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Markus Bögl, Bilal Alsallakh, Silvia Miksch †

ABSTRACT

Recognizing activities has become increasingly relevant in many
application domains, such as security or ambient assisted living.
To handle different scenarios, the underlying automated algorithms
are configured using multiple input parameters. However, the in-
fluence and interplay of these parameters is often not clear, making
exhaustive evaluations necessary. On this account, we propose a
visual analytics approach to supporting users in understanding the
complex relationships among parameters, recognized activities, and
associated accuracies. First, representative parameter settings are
determined. Then, the respective output is computed and statisti-
cally analyzed to assess parameters’ influence in general. Finally,
visualizing the parameter settings along with the activities provides
overview and allows to investigate the computed results in detail.
Coordinated interaction helps to explore dependencies, compare
different settings, and examine individual activities. By integrating
automated, visual, and interactive means users can select parame-
ter values that meet desired quality criteria. We demonstrate the
application of our solution in a use case with realistic complexity,
involving a study of human protagonists in daily living with respect
to hundreds of parameter settings.

Index Terms: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Theory and methods

1 INTRODUCTION

Decomposing multivariate time series into sequences of segments
and assigning labels to these segments is a common task. A promi-
nent example is the recognition and analysis of activities of human
protagonists for ambient assisted living. The goal is to reconstruct
activities from sensor-generated time series to allow researchers to
study behaviors in a conceptual way.

Typically, automated algorithms are applied to compute and la-
bel the segments. Labels correspond to specific activities and seg-
ments denote associated occurrences and time periods. Although
these algorithms are reasonably fast, they are limited in accuracy,
particularly when exceptional patterns occur. Moreover, the algo-
rithmic output is controlled by parameters, whose influence on the
segmentation is hard to predict. For judging the determined activi-
ties reasonably, it is important to understand the interplay between
input parameters, labeled segments, and recognition accuracies.

The traditional evaluation of activity recognition algorithms is
commonly performed by investigating the results with statistical
analysis methods, e.g., analysis of variance (ANOVA), and statisti-
cal plots, e.g., confusion matrices or interaction plots. This is suc-
cessful for rather simple recognition strategies, but it barely covers
all aspects of more complex approaches that require sophisticated
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parameter tuning. In our use case (Sect. 3), we apply such a com-
plex approach to activity recognition based on Computational State
Space Models (CSSMs) [12]. CSSMs require extensive configura-
tion of parameters, which is time-consuming and error-prone.

Visual analytics provides first approaches that already support
users in visually inspecting the labeled segments, identifying spe-
cific patterns, and adjusting these results interactively [1]. Open
issues are how to support users in (i) exploring hundreds of dif-
ferent parameter settings, (ii) comparing their influence, and (iii)
increasing the accuracy of the computed results.

With this paper, which builds upon ideas first presented as a
poster at IEEE VIS’14 [18], we introduce a novel visual analytics
approach to address these issues. Our contributions are:

Novel Visual-Interactive Design: We present an enhanced visual
approach (Sect. 5) that provides a comprehensive overview of
parameters, labeled segments, and accuracies in an interlinked
fashion. Coordinated interaction enables users to explore com-
plex relationships, to compare different configurations, and to
inspect the various aspects of the data in detail.

Comparison of Statistical and Visual Analysis: Statistical and
visual methods (Sect. 4 and 5) support the data analysis in
different ways. Therefore, we compare our visual analytics
approach with purely statistical analysis. We identify benefits
and limitations (Sect. 6), and discuss how open issues can be
tackled in future work (Sect. 7).

2 RELATED WORK

Our work is related to visualizing segmented and labeled time se-
ries, and to visual analysis of parameter dependencies in general.

Visualizing Segmented and Labeled Time Series Seg-
mentation results are commonly visualized as sequences of colored
stripes. Color encodes the stripe label, and size represents the cor-
responding time period. This representation has been used to show
segmentation results along with the time series data to inspect in-
dustrial processes [1]. Multiple segmentation results can be visual-
ized to support comparison [21]. Similarly, a sequence index plot
can be used to analyze multiple state sequences [8], which is com-
mon in sequential data analysis [5]. However, such plots become
difficult to interpret for larger numbers of sequences. Generally, la-
beled time series can be interpreted as categorical data over time,
for which various visualization approaches exist [2, 22].

Temporal categorical data can be analyzed using similarity mea-
sures [23]. Such similarity metrics can also be useful for sorting
and comparing parameter settings, labeled segments, and accura-
cies over time. Simple sorting methods are based on lexicographic,
averaged Euclidean, and cluster-based techniques. A prominent
class of cluster-based techniques are self organizing maps (SOM).
SOMs can also be used to deal with categorical data [6].

Visual Analysis of Parameter Dependencies Segmentation
and labeling algorithms are generally governed by a set of param-
eters. Visual analysis is a common means to study the parameters’
influence [19]. So-called global-to-local approaches are directly re-
lated to our work. They provide overviews of several pre-computed
parameterizations and associated outcomes and allow for a detailed
inspection on demand. However, only a few existing techniques
address parameter-dependent time series data. An example is the



Figure 1: Illustration of the activity recognition process. The activi-
ties of a human protagonist are measured via sensors, then recon-
structed by an automated algorithm for each applied parameter set-
ting, and finally represented via different labeled segments over time.

approach for comparing parameter-dependent time series within
larger parameter spaces [13]. However, the handling of categori-
cal data has not been addressed so far.

