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Abstract In recent years, the analysis of dynamic network data has become an
increasingly prominent research issue. While several visual analytics techniques
with the focus on the examination of temporal evolving networks have been
proposed in recent years, their effectiveness and utility for end users need to be
further analyzed. When dealing with techniques for dynamic network analysis,
which integrate visual, computational, and interactive components, users become
easily overwhelmed by the amount of information displayed—even in case of small
sized networks. Therefore we evaluated visual analytics techniques for dynamic
networks during their development, performing intermediate evaluations by means
of mock-up and eye-tracking studies and a final evaluation of the running interactive
prototype, traceing three pathways of development in detail: The first one focused
on the maintenance of the user’s mental map throughout changes of network
structure over time, changes caused by user interactions, and changes of analytical
perspectives. The second one addresses the avoidance of visual clutter, or at least
its moderation. The third pathway of development follows the implications of
unexpected user behaviour and multiple problem solving processes. Aside from
presenting solutions based on the outcomes of our evaluation, we discuss open and
upcoming problems and set out new research questions.

M. Smuc (�) • F. Windhager • L. Zenk
Department for Knowledge and Communication Management, Danube University Krems,
Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
e-mail: michael.smuc@donau-uni.ac.at; florian.windhager@donau-uni.ac.at;
lukas.zenk@donau-uni.ac.at

P. Federico • W. Aigner • S. Miksch
Institute of Software Technology and Interactive Systems, Vienna University of Technology,
Favoritenstrasse 9-11/188, 1040 Vienna, Austria
e-mail: federico@ifs.tuwien.ac.at; aigner@ifs.tuwien.ac.at; silvia@ifs.tuwien.ac.at

W. Huang (ed.), Handbook of Human Centric Visualization,
DOI 10.1007/978-1-4614-7485-2 25, © Springer ScienceCBusiness Media New York 2014

623

mailto:michael.smuc@donau-uni.ac.at
mailto:florian.windhager@donau-uni.ac.at
mailto:lukas.zenk@donau-uni.ac.at
mailto:federico@ifs.tuwien.ac.at
mailto:aigner@ifs.tuwien.ac.at
mailto:silvia@ifs.tuwien.ac.at


624 M. Smuc et al.

1 Introduction

The analysis of dynamic network data has become an increasingly important
research field with promising application areas in different real-world domains,
including the analysis of organizational knowledge and collaboration networks [25].
As the temporal dimension is adding a new level of complexity, the demand on
computational methods—and the cognitive efforts for their users—are even higher
than they are in static network analysis anyway [7, 33].

While several visual and computational methods addressing the examination
of temporally evolving networks have been proposed in recent years, their effec-
tiveness and utility for end users needs to be further analyzed. Considering the
increasing complexity and the novelty of all these methods, adopting participatory
design strategies can be beneficial. These strategies can help to improve the methods
and particularly their application to real world scenarios [4, 35] by bringing users’
needs and experiences into the development process. Moreover, by analyzing
users’ preferences and performances when dealing with such methods in specific
scenarios, it is possible to gain insights that might be applicable in a more general
context.

Following this approach, we evaluated a visual analytics method for dynamic
networks along its development process. First, we performed an intermediate
evaluation by the means of mock-up studies and second, we conducted a qualitative
evaluation of the final interactive prototype.

In the following sections, we want to discuss related work, summarize insights
gained by a mock-up study, give an overview of the main results of the prototype
evaluation, highlight examples for pathways of (participatory) development and
design and bundle the outlined issues into conclusions and future research questions.

1.1 Related Work

While several methods for the visualization of static networks have been proposed
in Graph Drawing [11], Information Visualization [20], and Data Mining [10]
communities, the interactive visual analysis of networks evolving over time is
an emerging research field. Besides the choice of a visual representation for
the relational data (e.g. node-link diagrams or matrix-based representation), an
important issue for time-varying networks is the appropriate visual encoding of
the temporal dimension [2]. At least four different approaches exist: animation
[16], superimposition [5], juxtaposition [3]; and two-and-a-half-dimensional view
[6, 12]. But finding an adequate visual encoding for the time dimension is not
sufficient to solve the issue of visualizing dynamic networks. Another important
aspect is to obtain a sequence of diagrams that facilitates the perception of changes,
by preserving the user’s mental map [13]: it must minimize unnecessary changes
while emphasizing temporal trends or patterns. An early formulation of the problem
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is sketched by [33], while [7] discuss it systematically from a graph drawing
perspective. Several computational methods, which descend from Social Network
Analysis (SNA) [45], can be integrated into visualizations. A common approach is
to compute some static SNA metrics associated to nodes and edges and then encode
them to a chosen visual variable or exploit them to perform dynamic filtering [34].

To test prototypes in the field of visual analytics, various methods for empirical
user studies were discussed in recent years. Especially in the visual analytics
community, the usage of highly standardized quantitative methods (see [4]) was
criticized of being too rigid resulting in artificial results [14]. Therefore more
qualitative approaches were favored [22, 39, 40]. Methods which allow to gain
insights into which problems occur and why they occur [27] should also engage
users to “search to learn” and show real behavior instead of using simple “lookup
tasks” [28]. Another necessary step to avoid artificial results when covering users’
exploration process [41] is to use real world data with context [47]. Therefore
the selection of expert groups who have to deal with (often ill-defined) real-data
is favored by some authors [21, 23]. A rather novel trend to analyze exploration
behavior when using visual methods is to analyze exploration focusing on the
multiple ways of problem solving processes of the users [30].

1.2 Visual Analytics Methods

The prototype at hand is aimed at the examination of dynamic social networks and
has been designed and implemented on the basis of a visual analytics approach [15].
It features the integration of visual, analytical and interactive techniques, led by
some basic perceptual principles, and it is tailored for small longitudinal network
datasets (up to 50 nodes), manually collected by the means of questionnaires
(discrete time domain). Even though it is definitely far from being of general
applicability and covering all recent developments in the field, its integration
of some different techniques provides us the opportunity to observe how users
exploit, alternate between, or combine them for the means of visual network data
exploration.

The visualization is based on node-link diagrams, and three ways to map
the temporal dimension into it leads to three different views: juxtaposition (JX),
superimposition (SI) and two-and-a-half-dimensional (2.5D) view.

The JX view (see Fig. 1) is obtained by mapping time to space (the horizontal
temporal axis), i.e. by placing the diagrams of different time-slices side by side.
It applies the principle of small multiples [43] and allows the reader to directly
compare the time-slices. Coordinated zooming and panning and coordinated high-
lighting further facilitate comparison.

The data which is shown by the dynamic network visualizations in this report—
and which was shown in all empirical studies we refer to—is a real world data set,
which covered eight different relations of knowledge communication structures at
a university department [48] with four time steps and 33–34 nodes per time point
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Fig. 1 Juxtaposition view (JX)

(38 in total). Relational questions included content related and technical advice,
intensive collaboration, awareness of individual knowledge, knowledge substitution,
discussion of new ideas and suggested communication that should be intensified.

The SI view is obtained by superimposing the node-link diagrams (see Fig. 2).
It can be described as mapping time to a visual variable, namely the transparency,
which is employed to differentiate between time-slices, so that more recent elements
are more opaque. It requires less screen space than the previous view, but is affected
by more visual clutter and occlusion. To reduce these problems, at first only nodes
are shown to reduce occlusion and visual clutter, but edges can be displayed on
demand.

In the 2.5D view (see Fig. 3), diagrams for each time-slice are drawn on separate
transparent planes, stacked along the horizontal time axis, orthogonally. It can
be seen as the mapping of time to an additional spatial dimension, along which more
information can be displayed, as described in the following. 3D zooming, rotating
and panning controls allow the user to set the best viewpoint.

In order to preserve the user’s mental map and provide a common context for
the interactive exploration of the three views, they are built upon a consistent spatial
metaphor, which also drives smooth animated transitions between them (see Fig. 3):
the sheets, on which the diagrams are drawn, are stacked upon each other in the SI
view, then translated alongside the time axis in the JX view, and finally rotated by
90ı around their vertical axes in the 2.5D view.

As for the layout of the node-link diagrams (i.e. the way nodes are arranged), the
prototype adopts a continuously running force-directed layout that also ensures the
preservation of the mental map over different time slices. The user can interactively
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Fig. 2 Superimposition view (SI)

control the amount of preservation: a simple slider in the Graphical User Interface
(GUI) allows users to select stability (maximum mental map preservation) or
consistency (independent layouts) and to pass from one to the another through
stepwise transitions (see Fig. 1 at the bottom).

An integrated SNA computational component provides the calculation of SNA
metrics on demand (e.g. different types of centralities). In this way the user can
interactively select a certain SNA metric to be computed for a certain type of relation
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Fig. 3 2.5D view

s/he is interested in; the entire temporal multi-relational network is partitioned into
as many static single-relational networks as time-slices consist and the requested
metric is computed for each of them. Then the resulting values are encoded to visual
variables within the visualization (color and size of nodes) for each time-slice, or
they are shown in a numeric form within a tooltip when the user hovers a node.

Besides the dynamic layout, with its user-controlled stability, the prototype at
hand features other interaction techniques to facilitate the exploration of dynamic
networks: a specific interaction technique to highlight a given node and its con-
nections; and the on-demand visualization of node trajectories, by which users can
focus on specific nodes and track their evolution. In the 2.5D view, for example,
trajectories run along the spatial dimension dedicated to time. Shading different
colors along the trajectory of a given node shows how its values for a certain metric
vary over time. In this way, the results of analytical methods are integrated directly
into the main visualization of the network, aiming to enable the user to examine its
relational and temporal aspects simultaneously without any additional diagram.

1.3 Overview

To match the described features with the needs of the intended user group, the
development process of the prototype at hand crossed six main stages, with three
of them bringing user expectations, evaluations and participatory elements into play
(marked with a star below):
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1. Assessment of the State of the Art,
2. User and Task Analysis*,
3. Design,
4. Mock-up Study*,
5. Implementation, and
6. Prototype Evaluation.*

While a initially executed user and task analysis had the function to bundle
state of the art options on the targeted group of users and align possible features
with their real world tasks and needs (see [15, 48]), the next section focuses on
the participatory part of a mock-up study on dynamic network layouts, while the
following sections will turn towards the empirical results of the implemented feature
evaluation.

2 Mock-Up Study

The aim of the mock-up study was to test three early sketches of non-interactive
dynamic network visualizations (one JX view and two versions of SI views) on
their comprehensibility, visual design and utility.

2.1 Study Design

Therefore we conducted an experiment with a sample size of 38 participants,
including 10 experts (with at least 2 years SNA experience) and 28 non-experts
in the field of social network analysis. Each participant was tested individually
for about an hour and had to solve four open tasks as well as four pre-defined
tasks. These tasks were similar to the tasks 2–7 used in the evaluation study (see
Table 1) and their thinking aloud and viewing behavior were observed, recorded
and analyzed.

Our real world data on two time points of knowledge communication at a
university department was firstly visualized in a JX view. The network structure
of the two layers differed, since it was computed for each network with a medium
stability-consistency balance. This also applied to the first variant of a SI view,
in which the two layers were displayed as stacked overlay and the nodes were
additionally connected by trajectories over time (see Fig. 4). We will refer to this
view as comet plot. In the second SI view (to be referred to as SPOCC plot—Stable
POsitions, Color Coded), nodes kept a fixed position over time, but the relations and
nodes were color coded on their temporal attribute: red for relations or nodes only
existent in timepoint 1 (t1), green for relations or nodes appearing in timepoint 2
(t2) and blue for relations or nodes that were constant over t1 and t2 (see Fig. 4, on
the right hand side).
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Table 1 Mock-up study plan

# Task Material Minutes

Introduction and calibration Slides 50

1 Open task 1 network (static) 50

2 Open task 2 networks (JX) 50

3 Open task 2 networks (comet plot) 50

4 Open task 2 networks (SPOCC plot) 50

5 Pre-defined task Individual vs. structure 2 � 30

6 Pre-defined task Dynamics (JX) 2 � 30

7 Pre-defined task Dynamics (comet plot) 2 � 30

8 Pre-defined task Dynamics (SPOCC plot) 2 � 30

9 Interpretation task All networks so far 30

10 Derived countermeasures All networks so far 30

11 (Only non-experts) pre-defined task Individual vs. structure 2 � 30

12 Pre-defined task Dynamics (JX) 2 � 30

11 Post questionnaire All networks 100

Planned Total Time — �660

Fig. 4 Closeups of two variants of a superimposition (SI) view (see also http://www.smuc.at/
cometandspocc/): comet plot (left hand side) and SPOCC plot (right hand side). While the comet
plot shows relations of time point t1 in orange and t2 in blue, it allows certain shifting of the
nodes due to the consistency of the temporarily changing network structure and its force-directed
visualization by the chosen spring embedder layout. In contrast, the SPOCC plot holds all node
positions stable, but codes temporal changes with the colors green (nodes or ties which emerged at
t2), red (nodes or ties which vanished after t1) and blue (nodes or ties present at both time points)

The analysis of visual information processing is necessary to examine how users
gain insights into network visualizations. In this study, we used an eye tracking
technology to analyze on which parts users focused to understand the network. To
examine visual information processing, eye tracking technology provides a means
to observe a viewer’s point-of-gaze (e.g., [36]). In the past, eye tracking focused
mainly on scene perception and reading under laboratory conditions [18, 36]; only
in the last years, applications in more everyday settings [30] became possible with
the emergence of more usable technology.

Central eye-movement measures are fixations and saccades. Saccades are shifts
from one point of gaze to another; fixations indicate visual attention to that

http://www.smuc.at/cometandspocc/
http://www.smuc.at/cometandspocc/
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information [36]. In scene perception, top-down and bottom-up influences control
where one looks [18, 46]. Bottom-up influences are stimulus-driven, whereas top-
down influences are viewer-driven. Bottom-up influences are mainly based on the
visual salience of the stimulus, i.e., color, saturation, and [28]. Top-down influences
on the other hand are a viewer’s knowledge about the stimulus, his or her domain
knowledge, and his or her goals [18]. Another top-down influence is the viewer’s
domain knowledge [9] showed that due to their higher knowledge on possible
configurations experts in chess can easier create chunks of information.

Eye movements were recorded using an SMI iView X™ RED eye tracker at a
temporal resolution of 60 Hz. It tracks the corneal reflection of the pupils and allows
relatively free movement of the head when seated approximately 60 cm from the
tracking device. As it allows eye tracking with glasses and contact lenses, a wide
range of participants could be included. Each participant was tested individually.
After an explanation on the purpose of the study, the functionality of the eye
tracking device was explained to the participants. The device was calibrated using a
nine-point-calibration. Participants viewed the scenes on the 1700 computer screen,
integrated in the eye tracking device. The experimenter was seated next to the
participant with a control screen of the participant’s gazes to intervene, if the gaze
was lost by the eye tracking system.

Think aloud notes were used to study the participants’ problem solving strategies
and to gain deeper insights about their exploration behavior. Using this method,
we logged participants’ interaction, tracked their eye movements, observed their
behavior, and asked them to think aloud during the experiment. We integrated these
data sources, segmented them according to the tasks, and documented the users’
success levels.

Eye tracking data were analyzed with BeGaze™ analysis software from SMI.
We segmented the recordings based on single tasks and extracted the fixations
(number and duration) and saccades (number and amplitude). To analyze the visual
attention given to highly informative regions, the scenes were coded in accordance
to predefined Areas of Interest (AOIs) similar to [19], dependent on the tasks [24].

The Mock-up study plan (see Table 1) consisted of four large parts: An
introductory/calibration phase, four open tasks session with a static network and the
three different mock-ups where participants were allowed to explore the networks
freely while thinking aloud and get familiar with the visualizations and the GUI
(task 1–4). Then the users had to solve and interpret a pre-defined set of tasks, from
rather basic tasks up to more complex structural analysis (task 5–12). Finally, in
the post questionnaire, user could provide additional feedback, discuss problems
and suggest improvements (if they had not done it before). This test plan consisted
of two slightly varying variants of network data the mock-ups were based upon to
avoid rigor in the visualizations. The results for the two variants were merged for
the following analysis and for the eyetracking results.
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2.2 Study Results

Overall, the feedback from participants was promising that dynamic network
visualizations can be made comprehensible with such graphs and allowed for further
fine tuning and interactive enrichment of at least two out of three variants. All
participants were able to comprehend the JX view fast and easily, even the non-
experts. The comet plot was the most difficult to comprehend, only some experts
caught the concept behind this visualization at a first glance, without an explanation
how to read the graphs. Many of the non-experts asked for an explanation and
some of them could not utilize the structural visualization in the intended way. The
SPOCC plot was easier to understand, but suffered from visual clutter to a high
extent.

We will come back to these user problems, eyetracking results and resulting
design decisions in a more detailed manner further down (see section about visual
clutter).

3 Prototype Evaluation

The qualitative prototype evaluation was conducted to evaluate the prototype’s
usability and the comprehensibility of the different views and interaction techniques,
and to cover users’ exploration process [41].

In contrast to the mock-up study described above, the sample consisted of nine
experts who work in the field of social network research as pre- and postdocs, mainly
as computer scientists or as graph theorists plus another computer scientist from
the visual analytics field. None of the participants had prior knowledge about the
prototype or has been tested in the mock-up study.

In the first phase of this study, the prototype was presented to the participants
in an interactive session together with an instructor. Participants were encouraged
to explore the functions of the prototype, ask questions, give feedback about the
prototype’s usability and express their ideas and suggestions for improvement. In
the second phase, they had to solve seven tasks, which were derived from [1] and
were selected on the basis of our experiences with the mock-up study (see Table 1).

These tasks (see Table 2) included lower-level activities like the identification and
comparison of the relations of a single node at two time points as well as higher-
level activities [29] like the description of structural group changes over time. In the
first task participants were allowed to use all prototype functions and views freely.
In all other tasks they were compelled to work with a preselected initial view. In
the third and last phase, participants were asked to summarize their impressions and
give additional feedback.

The material consisted of the same real world data set we used in the mock-
up study (as proposed by [21, 23]), except that we used four instead of two time
steps. The verbal comments and a screen cast were recorded during all phases—
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Table 2 List of tasks for the prototype evaluation. The tasks were named according to the scheme
proposed by Ahn et al. [1]

Task name Task description Predefined settings

T1: Network—Growth Has the total density of the
network increased or decreased
from t1 to t2?

Open

T2: Group—Stability Which groups/clusters do you
detect? How do they change?

JX

T3: Node/Link—Growth Had Leonard (Le) more relations
at t1 or at t2?

JX C SNA

T4: Node/Link—Single
Occurency

Please identify the outdegree of
actor Hans at t3

JX C SNA C tooltip

T5: Node/Link—Growth Please identify the change
(increase/decrease) of Ines’
eigenvector centrality (from
t1 to t4)

2.5D C SNA C single
trajectory

T6: Node/Link—Birth Death Who has joined / who has left the
network (causing relational
consequences)?

2.5D C SNA C all
trajectories

T7: Node/Link—Peak/Valley Are there significant shifts of
single actors from cores to
peripheries or vice versa?

SI

which lasted about 1.5 up to 2 h in total. Notes were taken by an observer during
these sessions. These notes were jointly analyzed by a team of three usability
experts who were also part of the testing-team. The notes were segmented in single
observations, which were categorized and counted as presented in the following
section. First we want to present an overview about users’ feedback and observed
problems during the introduction phase, later we will describe our main insights that
derived from task analysis.

3.1 Evaluation Results

The evaluation results are structured as a matrix, with the main visual, computational
and interactive features of the prototype as rows and columns (see Fig. 5).

The feedback was segmented into 255 distinct observations, which were catego-
rized as problems (118), positive feedback (45) and ideas for improvement (109).
It has to be noted that similar observations were counted multiple times, so that we
could identify 155 unique observations in total.

To give an overview we will focus mainly on areas in which many observations
have been made, leaving bugs and too specific implementation issues aside. In all
views, many participants stated that the transitions are too slow, although the idea to
maintain the mental map by transitions yielded consistently positive feedback. In the
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Fig. 5 Frequency of observations which feature problems (red, left hand side of each column),
positive feedback (green, center of each column) and ideas for improvement (blue, right hand side
of each column)—which could be identified for all views, for single views (i.e. SI-, JX-, and 2.5D
view) and for the GUI itself

case of the highlighting feature, participants recommended additional interactions
to make comparisons easier by highlighting more than one node at a time.

SNA measures of nodes like centralities were always double coded by size and
by color in the prototype. Many users expressed the wish to have more freedom in
selecting how these measures are displayed, and they preferred to use their favorite
color palette. This applies for the relations too, where different types of relations
should be visualized by different visual features like color or line style.

Concerning the main views, the juxtaposition view (JX) was rated as the most
comprehensible by users comments and we detected the least problems in this view.

In the superimposition view (SI), participants mainly struggled following transi-
tions and dealing with visual information overload. We will describe these problems
in detail in a later section.

For the 2.5D view, users reported navigational problems as being too slow, not
responsive enough and they missed an immediate feedback of the prototype when
they zoom, pan or rotate. Most users suffered from perspective distortion when
comparing node sizes and they mentioned legibility issues since the node labels
and tool tips were distorted to a high extent in the two middle layers. Many users
also mentioned a visual information overload as soon as many of the (too boldly
styled) trajectories were displayed in 2.5D view.

Regarding the GUI, most users reported serious problems in understanding some
of the labels, especially those of the dynamic views. Seven of eleven users reported
(all of them no native English speakers) comprehension problems for the naming
of the views (mainly “Superimposition” and “Juxtaposition”), two proposed to use
icons instead of names. Only one person made sense of all the chosen view names.
When dealing with user feedback seriously, this could be also seen as a hint that
the untested transfer of technical terms (here: from the InfoVis community) via
a prototype to an audience without that specific domain knowledge could have a
negative impact on usability.

Aside this summary of problem oriented feedback, all users focused on imple-
mentation and in general, nearly all participants expressed a remarkably positive
assessment of the prototype in their overall summary.
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Table 3 List of tasks for the prototype evaluation. The tasks were named according to the scheme
proposed by Ahn et al. [1]

Task mean
(stddev) T1 T2 T3 T4 T5 T6 T7 Overall

Correctness % 62 (51.75) 100 (�) 100 (�) 88 (35.36) 100 (�) 88 (35.36) 88 (35.36) 89
Confidence % 40 (53.45) 75 (46.29) 100 (�) 100 (�) 100 (�) 71(48.79) 71 (48.79) 80

3.2 Task Completion Analysis

We used two indicators to assess the effectiveness of our prototype’s features
in supporting users to solve assigned tasks: correctness and confidence. The
correctness is defined as the conformity of user’s answer to the answer we obtained
by numerical methods and, for certain tasks, also by our previous knowledge of
the real-world network at hand. The confidence differentiates between affirmative
certain answers, and uncertain answers expressed in vague forms (e.g. “I would
say”, “I guess”, “I am not sure”). We disregarded the task completion time, because
we were more interested in the reasoning process, and asked users to think aloud
and explain how they conceived the answer rather than to give the fastest answer.

The overall correctness of the answers was 89% (see Table 3). Half of the
incorrect answers were given to task 1, but they might be ascribed to the task
openness (without any default settings of the view and other parameters) and to
the fact that it was intrinsically hard to solve, demanding the detection of a very
slight variation of the network density. As for the confidence, 82% of the correct
answers overall were also certain answers, with the highest value for task 3 and task
5, and the lowest also in this case for task 1.

As a general conclusion, we observed that most of the users were able to provide
correct, complete and confident answers for task 2 to task 7 (see Table 3), mostly
by using the combination of visual, analytical and interactive options we had set,
with noticeable exceptions and unexpected behavior that we discussed (see section
about multiple problem solving strategies). For some users, their performances on
given tasks also affected their initial preference about a given view, for example
some users initially were skeptical about the 2.5D and the SI views, but changed
their mind after they realized they had been able to solve task 6 and task 7 by using
them.

4 Pathways of Development

To illustrate how the process of prototype development was related to participatory
aspects and the results of the final evaluation outlined above, we want to use this
section to trace some pathways of development in detail. The first one will be
referred to as maintenance of the mental map, the second one as avoidance of visual
clutter, and the third one is following the implications of multiple problem solving
and unexpected user behaviors.
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4.1 Maintenance of the Mental Map

Within the context of dynamic network visualization the general visualization
principle of “preserving the mental map” [32] predominantly refers to the challenge
that the layout randomness, which is introduced by random steps of spring
embedder algorithms, has to be brought under control. Starting with network data
of a given time point, force directed layout algorithms usually generate node-
link arrangements, that are driven by the overall aim of stress minimization (or
majorization). This procedure reliably reproduces global patterns like clusters or
local configurations like node neighbourhoods, but still could be realized by infinite
specific detail arrangements, all solving the overall equation of stress minimization.
This means, that even two instances of a barely evolving network tend to look
quite different—if no further methods of layout preservation take care for visual
comparability.

To still allow for the visual analysis of network dynamics, the spring embedder
layout of a second instance has to be coordinated with the first layout solution, so
that the mental map, which a user generates when viewing the first instance, could be
preserved and leveraged to also analyze (stabilities or changes) within the second
or third instance. Hence the sequence of layouts of the different instances of an
evolving network has to provide a minimum amount of graph stability, whereas
structural changes and the shifting of single nodes (due to a consistent layout
solution at a certain time point) should not be overly suppressed. This means that
an appropriate trade-off between inter-time stability and layout consistency has to
be found [38]. The solution which was implemented in the prototype at hand allows
the user to control this balance by herself—depending on the data and tasks which
are at hand [15].

Beyond that solution, the basic requirement of maintaining mental network maps
was generalized and pursued as an overall aim for all cases of interactions, which re-
arrange the structure of a node-link diagram. This led to the implementation of three
kinds of methods which maintain the mental map within the linked view architecture
of the (superimposed, juxtaposed or 2.5 dimensionally stacked) time panels of each
dynamic view:

• Maintain the mental map over time: aside the dynamic layout control mentioned
above, a continuously running real-time layout provides smooth structural
transformations after all kinds of user triggered structural changes.

• Maintain the mental map throughout user interactions: implemented methods
include the coordinated highlighting of single nodes or neighbouring nodes after
hovering a node on any panel (i.e. the visual linking of the same nodes at different
time points), as well as coordinated positional shifts after dragging & dropping
nodes on a single panel.

• