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Fig. 1. The GUI of Gnaeus, a guideline-knowledge-assisted EHR visualization for cohorts. (A) The hierarchical structure of the
clinical guideline comprising subplans and actions is shown as a tree visualization with a layered top-down layout. (B) The procedural
knowledge of the selected subplan is shown as a node-link hierarchical task network. (C) The raw data of that parameter, which
is relevant for the selected subplan, is aggregated over the patients’ cohort and shown as a streaming box-plot. (D) The data
is also abstracted according to the declarative knowledge of the subplan and visualized as lifelines. (E) An interactive grouping
lens reconfigures the abstractions to visualize their distribution as vertical barcharts. (F) The execution of clinical actions and their
compliance to the guideline recommendations are shown in an aggregated visualization.

Abstract—The advanced visualization of electronic health records (EHRs), supporting a scalable analysis from single patients to
cohorts, intertwining patients’ conditions data with executed treatments data, and handling the complexity of time-oriented data, is
an open challenge of visual analytics for health care. An integrated approach addressing and meeting the challenge would enable a
better analysis of the EHR data and a deeper comprehension of the health care process, thus providing several benefits in terms of
reduction of costs and risks to the patient, and improved quality of care. According to the knowledge-assisted visualization paradigm,
we propose a solution that leverages the domain knowledge acquired by clinical experts and formalized into computer-interpretable
guidelines (CIGs), in order to improve the automated analysis, the visualization, and the interactive exploration of EHR data of patients
cohorts. The declarative and procedural knowledge constituting the CIGs is used for automatically checking the compliance of the
treatment to the medical recommendations, abstracting and visualising patients’ data with respect to the intentions of the treatment
plans, and filtering relevant data for specific analytical tasks; in this way, the analyst can get insights about the clinical history of
multiple patients and assess the effectiveness of their health care treatments.

Index Terms—Electronic Health Records, Computer-interpretable guidelines, Knowledge-assisted visualization, Visual Analytics

1 INTRODUCTION

In recent years, the diffusion of Electronic Health Records (EHRs) has
been growing, partially due to specific public health policies and leg-
islative interventions, such as the National Programme for IT in the
United Kingdom since 2002, the Health Information Technology for
Economic and Clinical Health Act of 2009 in the United States, and
the directive 24/2011/EU for cross-border healthcare in the European
Union. Besides facilitating the online data transfer amongst hospitals,
clinics, and care providers during the treatment, the increasing adop-
tion of EHR systems has made available large amounts of data about
patients’ conditions and their care pathways. Retrospective analysis of
this data can be exploited to assess the effectiveness of treatments and
identify complex patterns and special cases, in order to improve the
overall quality of healthcare. Several interactive information visual-
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ization techniques and systems have been proposed to visually explore
EHR data, gain insights, and form and validate hypotheses. Generally,
the effective utilization of these systems requires analysts to rely on
their domain knowledge, in order to interpret raw data and deduce the
overall health status of a patient, as well as to assess the administered
treatments and compare them with evidence-based best practices.

In this context, we propose a solution for the visualization of EHR
data of patients’ cohorts. Our main contributions are:

• a knowledge-assisted visual analytics approach, that leverages
the knowledge condensed into computer-interpretable clinical
guidelines in order to drive analysis, visualization, and interac-
tion;

• a proof-of-concept implementation, that demonstrates the advan-
tages of such approach.

2 RELATED WORK

Rind et al. [14] conducted an extensive and systematic survey about in-
teractive information visualization approaches to EHR exploration and
querying; they also identify future research directions, like designing
smoother transitions between the analysis of single patients and the
analysis of patients’ cohorts in order to support the comparison of spe-
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cial cases versus general trends.
Evidence-based clinical practice guidelines (CPGs) are sets of state-

ments and recommendations used to improve health care by providing
a trustworthy comparison between treatment options in terms of risks
and benefits according to patient’s status. They condense in a stan-
dardized narrative form the complex domain knowledge underneath
the clinical practice. Their formalization as computer-interpretable
guidelines (CIGs) enables the implementation of guideline-execution
engines and decision-support systems, assisting professional care
providers during the daily practice [10]. Several visualization tech-
niques for CIGs have been proposed in the literature; they are gener-
ally aimed to visually support their acquisition and specification (e.g.,
AsbruView [8]), or to enable direct visual editing (e.g. Gesher [17]).

