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Abstract

Physicians are confronted with increasingly complex patient histories
based on which they must make life-critical treatment decisions. At the
same time, clinical researchers are eager to study the growing databases
of patient histories to detect unknown patterns, ensure quality con-
trol, and discover surprising outcomes. Designers of Electronic Health
Record systems (EHRs) have great potential to apply innovative visual
methods to support clinical decision-making and research. This work
surveys the state-of-the-art of information visualization systems for
exploring and querying EHRs, as described in the scientific literature.



We examine how systems differ in their features and highlight how
these differences are related to their design and the medical scenarios
they tackle. The systems are compared on a set of criteria: (1) data
types covered, (2) multivariate analysis support, (3) number of patient
records used (one or multiple), and (4) user intents addressed. Based
on our survey and evidence gained from evaluation studies, we believe
that effective information visualization can facilitate analysis of EHRs
for patient treatment and clinical research. Thus, we encourage the
information visualization community to study the application of their
systems in health care. Our monograph is written for both scientific
researchers and designers of future user interfaces for EHRs. We hope
it will help them understand this vital domain and appreciate the fea-
tures and virtues of existing systems, so they can create still more
advanced systems. We identify potential future research topics in inter-
active support for data abstraction, in systems for intermittent users,
such as patients, and in more detailed evaluations.



1
Introduction

Medical decision-making is a complex process. A patient’s well-being
depends on correct diagnosis and appropriate treatment. Physicians
must incorporate large amounts of information such as a patient’s
status, symptoms, medical history, past and ongoing treatments, which
are encompassed in the electronic health record (EHR). In addition,
these records are an invaluable data source for clinical research and
improvement of clinical quality, as they provide longitudinal health
information about patient populations [49, 131, 138].

In recent years, many health care institutions have introduced EHR
systems to replace their paper-based health records. However, current
clinical information systems have focused on faster and cheaper man-
agement, storage, and sharing of EHRs. Unfortunately, EHR systems
have been shown to have little positive effects on the quality of care, and
in some cases have decreased quality [66]. A 2009 report by a commit-
tee of the National Research Council of the National Academies found
that care providers spend considerable time entering data into EHRs
for billing and legal purposes, but that this data rarely improves the
quality of care, largely because EHR systems fail to provide cognitive
support to healthcare providers, patients, and families [134].

209



210 Introduction

Information visualization has the potential to address those issues
and deliver much-needed cognitive support. Indeed, a 2012 report of
the US Institute of Medicine [72], which focuses on improving patient
safety, recommends “cross-disciplinary research” on “user-centered
design and human factors applied to health IT.” The report also notes
that “Information visualization is not as advanced in parts of clinical
medicine as compared with other scientific disciplines.”

In the scientific literature, several information visualization
techniques have been proposed that encourage users to explore EHR
data visually, gain insights, and form hypotheses. Those systems have
demonstrated some level of success, but it is difficult to get an overview
and compare them. In this work we report on an extensive literature
survey of visualization and interaction techniques applied to EHRs. We
review and compare state-of-the-art research systems and examine their
support for medical care, clinical research, and quality control. The
focus is on information visualization techniques as opposed to medical
imaging techniques. It also excludes techniques aiming to support the
management of administrative or financial data.
This work presents:

(1) A survey of state-of-the-art information visualization systems
from academic literature.

(2) A review of the visualization and interaction techniques
found in 14 of these systems (Table 1.1) including strengths
and weaknesses. These systems are categorized by the tasks
and data (type, complexity, and scale) they support. Further-
more, there are compact descriptions of 32 additional EHR
visualization systems.

(3) A summary of evaluation studies conducted in medical
context.

(4) An overview of data visualization in commercial EHR
systems.

(5) Recommendations and future research directions for infor-
mation visualization in EHR systems.

Our analysis of single patient and multiple patient systems is written
for both scientific researchers and designers of future user interfaces
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Table 1.1. Overview of the 14 systems reviewed in detail.

LifeLines (see Figure 4.1)
University of Maryland [110]

MIVA (see Figure 4.3)
Indiana University [56]

WBIVS (see Figure 4.4)
University of Minnesota [107]

Midgaard (see Figure 4.5)
Otto-von-Guericke University of Magdeburg [32]

VisuExplore (see Figure 4.7)
Vienna University of Technology [123]

VIE-VISU (see Figure 4.9)
University of Vienna [69]

Lifelines2 (see Figure 4.12)
University of Maryland [147, 148]

Similan (see Figure 4.13)
University of Maryland [155]

PatternFinder (see Figure 4.16)
University of Maryland [53]

VISITORS (see Figure 4.18)
Ben-Gurion University of the Negev [80, 81]

Caregiver (see Figure 4.21)
Fachhochschule Nordwestschweiz [36]

IPBC (see Figure 4.22)
University of Udine [45]

Gravi++ (see Figure 4.24)
Vienna University of Technology [67]

TimeRider (see Figure 4.25)
Danube University Krems [122]
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for EHR data analysis. These interface designers face a substantial
challenge in understanding medical care, clinical research, and quality
control sufficiently well to create effective interfaces. If these designers
appreciate the features and virtues of existing systems, they will be
more capable in creating still more advanced systems.

We first provide background information on information visualiza-
tion in the medical domain, highlight its significance, and compare this
survey to existing work. The Methods section presents our approach to
searching relevant literature and our review criteria. The Results section
presents 14 information visualization systems and briefly describes
related systems. The Discussion section evaluates the 14 systems using
our review criteria, reports on evaluation studies, gives an overview of
commercial systems, explains limitations, and provides recommenda-
tions for future work.



2
Background

Medical data is often large, complex, disorganized [131], and may reside
in separate databases or in data warehouses. These characteristics make
medical information difficult to integrate and analyze. However, critical
analysis of medical data can improve health care and have a positive
impact on lives. An EHR can be characterized as “the complete set
of information that resides in electronic form and is related to the
past, present and future health status or health care provided to a
subject of care” [113, p. 104]. As EHR systems become more preva-
lent, the need to have effective support to access and understand them
becomes urgent. Information visualization is one way to improve the
understanding of complex data and consequently increase the value of
electronically available medical data [42].

First, we describe the challenges of analyzing medical information
and how interactive visualization systems can help users overcome these
challenges.

213
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2.1 The Challenges

To improve care EHR data is used in two basic ways: (1) physicians need
to understand a particular patient’s data to make medical decisions;
and (2) clinical researchers and quality improvement analysts need
to understand patient population’s data to help establish new clinical
knowledge or assess the overall quality of care. While reliable data entry
and retrieval is the basic function of EHR systems, powerful exploration
methods and rich query capabilities are needed to realize the benefit
of EHR systems and clinical data warehousing. Unfortunately, meth-
ods to explore, query, and interact with the data have not improved
to deal with the size and complexity of the data available to date.
As a result, data in these systems are often relegated to the usage
pattern of “Write-Once, Read Never” [114]. Efforts to improve EHR
accessibility to physicians have met with varying degrees of success.
Christensen and Grimsmo [46] reported that EHR systems used by
general practitioners improved the availability of patient information,
but finding information within each record was not easy enough: 37%
of study respondents reported that they sometimes gave up searching
for information because it was too time consuming [46]. EHR systems
facilitate record-keeping and management of data, but can introduce
new medication errors through poor interaction design [31, 82].

Without proper interaction design, systems can pose high technical
barriers to their end-users. For example, within a single patient record
the temporal information is typically fragmented over multiple screens
and multiple tables, making it difficult to review the sequence of events
[87, 107]. Another example is an EHR data warehouse system that
requires its users to use command-line style queries to perform searches.
Command-line query languages such as SQL or its extensions for the
medical domain [75, 99, 103] are very difficult to learn and tempo-
ral queries are extremely hard to specify. Some systems encapsulate
query languages with graphical user interfaces that are easier to learn.
However, these systems often constrain the expressiveness of query
languages in order to keep the user interface manageable. As a result,
even state-of-the-art systems rarely support rich temporal queries [97,
109] despite the need for temporal information in clinical research.
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2.2 Information Visualization

“Computer-based visualization systems” can be defined as “provid[ing]
visual representations of datasets intended to help people carry out
some task more effectively” [96]. Information visualization techniques
focus on datasets with nonspatial data attributes and discrete obser-
vations [141]. Scientific visualization, on the other hand, concentrates
on visualizing real objects with spatial dimensions—typically three-
dimensional (3D), for example, tumor nodes or blood vessels (cp. [116]).
Since the EHR encompasses data relevant for both information visu-
alization and scientific visualization, EHR systems often combine dif-
ferent visualization methods. Information visualization relies on suit-
able mappings of abstract data to compact representations to convey
meaningful information quickly, for example a sparkline of glucose read-
ings [143]. Thus, information visualization is suitable for exploring and
querying the heterogeneous and temporal data found in EHRs. Fur-
thermore, interactive information visualization is one way to enable
exploratory analysis, an important partner to statistical confirmatory
analysis [144].

Interaction is “at the heart” of information visualization [132]. Inter-
action allows users to dynamically change the mapping of the data (e.g.,
color, shape, size), the view of the mapping (e.g., zoom, pan, rank), or
the scope of the data being visualized (e.g., search, filter). Aggregation
or clustering can also be supported. Information visualization research
aims to combine the processing power of modern computers with
human cognition and visual abilities to better support analysis tasks.

The visual information-seeking mantra “Overview, Zoom and
Filter, then Details on Demand” [129] provides a simple guideline
to deal with massive, disorganized medical data. Users can grasp
distributions, trends, and anomalies once large amounts of data
have been compressed into concise overviews. By using effective
strategies of zoom and filter, users can selectively focus on interesting
data points. Finally, details can be shown when users request them.
Information visualization researchers have proposed many techniques
to deal with large amounts of multidimensional data (e.g., VisDB [77],
TableLens [118]), effective and learnable search strategies (e.g.,
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dynamic query [22], Attribute Explorer [145]), and dynamic visual
rearrangements that improve visual exploration (e.g., Fisheye [60],
semantic zoom [65], Line Graph Explorer [79]). However, depending on
the characteristics of the data and the user tasks, different techniques
should be used, and the primary goal for this survey is to compare
and contrast the currently available approaches.

Visualization of temporal data. The EHR contains a patient’s
“past, present, and future” [113] medical data. Since the health state
of a patient changes over time, especially in the course of medical treat-
ment, time and temporal data play an important role in exploring and
querying EHRs. However, temporal data has special characteristics that
distinguish it from other dimensions (e.g., intervals, calendar structure,
and cyclic events). Visualization methods that consider these charac-
teristics can allow more effective analysis of such data [25, 26].

A good coverage on visualization of temporal data is given in the
book by Aigner et al. [26] who present a survey of 101 visualizations,
which includes some EHR visualization systems. Although, other
visualization methods for temporal data such as Continuum [29],
GROOVE [85], LiveRAC [93], or TimeSearcher [38, 39, 68] can in
principle be applied to visualize EHRs based on the underlying data
characteristics, we put a focus on methods that have been developed,
applied, and/or tested in medical contexts. Thus, the presented
methods have shown their suitability for the specific application case
with its specific requirements already.

2.3 Related Surveys

There are several publications on information visualization for medical
applications. However, these publications are scattered across the
venues of several different target audiences (visualization, human-
computer interaction, medical informatics, medicine). We know only
two venues that focus on EHR visualization: a series of workshops
organized by the Human-Computer Interaction Lab at the Univer-
sity of Maryland [6], and the recent VisWeek workshop series “Visual
Analytics in Healthcare” [21].
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Table 2.1. Coverage of reviewed systems in related work.
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Chittaro [42] 2001 • ◦ ◦
Kosara and

Miksch [83]
2002 • ◦ •

Lungu and Xu [89] 2007 • ◦ ◦
Aigner et al. [23] 2008 • ◦ • ◦ • ◦ • •
Combi et al. [49] 2010 • ◦ • •
Lesselroth and

Pieczkiewicz [86]
2011 • ◦ • ◦ • • •

•: system reviewed (based on reference list).
◦: similar system reviewed (e.g., KNAVE → VISITORS, Graphical Summary → MIVA).