Global-to-local techniques require the specification and compu-
tation of a large set of different parameterizations. Commonly, sur-
rogate models are used to reduce calculation efforts [3, 20]. How-
ever, such models require that the data can be interpolated, which is
not the case for our categorical time series. Other strategies for
reducing parameterizations are for instance undirected optimiza-
tions [15] or parameter space partitioning [4], but these techniques
do not provide a thorough overview of the entire parameter space.

Parameter-dependent data classification is also relevant in image
segmentation. There it is used to link parameters with the 2D seg-
mentation result [16] or with a ground-truth-based fitness function
[20]. The latter approach also incorporates accuracy measures for
judging the classification. Similarly, in [3] a ground truth is used to
assess parameter-dependent multivariate predictions.

In conclusion, several individual techniques exist for visualizing
either segmented and labeled time series or parameter dependen-
cies. Yet, none of these techniques is directly suited for a combined
analysis of parameters, labeled segments, and accuracies from ac-
tivity recognition algorithms beyond statistical analysis methods.
Therefore, we aim at developing an integrated approach that sup-
ports users in visually analyzing recognized activities over time,
and that facilitates investigations of parameters’ influence on the
performance of the activity recognition. To achieve this goal, we (i)
visualize multiple parameter settings along with labeled segments
and associated accuracies, and (ii) provide coordinated interaction
techniques to compare different aspects of the data and inspect de-
tails. Before we introduce our novel approach (Sect. 5), we first
explain the examined activity recognition algorithm (Sect. 3) and
the statistical analysis of its performance (Sect. 4).

3 ACTIVITY RECOGNITION AND USE CASE

Knowledge about current and possible future activities as well as
eventually the final goals of individuals is the foundation for appli-
cation domains such as security systems and assistive technologies.
To this end, automated activity recognition algorithms are applied
to assign activity labels to each time step of sensor observations.
The basic idea is to abstract from the raw sensor data and to focus
on detecting certain activities and reasoning about specific behav-
iors instead. However, to obtain adequate activity recognition re-
sults, the automated algorithms need to be configured and evaluated
for different conditions and sensor systems. For judging the algo-
rithms’ performance in a given scenario, multiple algorithm runs
with different parameter settings are necessary. Each algorithm run
generates large data sets containing parameter-dependent informa-
tion about the observed activities as segmented and labeled time
series. Figure 1 illustrates this general activity recognition process.

As a concrete example, we consider an activity recognition algo-

Figure 2: Illustration of our experiment. The human figure (a) shows,
where the sensors are located. Three exemplary activities (b) –
cook, eat, and wash – are depicted in combination with their time-
oriented and multivariate sensor observations.

rithm based on Computational State Space Models (CSSMs) [12].
CSSMs are powerful tools for automatically segmenting and label-
ing time series data based on probabilistic graphical models. They
can recognize activities even from noisy or ambiguous sensor mea-
surements [12]. Although we specifically address activity recogni-
tion based on CSSMs, our approach is generic enough to be applica-
ble to other algorithms and problems as well. An example showing
the reconstruction of drilling processes is given in Sect. 6.

Studying and evaluating the performance of such sophisticated
activity recognition algorithms is a difficult task. On the one hand,
the algorithms’ results are difficult to analyze and compare as they
typically consist of long segmented and labeled time series with
possibly multiple activities and thousands of time steps. On the
other hand, the algorithms’ results depend on the parameter config-
uration, where the impacts of individual parameters or their combi-
nations are largely unknown. Our objective is to support machine
learning experts in understanding the influence of parameters. The
goal is to help them evaluate the algorithms’ mode of operation and
confirm or reject hypotheses about algorithm performance in real-
istic scenarios. Particularly, we aim at supporting experts in analyz-
ing the parameter influence on the recognition performance (i) over
time, (ii) of different protagonists, (iii) of all activities in general,
and (iv) of individual activities.

The data for the evaluation of the examined CSSM was generated
in an experiment with seven participants. Their activities included
cooking a meal, setting the table, eating the meal, and finally clean-
ing the dishes (see Fig. 2). Each subject was instrumented with five
inertial measurements units. Video logs were created and manually
annotated to document the course of each experiment session and
to obtain ground truth sequences for each subject.

A CSSM was created to recognize the subjects’ activities by
modeling the environment and possible actions [12]. As a result,
we obtained 99 grounded actions (e.g., take-knife-drawer)
from 16 activities (e.g., take) with a state space of about 146M
states. Five parameters were defined to influence the CSSM:

Sensor model (PSensor): This parameter determines the quality of
the sensor model and thereby the amount of information used
during activity recognition.

Filter mode (PFilter): This parameter selects different filtering
modes for the processing of the sensor measurements.

Goal distance mode (PDist ): This parameter offers different algo-
rithms for a goal-directed selection of successive actions.

Goal distance weight (PWeight ): This parameter implements dif-
ferent degrees of goal-directedness when selecting actions.

Duration model (PTime): This parameter offers different duration
models for the activities to be recognized.



