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Abstract

Temporal Data Mining is a core concept of Knowledge Discovery in Databases handling time-oriented data. State-of-the-art meth-
ods are capable of preserving the temporal order of events as well as the temporal intervals in between. The temporal characteristics
of the events themselves, however, can likely lead to numerous uninteresting patterns found by current approaches. We present a
new definition of the temporal characteristics of events and enhance related work for pattern finding by utilizing temporal relations,
like meets, starts, or during, instead of just intervals between events. These prerequisites result in MEMuRY, a new procedure for
Temporal Data Mining that preserves and mines additional time-oriented information. Our procedure is supported by SAPPERLOT,
an interactive visual interface for exploring the patterns. Furthermore, we illustrate the efficiency of our procedure presenting an
benchmark of the procedure’s run-time behavior. A usage scenario shows how the procedure can provide new insights.

Keywords: Visual Analytics, KDD, Temporal Data Mining, Data Mining, Time-oriented Data, Pattern Finding, Interactive
Visualization

1. Introduction

Data Mining is a central part of Knowledge Discovery in
Databases (KDD). A very important data type is time, and one
of the most successful approaches for Temporal Data Mining
(TDM) is the search for temporal patterns. Methods for tempo-
ral pattern finding include clustering, classification, and asso-
ciation rules. Their main goal is disclosing local structures of
interest [1]. Several state-of-the-art methods adopt the concepts
of events, which are tuples of a time interval (a temporal prim-
itive with an extent [2]) and a set of conditions (e.g., 10 cars
are passing a road between 2am and 3am). These methods con-
sider patterns as combinations of events (e.g., after hours with
30 cars, there are often hours with 40 cars). Figure 1.a demon-
strates patterns mined by the state-of-the-art approach MuTIny
[3] (see below for more details about that approach). We for-
mally define all necessary terms in Section 3.

The task of finding interesting patterns is important in sev-
eral domains, which is demonstrated by the range of applica-
tions covered in related work (Section 2). In this paper, we
focus on examples from traffic data analysis, but data from
medicine, retail, and other domains are all conceivable. Wong
et al. [4] show that similar tasks arise in different domains and
how the same Visual Analytics (VA) methods can be used to
deal with them.
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Pattern finding usually requires complex parameterization.
Many approaches require the conditions to be defined in ad-
vance (called Apriori algorithms). These algorithms often pro-
duce large numbers of patterns that need to be explored. VA
can support parameterization, exploration, and iterative re-pa-
rameterization by intertwining the approach with interactive vi-
sual interfaces [5]. Starting from early work in pattern finding
[6], research has increasingly focused on the temporal aspect of
patterns. Current methods, like the MuTIny approach [3], are
capable of preserving the temporal order of events as well as
the intervals in between.1

A weakness of current methods is that they only consider
events of a fixed length which is usually predetermined by the
raster interval2 of the source data. The most advanced ones can
deal with flexible time intervals between events, but they have
to be regular multiples of the raster, and the event lengths are
still fixed. If the conditions are met for a longer interval than the
raster size, two consecutive events of the same type are found.

Consider the following example: a road is used more fre-
quently on weekdays than on weekends. Traffic might be sig-
nificantly lower on Saturday and Sunday (Figure 1.a). If the
traffic dataset has one value for each day, then each event will
also have a length of one day. Based on events of day-length,
approaches tend to find patterns based on the business week:

1According to Aigner et al. [2], what is often called “interval” in related
work from TDM should be distinguished between “indeterminate interval” after
pattern finding and “indeterminate span” during parameterization. In this paper,
we will just use the term “interval” for both cases.

2A raster is “a fragmentation of time without gaps consisting of raster inter-
vals (usually with same lengths). A raster interval is a unit of time that consti-
tutes a raster: ‘hour’, ‘day’, ‘week’, or ‘30’ ” [7].
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Figure 1: Examples for patterns generated with (a) the MuTIny approach [3] and (b,c) with the MEMuRY procedure from this paper. (a) Even for few event and
interval types, MuTIny [3] finds a vast number of patterns. (b) There are considerably less patterns found by MEMuRY, when looking for events that start one day
after other events end, no patterns are found in this example at all. (c) If something unusual happens, like a low value on a Thursday, there are more patterns than
for regular weeks.

For five consecutive days, there is high traffic, and for two con-
secutive days there is low traffic. These sequences alternate.
The main pattern found in this example is high traffic for one
day (as the approaches only support the raster interval) followed
by high traffic for one day. The next frequent pattern is low
traffic for one day followed by low traffic for one day (slightly
more frequent than high–low and low–high because of “long
weekends”), and so on. The important information gained is
strongly cluttered by unimportant information. When more in-
tervals are looked for, e.g., one day in between, the number of
patterns further increases. A similar problem can happen when
the same dataset is looked at using an hour raster: during day
hours, there often is much more fluctuation. At night, the traffic
is continuously low. As a result, existing approaches hide pat-
terns among the daily fluctuations behind a dominant pattern
of low traffic follows low traffic. Such patterns are interesting,
but by talking to domain experts, we found out that they are
already well-known. An interview with a domain expert work-
ing in analysis of time-oriented data and scheduling tasks like
shift-planning (Subsection 6.4) confirmed our own assessment:
It is too difficult to apply state-of-the-art methods in practice
if they generate too many patterns that stem from well-known
effects of social time. The reason is that those patterns clutter
the results when searching for new and unknown patterns: They
make the list of results too large, so that it is hard to compute
and even harder to visualize and understand.

Related work mostly relies on filtering out the less impor-
tant patterns using the well-known concept of support (Sec-
tion 2). In this paper, we give values for support as the frac-
tion of number of times a certain pattern exists/number of total
patterns. We also call this the frequency of a pattern, and it is
unit-less. Only patterns with a certain frequency (often a high
one) are considered. As we explained above, this approach is
hard to parameterize if frequent patterns are not necessarily in-

teresting, most likely because they are well-known to domain
experts. Bertone et al. [5] propose including time information
(like, “weekend”) in the event definition, so that it is easier to
prune weekend events followed by weekend events. However,
this approach still does not provide events that cover a whole
weekend and users end up with many more different event and
pattern types.

Another solution proposed for this problem stems from data
simplification. These methods transform raw data, which usu-
ally is given in the form of numerical data values to events and,
thus, help to keep the complexity low [8, 9, 10, 11]. According
to the temporal aspects, these methods can simplify time by ras-
terization (converting the data to a given raster). If there are too
many uninteresting patterns from several consecutive events of
the same type, for example, during night hours or weekends,
rastering the data to days can solve that problem, but possibly
interesting patterns on finer granularities that exist during other
times become hidden. Moreover, if a day raster is used to solve
problems with night hours, the weekend problems arise more
prominently. A fine raster size is needed to prevent informa-
tion loss. Aggregating according to domain knowledge is bet-
ter, so aggregating to blocks of eight hour length can even out
the night/day issues while still giving some information. How-
ever, some information might still be hidden, and in real-world
data, we also found that sometimes, the same effect just started
one hour earlier or later. These hours would have been aggre-
gated into the wrong block. As a result, we use the part of data
simplification that simplifies the data dimensions into univari-
ate events. For these events, only properties of nominal data are
required. Aggregation over time is not an integrated part of our
procedure, but we analyze its applicability in preprocessing in
Section 6.

