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Fig. 1. Contingency Wheel++ uses complementing visual representations and a multi-level overview+detail user interface to enable
rich exploratory analysis of large categorical data. The example above shows information about 1 million user ratings on 3706 movies.

Abstract—Contingency tables summarize the relations between categorical variables and arise in both scientific and business do-
mains. Asymmetrically large two-way contingency tables pose a problem for common visualization methods. The Contingency Wheel
has been recently proposed as an interactive visual method to explore and analyze such tables. However, the scalability and readabil-
ity of this method are limited when dealing with large and dense tables. In this paper we present Contingency Wheel++, new visual
analytics methods that overcome these major shortcomings: (1) regarding automated methods, a measure of association based on
Pearson’s residuals alleviates the bias of the raw residuals originally used, (2) regarding visualization methods, a frequency-based
abstraction of the visual elements eliminates overlapping and makes analyzing both positive and negative associations possible, and
(3) regarding the interactive exploration environment, a multi-level overview+detail interface enables exploring individual data items
that are aggregated in the visualization or in the table using coordinated views. We illustrate the applicability of these new methods
with a use case and show how they enable discovering and analyzing nontrivial patterns and associations in large categorical data.

Index Terms—Large categorical data, contingency table analysis, information interfaces and representation, visual analytics.

1 INTRODUCTION

Many problems in scientific domains such as medicine, biology and
pharmacology, as well as in business domains such as retail and logis-
tics require analyzing associations between categorical variables. For
example, a movie retailer might be interested in associations between
movies and users based on sales data with the goal of optimizing mar-
keting strategies. The discrete nature of categorical data and their lack
of an inherent similarity measure pose significant challenges to the
fields of information visualization [2] and data mining [42]. Contin-
gency tables (also known as crosstabs) are a common way to summa-
rize categorical data as a first step of analysis. A two-way contingency
table is an n×m matrix that records the frequency of observations fi j
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for each combination of categories of two categorical variables. Many
data analysis frameworks such as KNIME [4], WEKA [11] and R [28]
offer possibilities to create and analyze contingency tables. One of
the best-known statistical tests for the overall association (or indepen-
dence) between two categorical variables is Pearson’s χ2 test [30]. It
assesses the significance of associations between the categories of the
two variables. However, it does not provide information about how
single pairs of categories are associated.

Several visualization methods were developed to analyze associated
categories in contingency tables. As we discuss in Sect. 5, these meth-
ods are designed to handle rather small tables having few categories.
However, often much larger contingency tables need to be analyzed,
which poses a problem to these methods. Figure 2a shows large cate-
gorical data from the MovieLens data set [10]. It contains about one
million user ratings on movies. For each user, it provides his or her
occupation, sex, and age group, and for each movie, its release date
and genres. Examples for tables extracted from this data set are:

• A 3706×21 table which counts for each movie, how many times
it was rated from users of each occupation (figure 2b).

• A 6040× 17 table which counts for each user, how many times
he/she rated movies from each genre (figure 6d).



Fig. 2. (a) Categorical variables of the MovieLens data set [10] showing about one million user ratings on 3706 movies, (b) the contingency table
of the variables “movie title” and “user occupation”, (c) the Contingency Wheel of the table in (b): Sectors represent occupations and dots represent
movies positively associated with them. Thicker arcs show which occupations share more movies highly associated with both of them.

The Contingency Wheel [1] has been introduced as an interactive
visual method for exploring positive associations in asymmetrically
large tables. The column categories are visualized as sectors of a ring
chart and the table cells are depicted as dots in these sectors (figure 2c).
The dot for cell (i, j) is placed in sector i at a radial distance from
the ring’s inner circle proportional to the strength of association ri j
between row i and column j. A layout algorithm calculates the angular
positions of the dots in each sector to reduce occlusion. It copes with
a large number of rows by visualizing only the cells that represent
significant associations ri j , determined by adjustable thresholds. An
arc is drawn between two sectors if one or more rows have dots in
both sectors. This arc is thicker if more such rows exist and if their
dots represent higher associations with both sectors. User interaction
enables analyzing different types of associations in large tables.

Scalability is one of the major challenges visual analytics aims to
address [39]. The wheel metaphor explained above has several short-
comings which degrade its readability and scalability, especially with
large and dense tables (Sect. 2). In this paper we propose Contingency
Wheel++: new visual analytics methods that tackle the issues of the
original wheel. Our methods (described in Sect. 3) address its com-
putational component, visual representation and interactive interface,
and intertwine these three components to enable scalable analysis of
categorical data. The new methods encompass:

• Automated methods: a new association measure results in a better
distribution of the dots to sectors of different sizes. This is impor-
tant when analyzing large tables that often exhibit high skewness
in the distribution of their frequencies.

• Visualization methods: a frequency-based abstraction of the dots
eliminates overlapping which allows showing all the cells, in-
stead of just small subsets thereof. This enables analyzing and
querying both positive and negative associations.

• Interactive exploration environment: an overview+detail inter-
face allows exploring individual items aggregated in the visual-
ization or in the table, and analyzing their attributes.

In Sect. 4 we present a use case to illustrate how our new meth-
ods can be used to explore the MovieLens data set. We show how
nontrivial patterns and associations in the data can be discovered. In
Sect. 5 we compare our approach with other methods for visualizing
categorical data and elaborate on its scalability.

