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ABSTRACT
In several application fields, the joint visualization of quantitative
data and qualitative abstractions can help analysts make sense of
complex time series data by associating precise numeric values
with corresponding domain-specific interpretations, such as good,
bad, high, low, normal. At the same time, the need to analyse large
multivariate time-oriented datasets often calls for keeping visual-
izations as compact as possible. In this paper, we introduce Qual-
izon Graphs, a compact visualization that combines quantitative
data and qualitative abstractions. It is based on the well known
Horizon Graphs, but instead of a predefined number of equally
sized bands, it uses as many bands as qualitative categories with
corresponding different sizes. In this way, Qualizon Graphs in-
crease the data density of visualized quantitative values and inher-
ently integrate qualitative abstractions. A user study shows that
Qualizon Graphs are as fast and accurate as Horizon Graphs for
quantitative data, and are an alternative to state-of-the-art visualiza-
tions for both quantitative and qualitative data, enabling a trade-off
between speed and accuracy.
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H.5.2 [Information Systems]: Information Interfaces and Presen-
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1. INTRODUCTION
The visualization of time-oriented data is increasingly important

yet not an easy business [3]. In particular time series, sequences of
numeric values measured at successive points in time, are common
and relevant for several domains such as in environmental sciences
(meteorological and climatic data), economics (prices of stocks,
currencies, securities), or medicine (vital signals measurements).
One of the oldest and most popular ways to visualize time series
data are line plots, which are easy to comprehend and efficient in
the case of univariate data. However, most of the tasks in different
domains address multivariate data: a climate scientist might want
to look at the same time at the progression of temperature, rainfall
and sea level; a financial analyst at a stock quote and its market
index; a doctor at the blood pressure and the heart rate. When there
is the need to visually explore multiple time series, sometimes us-
ing aggregation is not possible, for example because a high level
of detail is needed for exploratory analysis. In this case, there are
mainly two possibilities: either combining multiple time series in
a single diagram (e.g., stacked charts), or visualizing each time
series by a space-efficient technique (e.g., Horizon Graphs [23]).
Besides enabling the accurate perception of the numeric values, an
efficient time series visualization needs to support the understand-
ing of related information. In other words, the visualization should
help users with the interpretation of numeric values, according to
domain specific knowledge: is a certain temperature high, normal,
or low? is the gold price today cheap or expensive? is the patient’s
blood pressure healthy or risky? Qualitative abstractions, besides
supporting specific user needs, also enable more compact visual-
izations [1]. In this context, the contributions of our paper are:

• the introduction of Qualizon Graphs (QG), an extension of
Horizon Graphs (HG), designed to integrate the visualiza-
tion of qualitative abstractions into the compact display of
numerical time series in a space-efficient manner;

• a formal user study to evaluate QG by comparison with HG
and with SemanticTimeZoom, another visualization for time
series with support for qualitative abstractions.

In the following, we review related work about compact visual-
ization of time series and combined visualization of raw data and
qualitative abstractions, explain the features and the factors affect-
ing the design of the QG technique, describe the comparative eval-
uation we performed to assess its effectiveness, and finally discuss
the results of the evaluation and their implications.



2. RELATED WORK
Abstracting quantitative data into qualitative levels, classes, or

concepts is a strategy diffusely adopted to enhance the interpreta-
tion of large complex datasets, by linking their representation to a-
priori knowledge. The concept of data abstraction originates from
artificial intelligence [8], but its usefulness is recognized also for
visualization and visual analytics [29]. Data abstraction is used
in many application areas, where there is the need to make sense
of raw data in terms of the appropriate concepts from the relative
domain knowledge. In clinical practice, for example, the abstrac-
tion of time-oriented monitoring data into context-sensitive levels
and expected trends can make the interpretation of the patient’s
health status faster and more accurate, thus improving the quality of
care [18]. The peculiar characteristics of time enable the definition
and computation of different types of qualitative temporal abstrac-
tions [26]: state (according to static thresholds), gradient (the sign
of the first temporal derivative), rate (the magnitude of the deriva-
tive), acceleration (the second derivative), and pattern (combination
of the previous ones).

Various techniques have been proposed for the integrated visu-
alization of quantitative and qualitative data. LifeLines [21] is a
technique for visualizing personal histories: actions and events are
visualized as coloured bars along the time axis, and quantitative
values (such as the significance of an event) are mapped to the bar
height. LiveRAC [17] is a visualization for system and network
management time series data. It exploits small multiples [31] to
display several line plots. Each line plot can be interactively re-
sized; in this case, the diagram height is simply reduced until the
line plot is equal to a sparkline [30]. The main objective of Care-
Cruiser [12] is to support the simultaneous visualization of the log-
ical structure and the time-oriented aspects of computer-executable
clinical plans, as well as the effects of treatments on the patient’s
condition. The visualization of quantitative data as a line plot can
be complemented by several qualitative abstractions, such as the
distance from the intended value, the progress from the initial value
and the slope (gradient), as well as the compliance with the clinical
guidelines [7]; these metrics are encoded in a level for each time
point, and mapped to the chart background colour along the time
axis.

