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Fig. 1. Our visual analysis tools: (a) the confusion wheel shows sample-class probabilities as histograms colored by classification
results, (b) the feature analysis view depicts feature distributions among selected samples, separated by their results, and ranked by
a separation measure, (c, d) histograms and scatterplots reveal the separability of selected true and false classified samples by one
or two features.

Abstract— Multi-class classifiers often compute scores for the classification samples describing probabilities to belong to different
classes. In order to improve the performance of such classifiers, machine learning experts need to analyze classification results
for a large number of labeled samples to find possible reasons for incorrect classification. Confusion matrices are widely used
for this purpose. However, they provide no information about classification scores and features computed for the samples. We
propose a set of integrated visual methods for analyzing the performance of probabilistic classifiers. Our methods provide insight into
different aspects of the classification results for a large number of samples. One visualization emphasizes at which probabilities these
samples were classified and how these probabilities correlate with classification error in terms of false positives and false negatives.
Another view emphasizes the features of these samples and ranks them by their separation power between selected true and false
classifications. We demonstrate the insight gained using our technique in a benchmarking classification dataset, and show how it
enables improving classification performance by interactively defining and evaluating post-classification rules.

Index Terms—Probabilistic classification, confusion analysis, feature evaluation and selection, visual inspection.

1 INTRODUCTION

The performance of classifiers in terms of correct classification is a
major factor in determining their applicability for a given problem.
Significant advances in machine learning have led to the development
of a variety of classifiers and to an improved understanding of their
properties. Designing a classification algorithm for a given problem is
usually an iterative process that involves several decisions and choices.
These include choosing an appropriate classifier, parameter tuning of
this classifier, feature selection, and possibly introducing specific ex-
tensions to the classifier in order to handle special cases or to incor-
porate domain knowledge. This process aims to optimize the perfor-
mance of the classifier according to some measures such as error rate,
cost, or risk. For each of the above-mentioned stages in the design pro-
cess, machine-learning experts need to understand the data involved in
order to make choices that increase performance. Providing tools that
assist these experts in analyzing the data in relation to the classification
performance enables valuable guidance for the design process [20,41].
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Visualization has played an important role in understanding and
comparing classification algorithms and in improving their design
(Sect. 2). In case of multi-class classifiers, the performance is usu-
ally reported by means of a confusion matrix that records for each
class how many times its samples were confused for each other class
(Fig. 2a). Compared with overall performance measures, these ma-
trices provide more details about the results and help in introducing
appropriate adjustments to the classifier. Besides predicting the class
for a given input sample, many multi-class classification algorithms
compute likelihood scores for a sample being of each of the classes.
Analyzing how these scores correlate with the classification error and
data features is important to understand the behavior of such classi-
fiers. Confusion matrices discard this information as they incorporate
final classifier decisions only. This paper presents visual methods for
analyzing classification results of a multi-class probabilistic classifier
for a large number of labeled samples. After motivating this prob-
lems and identifying related tasks (Sect. 3- 4), we describe how our
methods allow analyzing classification results in context of class prob-
abilities (scores) and data features. Our main contributions are:

• Involving class probabilities in the analysis of classification data
by explicitly representing them as colored histograms.

• Intertwined automated and visual methods to analyze data fea-
tures in relation with classification results and probabilities, and
to rank them by their separation of true and false classification.

• An interactive exploration environment to analyze different as-
pects of probabilistic classification data.



Fig. 2. Techniques for visualizing classification results: (a) an interactive confusion matrix [18], (b) ROC curves comparing five classifiers [13], (c)
binary classification boundaries projected on two factors [25], (d) Class Radial Visualization [32].

Sect. 5 presents usage scenarios to demonstrate the applicability
of our methods in analyzing and improving classification results. In
Sect. 6 we discuss the advantages and shortcomings of our approach
compared to previous work, and report expert feedback as well as prac-
titioners experience in analyzing their classification data.

2 RELATED WORK

A variety of approaches and tools have been proposed to improve clas-
sification performance using visualization. They can be categorized
into techniques that engage the user actively in building the classifier,
and those that focus on retrospective analysis of the performance.

2.1 Building Classifiers Interactively
Ware et al. [41] argue that classifiers built by users can compete with
automated techniques as the users can incorporate their domain knowl-
edge in the classifier design. Several techniques have been proposed
for interactively constructing specific classifiers such as ones based
on linear discriminant analysis (LDA) [9] or decision trees [4, 38, 40].
Also, similar ideas were proposed for specific aspects of classifier de-
sign such as distance measures [3, 7] and feature selection [6, 23, 43].

Certain techniques offer visual support for active learning, an ap-
proach which enables machine learning algorithms to query the user
for the desired class of an unlabeled sample [33]. This learning
paradigm has been shown useful in several domains such as video
analysis [16] and document retrieval [15] where the number of sam-
ples is very large, prohibiting a manual labeling beforehand [31].

Talbot et al. [35] presented an interactive system to support ensem-
ble learning, an approach to combine multiple classifiers to build one
that is superior to its components. Their EnsembleMatrix technique vi-
sualizes the confusion matrices of the individual classifiers and allows
combining these classifiers interactively with immediate update to the
combined confusion matrix. Kapoor et al. [18] developed ManiMatrix,
a system to refine a classifier by means of simple interactions with the
confusion matrix (Fig. 2a). Reducing the tolerance for confusion be-
tween two classes triggers a search for new classification boundaries
and updates the matrix interactively if a solution is found.

2.2 A Posteriori Analysis
Several visualization techniques were developed to help machine-
learning experts analyze classification results a posteriori. These tech-
niques are not tightly integrated with the classifiers, but are designed
for post-mortem analysis, which makes them potentially classifier-
agnostic. We describe next three categories of these techniques ac-
cording to the primary information they visualize.