To deal with the shortcomings of existing pattern finding
methods without resorting to aggregation over time, we pre-
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sented a new procedure called Multi Event-length Multi Re-
lation discoverY (MEMuRY) at the EuroVA 2013 workshop
in Leipzig, Germany [12]. This paper is an extended version
of our workshop paper. MEMuRY’s basic idea is to reduce
the number of unimportant patterns while retaining the impor-
tant ones. This is done by reducing the number of events in
a way that omits repetitive patterns from effects like weekends
and night hours, which are usually the problematic cases. This
is done by adapting the event length dynamically. This event
length is preserved in the resulting pattern data (Figure 1.b),
and can later be investigated visually, like in the arc view (Sec-
tion 6, Figure 5).

In Figure 1.b, the weekend is still found, but represented
by considerably less patterns. Therefore, these patterns do not
clutter the possible case that something unusual happens, for
example a Thursday with low traffic, as shown in Figure 1.c. We
will further discuss the effect over the course of this publication,
after our procedure has been explained in detail.

To gain the maximal benefit from this new procedure, it has
to be integrated in an interactive visual interface, as the lim-
itations of related work can be greatly reduced, but not fully
solved by automated methods. We explain details about this
in Section 4. Visualizations of output from our new procedure
provide more insights than visualizations of output from related
work (Section 6), as they are less cluttered.

Contributions. Our main contribution is a new procedure for
TDM (Section 3) that has the following advantages over related
work:
• It combines more information in fewer patterns and, thus,

helps users to find important patterns.
• The procedure also provides more freedom in pattern def-

inition by the means of free relation definition between
events.

Our procedure is evaluated by several means:
• We implemented an example implementation that was

benchmarked (Section 5).
• We followed a usage scenario showing how our proce-

dure can be applied and describing findings (Section 6).
• We obtained an assessment of the applicability from the

point of view of a domain expert, which is provided by
listing the qualitative feedback from an interview (Sub-
section 6.4).

As a motivation for future work, we also provide an analysis
how users can interact with the pattern finding procedure (Sec-
tion 4).

2. Related Work

Related work relevant to our procedure can be broken down
into three categories: pattern finding, data simplification, and
interactive visual interfaces.

2.1. Pattern Finding

In their overview of TDM, Laxman and Sastry [1] present
many techniques with key references, including global models

as well as local methods, like pattern finding. Most work in
finding patterns as a Data Mining task goes back to Agrawal
et al. [6] who introduced the Apriori algorithm, but only con-
sidered patterns of events happening together in a set (they use
the example of an event being the purchase of a product). They
also consider time, but only as a method of separating different
pattern candidates. However, they already perform planning to-
wards further steps with more complex patterns that can span
across multiple time steps, published by Srikant and Agrawal
[13]. Agrawal et al. [6], Srikant and Agrawal [13], and others,
also introduced the concept of “support”. The support of a pat-
tern is the frequency of its appearance. It is the main method
to determine which patterns are important for many of the al-
gorithms we present below. Support is a good method to find
important patterns based on quantities, but as described in Sec-
tion 1, it is also possible that frequent patterns are not interest-
ing because they are well-known.

Mannila et al. [14] provide a concept of sequences of events,
which is similar to the patterns of other approaches. For them,
the events and the time steps in between are important, but they
count the exact time steps between events, instead of using vari-
able intervals. Magnusson [15] is among the first to explicitly
mention time intervals between events. His T-patterns are tree-
shaped and, therefore, differ from the patterns in most other ap-
proaches which are linear sequences of events. Chen et al. [16]
introduce the I-Apriori algorithm which extends the Apriori al-
gorithm [6] for pattern finding by the consideration of intervals
between events (differences explained by Laxman et al. [1]).
Hu et al. [17] provide a similar approach where the focus is on
patterns with events that do not need to be consecutive, as long
as the time intervals are kept.

Bertone et al. [3] provide a similar approach, called MUlti-
Time INterval pattern discoverY (MuTIny). Several classes of
time intervals can exist between events in this approach. For ex-
ample, events that are 0–1 days apart form a kind of pattern, but
if they are 1–7 days apart they form a different kind of pattern.
The exact time intervals used can be configured by users, who
can also consider calendar aspects, giving the intervals in hours,
days, or weeks, and so on. Bertone et al. [5] also deal with inter-
active visualizations that allow users to engage with the process.
Furthermore, they advance the concept of support by allowing
user manipulation (see below). Still, frequent but known pat-
terns, like the weekends mentioned in Section 1, can appear
and have to be removed by users. In this approach, events are
defined by users. They represent the occurrence of a certain
configuration of values of one or more variables. Furthermore,
users have to define intervals. These intervals can have any
length, but users can apply different calendar granularities, like
months or days, in their definition. After defining the events and
intervals, an extended I-Apriori algorithm is applied in multiple
iterations. In each iteration, each existing pattern (starting with
patterns of length zero that are identical to events) is combined
with each interval and each possible follow-up event that falls
into that interval. Therefore, with each iteration, the patterns
grow by one interval and one event. Between those iterations,
the less frequent patterns are filtered out. This is done by users
providing a threshold for the support.
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When dealing with approaches based on the Apriori algo-
rithm, two different views on the results are possible [18]:

1. Showing the occurrence of events and patterns over time.
To distinguish that view from showing pattern classes,
events or patterns are also called “event instances” or
“pattern instances” in this context. Each time an event
or pattern is found by an approach, an instance is created
and usually kept as a tuple of one or more time references
and one or more identifiers.

2. Counting the number of times each event or pattern, spec-
ified by their identifiers, exists, ignoring the time refer-
ences, and showing the different types or classes of pat-
terns that appear and their multiplicity. This is done by
Bertone et al. in the 2C visualization [5]. The structure
of the pattern classes is distributed over several concen-
tric rings, and the start of the patterns is prominently in
the center.

2.2. Data Simplification by Discretization
Simplifying the temporal aspects of the events themselves

currently can only be done by changing the raster with methods
like Piecewise Aggregate Approximation (PAA) by Keogh et
al. [8, 9]. They were compared to methods, like Singular Value
Decomposition, Discrete Fourier Transformation, and Discrete
Wavelet Transformation [11]. The outcome of this comparison
by Lin et al. [11] is that they have useful properties, but due to
being real valued, have limited applicability.

PAA approximation is also part of SAX [10, 11]. Further-
more, SAX provides a kind of event generation that automat-
ically distributes events in an equiprobable number of classes,
but only based on one variable. As explained in Section 1, we
perceive rasterization over time as difficult, as it can highly af-
fect the results of pattern finding. Therefore, we keep it separate
from classifying data values into events. The statistical event
classification that is part of SAX, however, is also applied by us
in Section 6.