KNAVE-II [27] is a framework for the analysis and visualization
of patient’s data. It features a distributed engine for the computa-
tion of different kinds of temporal abstractions: from state, to gra-
dient, to more complex patterns. The visual interface enables the
exploration of both raw data and abstractions, visualized by jux-
taposed basic charts. The approach presented by Bade et al. [6]
provides several visualization techniques to enable the visual ex-
ploration of quantitative data and qualitative abstractions at differ-
ent level of details. It includes a semantic zoom interaction, so that
when the user changes the vertical display space, the time series
smoothly switches from one visual encoding to another. At the
maximum height, the time series is visualized as a line plot with
coloured annotations highlighting transitions between qualitative
abstractions; at the minimum height, quantitative data disappear
and qualitative abstractions are visualized as coloured rectangles.
At an intermediate level, there is the hybrid visualization (see Fig-
ure 2.b): the quantitative values are visualized as a line plot, with
colour-coded areas beneath the curve showing the qualitative ab-
stractions. A comparative evaluation between this hybrid visual-
ization, also known as SemanticTimeZoom (STZ), and KNAVE-II
is presented in [4]. That user study, a task-based controlled experi-
ment with 20 participants, revealed that STZ outperforms KNAVE-
II in terms of task completion time, while there is no significant
difference in terms of error rate.

Figure 1: Three time series visualizations; a: Pseudo Colour-
ing [32]; b: 2-tone Pseudo Colouring [25]; c: Horizon
Graph [23].

The graphical summary of patient’s status [22] visualizes multi-
ple time series arranged in a small multiples fashion. The display
occupation of each time series is reduced by using multiple scales
on both axes. The use of multiple scales is not only intended to ob-
tain compactness, but also to simplify the data interpretation. The
horizontal (time) axis has a larger scale for more recent data, which
are also more significant, while old data are compressed. The ver-
tical axis is divided into qualitative ranges, namely critically re-
duced, reduced, normal, elevated, and critically elevated. Since the
variation of values within the normal range has a greater clinical
significance, this range has a larger scale than others. Using mul-
tiple scales is a common trick in situations where high resolution
is needed for all or for a part of the data, but screen real estate is
limited. Multiple scales have always been considered a delicate is-
sue [13], and many aspects have to be considered to use them effec-
tively. Cleveland [9] recommends making scale breaks visible and
avoiding visual connections across different scales. An empirical
user study on the use of visual cues to aid the correct interpretation
of distorted charts, revealed that a grid is the most effective mech-
anism [34]. Isenberg et al. [15] focus on dual-scale data charts and
substantiate similar recommendations leveraging empirical experi-
ments.

Horizon Graphs are a compact visualization of time varying quan-
titative data. This well-known technique can be seen as the result
of two independent approaches which originated from similar prob-
lems and, apparently in an independent way, reached a similar solu-
tion. Colour sequences (also, pseudo colouring) is a common way
of visualizing quantitative data [32]. When applied to time series,
it visualizes the time series as a narrow rectangle and maps values
to colours: the shading of colours along the larger dimension of
the rectangle represents the temporal sequence of values (see Fig-
ure 1.a). This technique is very compact, but while it works quite
well for qualitative data, in the case of continuous data its effec-
tiveness is bounded by the limited resolution of the human visual
system in discriminating colours [32]. To overcome this limitation,
Saito et al. [25] introduced the two-tone pseudo colour technique
(see Figure 1.b), that combines the compactness of colour coding
with the higher resolution of spatial visual variables. In this visual-
ization the values of the time series are parted into ranges, and each
range is visualized with a different colour. The colour boundary is
not vertical, but follows the trend of the values; in other words, for
each time point, the height of the colour boundary is proportional
to the value of the time series in that time point. This mechanism
enables the compact visualization of quantitative data with higher
resolution than pseudo colouring only.

Reijner [23] developed Horizon Graphs (HG) aiming for the so-
lution of the same problem: how to obtain a compact visualiza-
tion that preserves a fair level of detail. The result is quite similar
(see Figure 1.c), but the procedure is different [10]: start with a
line plot, divide it into uniform horizontal bands, colour the bands



with colours from a diverging colour scheme, and then collapse the
bands to display the values in less vertical space. The main ad-
vancement of HG beyond two-tone colouring is the indexing: an
index value is fixed (zero, the value of the time series at time zero,
or any other reference point), and values above and below the in-
dex are visualized in different ways. Besides the use of a diverging
colour scheme (e.g., values above and below the horizon have a
blue and a red hue, respectively), the bands below the horizon are
also mirrored. The mirroring reduces the vertical space further,
but also makes the indexing more evident. In a certain sense, HGs
introduce the visualization of a basic qualitative abstraction: along-
side the quantitative values, the signs of their deltas from the index
are visually emphasized.