Classifier performance: Receiver operating characteristic (ROC)
curves [13] and their variations [12] are well-established methods for
tuning, assessing, and comparing the performance of binary classi-
fiers. A ROC curve plots the true positive rate against the false pos-
itive rate of a binary classifier for a varying discrimination threshold
(Fig. 2b). While ROC analysis can be extended to multi-class classi-
fiers, it is still computationally exhaustive due to the large number of

class combinations that need to be computed [20]. Also, visualizing
high-dimensional ROC spaces is challenging, with existing techniques
being able to show only partial information about the classes [14].

Data features: These techniques are dedicated to analyze the in-
fluence of data features on the classification results. Anand et al. [3]
use a bubble chart to depict how the samples of a target class are dis-
tributed based on the values of one nominal and one numerical data
features. Kienreich and Seifert [19] use feature-class matrices to show
how features correlate with classes. A number of techniques visualize
the decision boundaries of a binary classifier in a multi-dimensional
feature space [8, 25]. Multiple scatter plots of the data features are
used for this purpose (Fig. 2c). A recent follow-up technique augments
the data points with information about their distances to the decision
boundary [26]. This was shown useful for steering the classification
model and identifying cost-changing data elements.

Class probabilities: Dedicated techniques have been proposed to
visualize class probabilities in the case of probabilistic classification.
Rheingans and desJardins used a heatmap to visualize the probabil-
ity of a given class for each value combination of two features [29].
They account for a larger number of features by creating a 2D pro-
jection of the feature space. Iwata et al. [17] proposed a projection
of class probabilities to visualize multiple classes in the same time.
Projection-based techniques can preserve interesting structures in the
high-dimensional space. Nevertheless, they might potentially result
in complex visualizations that require good understanding of their
properties and semantics to interpret correctly. Seifert and Lex [32]
proposed a simplified technique for visualizing class probabilities. It
places the classes on a circle and depicts the samples as points in this
circle based on their class probabilities (Fig. 2d). These probabilities
can be shown on demand for one sample as lines of varying thick-
nesses. The points are colored according to their predicted classes.
In our work we also employ a radial layout for the classes, but use
different visual abstractions and interactions as we explain next.

3 MOTIVATION OF OUR WORK

When classifying samples using a probabilistic classifier, it is possi-
ble to infer for a wrongly-classified sample whether the actual class
is the 2nd, 3rd or last guess (i.e. the rank of the actual class).
The next chart shows a histogram
of the ranks computed by a classi-
fier for the actual classes of 10,992
samples. About 8.3% improve-
ment on the classification rate is
possible if the classifier would suc-
ceed on the 2nd guesses, e.g. by
simple adjustments to the classifier
or by using additional classification
rules. On the other hand, 11.3% of
the samples fail with low improve-
ment chance with the current clas-
sifier. These samples are hard to separate from non-class samples.



Fig. 3. Visualizing classification results of 10,992 handwritten digits [5] (a) using a confusion matrix augmented with histograms of sample prob-
abilities in the respective rows and columns, (b) using the confusion wheel: Sectors represent digits with chords showing classification confusion
between them. Histograms represent the probabilities of the samples in each class according to the color legend.

The histogram of actual class ranks does not provide actionable in-
sight beyond indicating the amount of improvement potential. More
detailed visualizations are needed to guide the users on how they can
improve the performance. Fig. 3a shows a confusion matrix of the
classification results described above. The size of a cell encodes the
samples of its row class that are confused for its column class. The
matrix is augmented with histograms of sample probabilities in each
row and column. The row histograms represent false negatives (FNs),
while the column histograms represent false positives (FPs) in the re-
spective class. As we show in the next sections, this information is
vital to understand the behavior of probabilistic classifiers. However,
the matrix representation does not assign visual primacy to the his-
tograms, which limits their usefulness. Moreover, it does not include
information about correctly classified samples (true positive TPs and
true negatives TNs) and how their probabilities are distributed, com-
pared to misclassified samples. Finally, the information related to one
class is scattered in multiple cells and two histograms in the respective
row and column. We address these issues by employing alternative vi-
sual designs dedicated for analyzing probabilistic classification data.

4 OUR VISUAL ANALYSIS TOOLS

We propose a set of visualization tools that are integrated to analyze
probabilistic classification data. The data encompasses:

• A set S of n labeled samples that are classified into m classes
C = {c1≤ j≤m}.

• The actual label for each sample la(s) ∈C : s ∈ S.
• The predicted label for each sample lp(s) ∈C : s ∈ S.
• The probability pi j for each sample si ∈ S to belong to class c j ∈

C, as computed by the classifier.
• A set of l data features f1≤k≤l(si) for each sample si ∈ S, used

by the classifier to compute the class probabilities.

The above information is available when classifying unknown sam-
ples, except for the actual labels la. Therefore, la-independent obser-
vations in the data can be reproduced during actual classifications.

Our tools aim to support the following analysis tasks:

• T1: Analyze the overall probability distribution of the samples
to belong to a class (regardless to their actual classes).

• T2: Compare the probability distribution of the samples accord-
ing to their classification results (TPs, FPs, FNs, TNs) in a class.

• T3: Find out FNs / FPs that have high / low probability. These
samples are easier to improve than other FNs and FPs.

• T4: Select samples confused between two classes, and analyze
their probability distributions in these classes.

• T5: Select samples by their class probabilities, classification re-
sults, or data features for further analysis.

• T6: Find out if FPs / FNs at a certain probability range can be
separated from TPs / TNs in that range by the data features.

All of these tasks involve the class probabilities, and some of them in-
volve the data features as well. Matrix representations fall short of sup-
porting these tasks, as they assign visual primacy to class confusions.
Therefore, we propose two main visualizations that assign visual pri-
macy to the probabilities (Sect. 4.1) or to the data features (Sect. 4.2).
We show in the next sections how these views are suited for solving the
above-listed tasks, and enable new insight in the classification results
beyond the information available in the matrix representation.