Six other surveys provide partial coverage of the topic (Table 2.1):
Chittaro’s article [42] introduces the visualization field to the artificial
intelligence in medicine community. It presents a “gallery”, that is, a
panorama of relevant visualization systems, which is loosely structured,
comparatively short, and includes only few systems concerned with
EHRs. Kosara and Miksch’s review [83] does not examine concrete
visualization systems but visual representation techniques. They focus
on three tasks: visualizing measured data, incidents and symptoms,
and treatment planning. For each task they establish requirements
and assess the techniques based on these requirements. For example,
the requirements for visualization of measured data are intuitiveness,
focus+context time, focus+context data, combination of values,
seeing developments, finding patterns, and discovering intervals. The
techniques for visualization of measured data are line plot, Graphical
summary of patient status, VIE-VISU, and spirals. Overall, this review
makes an interesting counterpart to the work at hand. Lungu and
Xu’s book chapter [89] covers visualization systems for many areas of
biomedical research. Concerning medical records, it describes only two
systems for analysis of EHR data (LifeLines, The Cube) and two sys-
tems for management of treatment plans. The book chapter by Aigner
et al. [23] studies visual methods for management of clinical guidelines.
As a subpart of this survey they present six EHR visualization systems
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(LifeLines, Midgaard, VIE-VISU, IPBC, Gravi++, KNAVE II)
and systems that combine clinical guidelines with EHR data (e.g.,
CareVis). The book by Combi et al. [49] closes with a chapter on
the visualization of temporal clinical data and knowledge. Here, they
describe five visualization systems (IPBC, KHOSPAD, KNAVE II,
Paint Strips, VISITORS) in detail and characterize them along four
dimensions: subject cardinality (single/multiple patients), concept
cardinality (single/multiple variables), abstraction level (raw data,
abstract concepts, knowledge), and temporal granularity (single, single
but variable, multiple). Lesselroth and Pieczkiewicz’s book chapter [86]
surveys different visualization strategies for EHRs. This work provides
pointers to a large number of visualization systems, but they are not
systematically described. Its narrative is structured along the sections
multimedia, smart dashboards to improve situational awareness,
longitudinal and problem-oriented views to tell clinical narratives,
iconography and context links to support just-in-time information,
and probability analysis and decision heuristics to support decision
analysis and bias identification.

Our survey differs from the previous work in that it focuses exclu-
sively on visualization systems for exploring and querying EHR data. It
covers significantly more systems of that kind than other surveys and
it is systematically structured using review criteria that designers must
consider when creating appropriate information visualization systems.



3
Methods

This work studies the application of information visualization tech-
niques to patient data in EHRs for medical care and clinical research.
Its content is based on a survey of the academic literature. Here we
describe the search strategy and the inclusion criteria for this survey.
Then we introduce the review criteria, which help us to structure our
work.

3.1 Literature Search

We collected research papers describing the design, implementation, or
evaluation of information visualization systems. Our search strategy
involved three steps. First, we searched in four electronic databases
(ACM Digital Library, IEEE Xplore, Google Scholar, PubMed) and in
the archives of two medical informatics journals (International Jour-
nal of Medical Informatics, Journal of the American Medical Infor-
matics Association). Our principal search terms were “visualization of
patient record”. Another fruitful approach we adopted was to search
for papers citing early articles such as Powsner and Tufte’s graphical
summary of patient status [114] and LifeLines [110] in the databases

219
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mentioned above. Next, we manually scanned the reference lists of the
most relevant papers we had already found. Finally, we manually identi-
fied additional papers in conference proceedings (e.g., HCIL Workshop
2008, IEEE Conference on Visual Analytics Science and Technology
(VAST), International Conference on Information Visualisation (IV),
IEEE VisWeek Workshop on Visual Analytics in Health Care) and
journals (e.g., Information Visualization Journal, IEEE Transactions
on Visualization and Computer Graphics) of the information visualiza-
tion community, which were published in 2007 and later, so that we
could include state-of-the-art research that is not yet cited elsewhere.
We also contacted the authors of included work and asked for more
recent publications.

The decision whether a system should be included in this work was
based on a number of criteria:

• The EHR consists of many kinds of data and spans entire
patient histories. We are interested in systems that work with
a respectable number of data items per patients and take
temporal evolution of patient data into account. We excluded
systems that show only a snapshot of patient state or few
extracted items.

• Further, information visualization deals with discrete non-
spatial data such as diagnoses, test orders and results (e.g.,
blood tests and normal/abnormal ratings), heart rate, or
drugs orders. This does not include the visualization of
spatial data, such as X-ray images, computed tomography
data, or other medical images, for which the methods of sci-
entific visualization are more relevant [116]. Display of free
text (e.g., the full text of notes or discharge letters) is also out
of this review’s scope, even though data extracted from such
texts can be explored with such tools (e.g., [139]). However,
systems that combine information visualization with medical
images or text are included.

• Interaction is intrinsic to information visualization, therefore
this survey includes only interactive applications and skips
approaches that produce only static pictures. Nevertheless,
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various interaction techniques exist and even simple panning
or geometric zooming is considered.

• The application domain of the work surveyed here includes
patient care, clinical research, and quality control. It excludes
the visualization of medical guidelines and information visu-
alization systems designed for administrative tasks with or
in relation to patient data (e.g., billing, scheduling).

Besides these explicit inclusion criteria, our search strategy had an
implicit effect on the survey systems that should be considered here:

• A search of scientific literature unfortunately excludes many
existing commercial systems. On the one hand, these systems
are very relevant to our intended audience. However, on
the other, web resources on these systems do not discuss
their visualization design features, evaluation methods, or
results as extensively and systematically as an academic
paper would, making them poor subjects for our review cri-
teria (see next section). Instead, we present an overview and
a few examples of commercial systems (Section 5.3 Patient
Data Visualization in Commercial EHR Systems) so that
readers can draw connections to the systems in this survey.

• We survey systems that have been applied in the health care
domain and not other systems that, in principle, could be
applied there.

• Finally, we look at visualization systems and not on individ-
ual visualization or interaction techniques.

After initial research and preliminary coding of the review criteria, we
selected the most original or most relevant systems, which we describe
in more detail. Other systems that are similar to earlier work but
with limited novelty in visualization or interaction are cited and briefly
explained throughout the survey. This survey covers all identified sys-
tems that fulfilled our inclusion criteria, but of course there may be
valuable ideas in unpublished systems or in papers we have missed.



222 Methods

3.2 Review Criteria

After an initial review of the systems and discussion among the authors
we selected four review criteria that would help structure the results
and discussion sections. Those criteria are data type covered, support
for multiple variables, support for visualizing data from one versus
many patients, and support for different user intents.

3.2.1 Data Types Covered

Visualization systems vary greatly as a function of the data type(s)
they can handle. On a domain-independent level, systems can handle
categorical (includes nominal or ordinal scale) or numerical variables
(interval or ratio scale), or both (cp. [136]). Categorical variables
have values from an unordered or ordered set. Nominal (unordered)
examples include diagnoses (e.g., flu, lupus, cancer) or interventions
(appendectomy, cesarean section, blood transfusion). Examples of
ordinal (ordered) data type include cholesterol levels (“low”, “normal”,
“high”) and severity of a symptom on a scale from “none” to “severe”.
Numerical variables can have an interval or ratio scale. Examples
are temperature in degrees Celsius (interval scale) or creatinine value
in mg/dL (ratio scale). It is also possible to describe the scale of
numerical variables as continuous or discrete (real or integer numbers).
Some information visualization systems can only deal with a single
data type while others can combine multiple types.

On a medical-domain level systems or techniques may be adapted to
certain data types such as medical tests (e.g., blood glucose), diagnoses
(e.g., diabetes), or treatments (e.g., medication or surgery).

3.2.2 Support for Multiple Variables

Physicians often need to analyze the codevelopment of two or more
variables (e.g., a drug administration and test results). Different
systems represent multiple variables differently, and we catalog these
visualization and interaction techniques. We also look at the number of
variables described in the original publications to propose an estimate
of the appropriate number of variables the technique can handle.
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3.2.3 Support for One versus Multiple Patient Records

A strongly differentiating criterion is whether the information visual-
ization system supports the exploration and querying of a single patient
record or collections of patient records. Scenarios that require working
with multiple patient records include monitoring patient cohorts [36],
quality assurance [45], alarm specification [109], clinical trial recruit-
ment, and observational research using existing patient data [147]. We
examine how users can query multiple EHRs but also how users can
interactively explore individual patients within the result set.

3.2.4 Support for User Intents

Finally, information visualization systems can be compared by their
interaction features. As stated above, interaction is an integral part of
information visualization and contributes a large part of the benefits
of EHR visualization systems. A wide choice of interaction techniques
is implemented by the systems in this survey and, often, interaction
techniques are interwoven with the visual representations. Therefore,
we use the user intent model proposed by Yi et al. [157]. This cate-
gorization focuses on “what a user wants to achieve” and describes an
interaction technique by one of seven user intents (see below). In order
to better describe EHR visualization systems, we extended the model
with 20 subintent categories:

(1) Select: Mark a subset of the dataset as interesting.

• to keep track of selected items for a short term while
the visualization is changed

• to manage groups, for example adding or removing
patients to groups

(2) Explore: Show a different part of the dataset.

• to navigate in time (e.g., panning and zooming the
time axis)

• to add or remove parameters to the visualization

• to add or remove patients to the visualization
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(3) Reconfigure: Rearrange the visual layout of the dataset.

• by repositioning items manually (freely or by some
constraints)

• by sorting items along an axis

• by other adjustments of an axis (e.g., alignment to
a relative timescale, distortion to see some items in
focus and some in context)

• by applying another technique to avoid occlusion
(e.g., 3D camera movement)

(4) Encode: Change the way each item of the dataset is repre-
sented.

• by switching to a different visualization technique or
opening it in a new view

• by varying visual encoding (e.g., map outcome to
item color, encode severity as item size)

(5) Abstract/Elaborate: Show less or more detail.

• by abstraction of one or more parameters (e.g.,
abstraction of a series of temperature readings over
37.5◦C into a period of fever or subsuming different
medication as beta-blockers)

• by temporal data binning (e.g., aggregate parameter
values either by fixed time intervals or for as long as
they have the same value)

• by showing details of items (e.g., in a tooltip)

(6) Filter: Show or highlight something conditionally.

• by patient status without considering time or devel-
opment over time

• by development over time like event sequences (e.g.,
surgery after stroke) or value trends (e.g., increasing
cholesterol) without time constraints

• by time constraints (e.g., relapse within 3 weeks after
discharge, surgery in May 2009)
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(7) Connect: Show related data.

• to show patient/patient group relationship

• to brush items in other representations

• to brush items for other variables at the same point
of time or of the same patient

While most systems support each of these intents, some are more
elegant than others. We describe the features in each system and
the intents they support. We hope that understanding the trade-offs
made by these systems will help design create more effective systems.
Although we do not explicitly map each system feature into one or more
intents in the system descriptions, we trust that readers can infer them
from the detailed descriptions. Table 5.3 summarizes the strengths and
weaknesses of systems in terms of user intents.



4
Results

In this section the most representative EHR visualization systems are
described in detail, along with the mention of other related systems or
variants. Because the criterion “Support for one versus multiple patient
records” has the largest impact on system design, the survey is first
organized using this criterion, starting with systems that deal with
a single patient and followed by systems that analyze collections of
patient records. Below that, we grouped the systems under four head-
lines each that illustrate common features relevant for the exploration
and querying of EHRs. Yet, these groups cannot subsume all char-
acteristics of the systems, for which the textual description and the
discussion tables should be consulted.

4.1 Visualization of a Single Patient Record

Visualizations of a single patient record support core clinical care
tasks such as providing an overview of the patient history to under-
stand trends, identify significant events, and spot omissions in data or
treatment.

226
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4.1.1 Events over Time

Developed in the late 1990s, LifeLines [110] is a seminal work of
the visualization of personal medical histories. It uses a set of line
segments to represent the events and episodes in a single patient
record (Figure 4.1). The focus is on categorical data, using color to
show normal or abnormal states. LifeLines supports the visualization
of many medical variables on the same screen (e.g., 32 distinct types of
events can be found in Figure 4.1). The line segments are distributed
along the horizontal time axis, which can be zoomed and panned
to reveal more or less details. Today’s date is marked with a thick
vertical line. Future events can be seen on the right of that vertical
line (e.g., appointments or the scheduled end of a treatment). Along
the vertical axis the data is grouped by facets that represent different
aspects of the record such as “problems”, “diagnoses”, “tests”, and

Fig. 4.1 LifeLines [110]: time line visualization of personal medical histories. Horizontal lines
represent the events and episodes in a single patient record. Line color, height, and captions
are used to convey information. A detail panel to the right shows further information about
a selected item such as an ultrasound image. Image by the authors.
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“medications”. Facets can be closed into a much thinner colored
representation called a silhouette that merely signifies the absence or
presence of data. LifeLines groups similar events such as orders of the
same drug in the same vertical position and allows aggregation of sets
of events onto summary events (e.g., all consecutive orders of the same
drug or class of drug can be aggregated).