For simplifying multivariate data into univariate events, we
have described an interactive visual interface in an earlier pub-
lication [19] which we will describe further in the next subsec-
tion. In future work, we intend to consolidate that interface with
our work presented here.

Another approach that classifies multivariate data from the
medical domain is presented by Simonic et al. [20]. They show
that by means of interactive visual interfaces, users can handle
a complexity of data that would otherwise be overwhelming,
or to the least much more time-consuming. The application
of interactive visualization leads to the last part of our related
work.

2.3. Interactive Visual Interfaces
Bertone et al. [5] not only propose a VA system as a so-

lution of the complexity and multiple configuration levels of
the MuTIny approach, but also demonstrate a prototype that al-
lows for changing parametrizations at any stage, recalculating
the steps done so far. However, the parameterization is mostly
done by setting numeric values through traditional user inter-
face widgets which is more difficult than direct manipulation

would have been. Several other authors like Keim et al. [21]
or Holzinger [22] also emphasize the importance of interactive
visual interfaces to help users dealing with KDD methods.

Tominski [23] gives an overview how interactive visual in-
terfaces are already used to find and display events according to
the requirements and domain knowledge of users. He also pro-
vides an overview and formal model how events can be found
with an interactive visual interface.

Our visual interface for data simplification [19] allows users
to deal with multi-variate time-oriented data with methods from
statistics, manual configuration, direct manipulation, or a com-
bination of those methods. The result is a categorical value for
each point in time. This value is a possible event classification
that can be used by KDD approaches like MuTIny [3] or the
MEMuRY procedure we present in this paper.

The VISITORS system [24, 25] has an interactive visual in-
terface to explore and query patient data over time. It supports
multivariate data and combines both actual values and events.
The events are determined by a knowledge-based temporal ab-
straction system. Similarly, LifeLines2 [26] is a system to ex-
plore events in time-oriented patient data. LifeLines2 provides
specific interaction techniques such as alignment and temporal
summaries. It expects data to be either of a categorical scale
or simplified in advance. EventFlow [27] extends Lifelines2
with an overview display, events with duration, and more ad-
vanced queries. Lan et al. [28] describe an approach that can
also be used for the simplification of time-oriented data. They
iteratively search event sequences and replace instances by one
event (comparable to a pattern in the approaches described in
Subsection 2.1). Activitree [29] provides a powerful interactive
visual interface that users can employ to choose which patterns
are important while performing algorithms, like those based on
the Apriori algorithm [1]. This interface is an important alter-
native to the concept of support.

Furthermore, we investigated different methods for analysis
of results. Bertone et al. focus on visualizing classes of patterns
[5]. For exploring individual pattern instances (see above) over
time, we introduce methods to pattern visualization that were
proposed for different tasks before: ArcDiagram [30], Time-
lines [2], or ThemeRiver [31]. We will describe the work of
Bertone et al. more closely in Section 4, and the other tech-
niques in Section 6.

3. Our Novel Temporal Pattern Finding Procedure

The Multi Event-length Multi Relation discoverY proce-
dure (MEMuRY) is primarily related to the MuTIny approach.
[3]. However, we introduce a different definition of events and
also extend the intervals to event relations. We do not focus on
a certain data domain, but we assume that time is the single ref-
erence in the data and each point or interval in time refers to a
set of values. We call one such combination of a time reference
and data values a data element.

3.1. Defining Events
Our event definition allows for events of any length and is

applicable for rastered data (equal time steps with one data el-
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ement for each one) as well as unrastered data. We also allow
temporal conditions for event definition.

There are many different ways to define events. We have
abstracted a definition from the related work discussed above,
which can also be seen as a simplified variant of the philosoph-
ical approach by Kim [32]:

Definition 1. An event e is an interval [tbegin, tend] during which
given conditions {χ0, . . . , χn} are fulfilled.

Example 1. If the condition given is “low traffic” and it is ful-
filled for a Saturday and a Sunday, the interval over those two
days is the appropriate event.

The conditions that are fulfilled can also be temporal, e.g., an
interval is during another interval, e.g., a certain day of week,
or an interval has a certain length.

Our goal is computability, so we have to further define these
conditions. Helpful definitions for comparing and finding cer-
tain values are given in the task framework by Andrienko and
Andrienko [33]. For elementary tasks that consider a finite
number of data elements, they define lookup tasks, compari-
son tasks, and relation-seeking tasks. Without loss of general-
ity for those definitions, in our procedure we always use time
as reference domain and everything else as data values. We
also assume that time is being discretized in collecting the data
and that the data elements are sorted by the start of each time
reference.

Based on these definitions and assumptions, we can define
a condition as follows:

Definition 2. A condition χi is fulfilled for a data element d if
d is a possible result for an elementary task.

Example 2. If a task is “find traffic values of less than 30 cars
per hour”, then all data elements where the value of cars per
hour is less than 30 fulfill the condition.

As elementary tasks may look for the reference (time), it is pos-
sible to define conditions based on time as well as on data val-
ues. According to the definition above we can modify our event
definition and define event classes:

Definition 3. An event e is a set of contiguous data elements
{d0, . . . , dm} sorted by the time references td that all fulfill the
same conditions {χ0, . . . , χn}.

Example 3. If a Saturday and a Sunday (which are a set of
contiguous data elements sorted by their time references) both
fulfill the condition of having traffic of less than 30 cars per
hour, they can form an event, but they only do if an event of this
kind is defined by the user.

Definition 4. An event class E is a collection of events {e0, . . . ,
eh} that fulfill the same conditions {χ0, . . . , χn}.

Example 4. If the cars per hour are less than 30 for all Satur-
days and Sundays, but not for other days, and if an appropriate
event is defined by the user, then all weekends are events of the
same class.

3.2. Event Relations and Patterns
To combine events to patterns, the original I-Apriori algo-

rithm searches for possible follow-up events for existing pat-
terns that fall into given time intervals. We enhance this by re-
placing the intervals with temporal relations, based on the ones
presented by Allen et al. [34]: before, equal, meets, overlaps,
during, starts, finishes. Intervals between events are an indeter-
minate variant of before.

Definition 5. A pattern pk of length k is a tuple (pk−1, r, e),
where pk−1 is a pattern of length k − 1, r is a time relation,
and e is an event.

Definition 6. A pattern p0 of length 0 is an event e.

Definition 7. A pattern class Pk of length k is a collection of
patterns {pk

0, . . . , pk
j} that consist of events of the same class in

the same order and the same relations in the same order.

We give examples for pattern of length 0, 1, and 2:

Example 5. The event in Example 3 is also a pattern of length
0.

Example 6. If there is an event of less than 30 cars per hour
on a weekend (which is also a pattern of length 0), and another
kind of event of 30–39 cars per hour on the next Monday, and
“meets” is a time relation defined by the user, then “less than
30 cars per hour meets 30–39 cars per hour” is a pattern that
exists over those two intervals and the given relation. This pat-
tern is of length 1.