We illustrate our tools based on a UCI benchmarking dataset [5] that
contains 10,992 labeled samples representing pen-based handwritten
digits. The samples have 16 data features that comprise the x and y
coordinates of eight points sampled along the curve of each digit.

4.1 Confusion Wheel
To assign visual primacy to the sample-class probabilities, we cre-
ate histograms to show how they are distributed in each class (task
T1). We employ the visual layout of Contingency Wheel++ [1] which
places these histograms in a ring chart whose sectors represent the
classes c1..cm (Fig. 3b). In contrast to the matrix, this layout empha-
sizes the classes as primary visual objects with all information related
to a class grouped in one place. This includes class probabilities and
confusions with other classes as we explain next.



4.1.1 Visualizing sample-class probabilities as histograms
For each class c j, the samples S are divided into four sets according
to their classification results:T Pj , FPj, T N j, and FN j . A histogram of
the class probabilities is created for each of these sets using a uniform
number of bins b, equal to n by default. The samples X jk aggregated in
bin k in this histogram are a subset of the corresponding set X j, where
X j is one of the four sets mentioned above:

X jk = {si ∈ X j : (k−1)/b < pi j ≤ k/b} (1)

A closed interval [0,1/b] is used for the first bin. The confusion
wheel visualizes these histograms along the radial dimension in the
respective sector, with the first bin placed next to the inner ring and
the last bin b next to the outer ring. The user can select which his-
tograms to include in the visualization (task T2). These histograms
are stacked and centered in each sector to show the probability dis-
tribution of the respective samples. Color reveals the breakdown of
these samples according to their classification results (Fig. 3b). All
histograms have the same scale and the sectors are scaled to fit them.

By default, the confusion wheel filters out the bottommost bars of
TNs having pi j ≤ 10%. Showing these samples is of marginal inter-
est, as they usually do not compete with the winner class. Filtering
out these samples increases the resolution of the other histograms that
show more important information about TPs and misclassified sam-
ples. Likewise, it is also possible to filter out the topmost bars of TPs
having pi j ≥ 90% to further increase the resolution.

A reference circle indicates the 50% probability level in each sec-
tor. All negatives are located below this line. It is also possible for
positives to lie below this line: this happens, for example, when the
highest three class probabilities for a sample are nearly equal.

The colored histograms give more information about the classifier
performance than confusion matrices. For example, it is evident in
Fig. 3b that classes c4 and c6 have the clearest discrimination, with the
majority of positive samples (≥ 98%) in these classes being predicted
with high probabilities (≥ 90%). The opposite holds for c5, where
only 48% of its positive samples predicted with (≥ 90%) probabilities.
Only 25% of these samples were classified correctly. The percentage
information can be obtained interactively in a tooltip.A naı̈ve Bayesian
classifier is used to classify the data.

Fig. 4 shows three classes from the data depicted in Fig. 3b. It in-
cludes only misclassified samples (FPs and FNs) depicted at a higher
resolution by filtering out TPs and TNs (task T3). The samples are col-
ored according to their actual classes. For this purpose, a unique color
is assigned to each class from an appropriate qualitative color scale.
As a result, the FNs in each class are colored by the class color. The
FPs are colored by their actual classes, showing which other classes
were confused for this class, and at which probability. This reveals
that samples confused for c3 are mostly of classes c5 and c9. Also,
there is mutual confusion between c5 and c8 in the probability range
]0.2,0.8]. A misclassified sample s is double coded in Fig. 4 since it
counts as a FP in lp(s) and as a FN in la(s). This is indicated by the
chords that represent class confusions are we explain next.

4.1.2 Visualizing class confusions as chords
The confusion wheel depicts class confusions as chords between the
sectors (task T4). A chord between two classes is depicted with a
varying thickness: the thickness at sector j1 is proportional to M j2 j1 ,
the number of elements of class c j2 confused for c j1 . Likewise, the
thickness at sector j2 is proportional to M j1 j2 . Hence, following the
chords outgoing from a sector reveals for which other classes its false
negatives are confused. Alternatively, the chord can be split into adja-
cent ones that show the confusion in each direction individually. The
sectors are ordered so that thicker chords are made shorter, using an
O(m2) greedy algorithm [2]. This reduces the visual ink and the clutter
caused by chord crossings, resulting in a clearer visualization. Also,
this reveals groups of classes that have more confusion among each
other than with the other classes. For example, it is evident in Fig. 3b
that the digits 1, 2 and 7 are often confused with each other, as their
shapes are similar to some degree.

Fig. 4. Filtering and coloring the samples in the confusion wheel, rep-
resenting the same data as in Fig. 3b. Only misclassified samples are
shown (FPs and FNs), colored by their actual classes.

Compared with the chords, a matrix representation is more accurate
at showing class confusions and their distribution in the matrix. Nev-
ertheless, a chord is better at showing the mutual confusion between
a pair of classes and the asymmetry of this confusion, compared with
two visually-separate cells in a matrix.

4.1.3 Visualizing additional information about the samples

Instead of coloring the histograms by their classification results, a his-
togram bar can be alternatively colored by an attribute of the samples
aggregated in it. For example, color can be used to compare the classi-
fication results against another classifier (Fig. 8). This shows for which
samples the classification improved, worsened, or did not change in
the depicted data (Sect. 5).

4.2 Feature Analysis View
Investigating the reason behind certain misclassifications and how to
improve them depends heavily on analyzing how the data features are
distributed among the affected samples. In particular, it is important to
find out if certain features discriminate these samples from correctly
classified samples. Therefore, we created a dedicated view that assigns
visual primacy to the features by depicting how they are distributed in
a selected subset of samples Ŝ ⊆ S. As we did in the wheel view,
we split the samples in Ŝ into the same four groups according to their
classification result in a specific class c̄ ∈ C selected by the user. To
provide an overview first, we create up to four boxplots below each
other for each data feature, showing how its values are distributed in
each of the four groups ˆT P j, F̂P j , ˆT N j, ˆFN j. If a group is empty,
e.g. no FNs for c̄ in Ŝ, no boxplots are created for it. The view shows
boxplots of multiple data features ordered in a list (Fig. 1b and 5g).