HGs have been widely adopted as a compact time series visu-
alization, and also studied with perception experiments. Heer at
al. [14] conducted a formative evaluation to understand the effect
of chart height and number of bands: they found that when the
height of the chart decreases, increasing the number of bands im-
proves performances, but only up to around 8 bands (4 bands per
side). They also introduced the notion of virtual resolution, de-
fined as the un-mirrored, un-layered height of a chart; this quantity
is useful to compare different charts. Finally, they proposed the
offset mode as an alternative to mirroring: bands below the horizon
are not mirrored, but translated above the horizon (i.e., an offset
equal to the range of the bands is added to values). This solution
was thought to be more efficient because it preserves the intuitive
encoding of positive upside and negative downside, but the em-
pirical results show that there is no significant difference between
offset and mirroring. An aspect that was not noticed about offset, is
that while the mirroring mode requires a diverging colour scheme
to differentiate between positive and negative values, in the case of
the offset a single-hue sequential colour scheme is sufficient, and
makes the hue available for encoding additional info (e.g., in the
juxtaposed visualization of multiple time series, each with its hue).

Javed et al. [16] addressed the graphical perception of multiple
time series with a comparative evaluation. They considered four
visualizations, distinguishing two split-space techniques, namely
small multiples and HG, and two shared-space techniques, namely
superimposed line plots and braided graphs. The results shows that
none of them outperforms all others, but different techniques have
different strengths and weaknesses according to different tasks.

A recent contribution by Perin et al. [20] introduces specific user
interactions to control HG: users can change the baseline (i.e., the
indexing point) by an interaction similar to panning and the number
of bands by a zooming-like interaction.

3. DESIGN FACTORS AND RATIONALE
The basic idea behind the design of the QG technique is rela-

tively simple: we adapt HG for integrating qualitative information.
In particular, we want to add support for static qualitative abstrac-
tions, computed according to fixed thresholds. The standard HG
uses an even number of bands, half below and half above the so-
called horizon, all having the same height. The QG concept is to
use as many bands as the qualitative ranges, each band having a dif-
ferent height according to the size of the corresponding qualitative
range. In this way, the bands allow for a more efficient use of the
vertical space by dividing the chart, and as a result increasing the
virtual resolution; moreover, the bands allow for the direct iden-
tification of the qualitative abstraction each data point belongs to.
This technique has the advantage that also in situations where the
vertical space is limited, the visualization still conveys qualitative
as well as detailed quantitative information, and does not need to
turn into tiny sparklines [30] (displaying quantitative data only) or

Figure 2: Four visualizations of the same time series data. a:
Line plot. b: Coloured line plot, like in SemanticTimeZoom [4].
c: Qualizon Graph with uniform scale. d: Qualizon Graph with
non-uniform scale.

coloured bars (qualitative only). QGs originate from a simple and
easy to understand idea, and follow clear design rationales. Their
benefits and limitations are discussed in the following sections.

Horizon – HG are symmetrical: they have an even number of
bands, and the horizon corresponds to the value between the two
most central bands. In the case of QG, the horizon indicates the nor-
mal value, or the reference value according to the domain knowl-
edge, and it is not necessarily set in the middle of the value range.
Moreover, the number of bands can also be odd, if the number of
qualitative abstractions is odd. The QG in Figure 2.c-d has an odd
number of bands, and the horizon is the value between the normal
and the median band. When the qualitative abstractions, and thus
the bands, are skewed, the count of bands is higher: in a HG with
6 bands, for example, the count of bands is 3 (3 above, 3 below the
horizon), while in a skewed QG the count of bands can be up to
6 in the worst case. According to empirical results [14], a higher
count of bands leads to worse performances. In any case, this ef-
fect does not depend on design choices, but only on the shape of
the qualitative abstractions in use.

Scale – While all the bands of a HG have the same height, quali-
tative abstractions in principle can have different sizes. We can map
qualitative abstractions into bands with different heights, by using
a uniform scale, or into bands with the same height, by using a
non-uniform scale. With non-uniform scale, the QG will look sim-
ilar to a HG: the endpoints of each abstraction are always mapped
to the highest and the lowest point of the graph; in other words,
all the bands span all over the graph (see Figure 2.d). The vir-
tual resolution will vary across the bands, and will be the largest
possible for each band. Furthermore, in the case of QG with non-
uniform scale (as well as HG), given a data point, there are only
two bands visible in that point: the band that point belongs to, and



the adjacent one (going toward the horizon). With uniform scale,
all bands will have the same virtual resolution, but each band will
have a different height reflecting the size of the corresponding qual-
itative abstraction (see Figure 2.c). For each data point more than
two bands might be visible. To asses the impact of the scale onto
the understandability and usability of QGs, we conducted the user
study taking this factor into account.