Example 7. If there is a pattern as described in Example 6
from a Saturday to a Monday, and there is another kind of
event of 40–49 cars per hour on the next Tuesday (“meets” has
already been given as a time relation in Example 6), the pat-
tern, the relation, and the event form a pattern of length 2. In
practice, the pattern is usually given as a tuple of all the single
events and their relations in between.

3.3. The Procedure
The procedure consists of two steps (event finding and pat-

tern finding). First, the events have to be found. Conditions
that, e.g., limit the minimum length of an event can lead to the
situation that a number of data elements do not fulfill the condi-
tions, but with another data element, they do (Examples 8 and
9). Therefore, we need to make two subsidiary definitions:

Definition 8. Loose conditions are a set of conditions where
one or more elements have been removed to gain intermediate
results.

Example 8. Let us assume a user is not interested in events that
have less than 30 cars per hour and end on a Sunday because
that is “normal” and thus already a well-analyzed artifact. In-
stead, events that have less than 30 cars per hour and end on
a Monday are important. Without using loose conditions, our
procedure would not find an event of less than 30 cars per hour
from Saturday to Monday, because for Saturday and Sunday,
the “ends on a Monday” condition would not be fulfilled. By
temporarily removing that condition, the event can be found.

5



Definition 9. An event candidate is a set of data elements that
is sorted by the time reference together with a set of loose con-
ditions it fulfills as well as that loose conditions’ source condi-
tions.

Example 9. As long as only the loose conditions are fulfilled
for an event, it is not clear whether it really exists. Thus, it is
an event candidate. For Example 8, various event candidates of
consecutive days that have less than 30 cars per hour can come
up. In the end, they have to be checked if they end on a Monday,
thus fulfilling the full set of conditions. Those event candidates
become events.

Event Finding. The event finding is explained in Procedure 1.
The basic idea is to go through the data elements and see if they
fulfill the conditions for forming new events, or if they can be
added to lists of open events that are kept at the same time. If
a data element cannot be added to an open event, the event is
“closed” and no further elements are added.

Differences to Related Work. Other approaches, like MuTIny,
consider each data element a single event, even if that means
that several consecutive events of the same type are formed.

Pattern Finding. The resulting events are also considered pat-
terns of length 0. For longer patterns, the pattern finding in
Procedure 2 can be performed iteratively k times to find pat-
terns of length k. The basic idea for pattern finding is to go
through all combinations of patterns from the last step with re-
lations and events, and add them to the list of new patterns if
the combination fulfills the relation.

Differences to Related Work. Other approaches consider less
possible temporal relations between events. Some approaches
only find patterns if events happen simultaneously, some con-
sider only the order of events and ignore the actual time, some
require an exact, user-defined, number of time steps between
events for them to belong to a pattern. MuTIny can have sev-
eral user-defined time intervals between events.

Before proceeding to the implementation, we discuss how
to parameterize the procedure in the next section.

4. Interactive Visual Analysis

Like other pattern finding methods, MEMuRY relies on a
number of parameterization issues: event configuration, pattern
configuration, choosing important patterns, and exploration of
results. However, there is no linear optimal order to perform
these tasks as insights might immediately open up new ques-
tions for users.

4.1. The VA Process
As a better alternative to a linear approach, and based on

the system proposed by Bertone et al. [5], we propose to arrange
the MEMuRY procedure and its interactive visual interfaces ac-
cording to one of the general definitions of the VA process, e.g.,
a more specialized variant for time-oriented data by Lammarsch
et al. [35] (Figure 2):

Procedure 1: Event Finding: A number of conditions
have to be given for each event class the user wants to
define. Those are subsets of a collective set of conditions.

input : dataSet, conditionsSet
output: events
eventCandidates, closedEventCandidates,
looseConditionsSet,

events← empty key,value-tables;
foreach conditions in conditionsSet do

looseConditions← conditions without those that would
need events to end later or be longer than they actually are;
looseConditionsSet: add (looseConditions,conditions);

end
foreach dataElement in dataSet do

foreach (eventCandidate,looseConditions) in
eventCandidates do

combined← eventCandidate
⋂

dataElement;
if combined fulfills looseConditions then

eventCandidate← combined;
else

closedEventCandidates: add
(eventCandidate,looseConditions);

eventCandidates: remove
(eventCandidate,looseConditions);

end
end
foreach (looseConditions,conditions) in
looseConditionsSet do

if dataElement fulfills looseConditions then
eventCandidates: add

(dataElement,looseConditions);
end

end
end

foreach (eventCandidate,looseConditions) in
closedEventCandidates do

if eventCandidate fulfills conditions of looseConditions
from looseConditionsSet then

events: add (eventCandidate,conditions);
end

end

Procedure 2: Pattern Finding: Source patterns of length
k−1 are transformed to patterns of length k (each consist-
ing of k + 1 events and k relations).

input : sourcePatterns, events, relations, threshold
output: patterns
filteredPatterns← sourcePatterns without patterns from
classes that are less frequent than threshold;
foreach filteredPattern in filteredPatterns do

foreach relation in relations do
foreach event in events do

if relation (filteredPattern,event) is fulfilled then
patterns: add (filteredPattern,relation,event);

end
end

end
end
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Figure 2: The VA process for time-oriented data by Lammarsch et al. [35],
based on work by Keim et al. [36] and Bertini and Lalanne [37]: HK: Take hy-
potheses from domain knowledge. VK: Visualize domain knowledge directly.
MK: Take models from domain knowledge. VD: Visualize data. MD: Gen-
erate models from data. HV: Build hypotheses based on visualizations. VM:
Visualize models. VH: Visualize hypotheses. MH: Validate hypotheses to form
models. IH: Gain insights from hypotheses. IM: Gain insights from models.
IV: Gain insights from visualizations.

1. Configuring events can be seen as a way for users to for-
mulate hypotheses. They apply their domain knowledge
to do this and use interactive visual interfaces.

2. The procedure calculates event instances which can be
seen as models. They are validated in the form that they
actually exist in the data as defined. The event classes
and instances can again be analyzed by interactive visu-
alizations, and first insights can be drawn.

3. Configuring relations that are used to build patterns from
the events are again hypotheses. Again, interactive visual
interfaces are used.

4. Finding the patterns based on these relations is once again
a calculation of models. These patterns can also be ex-
plored with interactive visualization and insights can be
drawn from them.

5. Choosing important patterns for analysis with further it-
erations can be done by filtering based on support (mod-
els) or forming hypotheses about which patterns are im-
portant.

As a result, the VA system can iterate over the center part
of the process, taking the data as input as well as an increas-
ing amount of domain knowledge, and generating an increasing
number of insights.

4.2. Tasks and Requirements
Based on the process, we can formulate the tasks in detail:

1. Parameterizing a method for classifying data elements,
which might also be multivariate, into event classes, i.e.,
categorical data. These parameters are used by Proce-
dure 1. As shown by Bertone et al. [5], temporal aspects
can be included in the event definitions, and for those,
like for other important data types like space, special in-
terfaces are possible.

2.a Parameterizing the conditions for events forming a pat-
tern. These parameters are used by Procedure 2. Inter-
faces for this task need to respect the various possibilities
as presented by Allen [34].