Typical feature analysis scenarios involve finding features that sep-
arate two main groups among selected samples: ˆT P j from F̂P j, or

ˆT N j from ˆFN j (task T6). This has two implications on our design:
First, we used a minimal version of boxplots, showing the whole value
range, the median Q2, and the inter-quartile range [Q1,Q3]. We do
not show outliers as they are irrelevant for the separation task. Sec-
ond, and more importantly, we rank the features f1≤k≤l by their sep-
aration power of two of selected groups X1,X2 from the above four
groups. Several separation measures can be used for this purpose. One
method is to use a significance statistic: for each feature fk, we com-
pute Welch’s t-statistic [11] (which is used for Student’s two-sample
t-test with unequal sample sizes):

tk =
mean( fk(X1))−mean( fk(X2))√

var2( fk(X1))/|X1|+ var2( fk(X2))/|X2|
(2)

We rank the features by the corresponding p-values, computed ac-
cording to Student’s t-distribution. This places features with more sig-
nificant mean differences between X1 and X2 in the top of the list. Such
features are more likely to separate the samples in both groups, assum-
ing the values in these groups are normally distributed as in Fig. 1c.



Fig. 5. The interactive exploration environment showing information about classification results, class probabilities, and feature distributions. The
summary charts show breakdowns of the samples by (a) actual class, (b) predicted class, (c) classification correctness, (d) the probability of the
predict class, (e) the probability rank of the actual class. The wheel view (f) shows the same data as in Fig. ??b, classified using a k -NN classifier.
Selected samples are highlighted in color. The feature analysis view (g) shows summary information data features of the selected samples, broken
down according to their classification results, and the selection criteria in natural text. (h) A control panel to rank the features according to their
separation power along with a recall-precision curve for possible separation. (i) A histogram of the top ranked feature.

Boxplots show only summary information of feature distribution.
To gain more details about it, the user can click on a feature’s area,
which shows a stacked histogram of its values, depicting breakdown
of the samples into the multiple groups described above. It helps in
better estimating the separability of the groups by the selected feature.

In many cases, higher mean difference between two groups does
not mean better separability. An example is shown in Fig. 5i, where
two groups have relatively closer means, and yet better separability by
the respective feature than by other features. This often happens when
one of the groups represents combined phenomena like TNs that be-
long to different actual classes. To account for such cases, we provide
alternative separation measures to rank the features. Both χ2 and K-S
statistics [22] are applicable generic measures to compare two empir-
ical distributions without further assumptions. When defining addi-
tional classification rules (Sect. 5.4), it is important to identify ranges
in feature distributions that have high separation. For this purpose, we
use the following measure, based on the histograms h1k and h2k of a
feature fk in X1 and X2 respectively:

Fk =
bh

∑
b=1

h1k(b) ·
h1k(b)

h1k(b)+h2k(b)
(3)

Similar to χ2, this measure is computed from binned distributions with
an adjustable number bh of histogram bins. Instead of summing up
deviations, it sums up the number of X1 samples in each bin weighted
by their retrieval precision, as with the F-measure [28].

To provide an overview of how much separation of X1 from X2
is possible using only one of the data features, we create a recall-
precision graph in the top of the view (Fig. 5h). This graph indicates
for each precision level to retrieve X1 , the largest recall rate possible.

In some cases, no single feature provides good separation of the
groups. Therefore, we offer a scatterplot view of selected samples Ŝ in
the 2D space of two selected features, to check if these features offer
better separation (Fig. 1d). Automated and visual techniques can be
employed to recommend scatterplots with best separation [27, 30, 36].

In our implementation, the user selects the scatterplot dimensions from
two lists of features, ranked by their univariate separability.

The visual tools described so far show different aspects of classifi-
cation data. In the next sections we show how these tools are integrated
together and describe use cases of our approach.

4.3 The Interactive Exploration Environment
Analysis scenarios of classification results typically involve examin-
ing different pieces of the information to formulate and test hypothe-
sis about the results, and to introduce improvements. Therefore, we
developed an exploration environment that shows these pieces of in-
formation at different levels of detail using multiple views that are
arranged and coordinated accordingly in the user interface.

4.3.1 Summary views
These views show summary information about the classification re-
sults and performance. They assign visual primacy to the classifica-
tion results, which are shown as secondary information in color in the
other views. Each view highlights samples currently under selection.
Three bar charts show breakdowns of the samples s ∈ S by their actual
class la(s) (Fig. 5a), predicted class lp(s) (Fig. 5b), and classification
correctness whether lp(s) = la(s) or not (Fig. 5c).

In addition, two histograms show breakdowns of the samples by the
probability of the predicted class pi j : lp(si) = c j (Fig. 5d) and by the
rank r(si, la(si)) of the actual class la(si) (Fig. 5d), where:

r(si, l j) = |{1≤ j′ ≤ m : pi j′ > pi j}|+1 (4)

4.3.2 Confusion wheel view
This is the central view in the user interface, showing aggregated in-
formation in more details than the summary views. Four checkboxes
and two sliders at the top of this view enable quickly defining which
samples to include. The sliders allow filtering TPs with high proba-
bility and FNs with low probabilities, to focus the analysis on more
problematic samples to be depicted at a higher resolution (tasks T3).



Hovering the mouse over a visual element shows a tooltip with sum-
mary information about the samples that it represents (Fig. 6a). This
encompasses, for example, recall and precision in a class, and the num-
ber of samples confused between two classes for a chord. More details
about selected samples can be obtained in the detail views.