2 LIMITATIONS OF THE CONTINGENCY WHEEL

Based on a pilot evaluation study of the Contingency Wheel [23], we
identified several issues that limit its readability and scalability. In
particular, we focus on issues related to the conceptual design of the
wheel and its interpretability rather than usability issues:

Data mapping: The Contingency Wheel visualizes association val-
ues ri j that represent deviations from expected values (Sect. 3.1) rather
than absolute frequencies fi j. Many users did not have sufficient back-
ground on statistical association measures to interpret that correctly.

Visual mapping: Users agreed that the visualization provides a
quick overview of the distribution of dots within sectors as compared
with a tabular view. However, they found it difficult to accurately in-
terpret the meaning of these dots at the beginning. They expected ab-
solute frequencies fi j rather than association values. It was confusing
that the dot size and its radial position convey the same information.
The angular position of the dots was even more confusing since it bears
no meaning. It was also confusing that dots in different sectors can
represent the same entities. Though arcs are intended to clarify this
fact, users realized it only after selecting a dot (which also highlights
all dots in other sectors that represent the same row).

Interaction: Dots closer to the center were often too small and
overlapping, which made them difficult to identify. The same issue
applies to arcs between small sectors. Also, filtering the dots by mov-
ing a slider became clear only after the users understood the data rep-
resentation. Some users forgot that parts of the dots were filtered out
and drew wrong conclusions about the data.

Most of the above-mentioned readability issues are related to dots.
Dots as representations of individual table cells suffer inherently from
limited scalability: Only a few hundred dots can be shown at once
without overlapping. The Contingency Wheel reduces the large num-
ber of dots by filtering out cells (i, j) with ri j ≤ Tr (where Tr is the
association threshold) and by filtering out entire rows with fi+ < Ts
(where Ts is the support threshold) [1]. However, filtering limits the
ability to gain insights into the whole dataset and it does not work well
for dense tables with large fi j values.

Contingency Wheel++ 1 improves both on the readability and on
the scalability issues mentioned above by employing visual analytics
methods as presented in the next section.

1A prototype implementation of Contingency Wheel++ is available at
http://www.cvast.tuwien.ac.at/wheel



Fig. 3. (a) raw residuals and (b) adjusted residuals plotted as a function of fi j for different values of f+ j with both nonuniform- (left) and uniform
scaling (right), (c) the same data plotted in figure 2c using uniformly-scaled adjusted residuals instead of raw residuals (with Tr = 30% and Ts = 1).

3 CONTINGENCY WHEEL++
In the following, fi j denotes the frequency in cell (i, j), fi+ = ∑

m
j=1 fi j

and f+ j = ∑
n
i=1 fi j are the marginal row- and column frequencies, and

f++ is the sum of all table frequencies (figure 2b). We first address the
data mapping employed by Contingency Wheel++ (Sect. 3.1). Then
we propose a frequency-based visual representation which abstracts
the dots (Sect. 3.2). In Sect. 3.3 we show how an interactive visual
interface integrates additional table views to bridge the gap between
the data representation and the visual representations and to support a
flexible visual exploration process.

3.1 Mapping Frequencies to Associations
The main goal of Contingency Wheel++ is to reveal how the row cate-
gories of a contingency table are associated with its column categories.
For this purpose, it uses a statistical measure ri j that computes the as-
sociation between row i and column j based on fi j and takes value in
the range [−1,1]. This measure is usually based on statistical residu-
als between the actual frequency fi j and expected frequencies êi j. The
frequency in cell (i, j) predicted under the null hypothesis H0, i.e.,
assuming no association, is [37]:

êi j =
fi+ · f+ j

f++
(1)

If fi j = êi j holds for cell (i, j), its share fi j/ fi+ of the marginal
row frequency is equal to the column’s share f+ j/ f++ of all table
frequencies. This means that row i is neither positively nor negatively
associated with column j, and corresponds to a zero association value
ri j = 0. Cells with fi j > êi j indicate a positive association between
row i and column j. Statistical residuals ri j can be used to quantify this
association. They can be designed to incorporate a priori information
about the data and their distribution. In the following we describe the
originally-used residuals and our improvements on them.

3.1.1 Raw residuals
The association measure used originally by the Contingency Wheel is
based on raw residuals ( fi j− êi j) [1]. To generate association values
ri j ≤ 1, the raw residual for cell (i, j) is divided by the maximum value
it can take ( fi+− êi j):

rsc rawi j =
fi j− êi j

fi+− êi j
(2)

This measure maps frequencies linearly to association values (fig-
ure 3a-left). The maximum association ri j = 1 is reached when all cells
of row i have zero frequencies except for cell (i, j). For such a row,
only one dot is created on the outer boundary of sector j. A cell with
ri j = 0 creates a dot on the inner boundary of sector j (assuming no
thresholds). Cells with negative associations are ignored. The above-
mentioned normalization is not uniform with respect to the columns:
For row i, different scaling factors are used in different columns, be-
cause the expected frequency êi j is larger for columns with larger f+ j.
This makes better use of the sector area for revealing the distribution
of dots along the radial dimension. Also, rows i that are fully asso-
ciated with column j ( fi j = fi+) can be easily found as dots at the
outer boundary. However, the different scaling factors result in a bias
especially when f+ j varies largely between sectors. This impacts the
comparison of associations between different sectors and reduces the
expressivity of the arcs. A uniform scaling factor for all columns can
be used instead:

runiform rawi j =
fi j− êi j

fi+
(3)

Figure 3a-right shows how this scaling maps frequencies to associ-
ations. For cells with fi j = fi+, Eq. 3 evaluates to 1− f+ j/ f++ which
is independent of i. Such cells are hence mapped to the same radial
distance within a sector (figure 2c). The sectors are scaled by their
marginal frequencies. Sectors with larger f+ j values attract more dots
than sectors with smaller f+ j values, due to an inherent statistical bias
that raw residuals suffer from (even with uniform scaling).