The interview we performed with a domain expert (Sub-
section 6.4) showed that temporal relations are very im-
portant when looking for the interesting patterns. For
this, relations that are not known should be used. For
example, low traffic follows high traffic might be known
to domain experts, but, using their domain knowledge,
they might wonder what happens between events that are
one day apart.

2.b Choosing the most important patterns between iterations
in order to perform the next iteration with a filtered set.
This is done as part of Procedure 2.
The basic idea for building longer patterns from shorter
ones is that a pattern is only interesting if it is based on a
shorter interesting pattern. Thus, looking only at an end
result of patterns that has only been filtered automatically
in between can occlude interesting pattern. Ideally, users
find shorter interesting patterns first, and continue with
patterns that start with the found patterns [5].

3. Showing pattern classes (as done by Bertone et al. [5]) as
well as pattern instances over time.
For a complete analysis, we expect that users will need
both. This can be achieved using linked views.

4. Re-parameterization needs to be supported through direct
manipulation [38]: interactive, based on patterns already
found by previous iterations, and immediate. So for ex-
ample, if a user detects an important pattern in the results,
he/she might want to directly interact with it, slightly
change the parameterization of one of its events, and im-
mediately see how this affects the appearance of the pat-
tern at the iteration step he/she is currently exploring.

4.3. Proposed VA System
We propose a VA system based on the same paradigms as

the one by Bertone et al. [5]. That system has strong features re-
garding re-parameterization and the iterative process which we
intend to re-implement. However, more direct manipulation is
needed. We have described this in detail for event configuration
[19] (Section 2). For parameterizing relation, we have to devise
an interactive visual interface yet.

For exploration of results, we will now propose a visual
interface in detail that we also implemented and tested (Sec-
tion 6): As explained above, it is possible to visually compare
pattern classes (e.g., whether e0 and e1 are more often related
by r0 or by r1), or patterns over time (e.g., e0r0e1 appears fre-
quently during this interval, but there is also one occurrence
of e0r1e1 that seems important). The visualization of different
types of patterns has already been focused on by Bertone et al.
[5]. Another possibility is to analyze the instances of patterns.
To spark research on visualizations that have seen less attention
in related work, we focused on showing pattern instances over
time. We developed a combined visualization that can show
the same patterns as a river view similar to ThemeRiver [39]
(Figure 3), a number of timelines [2] (Figure 4), or an arc view
similar to the ArcDiagram [30] (Figure 5). The views can be
selected manually, but for novice users, we implemented an au-
tomated change of view as the user zooms in/out on the time
axis. This feature was inspired by a similar one in the Midgaard
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system called SemanticTimeZoom [40, 41]. We consider our
current prototype for exploring results a start for future work,
but not a main contribution of this publication.

The interface enables zooming and panning for all visual-
izations and keeps the time range when switching views. We
also provide detail on demand, showing pattern labels of pat-
terns the mouse cursor hovers. The arcs of the arc view are
transparent by default, but a hovered arc becomes opaque, so it
is easier to distinguish. We named our new combined visual-
ization Semantic Alternating Possibilities for Pattern and Event
Research Looking Over Time (SAPPERLOT3).

Our prototype supports no direct re-parameterization yet,
and the iterations have to be done by manually running the pro-
cedure, so supporting the full process in one system is our main
task for future work (Section 7).

5. Implementation and Runtime Verification

The MEMuRY procedure was implemented based on Time-
Bench [42], a software library for implementing VA applica-
tions dealing with time-oriented data. TimeBench is based on
prefuse [43] and uses similar software design patterns, but it
provides more support for analytical methods as well as a data
structure that is well-suited for the procedure.

The relations are implemented as temporal predicates [42]
that are capable of comparing two intervals – one is part of the
events found by the procedure, the other one is part of the pos-
sible relations provided by users. In addition to predicates di-
rectly described by Allen [34], there is a predicate that shifts in-
tervals in time in order to allow enhanced relations as described
by Lammarsch et al. [44].

To test the runtime behavior, we have made a benchmark for
a number of parameters. In addition, we have benchmarked a
reimplementation of the MuTIny approach [3] that shares most
of its code base with our new implementation, making the ap-
proaches comparable. The parameters we varied were:
• The length of the dataset (64–512, raising exponentially)
• The number of different data values existing which im-

poses the maximum number of events possible (1–4)
• The number of different events actually parameterized,

so some data values would result in no events existing at
that point in time (1–3)

• The number of relations parameterized (1–3)
• The number of pattern finding steps performed after ini-

tial event finding (1–4), resulting in patterns that have
those lengths

For each combination of parameters, 8 tests were run.
The number of patterns is the most important factor for the

runtime behavior. We used visualizations and linear regression
and found that there are linear relations with different slopes de-
pending on the dataset length, but for a constant dataset length,
the runtime is linear based on the number of patterns (Figure 6
and Table 1). Doubling the dataset length roughly doubles the

3In German, “sapperlot” is an exclamation sometimes used when realizing
an unexpected fact.

Table 1: Slope of the linear regression for runtime (number of patterns) based
on several dataset lengths

MuTIny MEMuRY
Elements Time (ms/pattern) Time (ms/pattern)

64 0.6373 0.6049
128 1.267 1.151
256 2.556 2.355
512 5.049 4.544

runtime duration per pattern found. These results show that the
dataset length is the dominating factor in T .

The behavior of MuTIny was only slightly worse regarding
time per pattern, but we noticed that there were much more
patterns in total.

Figure 6: The runtime behavior of our MEMuRY implementation as a result of
the number of patterns found by the procedure. The values are colored black
for 64 data elements, red for 128 data elements, green for 256 data elements,
and blue for 512 data elements. For each class, a linear regression model is
plotted.

Second, we wanted to know what affects the number of pat-
terns found. In some cases, few patterns were found, in other
cases, many patterns were found. We explored several scat-
terplots of the number of events searched, the number of rela-
tions searched, and the number of steps performed vs. the num-
ber of potential patterns. Increasing those parameters increased
the highest number of potential patterns slightly, but only as
spreadings. Adding them (Figure 7) provides a more distinct
spreading, but for each parameterization, a low number of re-
sulting patterns still seems to be possible. Figure 7 compares
the increase in spreading for MEMuRY to the one for MuTIny.
While for MEMuRY, the random order of values can lead to
varying numbers of events and thus to more blur in the number
of patterns, there are parameterizations that lead to exactly one
number of patterns in MuTIny, so there are less different points
in the visualization. The values used to build the x-axis were put
together that way based on our visual analysis in order to pro-
vide summary visualizations for both approaches. In total, the
number of patterns resulting from MuTIny is almost five times
as high as for MEMuRY. We will examine this further based on
a real-world dataset in Section 6 to see what information is in
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Figure 3: A river view based on ThemeRiver[39]: time is on the horizontal axis, each band stands for a certain class of patterns (the composition of a class is given
as detail on demand). The width of a band shows the number of instances simultaneously existing at a given time. If there are no more than 12 classes, each class
has a separate color. As there are too many classes in this visualization, similar patterns are given the same color. This visualization shows patterns based on a raster
of days; there is no support threshold. We could get some information from this visualization, but needed to impose a threshold for further analysis.