4.3.3 Detail and feature analysis views
The detail views show more information about the samples selected in
other views. The top area in these views show a textual description of
current selection. A tabular list shows the data features as well as the
predicted and actual classes for the selected samples (Fig. 6b). The
feature analysis view shows this information graphically, as explained
in Sect. 4.2. Likewise, the probability view shows the class probabili-
ties of the samples as a tabular list or as multiple histograms (Fig. 6c).
The two tabular lists are synchronized: clicking on an sample in one
view highlights it and ensures its visibility in both views. This enables
a textual examination of the class probabilities of a certain samples.
These probabilities are also depicted graphically as a star graph in the
wheel view (Fig. 6a). Also, when possible, a graphical representation
of this sample can be shown in a dedicated view (Fig. 6d).

4.3.4 Interactive Queries on the Samples 1

By clicking on a bar in the summary views or in the wheel view, the
respective subset E ⊆ S of samples is selected (task T5). The views
are immediately updated to highlight the fractions of bars and chords
that represent elements in E. These fractions in the wheel view retain
their colors. The rest of the elements become uncolored.

Multiple bars can be selected at once in a histogram in the wheel
view. The selection in Fig. 5 is initially defined by brushing the range
[0.1,0.3] over the radial dimension in c7. This selects samples si with
pi,7 ∈ [0.1,0.3]. The selection is refined by excluding predicted sam-
ples in c7, focusing only on TNs and FNs. These samples are high-
lighted in other sectors to show their classification results in the re-
spective classes. The feature analysis view is updated to show the
feature distributions among these samples.

The samples confused between two classes can be selected by click-
ing on the respective chord (task T4). This allows examining how
these samples are distributed in the probability histograms of both
sectors. The selection in Fig. 6a is defined by clicking on the chord
between c2 and c7. The views are updated to show the class proba-
bilities and feature values of the samples in E. These samples can be
examined individually by clicking on an item in these views (Fig. 6c).
Finally, samples can be further selected based on their features or other
attributes by selecting a specific value range in the respective view.

The subsets that correspond to the above-mentioned selection pos-
sibilities can be combined interactively using set operations as in [2].
Specific keyboard modifiers allow specifying if the newly brushed ele-
ments should be added to, intersected with, or subtracted from the ex-
isting selection. This allows defining highly-expressive visual queries
to select samples based on their classification results and probabilities
in each class, and on their actual and predicted classes. For example,
by clicking on c3 in “predicted class” summary chart all positive sam-
ples in this class are selected (both TPs and FPs). This selection can be
refined to TPs only by clicking on the respective bar in “actual class”
while in set intersection mode. Also, certain FPs such as confusions
with c5 and c9 can be filtered out by clicking on their bars in this chart
while in set exclusion mode. We show in the next section how inter-
active selection of the samples supports several analysis scenarios of
probabilistic classification data.

5 USAGE SCENARIOS

We demonstrate how our tools can be applied to analyze and improve
classification results of the UCI “pen-based” dataset introduced in
Sect. 4. For this purpose, we train several classifiers using the raw fea-
tures 2 of 100 randomly-selected samples using the RapidMiner data-

1The supplementary video illustrates some of the interaction possibilities
2For reproducibility and illustration purposes, we did not consider comput-

ing any additional features that could improve the performance.

Fig. 6. Obtaining details about elements interactively: (a) selecting
samples confused between c2 and c7. The list view show their (b) fea-
tures and (c) class probabilities. One sample is selected for inspection
by showing its graphical representation (d). Its class probabilities are
highlighted both in the list view, and in the wheel view using arrows.

mining software [34] (formerly YALE [24]). We first show how in-
teraction allows quick inspection of misclassified data. Then we show
how the confusion wheel provides insight into classifier behavior, and
enables comparing misclassified samples between two classifiers. Fi-
nally, we show how our tools help in defining additional classification
rules to correct misclassified samples in a generalizable way. Besides
demonstrating the standard features of our system, problem-specific
features are introduced to support the last two use cases. Further ex-
amples with different data sets and classifiers are available at http:
//www.cvast.tuwien.ac.at/ConfusionAnalysis/

5.1 Inspecting Misclassified Samples
The rich possibilities to select subsets of samples using the interac-
tive exploration environment allow quick inspection of certain sam-
ples, e.g., to analyze the reason behind certain confusions. In Fig. 6,
elements confused between c2 and c7 are selected by clicking on the
respective chord. Inspecting these samples illustrates that people write
the same digits in different ways, which requires increasing the train-
ing sample to match against using k-NN classifiers.

In many cases, erroneous labels or noisy data features are the rea-
son behind classification errors. Using our detail views we were able to
identify such cases in the UCI dataset. One example is a c5 digit con-
fused for c8 because it is written in east Arabic numerals which have
different shapes than Arabic numerals. Another example was a noisy
sample which does not resemble any digit. Identifying and isolating
such samples is important to introduce effective design improvements
and to accurately evaluate and compare different classifiers.

5.2 Analyzing Classifier Behavior
Visualizing the probability histogram for each class and coloring these
histograms by classification results reveal several patterns that explain
the behavior of the classifier. Fig. 7 shows this information for class
c5 using three different classifiers. With Neural Networks (NN), the
classification accuracy increases proportionally with the probability of
the predicted class (Fig. 7a). This does not always apply to a Naı̈ve
Bayesian (NB) classifier, where some classes showing the opposite
trend (Fig. 7b). Also, though it varies between classes, the overall
classification sharpness was higher for NB than NN, with 88.9% of
all samples classified with ≥ 90% probability (Fig. 3b), as opposed
to 50.7% with NN. k-NN classifiers exhibit up to k peaks in the his-
tograms at equidistant locations, when an appropriate number of bins b
is used (Sect. 4.1). This is because k-NN classifiers perform weighted
majority voting among the labels of the k nearest training samples to
the samples being classified. If all k classifiers agree on the label c j for
si, pi j is equal (or very close to) 1 and the sample belongs to the out-
ermost peak in the histogram. If none of the classifiers agree, the label
c j of the closest training sample is predicted but with low probability,
and the sample hence belongs to the innermost peak in the histogram
of c j. In Fig. 7c there are two peaks, as k equals 2. In Fig. 1a and
Fig. 5f, there are up to five peaks per sector, as k equals 5.

http://www.cvast.tuwien.ac.at/ConfusionAnalysis/
http://www.cvast.tuwien.ac.at/ConfusionAnalysis/


Fig. 7. Classification results in c5 using (a) neural networks, (b) a naı̈ve
Bayesian classifier, and (c) a k -NN classifier with k = 2. TNs in the
bottommost bars are filtered out. Individual histogram scales are used.