To access more details, users can move the mouse cursor over a line
and read a long label. Or they can double-click on any line and open
documents or images in the right side, turning the visualization into
large menu to access details. A string search function allows users to
highlight events that have the search term in their description. LifeLines
has been an inspiration for many other visualization tools.

KHOSPAD [51] show medical events with support for temporal
granularity and indeterminacy. For this, it provides a complex nota-
tion for events, which for example shows the minimum duration, and
an additional view on temporal relationships between events. Anam-
neVis [158] and an earlier system [159] apply vertical lines or boxes
for visualizing the “when” aspect of data in an EHR. In addition, these
two systems provide other views such as node link diagrams for the
“why” aspect, a body shape for the “where” aspect, and a sunburst
visualization for the “what” aspect of a patient’s diseases. Other exam-
ples using horizontal lines for medical data are Patient History in
Pocket (PHiP) [30], which is optimized for low-resolution mobile
devices in epilepsy treatment, and a visualization tool for the iden-
tification of patients with poor medication adherence [90].

4.1.2 Numerical Data over Time

Point plots are a common technique for visualization of numerical
data. Powsner and Tufte’s graphical summary of patient status
[114, 115] (Figure 4.2) is a well known yet non-interactive visualization
that demonstrates point plots and small multiples. It can present two
dozen variables by using common axes and nonlinear scales. It com-
pares numerical data to laboratory reference values or recommended
drug doses and visually highlights abnormal data.
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Fig. 4.2 Graphical summary of patient status [114, 115] is composed of two dozen point plots
like this. The vertical axis is scaled based on five reference value ranges (critically elevated,
elevated, normal, reduced, critically reduced) and abnormal values are visually highlighted.
The horizontal axis is scaled nonlinearly to present the complete patient history with data
of the current treatment (here, Jul 24 until Aug 4) being shown in more detail. The number
in the top right corner shows the most recent value.
Image by the authors, based on the concept by Powsner and Tufte.

The Medical Information Visualization Assistant (MIVA)
[54, 56], formerly known as Critical Care Patient Data Visualization
system (CPDV) [55], presents many of the concept from Powsner and
Tufte and include them in an interactive user interface (Figure 4.3). It
uses point plots to visualize the change of numerical values over time.
Each variable is displayed in a separate plot. A gray band in the back-
ground denotes the normal range of the variable in each plot. The point
plots are stacked vertically and aligned on a shared time axis, which
users can zoom and pan. Meanwhile, the small plots on the right always
show the most recent developments and the current value is displayed
as a large label. The variable label is color-coded to indicate recent
abnormal values. Variables can be added from a list or reordered by
drag and drop. Users can display all variable values at a certain time
through the “scrubber”, which is represented as a vertical red line. On
top, there are two small panels with clinical text notes, clinical inter-
ventions, and other medical events. MIVA can thus also present some
categorical data as contextual information.

Systems that plot numerical data over time are often found in
commercial systems (see Discussion section) and several other sys-
tems were found in the literature survey: Rasmussen and Starren’s
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Fig. 4.3 Medical Information Visualization Assistant (MIVA) [54, 56]: set of point plots for
intensive care data, which can be added and reordered. The gray bands in the background
denote the normal range of the variable in the plot. The large labels and the small plots
on the right show the current patient status and the most recent development. On top,
the icons represent clinical text notes, interventions, and other events as aligned to the
interactive time axis in the bottom. Image courtesy of Anthony Faiola.

Augmented Interactive Starfield Display [119] visualizes blood
glucose values over time in a point plot. Fonseca et al. [59] present a
visualization using overlaid line plots in context of a data integration
project. The Cube [57] visualizes numerical data in a 3D parallel
coordinate plot. Sparklines, line plots as small as a line of text [143], are
evaluated by Bauer et al. [34] and reportedly used at Lucile Packard
Children’s Hospital at Stanford [104]. The integrated graphical
information display (IGID) for intensive care patients evaluated
by Anders et al. [28] is composed of vertically stacked line plots.

4.1.3 Heterogeneous Data on a Common Time Axis

Combined visualization of event and numerical data over time is a
feature of many single patient record systems. These systems typically
provide multiple charts of different representation techniques, which
are aligned on a common horizontal time axis.
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Fig. 4.4 Web-based Interactive Visualization System (WBIVS) [107] aligns line plots and
matrix plots for lung transplant home monitoring. Parts of the screen shots are zoomed in
on the right to give a better view of the details.
Image courtesy of David Pieczkiewicz, zoomed details added by the authors.

The web-based interactive visualization system (WBIVS)
[107] for lung transplant home monitoring data shows both numerical
and categorical pulmonary data (Figure 4.4). It combines line plots for
multiple numerical variables and matrix plots for categorical variables.
In total the application visualizes ten variables.

When users select a data point, the data points for the same time
period are highlighted in all the other charts (with color and horizontal
lines). Details about the last two selected points are shown on the
right of the graph and a thick line is drawn between the two points to
visualize the rate of change. If the mouse pointer moves over a point, a
tooltip shows its value. The information provided on the right or in the
tooltip includes derived values for lung function, absolute and relative
change. A five-day moving average line can be displayed in order to
highlight trends or hidden to reduce clutter.
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Fig. 4.5 Midgaard [32]: This visualization for intensive care includes a powerful semantic
zoom, which allows users to smoothly zoom in and out and progressively reveal more details
through animated transitions. Image by the authors.

Midgaard [32] is a visualization system designed for intensive care.
It integrates the display of numerical data with graphical representa-
tions of medical treatment plans (Figure 4.5).

Midgaard provides a sophisticated semantic zoom visualization
technique for numerical variables, which incorporates knowledge about
the variable. Depending on the zoom level and the available screen
area, Midgaard adapts the level of detail and shows the data either as
(a–b) colored background, (c) colored bars, (d) area charts, or (e) aug-
mented line charts (cp. Figure 4.6). For this, it calculates categorical
abstractions of the numerical data. A time series of blood pressure
measurements, for example, could be abstracted to periods of “normal
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Fig. 4.6 Semantic zoom visualization technique for numerical variables in Midgaard [32]
with five different levels of detail: (a) colored background, (b) colored background with
labels, (c) colored bars, (d) colored area charts, and (e) augmented line charts.
Image by the authors.

blood pressure” (green), “increased blood pressure” (yellow), and “crit-
ical blood pressure” (red). This visualization technique allows Midgaard
to show a multitude of variables in juxtaposition and aligned to a hori-
zontal time axis. Users can resize the visualization of each variable and
thus change the level of detail by dragging its border up or down. A
controlled user study [27], which compared this technique to the visual
representations in KNAVE II [128], showed that task performance was
similar or better with Midgaard’s technique and in particularly faster
for more complex tasks.

Likewise, Midgaard’s visualization technique adapts the level of
detail along the time axis. If a user zooms in, individual data points
will be drawn. Optionally, additional details of the data points such
as measurement deviation, trustability, or valid time will be shown.
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When users zoom out, Midgaard progressively switches to more
compact graphical elements, for example, from point plots to lines
to a high-frequency data display based on Tukey box-plots [144] or
Information Mural [73].

In addition to numerical data, Midgaard visualizes medical treat-
ment plans as colored bars, which can contain further bars representing
subplans.

Tonavigate and zoomover time, users interactwith two timeaxes that
are located below the visualization area. The bottom time axis shows an
overview of the full time span covered in the record. Users can select a
visible time range for the middle time axis and the visualization area. On
the middle time axis users can add distortion borders to the visible time
range, making it possible to view some time periods in more detail than
others, a visualization technique known as focus and context [48]. Users
can use this control either by dragging borders on both time axes and the
visualization area or byusing apredefined layout.When themouse hovers
over a data point, its exact value appears in a tooltip.

In a similar fashion, VisuExplore [111, 123] shows patient data in
multiple views that are aligned to a horizontal time axis (Figure 4.7).
Yet, it is more flexible and allows for each view the selection of a
visualization technique to display one or more variables. Well-known,
deliberately simple visualization techniques are available by default in
order to make the system easy to learn and intuitive to use: line plots
and bar charts for numerical data, event charts and charts based on
LifeLines [110] for categorical data. Moreover, VisuExplore is extensi-
ble and advanced visualization techniques based on the semantic zoom
technique of Midgaard [32] and horizon graphs [120, 126] have already
been added. VisuExplore provides rich interaction for visual exploration
and flexible adaption. Users can freely resize and reorder views, pan and
zoom the time axis, and show details in a tooltip or an optional data
table view. In addition, a measure tool allows them to determine the
time interval between any two points on the screen.

The Time Line Browser [52] is an early visualization prototype for
heterogeneous diabetes data. KNAVE [127] and KNAVE II [91, 128]
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Fig. 4.7 VisuExplore [111, 123] providing overview of ten diabetes examinations with
line plots, bar charts, event chart, and representation techniques based on LifeLines and
Midgaard. A time span is measured starting from the peak HbA1c value (dashed orange
line). Image by the authors, used under CC-BY-ND license.

use clinical knowledge bases and temporal data abstraction to visualize
raw and summary data from an EHR (Figure 4.8). They are predeces-
sor systems of the VISITORS system [80, 81], which is described in
more detail below. CareVis [24] displays numerical patient data in
juxtaposition with a graphical representation of the applied treatment
plan. Homecare [43] combines several charts along a horizontal time
axis on a low-resolution mobile device. Further systems in this group
are ICUFiles [125], TimeLine [37], and an interactive real-time visu-
alization environment for patients with heart failure [117].

4.1.4 Snapshots of Patient State

VIE-VISU [69] uses glyphs to represent a patient’s status in neonatal
intensive care. A series of glyphs shows changes over time (Figure 4.9).
All glyphs use the same measures and scale, so they can be compared
(cp. small multiples [142]). A glyph is a composite graphical object that
has different geometric and visual attributes, which are used to encode
multivariate data [78, 151]. VIE-VISU encodes categorical variables
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Fig. 4.8 KNAVE II [128] providing overview of an oncology patient’s data: (a) on the left,
a browser of the domain ontology allows the user to add abstract concepts and raw data
variables for visualization. (b) In addition there is a string search for concepts. (c) Abstract
concepts have an ordinal scale and duration. They are represented with line segments similar
to LifeLines. (d) Line plots display numerical raw data.
Image courtesy of Yuval Shahar and Denis Klimov, markup added by the authors.

with geometrical shapes and their color, and encodes numerical vari-
ables by the size of glyph elements. In total 15 variables can be encoded
in each glyph, covering important circulatory, respiratory, and fluid
balance variables (Figure 4.10). Variables are grouped by physiological
systems in the glyph, for example circulatory parameters are mapped
to a triangle on top of the glyph. The width of the triangle’s base
shows the heart rate, the triangle’s height represents the blood pres-
sure, and the color displays catecholamine on a five level ordinal scale.
By default VIE-VISU shows 24 glyphs, one per hour. The supported
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Fig. 4.9 VIE-VISU [69]: glyph-based, small multiple visualization for intensive care. A single
glyph is a composite object that represents 15 different variables. Different visual variables
like color or size are used and combined to form a meaningful whole.
Image courtesy of Werner Horn.

Fig. 4.10 Legend to the visual encoding of medical variables in VIE-VISU [69].
Image courtesy of Werner Horn, adapted by the authors.
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Fig. 4.11 MTSA visualization [102] features two star plots with six variables in each plot.
Each polygon connects the values for a 30-minute interval, and can be explored using
animation and the vertical slider on the right. The star plot is scaled to the normal range of
the variables, whereupon upper and lower bounds are displayed as dotted red circles. The
axes are color-coded by the related organ systems.
Image courtesy of Patricia Ordóñez Rozo.

interactions are temporal zooming, panning, and displaying boxes with
variable values in place of the glyphs.