Figure 4: Timeline view based on Timelines [2] showing pattern instances. Time is on the horizontal axis, the vertical position is used to prevent overlap between
bands. The patterns are based on a raster of days. If there are more pattern classes then colors available, patterns starting the same and then diverging are given the
same color. As only patterns more frequent than 0.005 of the total number are shown, the view is zoomed in a bit so that only the time with remaining patterns is
covered.

the most prominent patterns for each approach.

Test Conditions and Limitations. Benchmarking pattern find-
ing approaches based on the Apriori algorithm is difficult, be-
cause their behavior heavily depends on the dataset and the pa-
rameterization. The parameters are usually fitted to the dataset,
so iterating over fixed parameterizations does not make sense
for a real-world dataset. Thus, we had to use a synthetic ran-
dom dataset. For real world data, information in the form of
time-related structures in a dataset result in some patterns being
more frequent than others and allow filtering for a given support
threshold. In MEMuRY, artifacts in the data can also reduce
the number of patterns by having fewer events. For completely
stochastic data, there is no sensible way to reduce the number
of patterns between the calculation of one pattern length and
the next pattern length, so we expect a worst case scenario. We
omitted the filtering between steps, because depending on sup-
port, we would get either no patterns, all patterns, or a totally
random number of patterns (in case of k patterns and threshold
near 1/k).

In addition, modern computer systems complicate bench-

marks. Newer processors distribute code freely to their calcu-
lation units as optimally as they can. Operating systems pre-
emptively schedule processing power and memory to processes.
In our case, the Java Virtual Machine imposes another layer of
virtualization, whereas the foremost problem is that the garbage
collector cannot be controlled directly. To minimize these ef-
fects, the tests were run on a Core i7-2600K processor running
at 3.4 GHz. The Java Virtual Machine and the benchmarking
code together took 13% of processing power distributed over 4
virtual cores and did not seem to be able to take more, so other
code running on the system should not be likely to have affected
it. We took measures to prevent the processor from applying its
TurboBoost feature which would have changed the processor
frequency.

6. Visual Exploration of Results and Usage Scenario

To evaluate MEMuRY and SAPPERLOT, we followed a us-
age scenario,4 looking for patterns in the Dodgers Loop Sensor

4A usage scenario is a form of evaluation where real data is analyzed by the
developers of an analysis tool [45].
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a)

b)

Figure 5: Arc views based on the ArcDiagram [30] showing pattern instances. The horizontal axis represents time, the vertical axis is used to spread arcs. The
patterns visualized here are based on non-overlapping events that fall into one of four classes (blue/very low, green/low, yellow/high, and red/very high). The opaque
bars in the middle show the temporal sequence of events. Patterns are of length 3. They are represented by transparent arcs that are colored according to their first
event. Upper arcs represent the temporal relation between the first and second event and between the third and forth event, lower arcs represent the temporal relation
between the second and third event. a) The patterns are based on a raster of days with a support threshold of 0.005. The view is zoomed in so that all patterns found
are shown. The information taken from this view is explained in Section 6.2.1. b) The patterns are based on a raster of hours with a support threshold of 0.005. The
view is zoomed in so that an interesting area can be seen. Two types of patterns both in red are shown. They seem to stem from baseball games. The green pattern
might be an effect resulting from Saturday night life. These findings are explained in more detail in Section 6.2.2.

dataset [46] which is publicly available. This dataset shows
traffic on a highway ramp near a baseball stadium. The data is
expected to contain artifacts from calendar effects, like week-
ends and rush-hours, but also from baseball games held. Thus,
a ground truth is available.

The dataset shows the number of cars in five minute inter-
vals. The total length is about half a year. Based on these fac-
tors, we decided to use limited rasterization as pre-processing.
To find different kinds of patterns, we decided to analyze at
the three aggregation levels of (1) five minute intervals, (2)
hours, and (3) days. The dataset contains missing values; we
decided to count full hours or days as missing values if one of
its source values is missing. The analyses were performed using
MEMuRY, but also with MuTIny as baseline for comparison.

6.1. Parameterization
For event parameterization, we only had to deal with one

data column, the number of cars. Therefore, we could sim-
ply distribute the number of cars into four quantiles of equal
probability. This choice was motivated by research by Lin et
al. [11]. Looking at a histogram, it also appeared sensible to us.
Domain experts might find better parameterizations using the
histograms, though. For dealing with more complex datasets,
using the simplification interface we described in an earlier pub-
lication would be a possible way [19]. The resulting classes are
given in Table 2.

For each raster level, we chose three different kinds of rela-
tions as shown in Table 3. The relations are all describing fixed

Table 2: Event parameterization: the classifications of the number of cars on
the from the Dodgers Loop Sensor dataset [46] that were used by us. Values are
not always starting with zeros as our value range mirrors the actual minimum
in the dataset.

Raster Very Low (e0) Low (e1) High (e2) Very High (e2)
5-Minute 0–9 10–22 23–31 32–90
1-Hour 0–105 106–277 278–364 365–662
1-Day 3518–5450 5451–6076 6077–6566 6567–7661

Table 3: The various relations we used for our usage scenario dependent on the
raster of the data. The relations are given between a pattern and a possible new
event that could be added.

Raster Very Short (p0) Short (p1) Long (p2)
5-Minute meets ends 5 minutes before starts 1 hour before
1-Hour meets ends 1 hour before starts 1 day before
1-Day meets ends 1 day before starts 1 week before

intervals, no interval ranges, but we have variable intervals re-
garding the begin or end of events as they are of variable length
themselves.

We performed 3 steps resulting in patterns of length 3 with
4 events and 3 relations in between. That is a conservative in-
crease from the patterns of length 2 presented by Bertone et al.
[5].

We started with the day raster and a threshold of 0 for sup-
port. While the calculation of patterns was still possible, there
were simply too many for visual exploration over time. The
river view (Figure 3) shows them in sum, but more detail is
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Figure 7: The influence of several parameters on the number of patterns found by MEMuRY (left) compared to the influence of the same parameters on numbers
found by MuTIny (right). The vertical scales are different, a disadvantage of this figure we decided to accept in order to show more details in the right part of the
left visualization.

not possible. Thus, we increased the threshold only slightly to
0.005, resulting in much fewer patterns. This seemed to happen
for even such a low threshold because many patterns occurred
only once.

6.2. Exploration of Results
Using MEMuRY on a day raster, we found 4 intervals that

are about 4 days long and contain more frequent patterns. Each
of those intervals has 1–2 days that are the basis for most of
the patterns and might be important – further analysis would
be necessary. With the same parameters, MuTIny also found
patterns, but the information gained from them, like the busi-
ness week, was mostly composed of patterns that appear in
most datasets based on social effects. These patterns are already
known according to experts for time-oriented data we talked to,
for example in our expert interview (Subsection 6.4).