Systems like CareVis [2] and CareCruiser [7] intertwine the visu-
alization of CIGs with executed treatment and patient’s health status,
in order to assess the effects of the former onto the latter. Bodesinksy
et al. [4] present a system for the visual analysis of compliance, i.e.
the extent to which an executed treatment fulfills the recommenda-
tions a certain patient is eligible for [13]; their approach is inspired by
the Visual Analytics paradigm, i.e. the tight integration of automated
analysis, visualization, and user interaction [18].

Despite the wealth of visualization systems and techniques present
in the literature, there are still many open challenges of visual analyt-
ics for healtcare [1]. In this work we focus particularly onto three of
these challanges: the simultaneous exploration of both single patients
and cohorts data, the intertwined analysis of patients’ conditions and
treatment data, and an appropriate support for the time-oriented nature
of EHR data.

3 A KNOWLEDGE-ASSISTED VISUALIZATION APPROACH

To address these challenges, we present Gnaeus1, a guideline-
knowledge-assisted EHR visualization for cohorts. Building upon the
aforementioned systems [4, 7], aimed to enable an integrated visual
analysis of EHRs and CIGs, we have designed a solution that makes
this integration tighter, and exploits all the domain knowledge con-
densed into the clinical guideline to assist the visual analytics process.
For many complex visual analytics tasks, indeed, users generally rely
on their knowledge to interpret data; the analysis of EHR data, in par-
ticular, can only be performed by expert users, who have the neces-
sary domain knowledge to interpret patients’ data and assess executed
treatments.

According to the knowledge-assisted visualization approach [5],
Gnaeus exploits expert knowledge to better support parts of the vi-
sual analytics process. It does not acquire clinical knowledge specif-
ically for the visualization, since knowledge is usually acquired from
medical experts into narrative-form CPGs to be used in daily practice,
and also formalized into CIGs to be processed by decision-support
systems. By placing the CIG at the core of Gnaeus, we are able to
leverage the domain knowledge to inform the automated analysis, the
visualization, and the user interaction for EHR data.

3.1 Clinical guidelines as a knowledge base
Gnaeus has been specifically designed to use guidelines written in As-
bru, an intention-based and time-oriented language for CGI knowledge
representation [9]. “Intention-based” means that an essential element
of an Asbru guideline are the intentions, i.e. the goals expressed at
various level of abstraction; intentions can be understood as tempo-
ral patterns of actions or states to be achieved (or avoided), and can
be temporally annotated by the means of complex time-oriented con-
structs.

Additional elements of an Asbru guideline are effects, describing
the functional dependencies between clinical actions and patients’ pa-
rameters (e.g., administration of antipyretic decreases the body tem-
perature). Intentions, temporal abstractions, and effects can be seen
as the declarative knowledge formalized in the CIGs, as they describe
what can be observed and what is to be to achieved.

1Gnaeus is a Latin forename. Many prominent Romans bore this name, in
particular Gnaeus Petreius, senior centurion and commander of the first cohort.

An Asbru guideline also comprises the preferences, the conditions,
and the plan body. They represent the procedural knowledge of the
guideline, recommending how to proceed (activating or aborting sub-
plans, performing specific clinical actions) in order to accomplish the
guideline intentions according to patients’ parameters.