The MTSA visualization (Figure 4.11) by Ordóñez et al. [100, 101,
102] shows 12 numerical variables of one patient in two star plots [64].
Variable values are aggregated over a time interval (e.g., 30 minutes)
and each interval is displayed as one polygon per star plot. It encodes
development over time either by animation or by overplotting the star
plot with increasing color intensity. The MTSA visualization has two
views with different scales of star plot axes: the personalized view nor-
malizes the values of each axis by their arithmetic mean and standard
deviation, whereas the customized view scales the values by the nor-
mal range of the variables, which the user can customize in the system.
Complementing each other, the personalized view emphasizes trends
and parameters in a patient, which the user can judge in the customized
view for their clinical significance.
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In general, visual representations of patient state can use animation
to visualize the temporal information of the EHR. For example, Work-
man et al. [156] use a glyph composed of more than 150 icons, which are
positioned in relative anatomical location. Sundvall et al. [137] apply a
zoomable map software, Google Earth, to position medical notes inside
an illustration of the human body. However, there are trade-offs that
need to be considered, when animation is used to encode developments
over time. For instance, the comparison between two nonadjacent snap-
shots is constrained by limited capacity of short-term memory. More
animation examples are described below with Gravi++ and TimeRider
and further discussion can be found elsewhere [122, 124].

4.2 Visualization of Collections of Patient Records

We now focus on systems that visualize data from multiple patient
records at the same time. These systems support quality control and
clinical research tasks. On the one hand, they tend to present fewer
details about the patient than the systems described above, but on
the other hand, they need to provide query methods to find relevant
patients. They also need features to aggregate patients to groups, to
detect clusters, and to recognize outliers.

4.2.1 Event Sequences

Lifelines2 [147, 148] and Similan [155] are interactive visualization sys-
tems designed to search and explore event sequences in multiple records
of temporal categorical data. In both Lifelines2 and Similan, each
patient record is stacked vertically on a shared horizontal time line,
and has its own list of categorical variables. The variable categories are
color-coded, and all instances of the same variable category are on the
same horizontal line, represented by icons on a zoomable time line.

The distinguishing interaction technique of Lifelines2 is alignment
(Figure 4.12(a)). Users can align all records by a specific event type
(for example, heart attacks). Every record’s first heart attack event will
then be aligned vertically. Records that do not have heart attacks are
filtered out. When the records are aligned, the time line switches from
an absolute calendar scale—showing the actual date of the events—to
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Fig. 4.12 Lifelines2 [148]: visualization of records temporal categorical data. (a) Shows each
individual record, and (b) Shows the aggregation of events over time. (c) Contains controls
to the basic operators: align, rank, and filter. (d) Shows controls for event distribution and
grouping. Image by the authors.

a relative scale showing the amount of time before or after the date of
the event used for alignment (i.e., one, two, or three days before/after).
This allows users to spot trends in the timing of other events relative
to the alignment event, in a group of patients. Users can also align
by the nth occurrence of the event (e.g., the second heart attack). Or
they can align by all occurrences. In that case, the display of a record
is duplicated for each occurrence of the event and each duplicate is
aligned by one occurrence.

Lifelines2 also includes other more traditional operators such as
rank and filter (Figure 4.12(c)). Records can be ranked by the number
of occurrences of a particular event (e.g., the number of heart attacks or
the number of abnormally high creatinine tests). Users can interactively
filter the records to find those that exhibit certain temporal patterns
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of event. They can search for particular sequences of events—including
both the presence and the absence of events (e.g., A followed by B, but
with no C in between), which is useful in many medical scenarios.

Temporal summaries (Figure 4.12(b)) are histograms showing the
temporal distribution of selected event types. Temporal constraints can
then be interactively specified on temporal summaries. For example,
users can align by the first heart attack, and then draw a box on the
temporal summary of the high blood pressure events to select all the
records that include high blood pressure events in the six months pre-
vious to the first heart attack. Finally, after each filter operation, users
can save the results as a new group of records. Subsequent filtering
can be applied to iteratively explore different subgroups of patients.
In comparison mode, users can compare multiple groups by their tem-
poral summaries. Based on eight medical case studies, Wang et al.
developed a generalized process model for Visual Analytics of multiple
EHRs [149].

Similan [155] (Figure 4.13) uses the same layout of the records
as Lifelines2 and also has alignment capabilities. But it uses a search
strategy based on its innovative similarity measure (M&M measure),
and ranks records by their similarity to either a selected reference record
or to a sequence specified by dragging icons on a timeline. The M&M
measure takes addition, removal, transposition of events, and temporal
differences of matching into account when computing the similarity
of two temporal sequences, and users can adjust the weight of each
distance measure component. In a traditional search, records that do
not fit the search criteria are removed, so users do not see those that
almost fit the specified pattern. In Similan, users can see such results,
and can better refine their searches. Combined with alignment, search
based on relative time can be performed. Other interactions allow users
to specify a time range of interest (absolute or relative).

Both Lifelines2 and Similan concentrate on categorical data, but
numerical data can also be visualized if it is first preprocessed (e.g.,
high/normal/low blood pressure). They do not make any distinction
on whether the data is medical test, diagnosis, or treatment. Further
those two prototypes focus on point events, as opposed to intervals.
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Fig. 4.13 Similan [155]: Similarity search by target (left side top panel). All records are
ranked by the similarity match (left side middle panel). Matching detail is shown below.
Control panel is to the right. Image by the authors.

They would require linking to another visualization to show the details
of individual records. Although the number of variables is not bounded,
the color-coding scheme and limited short-term memory favor using a
small number of variables. Lifelines2 and Similan have been used in
case studies with up to 3,958 patients [148]. A user study comparing
simplified version of these two systems showed the relative strengths
and weaknesses of exact and similarity search [154].

LifeFlow [153], Outflow [152], and VisCareTrails [88] provide
overview visualizations of event sequences extracted from numerous
patient records, while representing time spans between events. LifeFlow
has been demonstrated with 7,041 patient records in emergency care
and 203,214 traffic incidents, OutFlow with 6,328 patient records in
a cardiology study, and VisCareTrails with 631 patient records in a
cancer study. Furthermore, LifeFlow in combination with the CNTRO
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Fig. 4.14 LifeFlow [153]: Overview visualization of event sequences. Here, the center panel
shows 100 patients in overview and the right panel displays the first 15 patients in detail.
On the left there are controls for alignment, filtering, and selecting event types. In the figure
all EHRs are aligned by “arrival”, the blue event type. Image by the authors.

system exemplifies how data extracted from free text in the EHR can
be visually explored [139]. LifeFlow can be combined with Lifelines2 to
provide views for both overview and detail tasks (Figure 4.14). LifeFlow
and VisCareTrails can be distinguished by the encoding of event types.
LifeFlow uses color for a compact layout, while VisCareTrails prints
text labels and can thus support more event types. OutFlow uses a
graph-based visual presentation and shows the eventual outcome along
the event sequences (Figure 4.15).

4.2.2 Expressive Temporal Queries

Fails et al. introduce PatternFinder as a search interface for mul-
tiple patient records (Figure 4.16) [53]. The novelty of PatternFinder
relies on its query specification for temporally ordered events with value
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Fig. 4.15 Outflow [152]: Aggregated view of event sequences in a cohort of 41 patients.
Colored rectangles represent subgroups of patients split by what event occurred next, or
before for layers left of layer 6, which is used for the alignment. The height of each rectangle
stands for the number of patients, the width encodes the average time between these two
events, and color represents the final outcome averaged on the patient subgroup.
Image by the authors.

and time span constraints. Searching for existence of events, tempo-
rally ordered events (e.g., heart attack followed by stroke), temporally
ordered values (e.g., 15 or below WBC followed by 16 or higher), and
temporal value trends (e.g., monotonically increasing) are all possible.
Users can define how far apart each event should be by setting a range of
allowable time spans between events. All queries are specified through
form-based interfaces.

The underlying data model consists of a higher-level set of
categorical events that contain values, which can be numerical or
categorical, for example a “White Blood Cell (WBC) count” with a
value of 10. The higher-level set of categorical events is organized in
a hierarchical vocabulary, for example, “medical tests” may contain
the child “blood test”, which in turn contains “blood sugar test” or
“WBC test”. Users can choose to use any level in the hierarchy to
perform relevant queries.

Finally, PatternFinder introduces a “ball-and-chain” visualization
for the search result set. When matches are found, each result record
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Fig. 4.16 PatternFinder [53]: Top half of the screen shot shows a form-based interface for
querying patient records. The results of a query are shown as a ball-and-chain visualization
at the bottom. Image by the authors.

contains events relevant to the query, which are plotted on a shared time
line. Matched events are shown as circles, color-coded the same way
they are in the specification interface. Events that match the specified
event pattern are linked using horizontal lines. Users can zoom into the
time line and highlight specific instances, but otherwise cannot interact
with the visualization.

A follow-up design of PatternFinder (Figure 4.17) [109] was
prototyped in Amalga, a commercial EHR system from Microsoft. It
preserves the ability to specify rich temporal queries with time spans
between query elements. Users can also query for relative change of
numerical values, for example, 50% drop of platelet count in two days.
The interface is tuned for specifying the before and after events for
a sentinel event, and is simplified to handle patterns of up to three
events (sentinel or reference event, baseline, and follow-on). The result
visualization shows all matching patterns automatically aligned by the
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Fig. 4.17 PatternFinder in Amalga [109]: The form-based query interface is enhanced by
allowing the user to specify an alignment at the time querying. The results are shown with
color-encoding and alignment on the specified “sentinel event” (purple markings).
Image by the authors.

sentinel event. Each event is represented by a color-coded tick mark
on the time line.

Both PatternFinder versions have more expressiveness in specifying
temporal constraints than the sequence search in Lifelines2. However,
as the original PatternFinder authors found out, the large number of
choices in a form to allow the complex constraints can overwhelm casual
users. In the original PatternFinder, the matching events are shown as
ball-and-chain, but the other nonmatching events are also shown as
gray boxes in the result, giving users context. This context is not pre-
served in PatternFinder in Amalga: only events that match are shown.
While this simplifies the display, it also reduces user’s ability to review
the results.

The VISITORS system by Klimov et al. combines a clinical knowl-
edge base with visualization to enable users to explore multiple clinical
records (Figure 4.18) [80, 81]. The system relies on domain ontolo-
gies to define clinically meaningful higher abstractions given raw,
temporal data. This approach builds on the authors’ previous systems
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Fig. 4.18 VISITORS interface [81]: (A) shows groups (cohorts) of patients. (B) shows a list
of time intervals that are of interest. (C) shows raw data and temporal abstraction of the
current groups of patients over the current time interval. Panel 1 shows the white blood cell
raw counts for 58 patients, while panels 2 and 3 show the states of platelet and hemoglobin
in higher abstraction, respectively. Abstractions are encoded in medical ontologies listed
in (D). Image courtesy of Denis Klimov.

KNAVE [127], KNAVE II [91, 128]. A similar approach has been pro-
posed in the PROTEMPA system [112]. However, VISITORS is the
first system that focuses on groups of patients.

The idea is that while low-level readings of a medical test are
important, physicians or clinicians often have to make decisions based
on higher abstractions. Given the appropriate domain ontology, these
systems take raw numerical data such as white blood cell (WBC)
counts over time to automatically derive temporal abstractions such
as durations in which patients experienced high, normal, low WBC
levels. These temporal abstractions can then be used (sometimes
in conjunction with raw data) to define higher abstractions such as
Myelotoxicity levels. The VISITORS system builds on top of this and
offers expressive ways for users to query for patients.
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To show how the derivations are made, the users can see the numer-
ical and categorical raw data as well as all the abstractions that have
been derived. These systems typically show raw numerical data as
line charts, and categorical data as tick marks (or a bar if it has a
duration), both along a horizontal zoomable time line. In VISITORS,
these abstractions are shown as aggregations of the values of a group
of patients (58 in the example described in the paper).

Differing from other temporal abstraction systems, VISITORS
offers an expressive query language to allow users to search for both
raw data and abstracted data in groups of patients. Users can specify
to search for patients that fulfill one or more of the following: (1) non-
temporal constraints, for example, gender and race; and (2) time and
value constraints, for example, hemoglobin value less than 10 g/dl and
“very-low” platelet value within 3 days after a bone marrow transplant
(Figure 4.19). In the time and value constraint specification, a user
can specify a range instead of a value. A user can specify combinations
of multiple variables, including both raw data and derived temporal
abstractions. Finally, the expression can include relative time specifi-
cations like “within 3 days after a bone marrow transplant”. VISITORS
also handles proportion constraints with respect to time (find patients
whose WBC levels are at least “high” for more than 70% of the tests in
January), and statistical constraints relative to a population (patients
whose mean blood glucose is 5 g/dl more than the populations mean).
These expressions can also be used to find time intervals instead of
patients. The language is simplified by excluding the Boolean opera-
tor NOT and nested Boolean expressions. Queries are specified using
form-based interfaces so users do not need to learn the syntax of the
proposed language. The authors report good accuracy and good usabil-
ity with the interface and its underlying languages in a usability study
among ten persons.