Mirroring/Offset – As explained in section 2, the effect of mir-
roring and offset on tasks involving quantitative data has been al-
ready empirically evaluated for HG by Heer et al. [14], who did
not find a significant difference. There is no difference between
HGs and QGs with regard to this factor for quantitative data. As
for qualitative data, we notice that the in the case of mirroring, the
qualitative level corresponding to a certain data point can be iden-
tified always by looking at the colour of the corresponding point at
the intersection with the baseline (i.e. the horizon), independently
of the number of colours (one, two or more) on the vertical. In the
case of offset, instead, one should look at the colour on the bottom
of the vertical for values above the horizon, and at the colour on
the top for values below the vertical. Thus, we assume that mir-
roring is more effective then offset for qualitative data, according
to the proximity compatibility principle [33]. Therefore, we chose
mirroring for QGs, and refer to this option in the following if not
otherwise specified.

Colouring – In section 2 we have already discussed the two-tone
pseudo colouring [25] and the introduction of the red-blue diverg-
ing colour scheme for HGs [23]. We have also noted how choosing
offset instead of mirroring, in theory, allows us to use a single-hue
sequential scheme. Nevertheless, in the case of QGs, the colour
scheme is not a totally free design choice, in the sense that it might
depend on the specific domain and its conventions. For example, in
the visualization of temperatures, blue and red might represent low
and high values; for clinical data, green and red might distinguish
between healthy conditions (middle values) and risky conditions
(extreme values). Since QGs aim for an easier interpretation of
time series data by exploiting a-priori knowledge, existing conven-
tions for qualitative abstraction should be taken into account when
assigning colours to corresponding bands. A detailed discussion
about colour schemes, however, is out of the scope of this work.

Legend and Y-Axis – In any case, we need a legend to show which
colour represents which qualitative abstraction. Moreover, the size
of the bands are not uniform, since they vary according to the range
of qualitative abstractions; thus, we need to show also some in-
formation about the ranges. In the case of non-uniform scale, we
also need to provide a visual cue to aid the correct interpretation of
the different-scaled regions [34]. In order to fulfil these needs, we
adopt a double mechanism (see Figure 2.c-d). First, we derive a
parallelogram-shaped horizontal legend from [25]; the slant shows
the position of the horizon and the labels show the names of the
abstractions. Second, we replicate a coloured y-axis with ticks and
labels for each abstraction, so that both the ranges and the scales
are clearly visible. This configuration allows for enhancing the un-
derstandability of QG and fulfils the need of making the multiple
scales evident.

4. EVALUATION
As described in the previous section, a QG can be understood as

an extension of a HG including different qualitative abstractions.
Their designs share many factors: number of bands, height, virtual
resolution. An experiment with users provides an opportunity to
better understand these design factors and their impacts. Besides
enabling a better understanding of design factors, an evaluation is
indispensable to provide empirical evidence that the aimed benefits

are true, measurable, and meet the needs of the users. The main
benefits expected from QG are: the support for qualitative abstrac-
tions and tasks involving qualitative abstractions, and the efficient
use of vertical space in terms of increased virtual resolution.

First of all, we want to verify whether the extension of HG to QG,
by relaxing the constraint of equally spaced bands to support qual-
itative abstractions, worsens the perception of quantitative values.
For this reason we need to experimentally compare QG with HG.
It is worth noting that in certain conditions a QG is a HG. Indeed,
if the ranges of qualitative abstractions, associated to the time se-
ries to be visualized, are equally spaced, the bands of the resulting
QG will be uniform, and the QG will be indistinguishable from a
HG. Moreover, since HG does not support qualitative abstractions,
we also need to compare QG with a visualization supporting them.
Two suitable candidates have been already introduced in Section
2: KNAVE-II [27] and STZ [6]. A comparative evaluation [4] has
already shown that STZ is as efficient as KNAVE-II in terms of
completion time and error rate, and is even better for more com-
plex tasks. For this reason, we consider STZ as a more appropriate
candidate.

Hypotheses and Tasks – In order to perform a comparative eval-
uation between HG, QG, and STZ, it is important to have a set of
appropriate and well defined tasks. In order to properly elicit our
tasks, we refer to the typology of tasks for spatial and temporal
data by Andrienko and Andrienko [5]. They define two categories
of tasks: elementary tasks and synoptic tasks. In the context of
our evaluation, elementary tasks involve quantitative or qualitative
data separately, for a single time series; synoptic tasks involve mul-
tiple time series, or a combination of qualitative and quantitative
data. Since the hypothesis we want to test refer to a single data
series and to quantitative and qualitative data separately, we will
only consider elementary tasks: lookup, comparison, and relation-
seeking. A lookup task refers to find the value of a variable given
the time point of reference. A comparison task refers to compare
the values of a time series at two given points in time. A relation-
seeking task refers to find a given relation or (simple) pattern within
a time series, e.g. finding the maximum of the time series within a
given time interval.