3.1.2 Adjusted residuals

Standardized Pearson residuals [37] avoid the bias of raw residuals by
adjusting the variance of the ri j values to N(0,1):

rpearsoni j
=

fi j− êi j√
êi j · (1− fi+/ f++) ·

(
1− f+ j/ f++

) (4)

We use a logarithmic scale for the visual mapping of these residuals to
better reveal their distribution along the radial dimension (where cte is
a constant computed from the table to ensure −1≤ ri j ≤ 1):

radjustedi j
=

sgn(rpearsoni j
)

cte
· ln
(

1+
∣∣∣rpearsoni j

∣∣∣) (5)



Figure 3b-right, shows how this measure maps frequencies to as-
sociations. Figure 3c shows the same data as in figure 2c using
ri j = radjustedi j

with Tr = 30% and with equal sectors. The dots are
distributed more uniformly among the sectors. This results in arcs that
suggest other similarities between occupations. The logarithmic scale
amplifies smaller raw residuals, giving them more visual prominence.
This potentially generates more dots, and hence a higher value for Tr is
needed to filter out insignificant associations. Cells with fi j = fi+ are
mapped to different radial distances in sector j, depending on fi+. This
makes the arcs more robust to changes in Ts since rows with smaller
fi+ values contribute less to the arcs. On the other hand, these cells
are somewhat difficult to locate. The following nonuniform scaling
stretches ri j to the range [−1,1]:

rsc adjustedi j
=

radjustedi j

max
(

si j · radjustedi j | fi j= fi+
,si j · radjustedi j | fi j=0

) (6)

where si j = sgn(radjustedi j
) and radjustedi j | fi j=x

is the value radjustedi j

would take if fi j = x. Figure 3b-left depicts how this scaling maps
frequencies. As can be seen, rows with fi j = fi+ are always mapped
to the largest radial distance. Also, if the visualization can include neg-
ative associations, rows with fi j = 0 are always mapped to the lowest
radial distance. Nonuniform scaling, however, re-introduces a small
bias in the associations, toward columns with larger f+ j.

3.2 Visualizing the Contingency Table
The visualization aims to reveal how the row categories of a contin-
gency table are associated with its column categories, based on the
association measure used. Our new visual representation makes use of
the advantages of uniformly adjusted residuals (Sect. 3.1.2). It pro-
vides a clearer and more intuitive visualization of the table, as com-
pared to the original wheel design [1]. Moreover, depending on the
user’s choice, it enables showing all associations or positive associa-
tions only as we describe in the following subsections.

3.2.1 Visualizing columns
Like in the original wheel metaphor, columns are drawn as sectors of
a ring chart. The main difference is that they are drawn with equal
size. This has several advantages: First, this is in accordance with the
fact that adjusted residuals result in a more uniform distribution of the
cells to the sectors. Second, by using a frequency-based representa-
tion (Sect. 3.2.2), the distribution of the associations can be compared
between different sectors. Third, the arcs become evenly distributed in
the central area, unlike the arcs in figure 2c which overlap more near
small sectors. Finally, column categories are treated equally from a
visual point of view, in the same way as the dimensions of a star plot
[12]. This simplifies the visualization and eliminates confusion about
the meaning of different sector sizes. The information of different col-
umn marginal frequencies f+ j is conveyed in a linked bar chart (Sect.
3.3). Incorporating it in the wheel representation would not contribute
to the goal of Contingency Wheel++, i.e., to explore associations.

3.2.2 Visualizing row-column associations
The radial dimension of the ring chart linearly encodes the association
values ri j computed by one of the association measures. The outer
boundary corresponds to ri j = 1. The inner boundary corresponds to
ri j =−1 if showing all associations, and to ri j = 0 if showing positive
associations only. Instead of the dot representation originally used, we
suggest a frequency-based representation to visualize the row-column
associations. A histogram H j is created in each sector j to show the
distribution of the associations ri j along the radial dimension. An ad-
justable number b of equal bins is used for all histograms, initially de-
termined by Scott’s normal reference rule [34]. Each bin k in sector j
aggregates the rows i having associations in the interval Ik = [lk, lk+1[.
The interval boundaries lk are equally spaced between [−1,1]:

lk =
2(k−1)−b

b
(7)

Fig. 4. Dot vs. histogram representation of row-column associations.
The dimensions of a histogram bin are annotated (Eq. 8).