Using MEMuRY on an hour raster, we found various pat-
terns. Many of those belong to 2 slightly different classes which
we could identify as indicating baseball games at 2 different
times of day that can also be found in the ground truth. We
were aware that there could be patterns based on those games,
but we did not know in advance were to search and what they
would look like. However, they visually stood out. Other pat-
terns belong to a third class that we do not fully understand yet,
but suspect to be related to “Saturday night life”.

Using MEMuRY on the 5-minute-raster, we found many
patterns that seem to indicate times of high traffic. However, at
this level it was hard to gain more information.

6.2.1. Day Raster in Detail
In the day raster analysis, we found that the patterns re-

maining after filtering are roughly where the “bulks” of the first
river view were. The timelines (Figure 4) show in their labels
that several patterns start with the same event, but other pat-
terns starting at different events are also temporally close. There
seem to be 3–4 clusters (groups that are close to each other in
time) of patterns.

The arc view (Figure 5.a) reveals that a reason for the gaps
between the pattern clusters could be the missing values. What
is hard to see in the timelines view, but prominent in the arc
view, is that for the first cluster, patterns start with medium to
high traffic (green and yellow arcs), while for the second cluster,
many patterns are sparked by a single Monday with very high
traffic (several red arcs that all are connected to one small and
one large red arc starting on the same day). There indeed seem
to be two more clusters, one with rather high traffic (mostly
yellow arcs), and another one based on two days with medium
traffic (green arcs to the right). Few patterns start with low traf-
fic, but events with low traffic are often more than one day long,
are part of several patterns.

Most events of all clusters start with a one-day-event, but
many follow-up events are longer. An effect of weekends in the
data can be seen, but they do not dominate the patterns. For
more in-depth analysis and interpretation of these results, more
domain knowledge would be necessary.

Comparison to MuTIny. We compared those results to MuTIny
results with exactly the same parameterization, also visualized
using SAPPERLOT. The first and last cluster found by MuTIny
are based on the same patterns. In the middle, MuTIny found
two small clusters different from the one found by MEMuRY.
Even in the areas where both approaches found patterns, they
are built differently. Almost all patterns found by MuTIny are
related to weekends and are of limited interest, as the impor-
tance of weekends is well known. Perhaps the only interesting
information is that weekends with low traffic after weekends
with high traffic seem rather frequent. This is gained only from
the first part of patterns. The rest of those patterns show that
for all kinds of weekends, typical traffic for Mondays and Tues-
days follows. This information is more or less trivial. The new
clusters we found show two weekends and seem to indicate that
weekends often have low traffic, and that the traffic on Monday
is more related to the traffic on Friday than on Saturday and
Sunday. This also is no new information. In sum, MuTIny
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found more patterns altogether, but when filtering for support,
less patterns remained. We estimate that each pattern contains
considerably less information. The whole information is still
present in the patterns from MuTIny, but it is very difficult and
time-consuming to gain this information as it is strongly clut-
tered.

6.2.2. Hour Raster in Detail
In the hour raster, MEMuRY found many more patterns,

which might be due to the longer dataset, but they were also
distributed more evenly over time. All patterns start with low
or very high traffic, so patterns based on very low or high traffic
seemed to be filtered out early in the process.

To see more details, we can zoom and pan (Figure 5.b). A
very frequent pattern that also had a characteristic shape is very
high traffic starting between 12pm and 4pm, followed by a grad-
ual decline to very low traffic from around 11pm to around 6am.
The time seems odd for rush hour, and actually we found out
that this pattern usually happens on days when Dodgers games
are in the afternoon. Interestingly, MEMuRY found this pattern
and could classify them into the same class even if the actual
times vary slightly. What resulted in a different, but also fre-
quent pattern that we found afterwards are slight fluctuations in
the decline, with the traffic sometimes going back up at around
10pm. This pattern seems to appear when Dodgers games are
in the evening. Thus, we can conclude that MEMuRY can de-
tect Dodgers games. While the first kind of pattern usually ap-
pears alone when there are actually games in the afternoon, the
second kind of pattern often appears during the same time as
an instance of the first pattern and two other patterns that are
different combinations of the participating events. A better pa-
rameterization might increase the performance in order to get
only single patterns, if this is the goal of the user.

Another pattern that appeared frequently in the hour raster
was that one week the traffic was low at 11pm, and the next
day it was already very low at the same time, followed by traf-
fic quickly increasing to very high in the morning. This pattern
appeared usually when there were no Dodgers games and often
on Sundays, but also on other days of week. Perhaps on Satur-
days, more people (low traffic) are on the road at night than on
Sundays (very low traffic), and that effect is so regular that this
pattern has high support.

Comparison to MuTIny. For using MuTIny on the hour raster,
we had to drastically reduce the support threshold, as there
would have been more patterns than our test system could han-
dle in reasonable time. The result was mostly the same pat-
tern cluster repeated over and over again, which was shown
nicely by the river view. The river view also showed that there
were some deviations, but they were hard to interpret, as they
were cluttered by the large number of total patterns in the other
views. The timelines showed that the most prominent feature of
the typical pattern was very low traffic followed by more very
low traffic. The arc view finally showed that this was because
of repeating night hours (also well-known information) which
were the most prominent pattern. After some zooming and pan-
ning, most of the deviating patterns seemed to be nights were

the traffic was already low instead of very low early in the morn-
ing and other slight deviations from the main pattern. However,
we could not find out more details of the distribution of those
nights. We could not find the Dodgers games in the MuTIny
results.

6.3. Lessons Learned

The river view is well suited to see how many patterns of
certain types exist at certain times. Further, it is useful exactly
when the more detailed visualizations are not useful. Thus, it
should be used over the course of an iterative analysis, and ide-
ally allow for manual selection of support or improving selec-
tion further using dynamic queries. In addition, only perform-
ing the procedure for certain time ranges and dynamically ex-
tending them helped much as we did it manually, so integrating
this concept into a full system should greatly increase the user
experience for larger datasets.

It was difficult to compare pattern classes in the timelines.
We provided 12 distinguishable colors from ColorBrewer [47],
but they often were not enough for the pattern classes. What
could help is an advanced distance measure for pattern classes
and a dynamic color scheme that makes use of this measure. Al-
ternatively, the colors from the event bar in the arc view could
be used for multi-colored patterns. These ideas could, for ex-
ample, have improved the time needed to understand that the
recurring patterns in the hour raster are indeed Dodgers games.

The arc view can be very effective when analyzed thor-
oughly, but it takes much time to interpret and starts with a
puzzling view. Zooming and panning helps a lot, but further
filtering methods and new ideas regarding color of the arcs are
needed to make it more usable.

Altogether, the data raster seems to be important. We ex-
pected MEMuRY to strongly reduce this problem by automat-
ically combining data elements to longer events, but in reality,
there are limits. For example, short-time but high-value out-
liers, like they can appear in traffic data, can disrupt events.
Using MEMuRY on the 5-minute-raster showed that for most
days, there are short patterns in the morning or at noon which
might stem from rush hours. At the time of Dodgers games,
there are often patterns, but they are irregular and therefore
hard to match. Checking slightly larger time rasters helped a
great deal to circumvent that problem – using a raster of hours,
MEMuRY already performed much better than MuTIny. The
interactive visual interface needs to be extended to quickly skim
various rasters.