Subject 6 (all) Subject 1 (eat)
Single parameters F p F p

PSensor 1496.16 <0.001*** 429.74 <0.001***
PFilter 386.97 <0.001*** 68.19 <0.001***
PDist 166.71 <0.001*** 150.14 <0.001***
PWeight 33.31 <0.001*** 15.62 <0.001***
PTime 9.96 0.003** 6.34 0.014*

Multiple parameters F p F p

PFilter : PSensor 32.25 <0.001*** 26.07 <0.001***
PWeight : PTime 3.30 0.011* 5.83 <0.001***

PSensor : PDist : PTime 0.95 0.442 12.45 <0.001***
PSensor : PWeight : PTime 3.82 <0.001*** 5.82 <0.001***

PFilter : PSensor : PDist : PTime 7.83 <0.001*** 1.39 0.194
PFilter : PDist : PWeight : PTime 1.05 0.426 1.92 0.016*

Table 1: Exemplary results from statistically analyzing the perfor-
mance of the CSSM. Shown are quantitative ratings (F and p values)
and levels of significance (low: *, mid: **, high: ***) from applying a
rANOVA to assess the influence of single parameters (top) and the
influence of relationships between multiple parameters (bottom). The
presented ratings are calculated regarding the general accuracy of
the sixth subject and the accuracy of activity eat of the first subject.

To study the influence of the different parameters on activity
recognition, we applied our CSSM to the sensor data. The domain
experts identified 432 parameter settings to be examined. By apply-
ing the CSSM to the sensor data of all seven subjects we obtained
3,024 algorithm runs in total. For each run, the CSSM assigned one
of the 16 activities to each time step in the sensor data. The overall
duration of the experimental sessions varied per subject within the
range of 160s to 320s (600 to 1,200 time steps at 3.75 Hz).

4 STATISTICAL ANALYSIS OF RECOGNIZED ACTIVITIES

To study activity recognition algorithms, statistical analysis com-
monly comprises: (1) deriving measures to assess recognition per-
formance, (2) displaying these measures as statistical plots in rela-
tion to tested parameters for generating hypotheses about parameter
dependencies, and (3) statistical hypotheses testing [12].

A typical measure for recognition performance is accuracy, that
is, the percentage of correctly labeled time steps. The statistical
analysis starts with calculating accuracy for each parameter config-
uration. Correct and incorrect labels are determined through com-
paring the sequences of recognized labels with the ground truth. To
evaluate the influence of single parameters and of multiple param-
eters on the accuracy, we applied a repeated measures analysis of
variance (rANOVA) across all tested configurations. We obtained
accuracy ratings for single activities and globally for all activities.

Table 1 shows an excerpt of the statistical analysis. For single pa-
rameters (top), the results show that most parameters, except for pa-
rameter PTime, have highly significant influence (marked with ***)
regarding the overall recognition accuracy as well as regarding in-
dividual activities. Particularly, the sensor model (PSensor) has by
far the highest influence, as indicated by its F value, followed by
parameter PFilter and PDist . Similar ratings of these parameters can
be observed for other subjects and activities in our experiment.

Relationships between multiple parameters (bottom) show sig-
nificant influence as well. For example, the relationship between
parameters PFilter and PSensor exhibits strong influence. Yet, the
influence also varies depending on the activities and the relation-
ships between parameters. For instance, the relationship PSensor :
PDist : PTime shows significant influence on the recognition ac-
curacy of activity eat, but less influence on the general accu-
racy. Some higher-order relationships between parameters, such
as PFilter : PDist : PWeight : PTime, have no significant influence.

In summary, all single parameters as well as certain relation-
ships between multiple parameters clearly influence the perfor-
mance and thus need to be considered for activity recognition based
on CSSMs. However, applying purely statistical analysis to study
how these dependencies manifest would require additional inves-
tigations. For example, suitable measures have to be defined for
judging parameter influence on each activity and its temporal be-
havior. Moreover, large amounts of statistical ratings and associ-
ated plots would need to be compared to evaluate the influence of
each parameter setting individually.

5 VISUAL ANALYSIS OF RECOGNIZED ACTIVITIES

Visual analysis is another way to study the performance of activity
recognition. Next, we present a novel visual analytics approach for
this purpose. We start by summarizing the design requirements.

5.1 Design Requirements
Discussing with domain experts and analyzing the statistics-based
approach, we derived requirements for the visualization design.

Visualizing Labeled Segments (DR1): The first step towards ana-
lyzing activity recognition is to inspect the recognized activities
over time for one specific parameter configuration. The existence
or absence of activities, their duration, and temporal sequence
can help to decide about accepting or rejecting configurations.
Thus, visualizing the labeled segments is a basic requirement.

Relating Parameters to Labeled Segments (DR2): To explore
interrelationships between different parameters, multiple or
even all parameter configurations need to be examined at once.
By comparing the influence of parameter combinations, users
can search for appropriate configurations with regard to a given
task. Hence, the second requirement is visualizing all relevant
parameter settings along with the algorithmic outcome.

Relating Accuracies to Labeled Segments (DR3): The results of
the activity recognition are commonly compared to ground truth
data to judge which parameter settings lead to adequate results.
Deviations from the ground truth lead to reduced accuracies.
Evaluating accuracy globally and individually for selected ac-
tivities helps to understand how well certain parameter settings
match the properties of the sensor data. Therefore, visually asso-
ciating accuracy with the labeled segments has to be supported.

