretical frameworks serve as bond between individ-
ual research contributions towards general guidelines for the

visualization discipline. Next, we will walk through different
scenarios of visualization design and evaluation, describe the
role of objectives and actions, and give examples.

Domain characterization and abstraction. An es-
sential aspect for understanding of environments and work
practices [25] is to figure out the objectives of domain ex-
perts. As high-level objectives might be too vague, it is often
necessary to gather objectives at multiple levels of composi-
tion. Subsequently, it is necessary to transform concrete ob-
jectives formulated in domain language to abstract objectives
that can be matched to categories of task/objective frame-
works. The two outer layers of Munzner’s Nested Model [35]
describe these steps.

RelEx, an example study conducted in automotive engi-
neering [55] describes objectives at three levels of compo-
sition: the high-level objective of “traffic optimization on
the signalpath network” in domain terms, mid-level objec-
tives being abstracted to general features of social networks,
and low-level objectives as queries on network relations. An-
other study in IT security [67] classifies the objective of mal-
ware pattern analysis along the three-level why-typology by
Brehmer and Munzner [9]. Both studies analyze objectives
in context of the data and users as proposed by Miksch and
Aigner [34].

Designing visualization artifacts. The next layer of
visualization design [35] is mapping the abstracted objectives
to visual representation and interaction techniques, and thus
the action affordances provided by the visualization artifact.
This step can profit from guidelines translating between ab-
stract objectives and abstract actions [33]. An example of
such design guidance for visualization of spatial and tempo-
ral data is the book of Andrienko and Andrienko [7], which
lays on the solid foundation of their theoretical framework
of low-level objectives.

The RelEx design study [55] illustrates how design ratio-
nale is based on clearly formulated user objectives. Based
on the objectives cited above, they analyzed existing tools
and postulated design requirements – in particular the re-
quirement for rich exploration of complex, multi-way re-
lations. RelEx meets this requirement with brushing and
linking in multiple coordinated views, especially a signal-
path view for 4-way relations. Likewise, the LiveGantt de-
sign study [22] tackles the objective of what-if questions in
scheduling by drag and drop actions in its Gantt chart view.
The ChronoLenses technique [71] addresses two objectives
(T1) single data stream transformation such as remove trend
and (T2) cross-data stream analysis such as compare two
streams. These two tasks result in two types of interactive
lenses.

Stimuli for experiments. User experience or perfor-
mance can be evaluated by letting test users interact with vi-
sualization artifacts in a controlled environment. The stim-
uli presented to the test users are typically objectives and can
be formulated as question like ‘which <items> fulfill <. . .>’,
as imperative like ‘identify <items> that fulfill <. . .>’, or
even prescribe the answering method like ‘click on <items>
that fulfill <. . .>’. As argued above, the evaluation of pre-
defined action sequences like ‘filter by <. . .>, then zoom to
<. . .>’ is less relevant for user studies in visualization.

Depending on the study’s hypotheses, a suitable compo-
sition level must be found because low-level objectives can
be too trivial and high-level objectives too open-ended for
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quantitative analysis of time and errors. For such experi-
ments other evaluation methods, e.g., qualitative analysis of
insights [51; 60], are more suitable.

Research hypotheses are often specific to an abstract ob-
jective such as ‘less errors for comparison’ whereas stimuli
need to present concrete objectives that act as representa-
tive examples for the abstract objective. In some cases a
concrete objective is also translated to a concrete objective
in a different domain so that a sufficiently large population
of test persons can be recruited. Each occasion a test person
works on such a concrete objective is called trial [15, p. 298].
Repeated trials with multiple test persons or multiple data
(sub)sets are needed to reach statistical power. For exam-
ple, Javed et al. [21] experimentally compared four visualiza-
tion techniques for time series by the performance of solving
comparison, slope, and discrimination objectives. The Se-
manticTimeZoom technique [3] was evaluated using 12 ob-
jectives, which were categorized based on the Andrienko and
Andrienko [7] objective framework.