EventFlow [70, 95] builds on the overview and search capabilities of
LifeLines2 and Similan while adding interval queries and expanding the
specification of the absence of events. Moving to interval data is non-
trivial as it requires changes in all aspects of the system but opens the
door to new significant clinical research questions such as characterizing
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Fig. 4.19 VISITORS’s interface for selecting patients [80]: Users can specify temporal and
value constraints for two variables through a graphical widget in (2) and (3). Alternatively
they can fill out form components (A)–(C). (4) allows users to specify the pairwise temporal
relationship between matches for the two variables. (5) shows the generated query and (1)
shows the medical ontology. Image courtesy of Denis Klimov.

the nature and continuity of medication use. Research conducted with
this prototype revealed that the main difficulty for users with questions
involving temporal event sequences is not necessarily understanding the
underlying complexity, but articulating them into meaningful queries.
To address this problem a basic menu-based search interface provides
quick access to the most fundamental temporal relationships and serves
as an introduction to the advanced graphical-based search interface. In
the basic search the subsequence module gives access to the “before”
and “after” relationships (e.g., “Drug A” followed by “No Stroke” fol-
lowed by “Drug B”), while the Overlap module gives access to “during”
relationships (e.g., “No stroke” while taking “Drug A” and “Drug B”).
The advanced search interface allows users to specify these relation-
ships in tandem, as well as access more complex temporal features
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such as absolute time constraints and the full range of absence sce-
narios. The advanced search interface revolves around a visual query
language that is used to draw complex sequence of event relationships,
including intervals and absence of events (Figure 4.20).

Other systems allow expressive temporal queries over EHR databases
through visual metaphors: VizPattern [74] uses a comic strip
metaphor, for example, two icons in the same panel denote simultane-
ity. Combi and coauthors present a Paint Strips metaphor [44, 50]
that includes different metaphors for temporal granularities.

4.2.3 Patient Records on a Common Time Axis

Brodbeck et al. [36] introduced Caregiver to support therapeutic
decision-making (Figure 4.21). Caregiver has three main visualizations,
all on the same horizontal time line. On the top panel, it visualizes dif-
ferent cohorts of patients (grouped by, for example, different interven-
tion methods). Each cohort is represented by a solid rectangle on the
timeline (x-axis), where the length indicates the duration of data for
that group of patients and the height indicates how many patients are
in that cohort. On the bottom panel, Caregiver shows an overview of
all patients. Selecting a cohort highlights patients in that cohort, and
vice versa. Each individual patient occupies a horizontal strip of space,
allowing the display of a single chosen variable in a bar chart. Finally,
users can select a particular patient to expand and show more variables
in line plots or larger bar charts. In this respect, ordinal and numeri-
cal variables are most appropriate for Caregiver. Different intervention
methods can be implicitly represented in the patient cohort group, but
interaction with them is limited to selection and sorting. Furthermore,
it provides a focus and context technique for the time axis, so that
a time period in focus is zoomed, while the remaining time periods
are shown compressed. The system has been demonstrated to work
with 100 patients, over 60,000 observations, and with more than ten
variables.

Caregiver is primarily a search interface for queries by patient status
but not for developments over time. Users perform searches in one of
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Fig. 4.20 EventFlow [95]: Users can interactively compose complex temporal queries with
intervals. Here a user was looking for patients who received a weaker asthma medication
(“SABA”, in blue) within 3 months of a stronger asthma medication (“LABA ICS”, in
red). They also wanted to ensure that this sequence was neither preceded nor followed by
the strong medication. Search results appear highlighted directly below the visual query,
while nonmatching records are still visible in the bottom to help check that the query was
executed as expected. Image by the authors.



252 Results

Fig. 4.21 Caregiver [36] displays both numerical and categorical data on a horizontal time-
line with a variety of search and highlight options. Temporal values that satisfy a search
criterion (here Indicator Fev1P < 60) are highlighted with a red background. The time
period from February 20 to March 18 is in the zoomed focus area.
Image courtesy of Dominique Brodbeck.

two ways. First, they can use control widgets to dynamically query
for patients who match certain values in the variables. Those who do
not have these values are grayed out or excluded from the display
altogether. Second, an “indicator” can be defined to highlight tem-
poral regions that exhibit the defined characteristics (the red regions
in Figure 4.21). An indicator can be a combination of values of any
number of variables. Based on these search results, users can create
new cohorts. These search options allow users to find time periods
where values of variables conjunctively occur, but not allow search of
temporal patterns such as high coughing symptoms followed by high
temperatures.

Chittaro et al. [45] presented Interactive Parallel Bar Charts
(IPBC), a 3D visualization of numerical data from multiple hemodial-
ysis sessions (Figure 4.22). Each numerical time series is shown as a 3D
bar chart. One of the horizontal axes represents time, and bar height
represents the values of the time series. Multiple bar charts are lined up
on the third axis, allowing users a view of all time series at once. The
main usage of IPBC is to visualize time series of a single variable (e.g.,
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Fig. 4.22 Interactive Parallel Bar Charts (IPBC) [45]: 3D bar chart for evaluation of dialysis
sessions. Time is running from the bottom center to the upper right and individual dialysis
sessions are aligned one after another to the upper left. Colors are used to signify different
qualitative value regions as specified in the round user interface in the upper left corner.
Image courtesy of Carlo Combi, adapted by the authors.

systolic blood pressure) across multiple sessions of the same patient,
where the beginning of each time series represents the beginning of
each hemodialysis session. However, IPBC can just as well be applied
to multiple patients instead of multiple sessions. Even though only
one variable is shown over time across all sessions at a time in IPBC,
multiple IPBC displays can be coordinated to allow users to examine
the relationships among different variables. Medical test values such
as blood pressure and blood flow are used to demonstrate the system.
In the paper, 19,000 points of blood pressure data over 79 individual
hemodialysis sessions for a single patient are used as an example.

The bars in the IPBC can be color-coded by four value regions: high,
normal, low, and out-of-range. These value regions are dynamically
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controlled by users and allow values of interest to be visually distin-
guishable. IPBC allows users to define a linear threshold function with
respect to time and highlight values above the threshold. Time series
data can be aggregated to show mean values to reduce visual noise. For
example, values can be averaged in 10-minute bins and shown as an
average. IPBC offers traditional 3D controls to zoom, rotate left/right,
and rotate up/down. To overcome problems of 3D occlusion, users can
flatten the entire (or part of the) display, showing the values of each
bar as a color-coded cell in a matrix. IPBC allows additional space to
be inserted between time series to sacrifice information density in order
to reduce occlusion.

Users can use query-by-example to find similar patterns of values
across time series. By selecting a region of interest on a time series,
IPBC can highlight regions of all time series that are similar to the
target region within some specified tolerance. If the task requires under-
standing relationships among multiple variables, users can create mul-
tiple IPBC views, each focusing on a single variable, and explore them
using coordinated highlighting. This approach uses a lot of screen space,
so more than three variables at a time may be difficult. Alternatively,
the authors offer a pairing of IPBC to a parallel coordinates plot [71],
which visualizes multiple variables at the same time. Using the parallel
coordinates plot, users can comfortably study relationships among six
or more variables at once while also focusing on the important one in
IPBC. In the parallel coordinates plot, however, the time dimension is
only visible as an animation.

CareCruiser [62] supports the analysis of the evolution of patients’
condition in response to treatments and emphasizes the effects of treat-
ments on the patients. The center part of its user interface (Figure 4.23)
consists of a set of panels containing plots of numerical variables. Treat-
ment plans are represented by colored rectangles placed below the plots,
and diamond shape icons indicate the timing of individual actions taken
during the treatment. A distinction is made between planned actions
and unplanned actions, which are displayed below the others. To com-
pare the effects of treatment, the plots are aligned by the start of a
treatment plan or by a specific action, so that different patients can
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Fig. 4.23 CareCruiser [62]: Visualization of medical actions along with their effect on
patients’ condition. Here, the point plots show oxygen saturation of three patients and
the diamonds below each plot represent planned and unplanned actions. The pink back-
ground emphasizes distance from the intended value range. Patient panels are aligned by
the beginning of the selected treatment plan, which is shown by a vertical black line.
Image courtesy of Theresia Gschwandtner, used under CC-BY-ND license.

be compared on a relative timescale. Alternatively, users can align dif-
ferent instances of the same clinical action in the data of one patient
repeated in several panels. Furthermore, each panel may contain point
plots for more than one variable.

The background color of the panel emphasizes the effects of clinical
actions and the progress of treatment by three different abstractions:
distance to goal value (cp. Figure 4.23), slope (rising/falling of the
value), and progress from initial value to the intended value.

VisPap [135] is a multiple coordinated views system for hetero-
geneous data in cohort studies, for example in neuropsychiatry. Its
datasets includes both features extracted from medical images and lab-
oratory data. It visualizes the evolution of one variable over time in a
line plot, which allows alignment by calendar date, patient age, and
first occurrence of the variable. Scatter plots and parallel coordinate
plots allow users to explore the mutual variations of different variables.
It also provides renderers for volumetric images, so that users can drill
down on distinct features found in the plots.
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InfoZoom [133] was used to visualize large tables of medical vari-
ables from a patient cohort. Aggregated views show the distribution
of values in large number of patients on a single screen. Progressive
filtering and sorting allow rapid exploration of those distributions and
access to details.

4.2.4 Snapshots of Multivariate Patterns in Patient Cohorts

Gravi++ and TimeRider represent patients as marks that are spatially
arranged based on their variable values. Thus, patterns such as clusters
and outliers become visible in the patient population. Animation and
traces represent the time dimension.

Gravi++ [67] uses interactive visual clustering to allow exploratory
analysis of multiple categorical variables across multiple patients over
time (Figure 4.24). Each variable is mapped to an icon, and each patient
is also mapped to an icon (of a different type). The placement of the
patient icons is dependent on a spring-based layout [33]. That is, the
higher the value a variable is for a patient, the closer that patient’s icon
is to the variable icon. The idea is that patients who share similar values
in the variables will then be placed in similar locations on screen, allow-
ing users to visually detect clusters with ease. Since it is hard to read
variable values from the spring-based layout, Gravi++ displays each
patient’s parameter values as circles around variable icons—a feature
called attraction field.

Because the value space determines the placement of the patients,
this system is ideally suited for ordinal variables. The visualization of
these values is the most important aspect of Gravi++, but patient
attributes can be also encoded by patient icons, for example, size can
encode age or body mass index, and color can encode gender or thera-
peutic outcome. There is no known hard limit on the number of vari-
ables the system can handle, but too many variables can make it hard
to find a meaningful configuration. The paper demonstrates Gravi++’s
effectiveness with four medical variables and one patient attribute for
nine patients over six time steps.

Users interact with the system by changing the encoding of the
variable icons. They can select which variables to show or drag their
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Fig. 4.24 Gravi++ [67]: spring-based visualization for evaluation of psychotherapeutic mea-
sures. The six square icons on the perimeter represent variables. The placement of the
circular patient icons in the middle is based on each patient’s values in the six variables.
Furthermore, green and red circles around the variable icons show variable values of the
three patients. On the left, users can choose patients and variables from a list.
Image by the authors.

icons into different locations to examine their influence on the patient
population. Users can also modify the spring force of the variable icons.
Users can superimpose a star plot [64] on top of the Gravi++ display
to get a one-glance view of all patients’ values at the same time point.
When a patient is selected, the circles around variable icons showing
the patient’s values are highlighted. Finally, users can remove or add
patients to the visualization.

Gravi++ uses animation or traces to represent time. Users can view
the patient icon positions for a single time point, play or step through
all time points. Alternatively, users can activate traces, which show the
patient icons of all time points connected to a polygonal line. Following
the position of the patient variable icons through the animation allows



258 Results

users to explore, for example, factors that affect the forming of clus-
ters. The authors demonstrate Gravi++’s success in allowing domain
experts to find predictors of success in psychotherapy for anorexia ner-
vosa patients.

TimeRider [122] employs an extended animated scatter plot to
visualize trends in patient cohorts (Figure 4.25). In contrast to
Gravi++, it places patient marks along two axes that can encode
numerical or categorical variables. Up to three additional variables
can be mapped to color, shape, and size of marks. On the one
hand, this limits TimeRider to showing bivariate patterns compared

Fig. 4.25 TimeRider [122]: Animated scatter plot with optional traces. Patient details are
shown in a semitransparent overlay when hovering over a data point. Color is used to show
smoking (green) and nonsmoking (purple).
Image by the authors, used under CC-BY-ND license.
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to multivariate patterns in Gravi++, but on the other hand, the posi-
tions in TimeRider are immediately meaningful.