5.3 Comparison with Another Classifier

Classifier designers typically analyze the effect of using a different
classification algorithm or changing certain parameters on the results.
Besides a holistic measure of classification rate improvement, they of-
ten want to gain insight about the samples whose classification im-
proved by this change, and the ones that worsened. A typical example
is analyzing how the classes vary in their improvements, using two-
sided bar charts that depict improved and worsened samples for each
class in different directions. Another example is analyzing which class
confusions increased or decreased by the changes, using a suited ma-
trix representation. These representations discard available informa-
tion on class probability which offers new ways to improve the per-
formance. To address this limitation, we offer a mode to color the
samples in confusion wheel by their improvement status as illustrated
in Fig. 8. The data is classified using a k-NN algorithm with k = 1
and k = 3. The histograms show the class probabilities computed with
k = 3. TNs are not shown, as they are irrelevant for comparison on
class level. Dark blue indicates misclassified samples in the depicted
data that would improve when k = 1. Dark red indicates correctly
classified samples that would worsen when k = 1. It is noticeable that
k = 1 performs better than k = 3 as there is more dark blue than dark
red (overall 6% improvement). We investigated the reason for that by
checking samples that improved or worsened. Fig. 8a illustrates an
example of a sample whose nearest neighbor is the correct class, but
the 2nd and 3rd nearest are not. In this example k = 1 succeeds while
k = 3 fails. Fig. 8b shows the opposite case: 2 out of 3 nearest neigh-
bors have the correct labels, making k = 3 succeeds and k = 1 fails. In
both cases, the sample is close to the outer boundary in c2 as two of
the three nearest neighbors agree on its label.

Fig. 8c shows an interesting case which resembles Fig. 8a, with
the only difference that the 2nd and 3rd neighbors are significantly far
from the sample. This makes the classifier less confident about their
votes, and hence predicting the answer at lower probability. Except for
one sample, all 480 samples that fall in this probability range in this
class would either improve or stay the same when k = 1. This suggests
adding a rule to re-classify these samples, as we show next.

Fig. 8. Comparing the results of k-NN classifiers with k = 1 (encoded in
color) against k = 3 (defining the histograms).

5.4 Defining Post-Classification Rules
In some cases, an existing classifier cannot be refined internally due
to the lack of source code or expertise. Post-classification rules are
one way to improve the performance in such situations by handling
specific cases [39], incorporating domain knowledge [10], and recti-
fying systematic errors. Such rules are usually defined over the data
features and are usually easy to understand and adapt especially if they
are defined by domain experts. In case of probabilistic classification,
a rule can specify Boolean conditions q(si) on the class probabilities
pi j or ranks (Eq. 4) of the samples si, in addition to conditions on their
features fk(si). Both types of information are available at runtime as
they do not involve the actual labels la(s).

We consider three rules for correcting classification errors:

• Correcting false negatives: This rule intends to correct FNs of
class c j by replacing their predicted classes with c j:

RFNj : q1(si)∧ . . .∧qk(si)∧ lp(si) 6= c j⇒ lp(si)← c j (5)

Samples that satisfy conditions q1..qk are post-classified as c j.
• Correcting false positives: This rule intends to correct FPs of

class c j by replacing their predicted classes with the 2nd guesses:

RFPj : q1(si)∧ . . .∧qk(si)∧ lp(si) = c j

⇒ lp(si)← c j′ : r(si,c j′) = 2
(6)

It post-classifies a potential FP that satisfies its premise as the
class c j′ ranked 2nd for this sample (Eq. 4).

• Using another classifier: This rule intends to re-classify certain
samples by using another classifier Clz:

RClz : q1(si)∧ . . .∧qk(si)⇒ lp(si)←Clz(si) (7)

It post-classifies a sample si that satisfies its premise as the class
Clz(si) predicted by Clz.

Our visual tools support in defining rules of the above types and in
testing their actual improvement. For this purpose, the data set should
be split into two parts: (1) training data that are loaded in the visu-
alizations and used in defining the rules, and (2) validation data that
are used to assess the actual improvement on unseen data. This is
important to avoid dataset bias which occurs when defining rules that
overfit the training data and fail to generalize to unseen data. Except
for Fig. 3, the visualizations depicted in this paper use 80% of the UCI
data introduced in Sect. 4. In the following we illustrate how potential
improvements can be visually identified, and how the respective rules
can be defined and validated on the remaining 20% of the data.

To improve misclassified samples in a class c j, the respective rule
should define conditions on the samples that include as much of these
samples as possible and in the same time exclude correctly-classified
samples. This is important as applying the rule on the latter samples
would worsen their classification. The wheel view gives an overview
on how misclassified samples c j are distributed according to their
probabilities. This makes it easy to spot probability ranges in c j hav-
ing a significant number of these samples that are likely to improve by
one of the rules. Typically, these samples interfere with correctly clas-
sified samples. In particular, the interference of TPs (green) with FPs
(yellow) requires separation using further conditions on the data fea-
tures, before applying RFPj . This interference is usually larger in the
outermost bin(s) that are dominated by TPs, which suggests excluding
these bins when defining this rule. Similarly, the interference of FNs
(red) with TNs (grey) requires separation in order to apply RFN j . Also
the innermost bin(s) need to be excluded when defining this rule, as
their probability range is highly dominated by TNs.