We formulate the above mentioned benefits and drawbacks of
QG as empirically refutable hypotheses.

H1: Users of QG perform tasks involving only quantitative
data not slower and do not make more mistakes than users of
HG. In other words, the extension of the HG technique with dif-
ferently sized bands to integrate the visualization of qualitative ab-
straction, does not worsen its effectiveness for quantitative data.
We assume that the domain knowledge, evoked by the visualized
abstractions, compensates for disadvantageous factors such as non
equally spaced bands.

H2: Users of QG perform tasks involving only quantitative
data faster and with greater accuracy than users of STZ, if the
height of the diagrams is the same. This hypothesis is based on
the assumption that the larger virtual resolution of QG allows a
quicker and more accurate perception of quantitative values.

H3: Users of QG perform tasks involving only qualitative
data not slower and do not make more mistakes than users of
STZ. This hypothesis is based on the assumption that advantages
and disadvantages of the two techniques compensate each other.
We already observed that to identify the abstraction level corre-
sponding to a certain data point in a QG, one has to look at the
colour near the baseline. In the case of STZ, reading the graph is
easier, because the entire area beneath the data point has only one
colour. A possible disadvantage of STZ is that, since the entire area
beneath the curve is coloured with one colour, the colours associ-



ated to higher values occupy more area than the colours associated
to lower values, regardless of their duration (i.e. their support, their
extent on the x-axis). Thus, abstractions associated to higher val-
ues may be visually overrepresented with respect to the duration.
In QG this effect is mitigated.

Table 1 lists elementary tasks used during our evaluation, accord-
ing to the typology defined by [4]. This set of tasks is not intended
to be complete, but we kept it as small as possible to not overburden
the study subjects, but still adequate to address our hypotheses.

Table 1: User Tasks used for Evaluation.
No. Task Type Data Task Description
T1 Direct Lookup Quant. What is the numeric value of Var

measured at t1?
T2 Comparison Quant. Consider the times: t1 and t2. At

which time is the measured value of
Var greater?

T3 Direct Lookup Qual. What is the qualitative level of Var
measured at t1?

T4 Relation-seeking Qual. Which level of Var has the longer to-
tal duration (non-contiguous)?

Table 2: Hypotheses to be tested and the corresponding Task
Types, Data Types and Visualizations.

Hypothesis Task Data Visualization

H1 T1 Direct lookup Quantitative QG, (HG)T2 Comparison

H2 T1 Direct lookup Quantitative QG, STZT2 Comparison

H3 T3 Direct lookup Qualitative QG, STZT4 Relation-seeking

Datasets – We use two real-world (i.e. not synthetic) datasets
for the evaluation, both from the medical domain. Medicine is one
of the domains where qualitative abstractions have been first intro-
duced and successfully applied [18, 26].

First, we looked for a dataset whose abstraction has equally spaced
levels, so that the corresponding QG has all the bands with equal
height and, therefore, is identical to a HG. We selected a sub-
set of the the PhysioNet/Computing in Cardiology Challenge 2012
dataset [28], containing time series of systolic blood pressure mea-
surements from patients treated in an Intensive Care Unit (ICU).
The qualitative abstractions we chose for this dataset refer to sub-
levels of blood pressure within the normal range as predictors of
recurring stroke for ICU patients [19]. From this time series repos-
itory, we extracted a subset of 15-hours long intervals of hourly
measurements; in the following, we refer to it as the pressure dataset.

The second dataset is a subset of the Diabetes dataset from the
Machine Learning Repository at the University of California Irvine,
which contains time series of blood glucose measurements from pa-
tients with diabetes [11]. For the level of blood glucose, common
and well defined abstractions exist; we use the same qualitative ab-
stractions used for this dataset by Rind et al. [24], which are quite
simple and easy to understand by non experts, but have non-equally
spaced levels. From this time series repository, we extracted a sub-
set of two-weeks long intervals of daily measurements; in the fol-
lowing, we refer to is as the glucose dataset.

Table 2 shows hypotheses, tasks, data, and visualizations.
Experiment Design – We designed the evaluation as a quantita-

tive study, whose dependent (observed) variables are completion
time and error rate. The independent variables of the experiment
are: Visualization (V), Scale (S), Dataset (D), and Task type (T).