TimeRider represents time by either animation or traces. To handle
irregular sampling in animation, transparency is used to encode data
wear. Synchronization modes offer different views on the patient cohort:
calendar date, time since start of therapy, time before end of therapy,
and patient age. The areas of the plot background can be filled with
color to emphasize variable ranges that are critical for patients. Fur-
thermore, the system supports interactions to change variable mapping,
pan and zoom, select or filter patients, and show a tooltip.

The Dynamic Icons (DICON) system [61] clusters EHRs that are
similar to a target record. Then it visualizes these clusters as compos-
ite icons that have parts representing the features of all EHRs in the
cluster. It provides different spatial arrangements of the icons (e.g., in
a scatter plot) and manual refinement of the clusters.



5
Discussion

The systems in our survey demonstrate a broad spectrum of visualiza-
tion and interaction techniques to deal with large amount of complex
EHR data. First, we analyze the strengths and weaknesses of the 14
systems selected for detailed review, using the criteria introduced in
the Methods section. Next, the results of evaluation studies performed
in a medical context are summarized. Finally, limitations and future
directions are discussed.

5.1 Analysis of Review Criteria

Tables provide an overview of the characteristics of the systems
(Table 5.1 for data types, number of variables on the screen, and EHRs
of multiple patients; Table 5.2 for medical information types and sce-
narios; Table 5.3 for support of user intents).

5.1.1 Visualization of Categorical Data

The most common way to visualize categorical data is by placing
icons (for point events), and line segments (for events with duration)
on a horizontal time line (LifeLines, Midgaard, Lifelines2, Similan,
PatternFinder, and Caregiver, VISITORS). Most systems separate

260
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Table 5.1. Summary of review criteria for 14 systems.
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MIVA ◦ • ∼ 5 •
WBIVS • • 10 •
Midgaard • • ∼ 15 •
VisuExplore • • ∼ 10 •
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Lifelines2 • ∼ 10 •
Similan • ∼ 10 •
PatternFinder • ◦ 3 •
VISITORS • • ∼ 5 • •
Caregiver • • 1–6 •
IPBC ◦ • ∼ 3 • •
Gravi++ • ◦ ∼ 6 •
TimeRider ◦ • 2–5 •

•: Full support, ◦: partial support, “ ”: no support.
The number of variables per screen is an estimate based on
examples in the original publication.

different categories of events on separate bands. They often use color
to encode different types of events, and allow users to customize icons
and colors. Some provide shape and size encoding schemes for icons. In
LifeLines, semantic zooming is used to merge/separate closely related
categories (e.g., drug A and drug B may be merged into a single drug
class when users zoom out).

Differing from all other systems, Gravi++ uses positions of patients
to indicate the values of categorical variables, and animation to indicate
time. This way, Gravi++ makes the clustering of patients by variable
values easier to see.

5.1.2 Visualization of Numerical Data

For systems that handle numerical data, using line plots is the most
common approach (e.g., Midgaard, WBIVS, Caregiver, VISITORS).
Point plots and bar charts are also used, sometimes in conjunction
with line plots (e.g., VisuExplore). TimeRider encodes the two axes
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of the scatter plot to two numerical variables. In addition, the size of
graphical elements can be mapped to a numerical variable (e.g., VIE-
VISU, Gravi++).

5.1.3 Combined Visualization of Categorical and
Numerical Data

Most systems that visualize both categorical and numerical data make
use of multiple representation techniques and align them along a shared
time axis. For example, WBIVS primarily deals with numerical data
using line charts, but uses a matrix view to show categorical variables.
CareCruiser renders numerical test results in a point plot and medical
actions as diamond symbols.

VIE-VISU is special in several ways. First, it uses small multiples
to indicate time progression, and does not require a time axis. Instead,
it uses sizes of elements of a glyph to indicate a number of numerical
medical values at once. It also uses color-encoding to show the values of
ordinal variables. TimeRider maps two numerical variables to the posi-
tion of the patient marks and up to two categorical variables to color
and shape of the marks, while animation is used to encode development
across time.

Some systems build categorical abstractions of raw numerical data.
VISITORS shows numerical data as a combination of point plots and
line charts while categorical abstractions are shown as size and color-
coded rectangles using the same time line. Midgaard provides semantic
zooming so that as users zoom in, color-coded rectangles change to a
bar chart and then into a line chart to show more detail. Similarly,
IPBC can collapse its 3D bars into a matrix plot to get an overview.
Both the bars and the matrix cells are color-coded to represent the
categories “high”, “normal”, and “low”.

PatternFinder, VISITORS, Caregiver, and TimeRider can be used
to formulate queries that combine categorical and numerical variables.

5.1.4 Medical Information Types

In general, the systems we found do not use distinct visualization
and interaction techniques for specific types of medical information



5.1 Analysis of Review Criteria 263

(e.g., diagnoses, treatments, or drugs). On the other hand, medical test
results tend to be numerical while diagnoses and treatments tend to be
categorical, and whether the data is numerical or categorical has some
impact on the visualization. Most of the systems deal with medical
tests (e.g., blood pressure, white blood cell count), but some systems
require categorizing the results as normal/abnormal before visualizing
the data. While it is essential to help physicians make accurate clini-
cal decisions by providing them with detail access to test results (such
as in MIVA, VisuExplore, or VIE-VISU), other systems designed for
hospital quality assurance or clinical research may instead need access
to higher-level abstractions (e.g., in VISITORS), or require only cat-
egorical data such as low, normal, and high as provided in Lifelines2.
Table 5.2 highlights the specific ways systems are tailored to deal with
these different medical information types.

LifeLines groups related items in facets. For example, all medical
tests belong to one facet, and all medical treatments belong to another
facet. Because facets are collapsible, users can expand only the facets
that are important to them and avoid using screen space for irrele-
vant facets. Likewise, the VIE-VISU glyph is composed of three parts
representing three physiological systems. On the other hand, some sys-
tems use a categorization schema to control how data are accessed and
show only a subset of the data. PatternFinder organizes the data in a
schema. Users issue queries using such schemas, in which medical tests,
diagnoses, and treatments are separated.

5.1.5 Support for Multiple Variables

The most common approach to deal with multiple medical variables
is to place them along the same horizontal time axis (e.g., LifeLines,
MIVA, Midgaard, VisuExplore, Lifelines2, Similan, Caregiver, VISI-
TORS). A shared time axis facilitates seeing temporal relationships
between variables. Typically, visual representations of different medical
variables are placed in separate panels, in order to reduce clutter and
to accommodate for distinct scales and value ranges (cp. [111]). A dif-
ferent approach puts each variable on its own time axis (IPBC), and
shows them side by side. While this makes the temporal comparison of
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Table 5.2. Medical information types and medical scenarios that have been demonstrated
on 14 systems.
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Lifelines2 • • • Test, diagnoses, and treatment events. Numerical
test events needs to be first converted to cate-
gories.

Similan • • • Test, diagnoses, and treatment events. Numerical
test events needs to be first converted to cate-
gories.

PatternFinder • • • Test and treatment events (e.g., creatinine and
contrast administration)

VISITORS • • • Mostly test and treatments data. Both numerical
and ordinal are possible. Diagnoses can be implic-
itly encoded by cohorts.

Caregiver • ◦ ◦ Pulmonary function, subjective symptoms, and
treatment groups

IPBC • • Tests and treatments recorded during dialysis ses-
sions

Gravi++ • ◦ ◦ Questions and indicators in cognitive behavior
therapy

TimeRider • ◦ ◦ Tests, concomitant diseases, and treatments in
cohorts of long-term diabetes patients

•: full support, ◦: partial support, “ ”: no support.

multiple variables more difficult, coordinated exploration via brushing
and linking (e.g., in IPBC) mitigates some of the difficulty. IPBC also
integrates parallel coordinates to deal with multiple variables. Care-
giver allocates most of the display space on one variable, but allows
multivariate queries.

Systems like VIE-VISU and Gravi++ show snapshots of the EHR
data instead of aligning it to a predominant time axis. VIE-VISU’s
glyphs encode a number of variables by size and color of the glyph
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elements. These elements in the glyphs represent an aggregation of
values over one-hour span, and the interaction of multiple medical
variables over time may be difficult to see. Gravi++ and TimeRider
use layout to cluster patients based on two or multiple medical vari-
ables. Animation and traces are used to show the history of the variable
values over time. While Gravi++ supports an indefinite number of vari-
ables, the clustering works best for patients who have similar values in
multiple variables.

5.1.6 Support for Multiple Patient Records

For systems that deal with collections of patient records, the most
common practice is put all records on parallel lines sharing the same
time axis (e.g., Lifelines2, Similan, PatternFinder, Caregiver, IPBC,
VISITORS). IPBC uses a 3D coordinate system instead of 2D. VISI-
TORS overlays all patients’ data points on the same coordinate space.
Lifelines2 additionally provides temporal summaries to show temporal
distributions.

Differing from single patient systems, these systems emphasize
querying, sorting, aggregating, and clustering of the patients. How-
ever, systems vary in the expressiveness of their query languages and
approaches to aggregation.

Some systems use form-based user interfaces to search and filter.
Caregiver uses both dynamic query and a threshold indicator to
perform filtering but without temporal constraints. VISITORS and
PatternFinder provide expressive but fairly complex user interfaces to
formulate queries. In Lifelines2 users can search using series of align,
rank, filter, or group operations or specify temporal constraints using
direct manipulation on aggregated views. It allows temporal sequence
search, including the absence of events. Finally, IPBC and Similan
use query-by-example to allow users to select patients with similar
patterns.

A second distinction is whether or not systems support operations
on subgroups of patients. Lifelines2 and Caregiver allow the creation of
new groups based on the results of filtering, and Lifelines2 allows the
groups to be compared with parallel temporal summaries. Gravi++
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and TimeRider can color-code patient marks by patient attributes, and
create visually distinctive patient groups, but provide no additional
ways to manipulate the groups.

A third distinction is whether the systems support aggregation and
clustering of groups of patients. Lifelines2 aggregates categorical events
over multiple patients in histograms. Similan sorts patients by similar-
ity to a target temporal pattern. TimeRider and Gravi++ position
patients, so the ones sharing similar values are clustered together. Life-
Flow, Outflow, and VisCareTrails aggregate patients with similar event
sequences.

5.1.7 Support for User Intents

While all applications are designed for interactive exploration, the foci
and depths in respect to user intents differ as presented in Table 5.3.

Looking at explorability (i.e., the Explore user intent) reveals system
differences since it plays a leading part in most of the systems, especially
in single patient systems. As all systems use temporal aspects of the
medical data as a frame of references, all but two systems support
navigation in time. Manual pan and zoom on the X-axis are typical
interaction techniques for this (e.g., LifeLines). Alternatively, Gravi++,
TimeRider, and MTSA use animation and provide play, step forward,
and step backward interaction techniques.

For multiple patient systems the filtering options (i.e., Filter
intent) to show or highlight something conditionally is of higher
importance, because these systems need to work with large EHR
databases. Caregiver demonstrates a typical dynamic query interface
for filtering by patient status. Lifelines2 can query EHRs by event
sequences and PatternFinder allows the formulation of more complex
queries with relative change over time and temporal constraints. In
contrast to these form-based query interfaces, IPBC supports the filter
intent visually, for example through query by example. LifeLines is
the only single patient system catering to the filter intent. Its search
function highlights all items with an implicit relationship with the
search term (e.g., “diabetes” would highlight all blood sugar tests and
insulin prescriptions).
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Abstract/Elaborate, that is, showing less or more details, is the third
intent to play a leading part in the reviewed systems. Almost all of them
provide a function to show details about items, typically in a tooltip.
Parameter abstraction and temporal binning are frequently employed
to fit larger data volumes in the display or make them more easily
comprehensible. For example, LifeLines merges events into summary
events, when needed. Midgaard showcases parameter abstraction by
using smooth semantic zooming at interactive speed.

The Select intent, for example, marking some items as interesting,
is only supported by some systems. A reason might be that selection is
often regarded as a way for users to perform additional manipulations
on the selected data (cp. [157]). In the absence of such operations, hav-
ing selection seems superfluous. Nevertheless, keeping track of items for
a short term or in groups can be helpful, as we can see with Lifeflines2,
VisuExplore, WBIVS, or Gravi++.