Exploring Patterns and Relationships (DR4): A visual analysis
of parameters, labeled segments, and accuracies, requires explor-
ing global and local temporal patterns. Global patterns typically
appear as similar outputs across all configurations or along an en-
tire time series. Relating global patterns to the parameter settings
helps, for example, to exclude individual parameters with less
influence. Local patterns on the other hand, depend on specific
ranges of parameter values, exist for limited time spans, or occur
only with certain sequences of activities. Relating local patterns
to the parameter settings helps, for instance, to detect parameter
values with undesired side effects. Identifying global and local
patterns is vital for choosing suitable parameter settings as well
as for reasoning about the performance of the activity recogni-
tion algorithms. Hence, besides visualizing the data, interactive
exploration of patterns and relationships needs to be facilitated.

5.2 Visual Encoding
Our main objective is the exploration of the parameters’ influence
on labeled segments and associated accuracies over time. For this
purpose, we adapt the visual layout found in [13]. We extend this
design to (i) consider categorical data, (ii) take accuracy informa-
tion into account, (iii) show aggregated information about segmen-
tation results both per time step and per algorithm run, and (iv) inte-
grate tailored interaction techniques to explore the data, parameter
settings, and relationships. To this end, we provide a compact visual
overview (see Fig. 3) to match the design requirements DR1. . . DR4.



Figure 3: Schematic illustration of the visual analysis tool. For each parameter setting (a) three different modes are shown: activities as color-
coded stripes (b), deviations from the ground truth (c) for all activities (d), and for one selected activity (e). Two additional views represent three
types of aggregated information per column (f) or per row (g): the dominant activity (h), the percentage of the dominant activity (i), and the
percentages of all activities as stacked bars (j). A visual cue (k) denotes the presence (red) or absence (green) of over-plotting in rows and
columns. Selecting and highlighting different parts of the data is enabled through a dedicated toolbar (m).

Encoding Labels We select the visual variable color to en-
code the different labels as it is well suited for representing cate-
gorical data [14] and allows for a compact visual design (cf. [11]).
Other reasonable options are either needed to represent the tempo-
ral dimension, e.g., position, or would require more display space,
e.g., area or length. To address scalability issues when dealing with
larger numbers of labels, we select distinct colors from the L*a*b*
color space and maximize the perceptual distance of neighboring
labeled segments by permuting their color assignment (cf. [9]).

Visualizing Labeled Segments The algorithmic outcome is
visualized as sequences of colored stripes over time (see Fig. 3b).
As aforementioned, we apply qualitative color palettes with every
label assigned to a distinct color. Additionally, the preset color cod-
ing can be interactively adapted to match given color conventions.

Each row of colored stripes represents the segmentation and la-
beling results of one algorithm run. This compact encoding pro-
vides a good overview and facilitates the comparison of multiple
segmented and labeled time series (DR1).

Visualizing Parameters The parameter settings are shown
aligned to each algorithm run (Fig. 3a) and thus, the connection
between parameter values and the algorithmic outcome is estab-
lished (DR2). Each row of the parameter display encodes one par-
ticular parameter setting and each column represents a single pa-
rameter. The parameter values are encoded using shades of gray.
For each parameter individually we use distinct shades for categor-
ical parameter values or a sequential scale for numerical parameter
values. This way, the parameters can be clearly distinguished from
the presentation of labeled segments.

Visualizing Accuracies To evaluate the activity recognition
performance of each parameterization, we visualize accuracy in-
formation along with the labeled segments (DR3). As a reference,
the ground truth data is visualized as a single sequence of colored
stripes on top of the labeled segments (Fig. 3c). To show deviations
to this ground truth data, the user can switch between two addi-
tional encoding modes for the labeled segments. The first mode
shows the accuracy of the labeled segments in a binary encoding:
correct segmentations are colored green and incorrect are colored
red (Fig. 3d). The second mode provides a more detailed differ-
entiation regarding incorrect results of one selected activity: true

positives (TP) are colored green and false positives (FP) and false
negatives (FN) are colored in different shades of red (Fig. 3e). This
way, the color coding of both modes is visually consistent. Select-
ing another activity in the second mode results in a re-coloring of
the labeled segments.

Compound Views of Labeled Segments The visual encod-
ing discussed so far, allows for exploring individual segmentation
and labeling results, associated accuracy information, and underly-
ing parameter dependencies. To summarize the labeled segments in
different ways, we introduce a horizontal and a vertical compound
view. Both views provide a greater overview of multiple segmen-
tation results at once and in this way facilitate the detection of lo-
cal and global patterns. The horizontal compound view aggregates
labels across all parameterizations for every point in time. It is lo-
cated beneath the visualization of the labeled segments (Fig. 3f).
The vertically oriented compound view is positioned on the right of
the labeled segments and sums up labels for the entire time series of
each parameter setting (Fig. 3g). Both compound views encompass
three separate components. The first component encodes predom-
inant labels by calculating majorities over parameter settings and
time (Fig. 3h). The second component communicates the percent-
age of this labeling (Fig. 3i). The percentage values are obtained
by computing the ratio of dominant labels with respect to the over-
all distribution of labels. These values are then encoded using a
sequential color scale, with high values indicated by dark colors.
To clearly identify high and low percentages, we enlarge respective
stripes outside of a certain percentage interval. The third compo-
nent provides further details and encodes the ratio of each label
using stacked bars (Fig. 3j). Labels with very low ratio of segments
are summarized into one neutral color to ensure visibility and to
make the ratios comparable.