Setting context in case studies. When case studies
are performed to evaluate visualization artifacts under more
realistic conditions it is necessary to describe the objective
tackled and it is useful to set it in context using abstract
objectives. This also applies to evaluation by algorithmic
performance measures or qualitative result inspection [19].

Studying interactive analysis and reasoning. In-
teraction remains a topic of great interest in visualization
currently. Such studies include case studies with domain
experts where observation of user interaction allows to see
behind the curtain of visual data analysis and reasoning
processes. Interaction logs can be a valuable addition to
thinking aloud protocols or diaries or even replace them [25].
From sequences of actions in these logs, interaction patterns
can be identified and generalized based on abstract actions.
Thus, it is possible to develop shortcuts for frequently used
patterns [42], explore how visualization artifacts induce or
inhibit certain analytical behaviors, and judge the cost of
interaction [24]

For example, the experiment of Dou et al. [14] demon-
strated to what extent analytical reasoning can be inferred
from interaction logs alone. They noted that such infer-
ence worked best for highly interactive artifacts but worse
when users got along with looking at visual representations.
Another example study by Pohl et al. [43] compared the in-
teraction logs from user studies of two visualization artifacts
of the same target audience, medical doctors, to identify in-

teraction patterns up to a length of three actions and transi-
tion probabilities between actions. In order to make actions
comparable, they used the Yi et al.’s user intents [70] for
abstraction.

Integration in visualization artifacts. Objectives
and actions are not only relevant for visualization designers
and researchers, but they can also be made explicit within
visualization artifacts for users during visualization runtime
thus addressing the visual analytics challenge of “capturing
user intentionality” [42]. The record of actions performed
makes sense as history mechanism [57] and for analytical
provenance [40]. Notable examples are the p-set framework
[20], which focuses on parameter sets, and HARVEST [17],
which builds on an action taxonomy for interoperability.
Likewise, the visualization artifacts can support users by
allowing them to track open subobjectives as demonstrated
in Sandbox [69] or Aruvi [59]. Given the user’s objectives
the visualization artifact can also recommend suitable set-
tings at runtime. For example, Tominski et al. [64] pro-
pose to choose one of eight color schemes based on a three-
dimensional objective space and Schulz et al. [52] use their
five-dimensional task framework to recommend visual rep-
resentation techniques for climate impact data.

4. CATEGORIZATIONS OF ABSTRACT
TASKS

Beyond individual visualization design and evaluation pro-
jects, tasks are useful for systematic research in visualiza-
tion. Thus, a number of theoretical frameworks that cate-
gorize abstractions of objectives and actions have been con-
ceived. These frameworks are valuable to make the results of
empirical research comparable and to extract design guide-
lines from visualization work.

State-of-the-art reports, in particular, can apply such cat-
egorizations to describe and systematically compare visu-
alization artifacts. The objectives addressed and the ac-
tions provided allow these reports to structure the surveyed
area, to identify similarities not evident from the original de-
scription of each individual artifact, to provide design guid-
ance, and even to generalize beyond the scope of the report.
Though, it is not uncommon for state-of-the-art reports to
develop a customized task categorization for its scope. For
example, Alsallakh et al. [4] categorize set visualization tech-
niques using a list of 26 low-level objectives specific to set-
typed data. Dealing with visualization systems for electronic



health records, Rind et al. [46] extend the user intent cat-
egorization [70] with 20 more concrete subintents and use
these for categorization.

Yet, the number of task categorizations can be confusing
and in addition the abstract tasks found therein are quite
heterogeneous. This is also illustrated in the typology of
Brehmer and Munzner [9] that reclassifies abstract tasks
from a wide range of existing categorizations. For example,
it maps the abstract tasks by Shneiderman [57] to produce,
summarize, navigate, filter, and record. Thus, they occur
for both why and how as well as at different levels of their
typology. Therefore, we propose to use the dimensions of
the task cube to classify and compare these categorizations
of abstract tasks.