3.2 Automated analysis
In our design, both the declarative knowledge and the procedural
knowledge are exploited to drive the automated analysis. The declara-
tive knowledge, specified as guideline intentions, is exploited to com-
pute temporal abstractions: raw numerical data (bio-signals, measured
parameters, other patients’ parameters) are abstracted into nominal
values according to states, gradients, rates, or patterns consisting of
any combination of the previous [15]. The obtained nominal values in-
corporate the domain knowledge and are thus easier to interpret within
the specific context of the guideline than the raw data. A rule-based en-
gine, using the procedural knowledge of plan bodies, preferences, and
conditions, processes treatment data and patients’ conditions to check
the compliance of the executed treatment to the recommendations [4].
The compliance analysis is performed individually for each patient,
but the engine computes also aggregate statistics, such as the ratio of
compliant/non-compliant occurrences of a specific action across the
whole cohort.

3.3 Visualization
Gnaeus adopts coordinated multiple views for visualizing EHR data as
well as the procedural knowledge of the CIG. The hierarchical struc-
ture of the guideline is visualized as a tree diagram with a top-down
layered layout, whose nodes represent subplans and leaves represent
clinical actions . The logical structure of a subplan is shown as a node-
link diagram of a hierarchical task network. Figure 1 A-B shows the
hierarchical structure and the logical structure of a small illustrative
guideline for the self-management of atrial fibrillation (AF) with a
pill-in-the-pocket approach: in case of palpitation and measured AF
probability above the 80% threshold, the patient is recommended to
reduce physical activity, take a pill and, if the condition persists, call a
doctor.

The procedural knowledge of the guideline can be used to visually
analyze the synchronization of executed subplans, aggregated over a
cohort. Asbru subplans, indeed, can be characterized by various tem-
poral constraints: parallel (to be started together), sequential (one af-
ter another, in a given order), any order (one after another, in any or-
der), and unordered (no synchronization constraints). Figure 2 shows
a modified tree layout encoding the synchronization constraints, while
the edge color represent the average execution time; comparing the
expected execution order with the actual execution time, the user can
check the synchronization of the executed treatment, identifying tem-
poral patterns and outliers. Since the layout integrating synchroniza-
tion information is less space efficient than a simple top-down layered
layout, it can be toggled on demand.

Fig. 2. The layout of the guideline hierarchy tree can reflecr the syn-
chronization of subplans as defined within the guideline: (A) sequential
ordered, (B) sequential any order, (C) parallel, (D) unordered. (E) The
color shading, according to the average execution time (blue=earlier,
green=later), enables the comparison between the expected synchro-
nization and the actual execution.
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Fig. 3. The glycemia of three patients visualized as qualizon graphs, an integrated visualization of raw data and their knowledge-based abstractions.

The temporal abstractions, reducing a numeric (univariate or even
multivariate) parameter into a nominal variable, enable a compact vi-
sualization of time-oriented EHR data. For small cohorts, Gnaeus sup-
ports qualizon graphs, a space-efficient visualization combining quan-
titative data and qualitative abstractions for single patients (Fig. 3).
Qualizon graphs are based on the well-known horizon graphs, but
they extend them with non-uniform bands corresponding to the value
ranges of state abstractions; they are as fast and accurate as horizon
graphs for raw data, but also support the integrated visualization of
state abstractions [6].

For more complex abstractions, or for larger cohorts demanding a
more compact visualization, Gnaeus provides a pixel-based lifelines
visualization; Figure 1 D shows the qualitative abstractions of a pa-
rameter such as the probability of atrial fibrillation: each horizontal
line corresponds to a patient, and it is coloured according to the tem-
porally abstracted states (blue = normal, magenta = high).

The raw data for a numeric parameter can also be aggregated over
all the patients of a cohort and visualized as a streaming box-plot
(Fig. 1 C); it shows the five-number statistical summary: the mean
is mapped to the black line, the 25th and 75th percentile are mapped
to the dark gray bars, the minimum and maximum are mapped to the
light grey bars.