In this way, the three components of the compound views allow
to easily trace predominant labels and accuracy conditions. For
example, the horizontal compound view gives the user a sense for
the stability of the label selection over time. Moreover, it facilitates
an interactive data folding: labels, which are of high accuracy and
stable across different parameterizations for long time periods, can
be collapsed to focus the exploration on uncertain segments.



Figure 4: Selecting and highlighting labeled segments. The image
sequence shows: (a) the default activity view, (b) a selection of seg-
ments for one activity (gray) crossing one time point, (c) a reduced
selection for certain parameter settings, and (d) the same selection in
accuracy encoding mode with true (green) and false (red) positives.

5.3 Interactive Exploration
To support a comprehensive visual exploration we provide a rich set
of tailored interaction techniques. These techniques are fundamen-
tal for studying patterns and relationships in changing scenarios and
thus, particularly address design requirement DR4.

Navigation Our compact visual encoding provides overview
for comparatively large amounts of labeled segments from different
parameter settings. Yet, considering the size of the data in certain
usage scenarios, showing all parameter values and time steps for
each algorithm run can easily exceed the available screen space.
Interactive zooming and panning enable users to overcome these
limitations and view different subsets in greater detail. The param-
eter axis (vertical) and the time axis (horizontal), can be scaled and
translated independently or in combination. During zooming and
panning, all views are interlinked to preserve the relationships be-
tween parameters, labeled segments, and summaries in the com-
pound views. Furthermore, each view can be moved and collapsed
individually to improve screen space utilization.

Zooming and panning supports studying global patterns. Local
patterns generally benefit from combining overview and detail dis-
plays. An interactive rectangular fish-eye lens [17] shows selected
subsets in detail while preserving their context regarding the whole
data set. Lens position and magnification can be adjusted to focus
on the information relevant for the task at hand.

Visual cues provide additional support. Scroll bars represent the
location of the current view and two visual indicators inform the
user whether the visualization is affected by over-plotting along ei-
ther axis (Fig. 3k). A red indicator signals that the perception of
patterns might be impaired by over-plotting. Clicking an indicator
switches to a more adequate zoom level.

Selecting and Highlighting Investigating patterns regarding
selected labels or specific sequences in a data set of hundreds of
parameter settings with thousands of labeled segments can be a te-
dious task. To support users, we extend our overview visualization
with flexible selection and highlighting techniques.

A selection of labeled segments can be performed in several
ways, including selecting (i) segments of labels, (ii) accuracy condi-
tions, (iii) parameterizations, (iv) segments crossing a specific point
in time, and (v) particular regions of interest by applying an inter-
active selection lens. Selections can be expanded or reduced us-
ing binary set operations, or be restricted to selected labels only.
While selecting, the visual encoding is updated to dim deselected
segments. All selection options are provided in a toolbar (Fig. 3m).

Our selection techniques support both: (1) changing the selection
to compare different parts of the data and (2) viewing the selection
in different encoding modes to analyze the chosen subset in greater

Figure 5: Sorting labeled segments. The overviews show algorithm
runs (a) in their default order and (b) sorted based on labeled seg-
ments. The sorting reveals dependencies between the occurrence of
red segments and values of the first and third parameter.

detail. Figure 4 illustrates this functionality. The default activity
view is shown in Figure 4a. In the example, a selection is initial-
ized by clicking on a bar within the stacked bar chart of the hori-
zontal compound view to select all contributing segments crossing
the specified time step (Fig. 4b). Afterwards, the selection is al-
tered using the selection lens to include only segments of specific
length (Fig. 4c). Finally, by switching the encoding mode, the se-
lected segments are associated with accuracy information (Fig. 4d).
This allows to examine true positively (green) and false positively
(red) classified time steps. As we explain next, such selections can
also assist in changing the arrangement of the visualization.

Sorting Visualizing parameter settings and labeled segments in
a row-wise fashion enables analyzing their dependencies. However,
the order of the rows is essential for discovering patterns across
multiple configurations [7, 10]. To support the user in finding suit-
able orderings, we provide automated sorting based on (i) labeled
segment, (ii) accuracy, and (iii) parameters.

Sorting based on labeled segments and accuracy helps to identify
configurations with similar sequences, and to build hypotheses re-
lated to the associated parameter values. In turn, parameter sorting
facilitates the interpretation of parameter influence, allowing us to
test the hypotheses from the parameters’ perspective.

Sorting multiple time series of labeled segments and parameter
settings is rather challenging. Sorting labeled segments requires a
similarity measure for sequences of categorical values that also con-
siders their temporal context. Sorting parameter settings demands
taking heterogeneous types of data into account, such as categori-
cal and numerical parameter values with distinct scales and resolu-
tions. To address such diverse data properties, we provide various
metrics and algorithms for automated sorting. For example, we use
modified edit distances in combination with self-organizing maps
for sorting labeled segments over time. For parameters, we mainly
employed lexicographic or averaged Euclidean based sorting algo-
rithms. Fig. 5 illustrates the impact of sorting on the patterns re-
vealed by our visualization.