Table 3: Independent variables and their levels.
Variable No. levels Levels
Visualization 2 QG, STZ
Scale 2 uniform, non-uniform
Dataset 2 glucose, pressure
Task type 4 T1, T2, T3, T4

The independent variables and their levels are summarized in Table
3. The number of different conditions is then N =V ×S×D×T =
2× 2× 2× 4 = 32. This number of conditions would have been
compatible with a full factorial within subject design. A within
subject design has two advantages: it is more powerful, because the
study subjects are not split into groups and all subjects test all con-
ditions; it reduces error variance associated to non-controlled indi-
vidual differences. Nevertheless, since the QG technique is novel
and the subjects had to learn it, we decided not to overburden them
with two versions of the technique depending on the scale. For this
reason, we split the subject pool in two groups and treated the scale
as a between-subjects variable. Thus, each subject faced only 16
conditions. To render the results more robust, we prepared 6 sim-
ilar tasks for each type, leading to a total of 96 pairs of samples
(time and error) per subject.

Subjects – After a small pilot study, we conducted the study
with 47 participants (8 females and 39 males). All the participants
were undergraduate students at the fifth semester of a bachelor pro-
gramme at the Faculty of Informatics of a local university. They all
were recruited during a lecture. They were told that by successfully
completing the experiment they would gain extra points contribut-
ing to the final grade; but, the experiment was not mandatory to
obtain the final grade. The mother tongue of most of the partici-
pants is German; nevertheless, the evaluation was introduced dur-
ing a lecture given in English, and was conducted in English. All
participants were instructed to be fast and accurate in solving the
tasks, without assigning any priority between speed and accuracy.

Prototype and Settings – Figure 3 shows a screenshot of the pro-
totype used for the evaluation. Both QG and STZ visualization
were implemented within the same software, VisuExplore, an in-
teractive visualization environment for time-oriented data and in-
formation [24]. Using a single environment made the development,
deployment and evalution easier and, most important, assured uni-
form running conditions for both visualization techniques to be
evaluated. In order to have a known and comparable virtual res-
olution, we fixed the size of both the prototype window and the vi-
sualization facet. We conducted the study in the spirit of traditional
graphic perception experiments and disabled most of the usual in-
teractions. We disabled vertical zooming, to maintain the virtual
resolution fixed. We disabled horizontal zooming and panning and
automatically centred the time series at the appropriate time point
referenced by each task, in order to remove the seeking time from
the measured task completion time. We disabled crosshairs and
tooltips, to keep the tasks on a visual (i.e. non-textual) level. The
experiment was managed and the results were collected by using
EvalBench, an open-source library for visualization evaluation [2].

5. ANALYSIS AND RESULTS
The evaluation logs and journals, created locally by the evalu-

ation prototype running on participants’ machines, were collected
through a web based content management system. The data files
were then preprocessed to identify missing or corrupted parts and
to enable statistical analysis. We collected complete data from all
the 47 participants, resulting in 4512 samples in total.



Analysis Approach – The completion times of repeated tasks,
grouped per participant per condition, were summed; then they
were checked for normality with the Shapiro-Wilk goodness-of-fit
test for each condition, but the check failed. The times were then
transformed by applying the logarithm and the Shapiro-Wilk test
for normality proved that the transformation succeeded in assuring
the Gaussian condition; for within-subjects effects (visualization
and dataset), also the differences were successfully tested for nor-
mality. The normality assured the applicability of parametric tests
and the analysis of variance could be performed with an ANOVA
test. In order to run the ANOVA, we observe that the scale, besides
being a between-subjects factor, is also nested within visualization
and dataset. Uniform and non-uniform rescaling of bands, indeed,
is only defined for the QG visualization, while it has no meaning for
STZ. Moreover, uniform and non-uniform scaling only leads to dif-
ferent visualizations when applied to the glucose dataset, since for
pressure the qualitative abstractions have equal ranges. Post-hoc
analysis was performed with pairwise Student’s t-tests and Tukey-
Kramer honestly significant difference (HSD) tests.

For tasks T2, T3, and T4, the error rate was computed as ratio
of errors to the total number of repeated tasks per participant per
condition. In the case of tasks T1, the direct lookup of a quanti-
tative value, we did not consider the correctness in a binary fash-
ion (correct/incorrect answer), but measured the error magnitude.
In particular, we considered the full scale percent error, in order
to enable the comparison between the datasets. Error rates were
checked for normality by applying a Shapiro-Wilk goodness-of-
fit test and for log-normality by applying a Kolmogorov-Smirnov
goodness-of-fit test. Both tests did not find a significant result,
thus the hypotheses of normality and log-normality could not be
assumed. Hence, we analysed main effects with non-parametric
tests. Namely, we analysed within-subjects effect (visualization
and dataset) with non-parametric tests for paired data, such as the
Wilcoxon Signed-Rank test and the Mann-Whitney U test. Scale,
which is a between-subjects effect, was analysed with a Kruskal-
Wallis test. Then we performed post-hoc analysis with Wilcoxon
Each-Pair comparison. To analyse interactions between visualiza-
tion and dataset, we ranked data (i.e. transformed data into ranks)
and run ANOVA on ranks and proceeded as for time.