The support for the Reconfigure intent, that is, showing a different
arrangement, largely depends on the chosen visualization method. In
general, systems should consider providing interaction techniques that
allow end-users (or possibly system administrators) to adapt the visual
layout to their needs. With Gravi++, users can reposition variable icons
either freely or on a circle. Aligning patients by a selected event helps
comparing patient histories and is possible in most systems for multi-
ple EHR (e.g., Lifelines2, Similan, CareCruiser, TimeRider). Likewise,
sorting patients by events (e.g., Lifelines2, Similan) or parameter value
(e.g., Caregiver) can boost lookup tasks.

Given the wide range of possible visual mappings, it is surprising
that the reviewed systems do not more widely support the Encode
intent, that is, changing the way the data is represented. Notable
exceptions are VisuExplore, Gravi++, AnamneVis, Lifelines2, and
IPBC. VisuExplore provides different visual representation techniques
for numerical data (line plot, bar chart, semantic zoom chart, horizon
graph). Gravi++ can switch between three representation techniques
(icons, rings, and star plot). AnamneVis has multiple coordinated views
for temporal, anatomical, causal, and ontological aspects of the data.
Lifelines2 integrates a histogram display and IPBC includes a parallel
coordinates plot. Further, Midgaard’s semantic zoom smoothly morphs
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between different representation techniques. Even if the representa-
tion technique should remain stable, the users could vary some visual
attributes. For example, in Gravi++ users can map variables to the
color, size, and label of patient icons.

The Connect intent, that is, showing related items, is not widely
supported in the systems reviewed. The most common interaction
technique is brushing items in other representations or items for
other variables at same point in time or the same patient. LifeLines’
search function illustrates that EHR data contains many implicit
relationships (e.g., tests and medications can be linked to diagnoses).
Increases of white blood cell counts could be linked to an infection, or
concepts could be related through an ontology, but such relationships
were not conveyed in the visualizations we reviewed.

5.2 Empirical Evaluation in Medical Context

The evaluation of visualization methods and systems encompasses stud-
ies on their effectiveness, efficiency, and usability. These are important
for scientific research and practical application. Empirical evaluation
of visualization can be challenging [41], particularly for a complex pro-
cess like medical decision-making. There are multiple possible evalu-
ation methods, which cater to different research objectives and have
trade-offs in terms of precision, generalizability, and realism [41, 84].
Furthermore, it is often difficult to recruit medical professionals as test
users. Therefore, some studies were conducted with subjects that do not
have a medical background (e.g., Midgaard [27], Gravi++ [121]) or in
a different application domain (e.g., juvenile justice for LifeLines [87],
Ph.D. education for Similan [155]). Even though results on percep-
tual performance and usability can to some extent be transferred to
medicine, this summary focuses on studies in a medical domain with
medical experts as subjects.

Controlled experiments. Solving fixed tasks in a laboratory envi-
ronment allows the precise measurement of performance indicators like
speed and correctness and, thus, compare different systems. Tables 5.4
and 5.5 outline nine experiments with MIVA [54, 56], IGID [28],
sparklines [34], WBIVS [107], KNAVE II [91], and MTSA [101, 102].
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Table 5.4. Controlled experiments comparing EHR visualization systems using medical
experts as subjects.

compared systems task type subjects significant results

MIVA (earlier,
noninteractive
prototype) vs.
paper chart [56]

Explore intensive
care patient status
and development

16 medical residents MIVA faster in 2 of
8 tasks
MIVA more correct
answers in 1 of 8
tasks

MIVA vs. paper
chart [54]

Explore intensive
care patient status
and development

8 physicians,
3 nurses

No difference in
correctness or speed

IGID vs.
conventional
tabular patient
display [28]

Detect intensive
care patient change

32 intensive care
nurses

IGID detected more
abnormal variables
No differences in
perceived workload
(NASA-TLX score)

Sparklines vs.
table [34]

Identify abnormal
values and trends in
lab data

12 physicians
specialized in
pediatric intensive
care

Sparklines faster
37% unmatched
interpretations
across displays

WBIVS
(interactive) vs.
WBIVS (static) vs.
tables [107]

Judge
infection/rejection
status of lung
transplants

12 clinicians
specialized in
pulmonology and
transplants

WBVIS (both
variants) faster
than table
No difference in
correctness

KNAVE II vs. ESS
(electronic
spreadsheet, i.e.,
MS Excel) vs.
paper (MS Excel
printout) [91]

Answer queries
typical for oncology
protocols

8 M.D./Ph.D.
students, residents,
and fellows

KNAVE II overall
faster than printed
paper; KNAVE II
faster than ESS for
hard and hardest
queries but slower
for easy queries
KNAVE II overall
more correct
queries than paper
KNAVE II most
usable (SUS)

KNAVE II vs. ESS
(electronic
spreadsheet, i.e.,
MS Excel) [91]

Answer queries
typical for oncology
protocols (more
complex queries)

5 physicians KNAVE II overall
faster and more
correct queries
KNAVE II more
usable (SUS)
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Table 5.5. Controlled experiments comparing EHR visualization systems using medical
experts as subjects (continued).

compared systems task type subjects significant results

MTSA (earlier
prototype) vs.
univariate time
series plots with
table data [101]

Predict an episode
of acute
hypotension in the
following hour

14 internal
medicine residents

No difference in
correctness

MTSA vs.
spreadsheet
(MS Excel, one
variable per sheet)
[102]

Diagnose PDA
(patent ductus
arterious) in a
neonate

23 pediatric
residents, NICU
and pediatric ICU
fellows

No difference in
correctness

Table 5.6. Usability tests of visualization systems using medical experts as subjects.
Results generally confirm the usability of the tested systems but are mostly of a quali-
tative nature, which can be found in the original publications.

tested systems task type subjects

VisuExplore [111] Get overview of patient
development in diabetes care

9 physicians

TimeRider [122] Explore multivariate trends in
cohorts of diabetes patients

10 physicians

VIE-VISU [69] Focus the attention toward
critical situations

2 expert neonatologists

VISITORS [80] Construct queries for patients or
time intervals in oncology

5 physicians, 5 medical
informaticians

VISITORS [81] Explore database of oncology
patients and use temporal
abstractions

5 clinicians, 5 medical
informaticians

Usability tests. Observing the interactions, insights, and difficulties
of subjects, while they work with a visualization system in a labora-
tory environment, as well as post-test questionnaires or interviews can
lead to a more general judgment of the system’s usability. Table 5.6
outlines five usability tests with VisuExplore [111], TimeRider [122],
VIE-VISU [69], and VISITORS [80, 81].

Case studies. These studies describe how medical experts can use
the visualization system for their real work tasks. they are conducted in
tight cooperation between researchers and one or a few medical experts
and often run over longer periods of time, which allows the experts to
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become familiar with the system. Thus, case studies can give a realis-
tic understanding of the system’s strengths. Performing multiple case
studies in different medical or nonmedical domains can show the gen-
eralizability [149]. Case studies were the most common approach for
evaluation of EHR visualization systems in this survey. Some examples
are: Lifelines2 [149], Similan [154], LifeFlow [153], EventFlow [95], Out-
Flow [152], VisCareTrails [88], PatternFinder [109], VISITORS [81],
IPBC [45], Caregiver [36], Gravi++ [67], VisuExplore [123],
Midgaard [32], or the multiple views system by Zhang et al. [159].

Deployment. An additional testimonial for the usefulness of EHR
visualization is their deployment in hospitals systems or clinical
research platforms—not for the sake of visualization research but for
medical purposes. Four of the surveyed systems report about such
deployment: ICUFiles [125] is in routine use at six intensive care units at
the university hospital of Giessen, Germany. Palma et al. [104] present
how the EHR system at Lucile Packard Children’s Hospital at Stan-
ford uses sparklines. Lifelines2 has been integrated in clinical research
environments such as Harvard Medical School’s i2b2 [97] and National
Institute of Health Biomedical Translational Research Information Sys-
tem (BTRIS) [98] to reach thousands of researchers. The features of the
VISITORS are commercially available from MediLogos [7].

Further details on the methodology and results of these studies can
be found in the original papers.

5.3 Patient Data Visualization in Commercial
EHR Systems

The main part of this survey was conducted based on literature search
in academic publications. While this approach allows us to give an
extensive view on the scientific state-of-the-art, it is not fully represen-
tative for the commercial systems actually deployed in the health care
sector.

There are a number of difficulties in surveying these commercial
EHR systems: Replicating the complexity of the health care sector,
EHR systems need to fulfill many technical, organizational, and legal
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requirements. Thus, they are extensively customized for each health
care institution. Often they are acquired from national or regional soft-
ware providers and sometimes developed in-house by health care insti-
tutions. Thus, the number of systems that can be considered EHR
systems is prohibitively high. Second, information about these systems
is often not readily available to outside reviewers. Due to customiz-
ing for individual customers the details of actual deployed systems are
not made public. Even if a list of capabilities is available, it rather
describes the systems in general and technical terms than it elaborates
on user interfaces, visualizations, or interaction. Screen shots are not
always available, either. Finally, while academic publications report on
the empirical evaluation of their systems, such information is usually
not available from software providers. For example, it is unlikely to get
access to a system’s case studies or internal evaluations or obtain user
population size.

Considering this, comparing systems published in scientific litera-
ture with a set of commercial systems along the same review criteria
is most likely incomplete and biased. Therefore, we decided to not mix
those two areas but rather include a separate section that provides a
representative overview of what visualizations in commercial EHR sys-
tems are available on the market. The authors’ long-lasting experience
in a considerable number of research projects with collaborators from
industry forms the basis of this overview. The presented systems are
products we found accessible information about or one of the authors
has experience with.

To avoid repetition, we structure the overview by the topics infras-
tructure, patient development, departmental awareness, analytics, and
software libraries.

Infrastructure. EHR systems provide health care professionals not
only with visualizations of patient data but also with dashboards, user
interfaces for data entry, configurable alarms, and access to knowl-
edge resources [138]. They are connected or integrated with many
other systems (e.g., workflow system, laboratory, radiology, and billing)
and health record exchanges. They require reliable backend databases,
security, and backup.



274 Discussion

Major vendors of such systems include Cerner [3], Epic [4], SAP [16],
and Siemens [17]. Large hospital centers pioneering in electronic health
record have implemented their own software and integrated their many
in-hospital systems. Examples include Washington Hospital Center’s
Azyxxi, which later became Caradigm Amalga [2]. While most ven-
dor systems support physicians’ daily clinical tasks and administrative
tasks (e.g., billing), not all support research tasks such as identifying a
group of similar patients for clinical trial. The clinical tasks always take
priority over the research tasks, and as such, research tasks may be sup-
ported by a completely separate system. For example, Massachusetts
General Hospital’s Longitudinal Medical Record (LMR) [92] is used by
physicians to record all the diagnoses and treatments of patients while
Research Patient Data Registry (RPDR) [105] supports the research
needs of researchers.

Patient development. A frequent visualization in EHR systems is
the flowsheet. This component is named after a paper-based artifact
that is widely used in intensive care units. It contains key medical
variables for a single patient over a period of time (e.g., 24 hours) and
thus emphasizes trends and abnormal values [35, 138].

Electronic flowsheets are a combination of spreadsheets with point
or line plots (e.g., Philips ICIP Critical Care [11] in Figure 5.1, Picis
Critical Care Manager [13], systema mpa Fieberkurve [19] in Figure 5.2,
T-Vision Fieberkurve [20] in Figure 5.3). The spreadsheet columns and
the horizontal axes of plots share a common timescale. On the ver-
tical axis, variables are displayed either as numbers in a spreadsheet
row or as marks in a point or line plot. For blood pressure there is
often a dedicated glyph connecting the values of systolic and diastolic
blood pressure. Furthermore, there are plots for medication overview
that use different icons along the horizontal time axis similar to Life-
Lines. Abnormal values are visually highlighted in the spreadsheets
and plots.

In the flowsheet examples, the visualizations contain overlaid plots
of up to five variables. These are used by conventions in some areas of
medical care and often physicians expect overlaid plots in order to inter-
pret flowsheets [94, 111]. They allow more variables to be displayed on
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Fig. 5.1 Philips ICIP Critical Care Flowsheet with vital signs in a point plot and a spread-
sheet for input/output and medication [11]. Image courtesy of Philips Healthcare.