In addition to global sorting, users can interactively restrict the
sorting to selected parts of the data. Cursors highlight the selected
parts in the overview and visually link them to parameter settings
and the time axis. Optionally, different sorting methods can be ap-
plied to different selections. Also, rows can be reordered manually.

By means of automatic and interactive sorting, users can ana-
lyze value distributions and temporal patterns. For example, global
and local dependencies between parameters and labeled segments
can be identified by testing different sortings on subsets of the data
and looking for patterns across rows. Sorting according to accuracy
information allows to examine configurations with similar perfor-
mance over time and to relate them to the ground truth by switching
between activity and accuracy encoding modes. All selections and



Figure 6: Visualizing correct and incorrect classifications. The over-
all accuracy mainly depends on (a) parameter PSensor, (c) parame-
ter PFilter, (d) parameter PDist , and (b) decreases over time. In ad-
dition, misclassifications accumulate (e) around certain activities in
the ground truth (top). All effects can be confirmed by looking at the
vertical and horizontal compound views, respectively.

sorting techniques are maintained in an interaction history. This
allows users to directly undo or redo individual sorting steps and
trace their overall analysis sessions.

Combining the visual design with the rich set of interaction tech-
niques completes our visual analytics approach. Next, we apply this
approach to analyze the data from our use case.

5.4 Results
We implemented a research prototype and applied it to analyze
the data generated by the automated segmentation and labeling de-
scribed in Sect. 3. To study the results, we conducted informal in-
terviews with three experts from the visualization community. The
experts had multiple years of experience in visual analysis of pa-
rameter spaces, multivariate time series, and probabilistic classi-
fiers. Before each interview, we briefly explained the background
of the data as well as goals and open questions regarding our use
case. However, the results of the statistical analysis were concealed
to prevent biasing interpretations of the shown data. After a short
introduction of the research prototype, the visualization experts pro-
ceeded to explore and analyze the data. Assistance regarding the
usage of specific features was provided and all comments and in-
sights were documented by the interviewer. Our machine learning
experts participated in the interviews as well. They were asked to
reason directly about findings made by the visualization experts;
some findings were reflected in subsequent discussions. Next, we
summarize some of the findings and show respective visualizations.

Parameters’ Influence on Accuracy Fig. 6 illustrates depen-
dencies between parameters and the performance of the activity
recognition algorithm in general. In the example, the data of the
sixth subject is shown with labeled segments encoded according to
correct (green) and incorrect (red) classifications. First, the time
series were sorted in ascending order regarding the amount of cor-
rectly classified time steps. Based on the resulting overview, a
subsequent sorting was applied with respect to the parameter with
the most obvious influence. At first glance, Fig. 6 shows a global
trend of low to high accuracy across algorithm runs from bottom
to top (Fig. 6a) and a second global trend over time from left to
right (Fig. 6b). The first trend (Fig. 6a) reflects the dependency of

Figure 7: Visualizing activities cook and eat. The selection of all
segments of both activities shows their dependence on the values
of parameter PSensor: (a) segments are similar to the ground truth
(top), (b) segments are missing for both activities, and (c) overlong
segments. Moreover, the gray colored parameter value (b) leads to
noisy segments with different labels (d).

the activity recognition results on the parameter PSensor. The global
temporal trend (Fig. 6b) reveals that the number of misclassifica-
tions increases over time for the majority of parameter settings. In
fact, this effect was suspected by our domain experts, but prior to
visualizing the data it was not known for certain.

A second observation was made regarding the influence of
PFilter. Local gradients can be identified for PFilter and the ratio
of misclassifications per configuration (stacked bars in the vertical
compound view (Fig. 6c)). This indicates that some filter modes
mostly result in higher accuracy (light-gray and white) compared
to other modes (black and dark-gray). Additionally, PDist shows an
inverse local gradient for the labeled segments (Fig. 6d). Hence,
higher accuracies within this band only appear in connection with
two modes (black or gray), but not with the third mode (white).

Triggered by these observations, our domain experts raised ques-
tions concerning the influence of PWeight on the accuracy. Hence,
during one of the interviews a visualization expert sorted the visu-
alization first with respect to PWeight and then by overall accuracy.
Interestingly, subtle patterns emerged while comparing the predom-
inant labels in the vertical compound view with each band of con-
figurations per parameter value. Increasingly good classification re-
sults coincide with lower parameter values, but accuracy decreases
with higher values. This dependency is due to the fact that too low
and too high degrees of goal-directed action selection can impair the
activity recognition model. Consequently, finer sampling parame-
ter PWeight and testing respective parameter settings were noted for
future improvements of the results.

Parameter Influence on Activities After analyzing the per-
formance of the activity recognition in general, the analysis ses-
sions proceeded to investigate parameter influence on individual
labels. By relating accuracy to the ground truth, the visualiza-
tion experts initially noticed accumulations of misclassifications
around certain activities. An effect especially prevalent for the ac-
tivities cook and eat across the data of different subjects (Fig. 6e).
Hence, these activities were explored in greater detail.