Executed actions are aggregated over the cohort and visualized as
transparent circles along the time-axis (Fig. 1 F): the number of occur-
rences of an action within an interval is mapped to the alpha channel,
while the number of patients to which the action has been adminis-
tered is mapped to the radius. The height of the bar represents the
number of patients within the interval who were eligible for the rec-
ommendations: the white space between the action circle and the ends
of the eligibility bar represents the number of non-compliant patients
(in other words, the number of missing actions or not fulfilled recom-
mendations).

3.4 Interaction
Given the large scale, the multivariate nature, and the temporal com-
plexity of EHR data, specific interaction methods are needed to sup-
port user’s intentions and enable data exploration. A first set of in-
teraction techniques provided by Gnaeus is aimed at facilitating the
transition between analysis of single patients and cohorts. A magic
lens [19] reconfigures the arrangement of the temporal view of qual-
itative data. Outside of the lens, each lifeline represents the history
of a single patient; within the lens, the lines are grouped by abstrac-
tion, thus enabling a quick overview of the distribution of abstractions
across the population in terms of bar charts (Fig. 1 E).

Conversely, a fish-eye interaction allows the user to focus on a sin-
gle patient. When hovering upon the lifeline of a patients in the qual-
itative view, this line is magnified (Fig. 4 B), the corresponding quan-
titative data is overlaid on top of the streaming box-plot (Fig. 4 A)
and the corresponding treatment data is also highlighted in the context
of the cohort(Fig. 4 C). These interaction techniques enable a direct
comparison between a given patient and the rest of the cohort.

The system provides also knowledge-assisted interactions, support-
ing specific tasks in the context of a guideline. Since an EHR can in
principle contain a large amount of multivariate time-oriented data for
each patient, the guideline can be used as an index to browse the EHR

data both across the different variables and along the time axis. Ex-
ploiting the plan-parameter dependency specified in the CIG declar-
ative knowledge, when the users selects a subplan in the guideline
views (Fig. 1 A-B), only the set of relevant parameters and actions is
shown in the temporal views (Fig. 1 C-D-E). Moreover, the time axis
can switch from absolute time to relative time, and all patients within
the cohort are aligned according to the execution time of the subplan
or action selected by the user.

3.5 Implementation
Gnaeus has been designed to be integrated within the wider archi-
tecture of the MobiGuide system [12], an intelligent decision-support
system for patients with chronic illnesses; in that context, guidelines
are stored in and retrieved from the DEGEL digital library [16], map-
pings between guideline concepts and EHR archetypes are managed
by the KDOM knoweldge-data mapper [11], abstractions are com-
puted by the IDAN temporal mediator [3], and compliance analysis
is performed by the RoMA reasoner [13].

A stand alone prototypical implementation, with its own analytical
components, has been developed for small-scale datasets and simple
demonstration scenarios.

Fig. 4. The temporal views demonstrating user interaction: (A) the raw
data of the selected patient are overlaid upon the streaming box-plots
as orange lines; (B) a vertical fish-eye distortion enables a closer exam-
ination of the abstractions of a single patient’s data; (C) the treatment of
the selected patient is highlighted while the rest of the cohort is grayed
out.
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4 CONCLUSION

We have presented Gnaeus, a guideline-knowledge-assisted EHR vi-
sualization for cohorts that exploits the domain knowledge of clinical
computer-interpretable guidelines to support the visual analytics pro-
cess and drive automated analysis, interaction, and visualization.

Asbru-formulated clinical guidelines are a rich source of declarative
and procedural knowledge; other particular aspects of these guide-
lines, such as effects, can be further investigated and utilized for as-
sist analysis and visualization. As next step, we also plan to address
the computational and visual scalability of Gnaeus, in order to sup-
port larger cohorts and enable an efficient visual comparison between
them. Moreover, the overall approach and specific techniques need
to be evaluated by studying real-world use cases and by collecting
feedback from domain experts, such as clinical practitioners and re-
searchers.
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