Fig. 5.2 systema mpa Fieberkurve with the “Timeline” view showing vital signs in a line
plot and medication using LifeLines-based line segments and icons [19].
Image courtesy of systema Human Information Systems.
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Fig. 5.3 T-Vision Fieberkurve [20] showing vital signs, medication, and other medical data
over seven days. Qualitative ranges and color are used to highlight critical values. (The
figure presents a user interface that was still under development at the time of writing this
article.) Image courtesy of T-Systems Austria.
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a given display area, but can have some perceptual disadvantages: first,
too many marks make the plot cluttered and it becomes hard to dis-
tinct variables. Second, the variables may have diverging value ranges,
so that large relative changes in a variable with a small absolute value
are not visible (e.g., ventilation rate in a plot scaled for blood pressure).
Using different scales for each variable makes it even harder to read the
plot correctly and can imply misleading insights (cp. [94, p. 67], [146,
pp. 91–94]).

Electronic flowsheets are used not only for analysis but also for data
entry. They either are preconfigured or can be composed individually
for clinical decision support.

Also beyond flowsheets, some interactive visualizations can be found
in EHR systems. For example, Allscripts Wand Timeline (Figure 5.4)
presents an interactive overview of patient data for mobile touch-screen
devices. It features line plots for numerical variables and LifeLines-
based line segments and icons for medication and encounters. The sys-
tem offers details of these items in tooltips and can highlight items that
are related to a diagnosis, which were selected from the list in top. The
users can reorder panels, open or close them, and configure the presen-
tation. They can interactively zoom and pan the time axis or highlight
a date with a vertical line [1].

Departmental awareness. Overview of patients hospitalized at a
department and awareness of changes in their health state can be
another service of an EHR system.

For example, Picis eView [14] provides such an overview of the
patient population at one or more departments or a selected subset
of patients. For each patient the current value of seven numerical vari-
ables is displayed as a number along with a small bar chart that shows
the trend using previous values. Both the number of the current value
and bars of previous values are color-coded to highlight critical val-
ues. The details of the last six values of each variable are available
in a tooltip. For even more details the user can open a patient sum-
mary page. Furthermore, an icon in the patient list notifies the user of
unreviewed lab results.
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Fig. 5.4 Allscripts Wand Timeline [1] shows an overview of a patient’s diagnoses, medica-
tion, vital signs, lab values, encounters along a horizontal time axis. The visualization is
configurable and interactive. Here, the events of June 4, 2012 are highlighted by a vertical
rule and medication details are shown in a tooltip. Image courtesy of Allscripts.
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Analytics. EHR systems are not only used in daily clinical tasks,
but also to provide feedback for quality analysis and the implemen-
tation of evidence-based care guidelines. These systems let analysts
compare aggregated data, identify trends, and find outliers in a group
of patients. Many systems allow multidimensional analysis of EHR data
using data warehousing methods much like in business analytics sys-
tems. They often include automated analysis techniques using data
mining or machine learning algorithms. IBM [5] and Oracle [9] are
active in this area. However, EHR system vendors may provide this as
a service, such as Caradigm [2], a collaborative effort from Microsoft
and GE Healthcare.

Furthermore, the visualization methods of VISITORS are commer-
cially available from the company MediLogos [7] and can be applied for
EHR analytics.

Software libraries. Visualization techniques also exist as software
widgets that can be plugged into EHR systems.

The Microsoft Health Common User Interface (CUI) [8] is an effort
to standardize user interface elements in health care application across
applications from different providers and, thus, improve usability and
patient safety. It is comprised of extensive design guidelines and a col-
lection of open-source software components for the .NET platform.
These include a “Graphing” component for line plots and a “Time-
line” component for categorical variables.

Stottler Henke DataMontage [18] is a collection of software com-
ponents for interactive visualization of time-oriented data with point
plots for numerical data and LifeLines visualization for nominal data.
The components provide reference lines to mark clinical thresholds
and have a coordinated cursor. It can be used as a Java library or
an interactive software application. The software features a number of
medical demos and is used to visualize EHR data in Oracle’s Empir-
ica Study On Demand product and the Pharmacovigilance Defense
Application System (PVDAS) of the U.S. Army Surgeon General’s
office.
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Summary. There is some adoption of information visualization
methods in commercial systems. Apparently, the only visualizations
that are in widespread use are the different implementations of
flowsheets, which often use simple line plots. We did not find
much information on commercial systems for visualization of multi-
ple patients for clinical research and quality analysis but such systems
are probably too specific for a specialty or user group to be advertised
by major vendors.

5.4 Limitations

This survey examined in detail 14 information visualization systems
that have been applied to EHRs. We also evaluated them by their sup-
port for different data types, multiple variables, multiple EHRs, and
user intent. This survey was conducted based on an extensive litera-
ture search and close reading of these systems’ peer-reviewed publica-
tions. When possible we contacted the authors and requested updated
references and screen shots. In the previous section, we provide a per-
spective on visualization in commercial EHR systems. However, our
process also imposed a few limitations on our survey.

In publications we have reviewed, a system’s features and capa-
bilities are often demonstrated in only one or two case studies.
A more comprehensive review would include a variety of evaluation
methods of each system. For example, controlled experiments could
demonstrate the effectiveness of specific interaction or visualization
features, while long-term case studies would demonstrate overall util-
ity of the system. Because not every system has been evaluated in
the same way and some papers do not report on the evaluation in
an adequate level of detail, we have focused on the systems’ features
and intents instead of their overall usability or successes in real-life
applications. As EHR systems mature and start incorporating visual-
izations we can expect more evaluation and usage reports in future
surveys.

Furthermore, some of these systems are still under development, and
our review relied on the descriptions found in the latest publications
we could find.
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5.5 Recommendations and Future Directions

Based on the EHR visualization systems presented in this survey, the
obstacles we encountered in searching and comparing them, and current
trends in Visualization and EHRs, the following recommendations and
directions for future research can be identified.

5.5.1 Advancing Future Comparative Surveys

A general drawback of surveys is that they rely solely on the informa-
tion made available by others. This survey is no exception. There is a
need to promote more detailed comparison of EHR visualization sys-
tems to advance their design and to foster growth of new ideas. For the
research community, the following guidelines for evaluation and result
reporting would help advance this goal:

(1) Report the usage and dissemination of visualization systems
in addition to their system information.

(2) Report the usage frequency of the different features of their
system and their impact.

(3) Include in-depth, long-term evaluation strategies with medi-
cal professionals (in addition to controlled studies) to observe
how intended end-users successfully gain insight or struggle
with particular design elements [130].

(4) Apply systems to multiple case studies instead of just one or
two to examine their generalizability.

(5) Give context under which intended designs succeed and con-
texts under which they fare less well.

One of the more difficult elements in comparing visualization sys-
tems is a lack of standard data source. The research community
would greatly benefit from having a large benchmark repository of de-
identified patient records with associated tasks and clinical research
problems. This shared resource would encourage new research and
facilitate comparison of prototypes and systems, as it happened in
other communities [108], for example, the PhysioNet/Computing in
Cardiology challenges in intensive care [12]. The repository can addi-
tionally be beneficial for developers of commercial EHR systems.
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5.5.2 Guidelines for Information Visualization

While the systems presented here are tried and tested examples for
the domain of EHRs, designers of future EHR visualization systems
can also build on the body of knowledge in information visualization
[40, 132, 150, 151]. It encompasses a multitude of perceptual findings.
For example, Cleveland and McGill [47] empirically compared the
perception of different visual mappings for numerical data and found
position on a common scale to be most effective. Such findings are
important for designers as they help them build interfaces that allow
efficient and accurate analysis of EHR data.

Guidelines summarize this knowledge in a format that can readily
be used by designers of visualization systems. The book “Show Me the
Numbers” [58] is a recommendable collection of guidelines for infor-
mation visualization. Specifically for health care, the Microsoft Health
Common User Interface [94] contains a well-designed set of guidelines,
which has largely been adopted by the British National Health Service.

5.5.3 Future Research Directions

Analyzing a single patient and the analyzing multiple patients are dif-
ferent goals. This difference creates a dichotomy in the visualization
systems. All systems in this survey either support tasks for analyzing
a single patient, or those for analyzing multiple patients. Tasks that
involve both, such as comparing a single patient with multiple patients
of similar history, are not extensively explored. Likewise, transitioning
between a multiple patient analysis to a single patient analysis and vice
versa is not widely studied.

Different tasks often require different representations of the data.
For example, while using plots to show patient vital signs (for
example, blood pressure) is sufficient for tracking the progress of that
individual vital sign, for some higher-level analyses, the physicians
only want to know whether that particular reading is abnormal. In
other words, only systems that can dynamically change numerical data
to and from categorical data can support tasks at different levels of
abstraction. Furthermore, the increasingly large and complex data in
EHRs makes it necessary to intertwine interactive visualization with
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automated analysis techniques as proposed by the Visual Analytics
community [76]. Although VISITORS and Midgaard provide ways for
creating and visualizing higher abstraction, they do not fully support
richer user intents once the abstractions are created.

These first two points are important not only as standalone future
directions of research, but taken together they are indicative of a larger
problem. That is, visual analysis of health record is very complex.
They differ in goal, in data requirement, in methodology, in scope, and
in abstraction. These analyses are processes that require time, criti-
cal thinking, keen observation, and often thoughtful discussion with
other knowledgeable individuals. These processes involve many tasks,
of which only a few are supported in a system. There is a need to
develop a well-defined process model for visual analysis of EHRs. It
will allow generalization of common tasks. It will enable designers to
innovate without loss of crucial functionality. More importantly, it will
facilitate users to explore data thoroughly in a systematic yet flexible
way [106].

Thomas and Cook [140] promote a canonical process model for ana-
lytical reasoning. Others have adapted the model for more specific
domains such as social network analysis [63]. Wang et al. proposed
a process model for temporal categorical data analysis [149]. Despite
its narrower focus, it points out a few future opportunities this survey
shares: there is a lack of support for better dissemination methods for
exploratory findings, a lack of support for sharing results to promote
discussion, and a lack of support for richer exploratory analysis process.

Unfortunately, building such process models is still a novel chal-
lenge. Information visualization researchers are encouraged to give
input, build, and refine the evolving process model from the experi-
ence of their individual systems.

5.5.4 Alternative Target Users

The systems in this survey assume skilled professionals such as physi-
cians, clinical researchers, or hospital quality controllers as end-users for
frequent use. In this increasingly digital and self-serve world, future sys-
tems could be designed to reach patients, consumer advocates, medical
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policy analysts, and other intermittent users. Increasingly, patients
keep their own health records and therefore have a need to review
or analyze their history. In the future, a patient might present ances-
tral health records to physicians as part of family medical history. Web
sites such as PatientsLikeMe [10] already offer such a visualization for
certain chronically ill patients. Similarly, the growing interest in track-
ing exercise, diet, medications, and sleep patterns means that many
people will need visual tools to understand daily, weekly, seasonal, and
yearly patterns or changes, as is often discussed on web sites such as
QuantifiedSelf.com [15].



6
Conclusions

While EHR systems make it possible for physicians or clinical
researchers to retrieve important medical data on-demand and in real
time, most EHR systems do not offer any advanced interaction or visu-
alization of patient data to support clinical tasks. Containing large
volumes of heterogeneous temporal data, EHRs present a variety of
managerial and cognitive challenges. Real medical data are also messy,
incomplete, and may contain systematic errors that impede analysis.
We believe that effective information visualization techniques can both
reduce the problems medical analysts face and facilitate their analysis
tasks.

This work surveys state-of-the-art information visualization systems
found in the scientific literature. These systems have all been applied
to medical domains, but offer different visualization and interaction
techniques for corresponding analytical tasks. Designers of future user
interfaces for EHR systems will find this survey useful to familiarize
themselves with the features and virtues of existing work. Thus, they
become even more capable to tackle the challenges ahead.
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Landesklinikum Krems, NÖGUS, Washington Hospital Center, and
Oracle Health Sciences for their support. The work presented here
was partially supported by the National Institute of Health (grant
RC1CA147489-02: Interactive Exploration of Temporal Patterns in
Electronic Health Records), Grant No. 10510592 for Patient-Centered
Cognitive Support under the Strategic Health IT Advanced Research
Projects Program (SHARP) from the Office of the National Coordi-
nator for Health Information Technology, the FWF Austrian Science
Fund (project number: P22883), and the Laura Bassi Centre of Exper-
tise CVAST (project number: 822746).

Furthermore, we thank Dominique Brodbeck, Carlo Combi,
Anthony Faiola, Theresia Gschwandtner, Werner Horn, Denis Klimov,
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[100] P. Ordóñez, M. desJardins, C. Feltes, C. U. Lehmann, and J. Fackler, “Visu-
alizing multivariate time series data to detect specific medical conditions,” in
Proceedings of the AMIA 2008 Symposium, pp. 530–534, 2008.
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