As an example, Figure 7 depicts the data of the first subject with
labeled segments encoded according to activities. All segments
of cook and eat were selected and time series are sorted based



on their similarity. From the overview, three distinct groups of
time series emerge that are vertically aligned with different values
of PSensor. The first group (Fig. 7a) corresponds to the parameter
value encoded in white and includes segments roughly equal to the
ground truth. In contrast, numerous missing segments in the sec-
ond group (Fig. 7b) indicate that the recognition of both activities
fails with the gray colored parameter value. Finally, the black col-
ored parameter value leads to the third group (Fig. 7c) of overlong
segments which in case of activity eat even merge two separate
instances in the ground truth. The vastly different results of these
three groups hint at an overly coarse sampling of PSensor. Hence,
studying other values might deepen the understanding of the pa-
rameter’s influence. For example, testing other sensor models could
help to obtain adequate recognition results for both activities.

The second group of missing segments (Fig. 7b) was investi-
gated further. Selecting and highlighting the segments of other la-
bels made clear that the respective parameter value had produced
noisy segmentation and labeling results. To determine which labels
were confused, the visualization experts examined the stacked bars
in the horizontal compound view (Fig. 7d). Instead of eat, mainly
the activity drink was recognized. Switching between accuracy
encodings for each label and comparing false negatives of eatwith
false positives of the other labels confirmed these assumptions.

The results of the visual analysis suggest that parameter influ-
ence can be observed by global and local patterns in the computed
activities and associated accuracy. Based on the visual analysis,
the domain experts were able to answer open questions regarding
dependencies between individual parameters values and the perfor-
mance of the activity recognition. Several new hypotheses were
generated on how the influence of single parameters and combi-
nations of multiple parameters manifests. In addition, exceptional
parameter settings and temporal influences were identified. All of
the reported insights require further verification and validation, for
example, by testing the parameter settings with different data sets.

6 DISCUSSION AND LESSONS LEARNED

So far, we described the statistical analysis approach for evaluating
recognition performance (Sect. 4) and our novel visual analytics
approach (Sect. 5) in isolation. In this section, we consider both
approaches in a broader discussion.

Participatory Design Our visual-interactive design is the re-
sult of a participatory design process in cooperation with a group of
four machine learning experts. In this process we conducted sev-
eral collaborative analysis sessions. The gathered feedback formed
the basis for our visualization and interaction techniques. Most de-
sign decisions were made to address data properties and analysis
tasks. Some visualization components were motivated by the ma-
chine learning experts, e.g., the compound views for showing label
distributions and the amount of correct and incorrect segments.

Reflecting on the Findings Generally, statistical analysis as
well as visual-interactive exploration support users in understand-
ing the complex interplay between parameters, labeled segments,
and accuracies. However, the findings obtained are rather different.
While statistical analysis provides quantified assessments of spe-
cific aspects, findings from visual-interactive exploration are rather
of qualitative nature. For example, the results of the statistical anal-
ysis allow to rate and compare the influence of single parameters
and of multiple parameters (Table 1). In addition, by testing ev-
ery parameter configuration, certain accuracy characteristics can be
traced precisely. But, this comes at the cost that relevant parameter
settings have to be determined beforehand. In this regard, the anal-
ysis mainly supports the identification of particular dependencies
and provides results with regard to predefined questions.

In contrast, visual-interactive exploration provides overview and
details on demand, without the need to specify the relevant param-
eter settings in advance. This enables users to investigate global

and local patterns as well as their temporal context, which in turn
helps to explain results of the statistical analysis. As an example,
the statistical results indicate significant influence of PSensor on the
accuracy (Table 1). This influence can be observed visually as well
(Fig. 6). On top of that, the visual analysis reveals variations in ac-
curacy due to differently labeled segments of specific activities for
each value of PSensor (Fig. 7). Thus, interactively studying the data
leads to new hypotheses and supports reasoning about additional
influences on the activity recognition’s mode of operation.

Yet, complex relationships can be hard to discern visually. For
instance, during the interview sessions mostly relationships be-
tween two parameters and rarely up to three parameters have been
identified. Moreover, the experts commented that some of the per-
ceived patterns were rather vague and that they were uncertain
about their findings at times. Consequently, they asked for com-
putation means to verify their hypotheses. This suggests that statis-
tical and visual-interactive analysis should be used in combination.
This way, global and local patterns can be communicated, hypothe-
ses about dependencies can be generated, and interesting findings
can be validated in an intertwined fashion.

Reflecting on the Analytic Process We analyzed the out-
come of activity recognition to determine dependencies between
parameters (input) and labeled segments (output). However, our
current analysis (statistical and visual-interactive) is mainly an off-
line process after the recognition procedure. Hence, it can be con-
sidered outcome-oriented. Consequently, relevant inputs have to be
either known in advance or have to be tested exhaustively.