To separate the interference in a potentially improvable probabil-
ity range Qc j in c j, the user selects the samples in this range using
brushing. The feature analysis view lists possible features that offer
good separation, as explained in Sect. 4.2. After inspecting the feature
histograms, the user can select a feature fk to define an improvement



rule by double clicking on its histogram. This opens a dialog box
which shows the histogram in higher resolution and allows selecting
a specific value range Q fk for fk (Fig. 9). The user selects a range
that contains the majority of samples that need improvements (FPs or
FNs) and excludes as much of the other samples as possible. The dia-
log also allows specifying which rule to apply to samples that fall both
in Qc j and Q fk . The selected rule is externalized in text and applied to
such samples both in the training dataset loaded in the visualization,
and in the test dataset. The results in both cases are reported as the
absolute number of samples that improved and worsened, and the to-
tal improvement on the classification rate. Changing the feature range
Q fk automatically updates the results, to assist the user in choosing a
robust range that performs well both in training and test datasets.

As example, in Fig. 1a, the analyst notices a large number of FNs in
c7. She selects the respective probability range in c7 (Fig. 5f) and finds
that feature y8 offers good separation of these FNs from the TNs in the
value range [20%,60%] (Fig. 5i). Therefore, she creates the following
rule:

(0.1≤ pi7 ≤ 0.3)∧ (20≤ y8(i)≤ 60)⇒ lp(si)← c7 (8)

This rule improves 591 and worsens 13 samples in the loaded data,
yielding a significant total improvement rate of 6.57%. Similar re-
sults apply to the testing data (141 improved, 3 worsened, 6.28% to-
tal rate) making the analyst accept this rule. She continues further
to investigate the large number of FPs in c1 by selecting the proba-
bility range [30%,80%] and restricting the selection to samples with
lp(s) = c1. She checks the features for separation but notice interfer-
ence between FPs and TPs, even with the features with most separation
power (Fig. 9a). She selects the small range with as few TPs as pos-
sible, and applies rule RFP1 which achieves 1.11% overall with 136
improved and 36 worsened samples in the training dataset. She rejects
this rule and searches for more robust rules to improve these samples.

The scatterplot view allows identifying if two features can in combi-
nation achieve a good separation of interfering sample groups. As ex-
ample, Fig. 1d illustrates how two features separate about 76% of FNs
in c8 that lie in probability range [10%,30%] from the TNs, with only
13 TNs unseparated. Reclassifying these samples with RFN j yields
3.5% and 3.4% improvements on the training and test datasets. Dedi-
cated algorithms are needed to rank the pairs of features by their sep-
aration power, and to recommend optimal region separations in a spe-
cific scatter plot. For the purpose of this use case, a manual search for
such features is sufficient to illustrate the importance of visual inspec-
tion to assess their separation power.

Besides searching for separating features, it is possible to improve
certain misclassifications using the results of another classifiers. As
example, it is evident in Fig. a that the results for c2 involve a large
number of mixed misclassifications (FNs and FPs) especially in the
probability range [30%,70%]. We provide a separate view to check
how other classifiers perform on these samples by selecting them
(Fig. 9b). This reveals that neural-networks-based classifier (NN)
yields 7.31% improvement rate if applied to these samples, which sug-
gests creating the following post-classifying rule (Eq. 7):

0.3≤ pi2 ≤ 0.7⇒ lp(si)← lp
NN(si) (9)

Such combinations of results from multiple classifiers has been exten-
sively researched in pattern-recognition and machine-learning litera-
ture [21, 37, 42]. Many of these techniques apply combination heuris-
tic such as weighted majority voting in a holistic way to all samples.
We illustrated that declaratively restricting such heuristics to certain
samples yields better improvements, as this avoid impacting correct
classifications among the remaining samples. Using visual inspection,
we were able to outperform automated techniques for combining mul-
tiple classifiers such as majority voting (Fig. 9b).

Post-classification rules should be defined carefully to avoid over-
fitting the data. First, the testing dataset should be representative and
of sufficient size to warrant generalization. Second, the conditions
used in these rules should be based on probability and feature ranges
that have a sufficient number of samples to avoid creating rules spe-
cific to the training dataset. In fact, the distributions depicted in the

Fig. 9. Defining post-classification rules: (a) checking separability be-
tween FPs (yellow) and TPs (green) according to a feature, (b) checking
the performance of other classifiers on selected samples.

probability histograms tend to be invariant among random subsets of
sufficient sizes, if extreme values are discarded and avoided. Finally,
defining several rules increases the overlap between their premises,
the conflict in their actions, and the risk of over-fitting in general. It
is important to select a small number of rules that exhibit robust im-
provement results, high precision, and few overlaps with each other.
In general, classification errors should ideally be solved by improving
the classification algorithm when possible, with help of the insights
gained by the interactive visualizations.

6 DISCUSSION

In this section we discuss the advantages and limitations of our tools
and compare them with other techniques for visualizing probabilistic
classifiers. We also report feedback and observations from classifica-
tion experts and practitioners.

Scalability: The use of aggregated representations makes our
tools highly scalable with the number of samples. For example, the
histograms in the confusion wheel were able to handle datasets con-
taining tens of thousands of samples. Furthermore, the filtering possi-
bilities presented in Sect. 4.3 enable focusing on fine details contained
in small subsets of these samples. Likewise, the boxplots and his-
tograms in the feature analysis view scale well with the number of
samples. Stacking the boxplots allow depicting summary information
about 15-20 features at once. This is sufficient for our purposes, thanks
to feature ranking which interactively places the most relevant features
for the current analysis context at the top.

To ensure enough visibility of the information in each class, up to
20 classes can depicted at once as sectors in the wheel view. This



limit is feasible for a wide range of classification problems that do
not require a larger number of classes. In case of larger number of
classes, a subset of them can be selected manually or automatically
to be shown at once, such as the subset with the highest confusions
between its classes.