Method. We conducted a non-exhaustive survey of task
frameworks in the visualization literature and identified 37
categorizations (Table 1). Then we classified each catego-
rization (1) as objectives versus actions, (2) by three levels
of composition, and (3) by four types of abstraction. As we
could not identify general classification rules for composi-
tion, we made groups of high-level, intermediate-level, and
low-level tasks that are as homogeneous as possible. For ab-
straction, we distinguish between generic abstractions and
abstractions that are tailored for a data type, for a domain,
or towards the architecture of tools. In addition, we inform
about the expressiveness of each categorization by reporting
the number of categories, the number of categories in each
dimension, or similar information for more complex catego-
rizations. The classification was first proposed by the first
author and then discussed and revised by all authors until
consensus was reached.

Results. Table 1 provides an overview of the surveyed
task categorizations and their classification. Along the why/
how dichotomy a majority of 24 categorizations is primarily
for objectives, while 13 categorizations address actions. For
this, we split Brehmer and Munzner’s multi-level typology
[9] into its why and how parts. In Roth’s framework [48]
we described three categorizations separately: goals and ob-
jectives for why and operations for how. There were a few
ambiguities: Schulz et al.’s five-dimensional space [52] has
four dimensions relating to why (goal, characteristics, tar-
get, cardinality) and one for how (means). Yi et al. [70]
categorize interaction techniques along user intent. Nev-
ertheless their objectives are characterized very similar to
actions: e.g., “show me something conditionally” is almost
equivalent to a filter action. The taxonomy of Valiati et al.
[65] mixes objectives like“identify patterns”with actions like
“zoom”.

For composition, we identify only few categorizations for
high-level objectives. For example, explore/confirm/present
are often found categories or Amar and Stasko [6] present
the prototypical tasks of “complex decision making, espe-
cially under uncertainty”, “learning a domain”, “identifying
the nature of trends”, and “predicting the future”. This is
not unexpected as real-world high-level objectives can be
very specific to a domain problem. Many objective catego-
rizations can be positioned at intermediate-level, low-level,
or both. These ambiguities results from some categoriza-
tions having a broad scope (e.g., elementary versus synoptic
tasks [7]) and that their abstract objectives can describe
for various real-world objectives at these composition lev-
els. Action categorizations are at a mostly low composition
level, which is obvious because characteristic sequences of

actions are specific to the concrete situations they emerged
from. For this reason, there is also no abstract task frame-
works for high-level actions. A few categorizations encom-
pass intermediate-level actions such as ‘overview’ and ‘re-
late’ [57] or ‘cognitive offloading’ [29].

Among the four types of abstraction, generic abstractions
are most common for objectives (12) and actions (8). This
can be explained that our survey is not exhaustive of the
task categorizations collected for state-of-the-art reports and
design studies. Still there is a large proportion of objective
categorizations tailored by data type (9) – most frequently
networks and/or time.

5. DISCUSSION
We looked at the task cube from various angles of visu-

alization design, evaluation, and research in the previous
sections. Reflecting on the dimensions of the task cube, we
now observe some general implications.

Usefulness of abstract task frameworks. The long
yet non-exhaustive list of task categorizations in Table 1
highlights a large body of research towards theoretical un-
derstanding of tasks. Above, we showed various visual-
ization scenarios that require visualization designers, ex-
perimenters, and researchers to explicitly consider concrete
tasks. But they need abstract task frameworks to general-
ize such tasks beyond the particular application context: to
systematically compare visualization artifacts in a survey,
to generate guidelines from evaluation results, and to apply
such guidelines and surveys for designing new artifacts. In
addition, abstract task lists can be used to check if any rel-
evant tasks still need to be addressed. Our survey shown
in Table 1 supports visualization researchers and designers
in finding a categorizations suitable for their scenario and
application context.

Suitable levels of composition. In capturing the how
perspective, actions take a pivotal level. Defined as discrete
step, they should be at the lowest composition level of which
the user is consciously aware. However, this is a matter
of context and in particular the user’s experience, which
granularity the user regards as discrete steps [37; 44]. One
user’s action pattern might be another user’s action and this
might also change within a single user over time as he or she
progresses from novice to expert. For example, a user might
learn to click through menus and dialog boxes unconsciously
because he or she frequently needs to change a setting that is
hidden there. Then again, visualization designers have also
the possibility to detect the need for such action patterns
and provide dedicated interaction techniques as shortcuts.

Likewise, objectives can be broken down to increasingly
lower levels. However, decomposition into trivially small
sub-objectives such as ‘read value 1, read value 2 . . . ’ is of-
ten not practical and differs from how users realistically solve
objectives. Combining human perception and visualization
techniques, they can detect patterns at a larger scope. For
example, they can spot clusters in a scatter plot or judge the
trend in a line plot without consecutively reading the values
encoded for individual data records. Therefore, it is impor-
tant to consider objectives at an adequate level of composi-
tion, in particular when evaluating visualization techniques.

Open-endedness of objectives. Visualization is often
characterized as undirected exploration or even as casual
endeavor leading to serendipitous results. In contrast, the



Table 1: Survey of abstract objective and action categorizations found in theoretical task frameworks, state-
of-the-art reports, and domain characterization studies (not exhaustive).

task categorizations
perspective composition abstraction number of categories

why how HI IN LO GE DA DO TO (in each dimension)

explore/confirm/present [53] • • ◦ • 3

Amar and Stasko [6]: prototypical analysis tasks • • • 4

Roth [48]: goals (procure/predict/prescribe) • • ◦ • 3

Thomas and Cook [63, p. 35] • • • 3

Amar et al. [5]: low-level components • • • • 10

Andrienko and Andrienko [7] • ◦ • • 2 x 3 x 2

Brehmer and Munzner [9]: why • • • • 4 x 4 x 3

Munzner [36]: why/actions & targets • • • • ◦ 6 x 4 x 3 x 11

Roth [48]: objectives • • ◦ • 5

Wehrend and Lewis [68] • • • • 11

Ahn et al. [1]: network evolution • • ◦ • 3 x 2 x 10

Alsallakh et al. [4]; set-typed data • • • 26

Brehmer et al. [10]: dimensionally-reduced data • ◦ • • 6 (maps to [9; 36])

Kerracher et al. [23]: temporal graphs • ◦ • • extends [7]

Lammarsch et al. [27]: time-oriented data • ◦ • • extends [7]

Lee et al. [28]: graphs • • • 11

MacEachren [30, p. 316]: aspects of time • • ◦ • 7

Pretorius et al. [45]: multivariate networks • • • • 25 (maps to [65])

Roth [48]: objectives & operands in cartography • • • • 5 x 3

Suo [62]: high level tasks in network security • • • 5

Meyer et al. [32]: comparative genomic • ◦ • • 14

Schulz et al. [52]: 5-dimensional design space • ◦ • • • ◦ 3 x=8 x 4 x 3 x=11

Yi et al. [70]: intents • ◦ • • 7

Valiati et al. [65]: multidimensional data • ◦ • • • 7

Brehmer and Munzner [9]: how • • • 11

Munzner [36]: how/idioms • • • 11 (different from [9])

Chuah and Roth [11] • • • 18

Gotz and Zhou [17]: actions • • • 21

Liu and Stasko [29]: focus on mental models • ◦ • • 6

Sedig and Parsons [54]: action patterns • • • 32

Suo [62]: low-level tasks • • • 32

von Landesberger et al. [66] • • • 3 x 4

Roth [48]: operators on spatial data • • • 17

Rind et al. [46]: electronic health records • • • 20 (extends [70])