Yet, choosing suitable parameter values to investigate their in-
fluence is challenging. Analyzing the inputs and outputs of activity
recognition can support users in finding appropriate parameter sam-
ples. For instance, starting an evaluation by testing only subsets of
parameter settings, allows to generate initial hypotheses. Domain
experts can then reject parameters with insignificant influence in an
early stage of the evaluation and instead focus an testing additional
values of parameters which show strong effects. This enables deci-
sions about the performance with regard to certain quality criteria,
without the necessity of testing all parameter settings. This way,
moving towards an online analysis of the data facilitates direct feed-
back and steering of the evaluation, which in turn helps in guiding
users to desired results and fine-tuning algorithms to specific needs.

For example, the insights gained from the statistical and visual-
interactive analysis in our use case led to further samplings of
PWeight to better understand its influence and to improve previous
results (see Sect. 5.4). Our domain experts identified the ability to
visually explore different patterns and to generate hypotheses early
to be a major advantage. But, they simultaneously asked for tightly
interrelating such visual analysis methods into the concept phase
and statistical evaluation phase of their algorithms.

In this context, other open issues from applying automated ac-
tivity recognition remain, such as dealing with diverging data prop-
erties, different algorithms, or changing performance requirements.
For instance, our use case focused on studying parameters’ influ-
ence for one algorithm (CSSM) with a fixed set of parameter set-
tings in a given application scenario. The applied statistical analysis
methods were customized to fit the evaluation of this specific setup.
Consequently, they are hard to generalize regarding other condi-
tions or evaluation constraints. In contrast, our visual analytics ap-
proach is generic enough to be applied to other algorithms or data
sets for generating insights and hypotheses. Though, validating and
verifying these hypotheses currently needs to be done separately.

Other Application Scenarios While our use case focused on
data from activity recognition, the proposed solutions are applica-
ble in other fields as well. Generally promising is the analysis of
parameter influence on time series segmentation and labeling. For
instance, Alsallakh et al. [1] present a scenario dealing with the re-
construction of drilling processes from sensor measurements using



automated methods. Similarly to our use case, their scenario in-
volves long term time series containing thousands of time steps. In
case of an erroneous segmentation and labeling of this data, drilling
specialists have to inspect the reconstructed processes, adjust pa-
rameters of automated algorithms, and compare according outputs.
In this regard, our solution can be beneficial as it provides overview
for multiple parameter settings and allows for exploring different
properties of the complex data. Moreover, by analyzing parameters’
influence with our solution, the specialists can find suitable parame-
terizations and adjust the algorithms to different drilling conditions.

An interesting aspect of such applications is that the ground truth
is often not known in advance. Concerning this matter, our ap-
proach enables comparing different segmentation and labeling re-
sults and choosing configurations that meet desired quality criteria.
For example, using the overview and compound views predominant
labels can be traced over time while also communicating the stabil-
ity of this label selection. On this basis, users can adjust the results
interactively to compensate for uncertain segments or missing data
(cf. [1]). Once suitable labeled segments have been defined, they
can be used as a reference, i.e., in place of a ground truth, to analyze
other configurations in their context with our proposed solution.

7 CONCLUSION AND FUTURE WORK

In this paper we present a novel visual analytics approach for
parameter-dependent activity recognition and compare our ap-
proach with statistical analysis methods. The statistical analysis
of recognized activities enables rating the influence of parameters
on the performance of used algorithms. Supported by our novel
overview visualization of parameters, labeled segments, and ac-
curacies, users can investigate the computed results and discover
global and local patterns. Coordinated views and interactions help
exploring and comparing different aspects of the data and facilitate
hypothesis generation about associated dependencies. In conclu-
sion, by providing extensive visual and interactive means, our ap-
proach supports users in understanding parameters’ influence and
in this way helps in increasing the accuracy of computed results.

To improve our approach, we plan further user studies and in-
terviews with domain and visualization experts. Considering the
lessons learned, we are interested in more tightly interrelating sta-
tistical and visual-interactive methods. For example, using direct
visual feedback, users can generate hypotheses regarding analyzed
parameter settings and trigger according statistical analysis to ver-
ify them. This allows to drill-down only into parameter subspaces
that fit specific requirements, which reduces computational costs.

Additionally, our solution will be extended for comparing mul-
tiple data sets at once, such as recordings from several protagonists
or different activity recognition algorithms. On the one hand, this
allows to consider subjective and environmental influences when
evaluating the performance of applied methods. On the other hand,
taking the provenance of the data, i.e., changing algorithmic mod-
els, and their associated parameter spaces into account enables
users to enhance their search to find an appropriate recognition al-
gorithm with the best possible combination of parameters. Yet, this
requires enhanced visual-interactive designs for dealing with the
added complexity, e.g., dedicated aggregation methods to support
scalability, but also for detecting and analyzing sophisticated rela-
tionships among several influencing factors.
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[4] S. Bergner, M. Sedlmair, T. Möller, S. N. Abdolyousefi, and A. Saad.
Paraglide: Interactive parameter space partitioning for computer sim-
ulations. IEEE TVCG, 19(9):1499–1512, 2013.

[5] C. Brzinsky-Fay, U. Kohler, and M. Luniak. Sequence analysis with
stata. Stata J., 6(4):435–460, 2006.

[6] N. Chen and N. C. Marques. An extension of self-organizing maps to
categorical data. In Progr. in Art. Intelligence, pages 304–313. 2005.

[7] R. Fuchs, R. Peikert, F. Sadlo, B. Alsallakh, and E. Gröller. Delo-
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