Handling imbalanced data: Sometimes, classification data ex-
hibit skewed distributions of the samples to the classes. This causes
classes having large number of positives to occupy the majority of dis-
play area, possibly obscuring fine details in smaller classes. To handle
such cases is to possible to make the sectors of equal sizes, and stretch
the histogram to fit in these sectors using individual scaling factors.
Arcs representing the same amount of samples can be drawn outside
the sectors using different scales to indicate these scaling factors. Al-
though this hinders comparing the histograms in absolute values, the
shapes of the distributions and the proportions of misclassified samples
are still comparable across the classes. Such relative comparisons are
usually more relevant in analyzing the results than comparing absolute
values between classes of significantly different sizes. Similarly, the
class confusions can be normalized by the total number of samples in
the respective classes. These relative confusions can be indicated in
color or by adjusting the chord thicknesses to show relative instead of
absolute confusions.

Some classifiers compute relatively low probabilities for the win-
ning class, such as ones based on fuzzy logic. This limits non-empty
histogram bars to the inner bins only, which lowers the visual resolu-
tion. It is possible in such cases to redefine the bins to cover the ef-
fective probability range at higher resolution and make the histogram
span the whole sector area.

Comparison with previous work: Our tools combine different
pieces of information that have been addressed individually in previ-
ous work, as presented in Sect. 2. Compared with existing techniques
that visualize class probabilities such as Class Radial Visualization
(Fig. 2), the added-value in using the wheel metaphor lies in (1) ag-
gregating the samples to analyze their probability distributions and to
avoid clutter and ambiguity issues caused by individual points [32],
(2) using color to show classification results of the samples next to
each other and to reveal their separability, and (3) visualizing class
confusions in a compact layout, thanks to the radial arrangement. This
provides a rich overview of classification results that was not possible
in previous techniques and enables new insight and tasks as we illus-
trate in the usage scenarios. Confusion matrices are better suited than
the chords to gain more precise information about class confusions.
Nevertheless, the chords reveal groups of classes having higher mu-
tual confusions, emphasize the asymmetries in these confusions, and
enable relating them to respective class probabilities.

The area-based nature of the histograms offers several possibilities
for selecting and highlighting certain subsets of samples in confusion
wheel. This is essential in a coordinated-multiple-view environment
in order to formulate queries on the samples and to gain detailed in-
sight into them in the feature analysis view. This environment enables
a novel integration between probability-based and feature-based rep-
resentations of classification data.

The visual analysis methods we propose are based on familiar vi-
sual representations such as boxplots and stacked histograms, as well
as on the wheel metaphor [1]. This metaphor is originally designed
to visualize associations between entities and categories, and similari-
ties between categories. By treating samples as entities and classes as
categories, we were able to adapt this metaphor for classification data:
Instead of associations and similarities, we compute probabilities and
two-way confusions. Also, we introduced several changes to the vi-
sual encoding and different interactions to address the characteristics
of classification problems.

Expert feedback: We analyzed classification data comprising
about 40,000 labeled samples provided by our industry partners. The
data were classified in 10 classes using a fuzzy rule-based system de-
signed by domain experts. We refined our design iteratively based on
feedback from these experts, and on what information they wanted to
analyze. After we explained the visualizations we created for their

data, they were able to identify issues with their classification rules.
For example, one class had a large number of FNs that were highly
concentrated in the middle of the respective sector. Analyzing the rea-
son for that revealed that the respective classification rule was assigned
relatively low weight by the domain experts. Also, examining the fea-
tures for selected FPs in a class revealed a rule that uses an inappro-
priate feature that was mistaken for the correct one: The values of
this feature among these FPs should not appear among actual samples
of the class, according to domain experts. These experts were able
to refine their system accordingly. We did not have the possibility to
quantify the improvement.

The informal feedback from our industry partners and from five
other machine-learning experts confirms that our tools offers both a
good overview of classification results and detailed information on de-
mand. However, our visual metaphors need to be learned with enough
examples and explanations before they can be interpreted correctly:
One domain expert, asked for clarification on what the histograms in
the wheel view mean, about 30 minutes after we started presenting
our findings. To avoid such misunderstanding, the metaphor should
be introduced part by part with sufficient examples, before discussing
insights. In fact, our system is feature laden, and needs extensive learn-
ing of how these features work together. One machine-learning expert
requested showing separate arcs to encode class confusions in both
directions. Also, two machine-learning experts did not encourage us-
ing post-classification rules in general, as they could encourage over-
fitting the data. They suggested using the insight gained in improving
the classifier design instead.

7 CONCLUSION

The availability of class probabilities enables new possibilities to ana-
lyze the performance of probabilistic classifiers, beyond comparisons
between predicted and actual classes. Common visual representations
such as confusion matrices and ROC curves ignore class probabilities
by assigning visual primacy to classification error in terms of false pos-
itives, false negatives, or class confusion. Assigning visual primacy to
class probabilities or to the data features enables analyzing their in-
fluence on classification performance and performing further analysis
tasks related to the data. We proposed a representation of probabilistic
classification data by showing the probability distributions as stacked
histograms in a radial layout and by coloring these histograms by the
classification results of the samples. We showed how this represen-
tation lends itself to rich interactions to select samples based on their
probabilities, and to perform further analysis of these samples based
on their data features. We proposed intertwined automated and vi-
sual methods to analyze these features in a dedicated view and to rank
them according to their separation power between true and false clas-
sifications among the selected samples. We presented several analysis
scenarios that are possible using our visual tools. These include visual
inspection and comparison of classification results, identifying perfor-
mance problems, and interactive definition of post-classification rules
to improve misclassified samples a posteriori. We demonstrated by
that how exploratory analysis can reveal relevant patterns and correla-
tions in classification data that are difficult to specify and identify au-
tomatically, and are usually compromised in holistic analysis methods.
These insights are essential to introduce effective improvement to the
classifier design that reduce the classification error in a generalizable
way. Our future work aims to provide visual means to compare and
combine the results of several classifiers, to support analyzing a large
number of classes, and to explore hierarchical and multi-label classifi-
cation results by means of similar interactive visualization methods.
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