Shneiderman [57] • ◦ • • 7

Heer and Shneiderman [18]: dynamics • • • 12

Sacha et al. [49] • • • 6

The why and how columns denote whether the categorization describes objectives or actions. Three composition levels are distin-
guished: HI. . . high, IN. . . intermediate, and LO. . . low, and four types of abstraction: GE. . . generic, DA. . . data type, DO. . . domain,
and TO. . . tool architecture. The symbol • denotes the primary class of the entry; the symbol ◦ represents a partial match, for example
if only a few categories fall into this class. The final column describes the expressiveness of the entry by the number of categories or
similar details.

term ‘task’ often has connotations as being externally as-
signed and scheduled within a workflow. We take a prag-
matic point of view and understand visualization-supported
data analysis as the user steering her or his actions towards
solving a reasonably open-ended objective. Such an objec-
tive might originate from casual curiosity and/or result in
unexpected findings. Still, we assume there is an objective
motivating the user’s actions. We also assume that the user
has some intellectual interest in the findings. We would not
consider an assignment like ‘pan to the year 1983’ or ‘click
on the blue rectangle’ as an objective. Such assignments are
purely perceptual and mechanical and do not carry the no-
tion of the user raising an inquiry. Furthermore, objectives

in the visualization field involve questions based on data.
This intellectual interest in objectives and their many-to-

many mapping to action sequences are our motivations to
distinguish between the perspectives why and how. They
are also a major difference to the traditional view of tasks
in HCI that follows the assumption of a one-to-one mapping
between these perspectives [8]. Yet, such an assumption
holds only for operational tasks and not for such creative
tasks as they are needed for the open-ended objectives ad-
dressed by visualization [31; 58].

Summary of discussion. We assume that much of the
confusion and criticism on tasks stems from this traditional
view of operational tasks. For example, some visualization



experts reportedly [7, p. 148] even “believe that having a
defined task is not (or not always) necessary”. Other HCI
experts like Preece et al. [44, p. 410] warn that “the idea of
a task is useful in system development – as long as it is used
with care”because otherwise current action sequences would
be reinstantiated in future systems, which are too rigid to
serve the real objectives of users.

However, we agree with Miksch and Aigner [34], Munzner
[35], Andrienko and Andrienko [7], and many other visual-
ization experts that tasks are a useful concept for evaluation
throughout visualization design and development. Yet, we
propose to use the more precise terminology of ‘objectives’
and ‘actions’ instead of the ambiguous term ‘task’. Fur-
thermore, we recommend to understand perspective, level
of composition, and level of abstraction as nonredundant
dimensions. While these dimensions are clearly distinct in
a theoretical view of the conceptual space, it can be diffi-
cult to separate them in practice. This is also reflected in a
number of ambiguities in our survey of abstract task catego-
rizations. However these ambiguities might also be inherent
as a 3D-covariance that deserves deeper investigation.

6. CONCLUSIONS AND FUTURE WORK
In this paper we critically analyzed the usage of the term

‘task’ in visualization and human-computer interaction lit-
erature. We propose to use ‘objective’ and ‘action’ as a more
suitable terminology that reduces ambiguity and allow visu-
alization researchers to better formulate their contributions.
In addition, we identified a three-dimensional conceptual
space of user tasks in visualization with abstraction, compo-
sition, and perspective as orthogonal dimensions. We looked
at objectives and action in a concrete visualization process
in various visualization design and evaluation scenarios, and
in state-of-the-art surveys and theoretical frameworks. Fi-
nally, we emphasized the usefulness of tasks, the importance
of choosing adequate composition levels, and focusing on
open-ended objectives.

Concluding this article, we can identify two important ar-
eas for future research: First, to supply the visualization
community with design guidelines [33], we need not only fur-
ther empirical work but also need to abstract, aggregate and
compare these results. Second, tasks and in particular ob-
jectives are important to visualization as a objective-driven
process. Therefore, visualization artifacts should take users’
intents into account either from explicit input or by auto-
detection.
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