The user preferences for the visualization with respect to qualita-
tive data, quantitative data, and overall, were collected with a post-
test questionnaire and were analysed with a Pearson chi-square test.

Results – We illustrate here the results in terms of time and er-
ror. To ensure the reproducibility of these results, we make avail-
able all materials, such as the executable prototype with embedded
datasets, the evaluation tasks, and the collected data.1

Figure 4 shows mean and variance of completion time for all
tasks by visualization and scale. Statistically significant results are
marked with an asterisk. The analysis of variance of completion

1http://www.cvast.tuwien.ac.at/QualizonGraphs

Figure 3: A screenshot of the prototype used for the evaluation.
On the left hand side, a QG visualization is shown. On the right
hand side, the current task.

times revealed that the visualization is a significant effect for tasks
T2 (F = 64.17, p < 10−4), T3 (F = 13.40, p = 0.0003), and T4
(F = 48.73, p < 10−4). For all these tasks, the comparison of
means shows that QG is slower than STZ. These findings were
confirmed by the post-hoc analysis with the Least Square Means
Student’s t-test, for all the three cases: T2 (t = 8.01, DF = 183,
p < 10−4), T3 (t = −3.66, DF = 183, p = 0.0003), and T4 (t =
4.678, DF = 183, p < 10−4). The ANOVA also revealed that the
scale had a significant effect for task T4 (F = 4.80, p = 0.0297):
non-uniform is faster than uniform, with a mean completion time
of 61.75 seconds versus 77.38). The post-hoc analysis with the
LSMeans Student’s t-test confirmed the significance of the scale
(t = 2.19, p = 0.0297). The ANOVA procedure did not find any
significant interaction between the main factors for any task.

Figure 4: Completion time by visualization (QG, STZ) and
scale (uniform, non-uniform), for all tasks (as boxplots).

In general the error rate is fairly low for all conditions. In the
case of task T1, the full scale percent error has mean = 5.77 and
variance = 8.88. Amongst the other tasks, task T4 is the one with
the highest error rate: mean = 5.23 and variance = 13.49. In any
case, we report the significant effects. Figure 5 shows the errors
for all tasks by visualization and scale, in terms of mean and stan-
dard error. Statistically significant results are marked with an aster-
isk. Since we found that the scale affects only the QG visualization
and the glucose dataset, we checked only this condition: according
to the Wilcoxon test, the scale is a significant factor for task T1
(χ2 = 7.2733, DF = 1, p = 0.007). By comparing the means, we
see that the non-uniform scale provokes more errors than the uni-
form scale. According to the Signed-Rank Wilcoxon test, the visu-
alization is a significant factor for task T1 (t = 4.3179, W = 1261.0,
p < 10−4) and T2 (t = −3.926, W = −97.5, p < 10−4), but the
differences have opposite sign: QG is more precise for T1, but less
precise for T2 (see Figure 6). A significant interaction between
visualization and dataset is only present for tasks T1 (F = 4.80,
p = 0.0298) and T2 (F = 4.76, p = 0.0304). Then, to test our hy-
pothesis H1, we also performed a Signed-Rank Wilcoxon Test in
the corresponding condition (visualization=QG), and found a sig-
nificant effect for task T2 only (t = 2.892, W = 69.0, p = 0.0062).

6. DISCUSSION
To make sense of both the wealth of data collected by the evalu-

ation and the statistical analysis we performed, let us look at them
once again from different perspectives: first with respect to the
tasks and then to the hypotheses we aimed to check.

As for Task 1 (Lookup, quantitative data), one of the main factors
(visualization, scale, and dataset) has a significant effect on com-
pletion time. As for error, QG provides more accuracy than STZ.
Considering QG only, shifting from the pressure dataset (equiv-
alent to HG) to the glucose dataset, the accuracy decreases; the
uniform scale provides more accuracy than the non-uniform scale.



Figure 5: Error by visualization (QG, STZ) and scale (uniform, non-uniform), for all tasks (as means and standard errors).

With reference to Task 2 (Comparison, quantitative data), STZ per-
forms better than QG in terms of both time and error. This is a
surprising result. Possibly, there are two ways to perform a com-
parison task on quantitative value: one comprises a lookup task
(the numeric values for both data points are acquired, and then
compared), and the other is exclusively visual (the relative posi-
tion of visual items is taken into account). But we also know that
the lookup task (T1) was performed in a faster and more accurate
way with QG. Since the results are very different for the two visual-
ization techniques, we suppose that it could be due to two possible
reasons: either users adopted two different task solving strategies
(with the lookup first for QG, without the lookup first for STZ), or
they used the visual comparison and the intuitive spatial convention
(top is greater) hampered the comparison of mirrored values. Con-
sidering QG only, shifting from the pressure dataset (equivalent to
HG) to the glucose dataset, the accuracy increases. The scale has
no significant effect. Our hypothesis H1 is confirmed. There is
no significant difference for completion times. As for error, there
is a significant difference only for the comparison task (T2), that
is solved even with more errors for the equally spaced abstraction
(corresponding to HG).

Figure 6: Completion time (left, as boxplots) and error (right,
as means and standard errors), for tasks T1 and T2, by visual-
ization (HG, QG)

Our hypothesis H2 is only partially confirmed. By using QG,
the subjects could solve the lookup task on quantitative data with
a significantly smaller full scale percent error (meanQG = 3.97%,
meanST Z = 7.57%). This finding can be easily interpreted consid-
ering the virtual resolution, which is much higher in the case of
the QG visualization, constructed by segmenting a line plot along
the horizontal axis into non-overlapping bands and superimposing
them. Conversely, STZ is faster and more accurate than QG for
comparison of quantitative data.

With reference to Task 3 (Lookup, qualitative data), STZ is faster
than QG, and there is no difference in terms of error rate. The scale
has no effect on both observed variables. As for Task 4 (Relation-
seeking, qualitative data), STZ is faster than QG, and there is no
difference in terms of error rate. Moreover, the non-uniform scale
is faster than the uniform scale. Our hypothesis H3 is refuted. In-
deed, there is no significant difference in terms of error rate, but the
use of the STZ visualization still assures a shorter completion time
for both tasks dealing with qualitative data. We tend to attribute

this result to the fact that in the case of QG, the qualitative abstrac-
tion can only be identified by its colour, while STZ also provides a
fundamental visual cue by the absolute position of the data point.
This factor can be explained by considering that the absolute spatial
position is the most prominent between visual variables.

The results of our evaluation basically do not reveal any signif-
icant effects of scale, except that uniform scale is slightly more
precise for task T1, while non-uniform scale is faster for task T4.

According to the post-test questionnaire, study participants pre-
ferred QG to perform qualitative tasks (60%), while for quantita-
tive tasks they preferred STZ (83%). A Pearson Chi-square test re-
vealed that the difference is significant (χ2 = 18.0077, p < 10−4).
Considering all tasks, STZ was preferred by 79%. The subjects
who used QG with the non-uniform scale preferred it more than
the subjects who used the uniform scale (35% versus 11%); also
this difference is statistically significant (χ2 = 3.915, p = 0.0479).

7. CONCLUSION AND FUTURE WORK
We introduced a novel visualization technique, Qualizon Graphs

(QG), aimed for visualizing quantitative time series and qualita-
tive abstractions in an integrated way and making an efficient use
of screen space. QG is an extension of Horizon Graphs (HG),
constructed by mapping qualitative abstractions to the bands; in
general, qualitative abstractions can be non equally sized, then the
bands of QG can be non equally sized as well (conversely to the
bands of HG). We conducted a task-based controlled experiment
to evaluate the effectiveness of QG in visualizing quantitative and
qualitative data. As for quantitative data, we found that QG is at
least as effective as HG in terms of speed and accuracy; in other
words, we provided experimental evidence that the original metaphor
of HG is powerful and robust, and can be efficiently extended with
non-uniform bands.

The extensions of HG with non-uniform bands (i.e. QG) en-
ables the integrated compact visualization of qualitative abstrac-
tions. Obviously, it is not possible to compare the effectiveness
of QG and the original HG for tasks involving these abstractions.
Thus, we empirically compared QG with STZ, a state-of-the-art
visualization for time series with qualitative abstractions. The find-
ings are interesting. On the one hand, we found that users perform
direct lookup tasks on quantitative data more precisely by using
QG than STZ, with the same completion time. On the other hand,
for direct lookup and relation-seeking tasks involving qualitative
data only, STZ is faster than QG, and the error rates are not signif-
icantly different. In other words, QG provides information visual-
ization designers the opportunity to trade off precision in quantita-
tive lookup tasks only versus speed in all other tasks.

We have evaluated and discussed the use of QG to visualize a
single time series. As a future step, it would be interesting to eval-
uate them when applied to the visualization of multiple juxtaposed
time series in a small multiple configuration, in ordero to study how
the simultaneous use of different abstractions, each with its ranges



and its own colour scheme, affects the performances of users.
STZ features an interaction technique which enables smooth an-

imated transitions between different visualizations when the facet
is resized. This concept can be adapted for QGs, analogously to
the interaction techniques introduced by Perin et al. [20] for HGs.
For example, according also to the findings by Heer et al. [14], it
might be interesting to identify at which heights the visualization
should switch from a filled line plot, to a QG, to a qualitative-only
coloured bar.
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