6.4. Qualitative Feedback from a Domain Expert

To get qualitative feedback, we performed an interview with
a domain expert. She is working with time-oriented data, to-
gether with a company that mostly deals in shift-plan manage-
ment. In the past, other domain experts from that company have
pointed out the shortcomings of the MuTIny approach [3].

The domain expert confirmed that fewer patterns are good
because they are easier to handle. She also agreed that no infor-
mation is lost because the lengths of events are saved.
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The domain expert stressed that the weekend pattern was
still there in our examples, even though there were fewer differ-
ent patterns describing it. As a result, she explained that no new
information is gained if the relations between events describe
known behavior: A relation of “follows directly” would still
find “weekend follows business week”, “business week follows
weekend”; “starts one week later” would still find “weekend
starts one week after another weekend starts”; and so on. How-
ever, by trying out new relations, like “one day in between”,
patterns would come up that are new. Those patterns are much
easier to find with MEMuRY, because they are not cluttered be-
tween patterns from, e.g., two weekdays separated by a third
one, like Monday, Wednesday. By this assessment, we are as-
sured in our future work goal to fully integrate the procedure in
a full VA system instead of just exploring the results.

A last idea brought up by the domain expert was to define
events by deduction of the cyclic components of the values. To
do this, we would have to consolidate our proposal for event
definition [19] with a statistic approach on VA for time-series
analyses that we are pursuing in parallel to this work [48].

7. Conclusion and Future Work

As our main contribution, we presented a novel pattern find-
ing procedure for time-oriented data that follows and improves
the I-Apriori [16] and MuTIny [3] approaches. We described
and prototypically implemented a procedure that finds patterns
as well as an interactive visualization for the results. A usage
scenario showed that the procedure can indeed find valuable
patterns that could not be found by a similar state-of-the-art-
approach. We also discussed interactive, visual, iterative pa-
rameterization and exploration of the results using VA. Based
on our prototype, we made benchmarks on the worst case sce-
nario of random data.

Our definition of events results in different patterns than
those from other definitions that base events on rastered datasets
and do not allow for variable event lengths. Considering our
goal to simplify temporal structures, this is intended. In Fig-
ure 1.a and 1.b, for example, our procedure does model busi-
ness weeks and weekends (which is no new information), but
instead of using four classes of patterns of length 1 per inter-
val, for a total of 8 classes, it needs only 2 which have much
less instances and contain the same information. Moreover, if
something unexpected happens, like in Figure 1.c, different pat-
terns appear, while for events that are locked to the raster length,
only the frequency of the same event classes would vary.

The benchmark of stochastic data (Section 5) shows that our
procedure indeed produces much less patterns then MuTIny,
with comparable performance per pattern. The usage scenario
in Section 6 showed that the procedure can find very interest-
ing patterns that stem from social time, but the actual processes
do not need to be known in advance (like the baseball games
we later verified our results against). Moreover, the procedure
provides more compact information based on known structures,
like the weekends. Thus, we consider our procedure and visual
interface to be successful in advancing TDM.

To help users in better applying the procedure to their prac-
tical problems, we need to develop an interactive visual sys-
tem for iteratively performing knowledge discovery based on
MEMuRY. In Section 4, we described the features that such
a tool should have. In the end of Section 6, we summarized
our insights from our existing system for result exploration, and
how those should be integrated in the next step, which we then
also intend to test with a larger population of users.

We feel confident that MEMuRY and its possible advance-
ments will be a valuable addition to classical KDD approaches.
Furthermore, we consider the VA approach to be the most effec-
tive one for interactively and visually parameterizing the proce-
dure and exploring the results. Thus, developing a prototype
VA system for the procedure is the key part of our future work.
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[7] Gschwandtner T, Gärtner J, Aigner W, Miksch S. A taxonomy of dirty
time-oriented data. In: Quirchmayr G, Basl J, You I, Xu L, Weippl E,
editors. Multidisciplinary Research and Practice for Information Systems,
Proceedings CD-ARES 2012. LNCS 7465; Heidelberg: Springer; 2012,
p. 58–72. doi:10.1007/978-3-642-32498-7_5.

[8] Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Locally adaptive di-
mensionality reduction for indexing large time series databases. ACM
SIGMOD Record 2001;30(2):151–62. doi:10.1145/376284.375680.

[9] Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowledge
and Information Systems 2001;3(3):263–86. doi:10.1007/PL00011669.

[10] Lin J, Keogh E, Lonardi S, Chiu B. A symbolic representation of time
series, with implications for streaming algorithms. In: Proceedings of
the 8th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery. 2003, p. 2–11. doi:10.1145/882082.882086.

[11] Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery
2007;15(2):107–44. doi:10.1007/s10618-007-0064-z.

[12] Lammarsch T, Aigner W, Bertone A, Miksch S, Rind A. Mind the
time: Unleashing the temporal aspects in pattern discovery. In: Pohl

13



M, Schuman H, editors. Fourth International Eurovis Workshop on Vi-
sual Analytics held in Europe, EuroVA. 2013, p. 31–5. doi:10.2312/
PE.EuroVAST.EuroVA13.031-035.

[13] Srikant R, Agrawal R. Mining sequential patterns: Generalizations and
performance improvements. In: Apers P, Bouzeghoub M, Gardarin G,
editors. Advances in Database Technology – Proceedings of the 5th Inter-
national Conference on Extending Database Technology, EDBT. LNCS
1057; Springer; 1996, p. 1–17. doi:10.1007/BFb0014140.

[14] Mannila H, Toivonen H, Inkeri Verkamo A. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery
1997;1(3):259–89. doi:10.1023/A:1009748302351.

[15] Magnusson M. Discovering hidden time patterns in behavior: T-patterns
and their detection. Behavior Research Methods 2000;32(1):93–110.
doi:10.3758/BF03200792.

[16] Chen Y, Chiang M, Ko M. Discovering time-interval sequential
patterns in sequence databases. Expert Systems with Applications
2003;25(3):343–54. doi:10.1016/S0957-4174(03)00075-7.

[17] Hu Y, Huang T, Yang H, Chen Y. On mining multi-time-interval se-
quential patterns. Data & Knowledge Engineering 2009;68(10):1112–27.
doi:10.1016/j.datak.2009.05.003.

[18] Lammarsch T. Facets of Time—Making the Most of Time’s Structure
in Interactive Visualization. Ph.D. thesis; Vienna University of Technol-
ogy; 2010. URL: http://publik.tuwien.ac.at/files/PubDat_
217966.pdf; supervisors: Silvia Miksch (Vienna University of Technol-
ogy), Daniel Keim (University of Konstanz).

[19] Lammarsch T, Aigner W, Bertone A, Bögl M, Gschwandtner T, Miksch
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