A closed interval Ib = [lb,1] is used for the last bin to account for
ri j = 1. Hence, the number of items hk j in the kth bin of sector j is:

hk j =
∣∣{1≤ i≤ n : fi+ ≥ Ts∧ ri j ∈ Ik

}∣∣ (8)

Each bin k of histogram H j is visualized as a track in sector j. This
track occupies the radial position which corresponds to its interval Ik.
The length of this track is proportional to hk j. A uniform or sector-
specific scaling factor ensures that all tracks fit in their sectors. Tracks
are centered in their sectors, following the Gestalt principle of symme-
try [41]. This avoids artificial asymmetry along the angular dimension
in the sectors and makes it easier to compare their histograms. Figure 4
shows both dot and histogram representations for some sectors of fig-
ure 3c. The histograms show how 3706 movies are associated with 2
occupations. Both positive and negative associations are included.

Rows whose associations with sector j lie in a specific interval can
be inspected individually along with the attributes of their entities, as
explained in Sect. 3.3. The distribution of a numerical or categori-
cal attribute of these entities can be shown by coloring the histograms
instead of coloring individual dots. This provides a clearer understand-
ing of the attribute distribution at different radial distances. Figure 5a
shows the release-date distribution of movies positively associated
with specific occupation categories. Figure 5b shows the genres of the
movies. Movies highly associated with the “Retired” category tend to
be old. The opposite holds for the “K-12 student” category which also
tends to be highly associated with “Children” movies. Movies highly
associated with “Technician/Engineer” are more likely to have “Sci-Fi
/ Fantasy” genres. These tendencies seem stronger as compared to the
distribution of both attributes among all movies (figure 5c).

Fig. 5. Distributions of (a) a numerical attribute (release date) or, (b) a
categorical attribute (genre) of the movies in the histograms. (c) The
global distributions of release date and genre among all movies.



Fig. 6. Five levels of abstraction to explore the user-genre table and the underlying information: (a) a bar chart of the column categories (genres),
(b) the wheel view showing sectors for the items selected in (a), (c) detail view for items selected in (b) (currently empty), (d) the contingency table
with cells in active parts in (a) colored in dark gray, (e) the categorical data summarized in the cell highlighted in red in (d).

The frequency-based representation has several advantages over the
dot representation: First, the angular dimension now has a clear mean-
ing (frequency of associations at different radial distances in the sec-
tors). Second, the artifacts and overlaps caused by showing separate
dots are eliminated. Third, histograms are familiar visualizations that
are easy to interpret. They better emphasize that the visualization is
showing a distribution of the row associations in each sector, and not
individual entities. This avoids the confusion due to multiple dots rep-
resenting the same row. Finally, the redundancy of double-coding the
association using both dot size and dot location is also eliminated.

Bended histograms embedded in a ring chart suffer from visual il-
lusions in perceiving different arc lengths at different radial distances.
This effect can be accounted for computationally and is minimized
when arcs are short that are perceptually flattened [31] (figure 6).

3.2.3 Visualizing column similarities
We compute similarities between the columns of the contingency table
based on their row associations. A similarity value rc j1 j2 is computed
for every pair of columns ( j1, j2), to assess how similar the two distri-
butions ri j1 and ri j2 are. Only active rows in both sectors are included
in the computation. Active rows in sector j have sufficient support fi+
and associations ri j higher than Tr, and are defined as follows:

A j =
{

1≤ i≤ n : ri j ≥ Tr ∧ fi+ ≥ Ts
}

(9)

Active rows in each sector are depicted in dark gray in the respective
histogram (figure 6b). The column similarities are computed as fol-
lows:

rc j1 j2 =
1∣∣A j1
∣∣+ ∣∣A j2

∣∣ · ∑
i∈A j1∩A j2

ri j1 · ri j2 (10)

Between each pair of sectors ( j1, j2), an arc is drawn whose thickness
and opacity are determined by rc j1 j2 . A thick arc means that the active
rows in both sectors tend to have similar associations with the two

columns j1 and j2. Changing the Tr value results in smaller or larger
active parts, and hence influences the thicknesses. By checking the
arcs with different Tr values, the user can examine in which ranges
and to which extent the column similarities hold.

Arcs showing column similarities based on row associations is a
unique feature of the Contingency Wheel and one of the main reasons
of adopting a circular layout for the visualization. This layout provides
a compact representation to show and compare column similarities.
Furthermore, arcs are useful in creating a user-controlled hierarchi-
cal grouping of the column categories based on their similarities: A
right-click on an arc merges the two affected sectors into one sector.
The resulting wheel is built from the contingency table that results by
merging the corresponding columns into one column, by summing up
the frequencies cell-by-cell. The new sector is inserted at its appropri-
ate position according to the sector ordering scheme currently in use
(alphabetical, by size, or user-defined sector ordering). Successively
merging pairs of sectors connected by thick arcs enables abstracting
the visualization by reducing the number of visual items. Moreover, it
enables analyzing similarities between groups of similar columns and
not only between pairs of columns, as the use case shows (Sect. 4).

3.2.4 Visual aids
We provide several visual aids to facilitate understanding. Three as-
sociation levels evenly spaced between the inner and the outer sector
boundaries are shown to allow an easier interpretation of the radial
distances. An additional circle in pink shows the current value of the
association threshold Tr, which can be adjusted using the slider em-
bedded in the ring chart. Inactive parts of the histograms (Eq. 9) are
visually de-emphasized. A color gradient is shown in the background
of the Tr slider to reflect the association levels. It uses either a diverg-
ing or a sequential color scale [13], depending on whether negative
associations are included or not. Arcs outside the ring chart indicate
sector groups (figure 1). Finally, a legend shows the scale used in the
histograms by depicting an arc of average length.



3.3 Interactive Exploration Environment
The original Contingency Wheel may result in a cluttered visualiza-
tion especially for large data because it creates dots for individual
row entities. These dots need to be selected individually to obtain de-
tails about the corresponding entities [1]. To improve on these short-
comings, our new methods follow Shneiderman’s visual information-
seeking mantra [36]: The visualization first shows an overview of the
data using histograms. The user can filter the data interactively and
select entities she is interested in exploring. Then, details about these
entities can be obtained in linked views. Contingency Wheel++ offers
an overview visualization of an asymmetrically-sized contingency ta-
ble. Likewise, the contingency table offers a summarization of a larger
data set by cross-tabulating two categorical dimensions. We designed
the user interface to enable exploring the data at these multiple levels
of abstraction as explained in the following.

3.3.1 Multiple Views
Whenever we explain Contingency Wheel++ to new users, our first
step is to show the underlying contingency table. This allows explain-
ing the basic concepts like row- and column marginal frequencies,
actual- and expected frequencies (Eq. 1), and row-column associa-
tions (Eq. 2-5). We are thus showing both the wheel visualization and
the underlying table side-by-side in one interface. This combination
bridges the gap between the visual representations and the data rep-
resentation (i.e., association values) computed by the automatic meth-
ods. The main user interface (UI) of our prototype is divided into five
coordinated views:

A bar chart shows the column categories and their marginal fre-
quencies f+ j (figure 6a). Columns selected in this view define the sec-
tors of the wheel view. The user can thus focus on selected columns.
Also, if the number of columns exceeds the limits for the wheel,
smaller subsets of columns can still be visualized.

The wheel view is the central part of the interface (figure 6b). It pro-
vides an overview of the data and existing associations within. Several
interactions are possible to find interesting patterns in the data and se-
lect specific row entities for further analysis. The association thresh-
old Tr can be adjusted interactively via the slider embedded in the ring
chart. Also, this view enables setting several parameters by means of
its toolbar and context menu.

A list view shows details about the row entities selected in the wheel
view (figure 6c and figure 7d). Beside the attributes of these entities
(available from the data set), their marginal row frequencies fi+ and
associations ri j with a specific column j are listed. The entities can be
sorted according to one of the columns, and histograms or bar charts
can be created for a specific column in the list.

A tabular view shows the contingency table and the marginal fre-
quencies (figure 6d). By hovering the mouse pointer over a cell (i, j),
a tooltip shows the expected frequency êi j and the association value
ri j according to the measure used. If cell coloring is enabled via a
checkbox, the cell is shown in dark gray if it corresponds to an active
part in the visualization (i.e., i ∈ A j). Also, the support threshold Ts
can be adjusted via a slider to filter out entire rows i with fi+ < Ts.

A second list view shows details about selected items from the tab-
ular view (figure 6e). By double-clicking on a cell, a row, or a column
in the tabular view, cross-tabulated data items are shown in this list
view along with their attributes. The items can be sorted and the dis-
tributions of the values in a specific column can be explored using a
histogram or a bar chart.

These views make it easier to explain to new users how the data
are visualized in Contingency Wheel++. Even more importantly, they
constitute a multi-level overview+detail exploration interface. This
allows experienced users to perform elaborate analysis workflows by
having quick access to all information available in the data. Hence, as-
sociations can be detected and investigated further in relation to other
attributes. The incorporation of analytical methods in the visual inter-
face enables a visual analytics process following Keim’s mantra [20]:
Analyze first – show the important – zoom, filter and analyze further
– details on demand. After computing the row-column associations
(Sect. 3.1) and the columns similarities (Sect. 3.2.3), the visualization

shows the important results, i.e., strong associations or high similari-
ties. Using different interactions, the user can change the thresholds
Tr and Ts, merge columns, or set a different association measure. This
causes the analytical methods to recompute the associations and sim-
ilarities which are then visualized interactively. Details on selected
items in the wheel or in the tabular view can be obtained on demand.

3.3.2 Linking and Brushing
Contingency Wheel++ offers multiple ways to brush the visualized
row categories. One way is by clicking on a bar in the histograms,
which selects the rows it aggregates (Sect. 3.2.2). Another way is
using the sector marquee tool to define a radial interval I in a sector
j using the mouse (figure 1). This selects the rows i with ri j ∈ I.
Clicking on sector j selects the rows A j that are currently active (Sect.
3.2.3). Also, clicking on an arc selects rows active in both sectors
it connects (the items that define this arc). Rows i with ri j ≤ Tr for
all columns j can be selected using a menu command. When Tr is
positive but small, this command selects rows that do not exhibit a
high association with any column. Finally, rows can be selected using
an external query, like the instant search box at the top of the view.
This box selects row categories containing a specific text.

The top-right list view (figure 7d) shows the selected rows defined
either by filtering, brushing, selection, or the search box query. When
an item in this list is clicked, the tabular view scrolls to and highlights
the corresponding row i which shows the frequencies fi j (figure 10e).
Also, a star graph [12] of the associations ri j can be shown in the wheel
view, labeled with these frequencies. Selected row categories are high-
lighted in the histograms of all sectors. The original histograms be-
come desaturated and new sub-histograms are drawn centered on top
of them showing the selected portion using color (figure 7c). Likewise,
the original arcs are desaturated and the parts corresponding to the se-
lected items are highlighted. Three modes are offered for performing
brushing operations in the wheel, depending on keyboard modifiers:

• Set union: the new selection is added to an existing selection.
• Set intersection: the new selection is intersected with the exist-

ing selection. This enables creating nested queries on the data.
For example, in the wheel showing the movies-occupation table,
the user can select movies highly associated with the categories
“programmer” and “scientist” but negatively associated with the
category “executive”. This is done by drawing ranges at the cor-
responding radial distances in each sector while the CTRL key
is pressed. TimeSearcher uses a similar brushing technique for
time-series data by means of timebox widgets [16].

• If no modifier is defined or if brushing is performed using an
external query, the active selection is replaced by the new one.

4 USE CASE

To demonstrate the applicability of our approach, we present a use case
along the fictitious character Jane, who is an analyst at a large movie
rental service. The use case is based on 10 analysis sessions conducted
over the course of a week and added up to a total of 8 hours time. For
the analysis, the MovieLens data set [10] has been used as introduced
in Sect. 1. Jane’s goal is to get insights into the massive amount of data
they have collected about their customers who rented, watched, and
rated movies using their service. Based on the insights gained from
this analysis she plans to make decisions and take actions related to the
ongoing marketing strategies and recommender algorithms they have
in place. Jane uses mainly two different tables for her analysis: first,
occupations (movies× user occupations) and second, genres (users×
movie genres). By exploring the interactive wheels and the associated
views and diagrams, Jane gains a number of insights, some of which
were expected but also some surprising ones. Before Jane starts the
analysis, she asks herself about the semantics of the data – what do
associations between the entities user and movie actually mean? A
user and a movie are associated if a user has entered a rating for a
movie in the system which in turn implies that he or she has watched
the movie. However, an association does not express how much they
liked a movie.



Fig. 7. Visual exploration of movies associated to user occupations: (a-c) major overlaps between user groups, (d) details of selected items in (c),
(e-g) histograms of movie release date for different subsets of movies, (h, i) wheel view colored by movie release dates to reveal its relation with
different user groups, (j, k) wheel view colored by movie genre to reveal dominant genres in the movie preferences of different user groups.

4.1 Categories & Characteristics
As a first step, Jane aims for getting an overview of the categories
to get a feeling for the data and overall (dis)similarities, to explore
characteristics of single categories as well as to possibly simplify the
data by merging categories.

User occupations Jane starts her analysis by creating a wheel
based on a contingency table that displays the different occupations
(i.e., jobs) of the users as sectors and the related movies as histogram
bars within these sectors (figure 7). After opening the initial wheel,
she adjusts the association slider to >40% in order to focus on higher
associations and similarities between sectors. By studying the thick-
ness of the connections inside the wheel she notices that there is a
lot of overlap (same movies rated) between “K-12 student” and “col-
lege/grad student ” (figure 7a) as well as between “programmer” and
“technician/engineer” (figure 7b) which seems plausible to her. How-
ever, a more surprising aspect is that there is also a higher degree of
overlap between “academic/educator” and “retired” (figure 7c). To in-
vestigate this connection in more detail, Jane selects the arc (figure 7c)
and takes a look at the selected entities in the list view in the upper
right of the UI (figure 7d). She sorts the movies by release date by
clicking on the respective table header and discovers that they seem
to be mostly older movies. Only three out of 52 movies are from
the 90’s, the rest are older movies. Based on the mentioned similar-
ities, she merges “K-12 student” with “college/grad student”, “pro-
grammer” with “technician/engineer”, and “academic/educator” with
“retired” by right-clicking on the corresponding arcs in order to sim-
plify the further analysis.

Then, Jane continues her exploration of release dates of movies
highly associated to the group [academic/educator, retired]. For this,
she brings up a histogram using the context menu of the release-date
column-header (figure 7e). This provides details about the distribution
of movies over time. For comparison, she also brings up release-date
histograms for [college/grad student, K-12 student] (figure 7f), as well
as for all movies that were rated (figure 7g). This confirms that the
distribution concerning [academic/educator, retired] is quite different.
Moreover, Jane finds out that there seems to be a peak of watched
and rated movies in the mid 80s followed by a valley at the begin-
ning of the 90s and another peak at the end of the 90s. To get a further
overview of release dates of categories, she colors the wheel by release
date which clearly shows that [academic/educator, retired] more often

watch older movies than others (larger portion of dark parts than aver-
age, figure 7h). [K-12 student, college/grad student] watch more often
newer movies than others (larger portion of bright parts than average,
figure 7i). Jane concludes her exploration by coloring the occupation
wheel by genre. This reveals that [programmer, technician/engineer]
contain a much larger portion of highly associated “SciFi/Fantasy”
movies (orange, figure 7j) and [college/grad student, K-12 student]
have a much larger portion of highly associated “Children” and “Com-
edy” movies (blue and yellow, figure 7k) than on average.

Movie genres Jane switches to the genre wheel and finds high
overlaps of “Musical” and “Children”, “Action” and “Adventure”, and
“War” and “Western” which seem to be reasonable to her. More sur-
prisingly, she finds no particularly high overlap between [War, West-
ern] and “Crime” which she would have suspected. Besides, she ob-
serves that “Horror” seems inversely related to many other genres.
Based on her observations she merges genres into [Children, Musical,
and Fantasy], [Noir, Mystery, Thriller], [Adventure, Action, SciFi],
and [War, Western] (figure 8a-b). Jane colors the wheel by age us-
ing a diverging color scheme (figure 8a). Looking at this, she finds it
surprising that the age distribution of users watching [Musical, Chil-
dren, Fantasy] is not very different from others. Overall, age-group
distributions seem to be quite similar in all genres.

Further, Jane wants to inspect possible gender differences and turns
on coloring by gender in the genre wheel (figure 8b). As a general
observation, she recognizes that there are a lot more men than women
rating movies. As anticipated, Jane finds the genre “Romance” as an
exception where the most highly associated users are female. Surpris-
ingly “Horror” does not show less women than other genres such as
“Documentary”, [Adventure, Action, SciFi], [Noir, Mystery, Thriller],
or “Crime”. After that, Jane takes a closer look on different genres us-
ing histograms of gender, age, and occupations (figure 8c). For “Chil-
dren” movies she notices that there is an almost equal distribution be-
tween male and female viewers, and that most viewers are in the age
group of 18–24 years. Particularly, the last fact is somewhat surprising
to Jane, since she thought that the majority of users watching “Chil-
dren” films would be younger. Having a look at “War” movies she
spots that there are by far more men present which are often execu-
tives and in the age group of 35–44 years. “Western” movies show a
quite similar picture, except that even older age groups watch and rate
these movies.



Fig. 8. Associations between users and movie genres (a) colored by age, (b) colored by gender. (c) Details about selected genres.

4.2 Single Movies
After her top-down exploration of occupations and genre categories,
Jane has a couple of movies in mind she wants to inspect further for
potentially interesting findings in a bottom-up manner.

Mainstream erotic films She takes a look at the two movies Ba-
sic Instinct (1992) and Nine 1/2 Weeks (1986) and compares the star
plots in the wheel views. Interestingly, both movies are highly asso-
ciated to “technician/engineer” but negatively associated to “program-
mer” (figure 9a-d) which are otherwise quite similar as she had found
out earlier.

The Godfather trilogy Next, Jane remembers that The Godfather
movies (1972, 1974, 1990) were quite big hits at her movie rental ser-
vice in the last years. She uses the search box (figure 10a) to find
them. The movies matching the query are shown in the detail list in
the upper right of the UI. She selects the first movie of the trilogy in
the list (figure 10b) which brings up a star plot in the center of the
wheel view showing individual associations for the different occupa-
tions. She can see that the movie has the highest associations with the
occupations “executive” and “lawyer” (figure 10c,d). When she se-
lects the second movie, the picture is quite similar, however, the third
movie is somewhat different. Jane sees that it is highly associated to
“executive” again but that it is negatively associated to “lawyer” and
highly associated to “sales/marketing”. Further, Jane would like to in-
spect how the three movies were rated among executives. For this,
she double clicks on the “executive” column in the table (figure 10e)
which brings up the ratings in the list view on the lower left of the UI
(figure 10f). Via a context menu, she displays the rating histograms
(figure 10g-i) and spots that they are quite positive and similar for the
first two but much lower for the third movie.

4.3 Hypotheses and Specific Questions
During the visual exploration, Jane generated some hypotheses and
specific questions she is trying to answer subsequently.

Fig. 9. Associations of mainstream erotic films to “programmer” (a, c)
and “technician/engineer” (b, d) – left: Basic Instinct (1992), right: Nine
1/2 Weeks (1986).

Association vs. rating behavior One hypothesis Jane had in
mind is to check whether it is true that very high associations of movies
correspond to more positive ratings. Using the occupation wheel, she
is probing rating histograms of highly associated movies (>75%) with
“college/grad student”, such as Transformers (1986, good ratings) and
Teenage Mutant Turtles II (1991, bad ratings). As a result, she finds
evidence that her hypothesis does not hold.

Rating Another question Jane wants to inspect is whether there
are differences in the general rating behavior of different user occu-
pations, i.e., are particular groups more or less critical than others in
general? By using the occupation wheel and comparing the grading
histograms of selected sectors, Jane observes that the rating behavior is
strikingly similar among groups. She can only spot subtle differences
such as that unemployed persons tend to give lower ratings whereas
retired persons do not tend to give many low ratings.

4.4 Decisions and Actions Planned
Visually exploring the vast data collection of her movie rental service
helped Jane to better understand her customers and unearth common-
alities as well as differences between groups of users and movies.
Based on the gained insights, decisions are taken and actions are
planned that are intended to make her business more successful: The
merging of some user categories and movie genres can simplify the
internal recommender engine. New SciFi & Fantasy releases will be
presented particularly to programmers and technicians/engineers. As
there were more movies watched and rated from the mid 1980s, there
will be a campaign highlighting some of these. Suggestions concern-
ing Children movies will no longer be focused on younger customers
but concentrate on the age group of 18–24 years. War and West-
ern movies will be recommended more intensively to male executives
older than 35 years. Finally, Horror movies will be suggested to users
who already watched those without restricting suggestions to men.

4.5 Improvements of Contingency Wheel++
Jane benefited from the improvements in the new design and gained
insights that would not have been possible using the original Contin-
gency Wheel. Due to the fact that dots have been replaced by his-
tograms, she was able to represent all movies without filtering steps
which would have been necessary to avoid overlaps. The distribu-
tion of an attribute of the movies (e.g., release date) can now be
inspected using colored histograms which allowed for complex in-
sights involving multiple data attributes. Because of the multi-level
overview+detail exploration environment, Jane had easy on-demand
access to all available data, such as movie details, contingency table,
and raw data. This allowed for drilling down to clarify and check find-
ings from an aggregate level. Further, she was able to create bar charts
and histograms of selected elements from different attributes, such as
movie release dates or ratings, and compare the results with the global
distributions. On top of that, the ability to merge sectors enabled the
detection of patterns between groups of sectors that could not be de-
tected when looking at single columns.



Fig. 10. Visual exploration of the Godfather trilogy: (a) search box, (b) search result, (c, d) star plot of associations of selected item to user
occupations, (e) row of selected movie in contingency table, (f) raw data of user ratings, (g-i) rating histograms for the three movies of the trilogy.

5 STATE OF THE ART

Heat maps can be used as a generic method for visualizing large matrix
data as a colored image [5]. While they can provide an overview of the
data distribution, they are limited in terms of exploring associations.
Methods dedicated for visualizing contingency tables are usually de-
signed to handle a small number of categories. Based on what the
visual representations depict, they can be classified into three types:

Frequency representations These methods map the table fre-
quencies fi j to visual elements of proportional size. Mosaic Displays
[14] and their variations use tiles to represent the frequencies (simi-
lar to Treemaps [35]). Parallel Sets [2] and their variations, such as
Circos [25], represent frequencies as stripes or ribbons between visual
elements that depict the categories. These approaches offer an intuitive
visual representation that can be divided further to accommodate ad-
ditional dimensions. However, they can handle only a relatively small
number of categories (≤ 30 for Parallel Sets). With larger tables, the
clutter increases in Parallel Sets, and the increased skewness and num-
ber of zeros in the table values make it difficult to identify and compare
the tiles in Mosaic Displays [40].

Deviation representations Association Plots [26] use bar charts
to show the deviations between the actual frequencies fi j and the ex-
pected frequencies êi j (Eq. 1). Sieve Diagrams [8] plot fi j as sieves
in Mosaic Displays of êi j to show how both deviate from each other.
Sieves with smaller holes represent higher associations. A recent ap-
proach was proposed for exploring proportions in multivariate cate-
gorical data [27]. It adopts the layout of Parallel Sets, but depicts the
proportionality of relationships between the categories instead of fi j.

Intermediate representations Correspondence Analysis [3]
(CA) projects the categories to points in a 2D space, spanned by the
two most contributing factors of the χ2 statistic, in a way similar to
Principal Component Analysis [19]. A higher association between
categories of the same class positions their points closer together, in
a way similar to multidimensional scaling [24]. The approach can also
accommodate additional categorical dimensions [9]. However, with a
growing number of categories, the plot becomes more difficult to read.
It lacks an intuitive structure as its axes bear no interpretable seman-
tics. Johansson et al. [18] and Rosario et al. [33] proposed methods
for quantifying categorical data based on CA. The quantified data can
then be visualized using scatter plots or parallel coordinates. How-
ever, the latent numerical variables used for the quantification are not
always easy to interpret.

The dot-based Contingency Wheel uses deviation representations
for the cells as dots along the radial dimension. Like many approaches
for dealing with large data [6, 29, 38] it uses data reduction to handle
tables having a large number of rows. Also, it employs alpha blending
to reveal overlapping, as done by other approaches for dealing with
similar issues [7, 17, 22]. In contrast, Contingency Wheel++ employs
a frequency-based approach to abstract large data, as used by many
other techniques [15, 21, 32]. Also, it makes use of interactive visual
analytics techniques to enable the exploration of individual data items.
As the use case illustrates, asymmetrically-sized tables with a small
number of columns (≤ 30) and thousands of rows can be handled ef-
ficiently by Contingency Wheel++ without filtering the data.

6 CONCLUSION

Contingency Wheel++ employs novel visual analytics methods that
address the major shortcomings of the original dot-based wheel for
visualizing and discovering patterns in large categorical data. It im-
proves on the computational component by introducing an association
measure based on Pearson’s residuals to alleviate the bias in the asso-
ciation measure originally used. It eliminates the scalability and read-
ability limitations caused by overlapping dots, by using a frequency-
based abstraction that shows distributions rather than individual enti-
ties. Finally, it offers a multi-level overview+detail interface to explore
individual entities that are aggregated in the visualization or in the ta-
ble along with their attributes. The use case demonstrates how these
methods can be used to find nontrivial patterns in large categorical
data, and how further attributes can be analyzed in separate views or
by coloring the histograms in the wheel visualization.

Future work aims to conduct comparative user studies to assess the
effectiveness and efficiency of Contingency Wheel++, and to apply it
to different real-world domains. Also, we are exploring further mea-
sures of associations and column similarities. Finally, we are investi-
gating the applicability of our approach to other problems having sim-
ilar data structures, such as point-set memberships or the class proba-
bilities computed by a fuzzy classifier for a large number of samples.
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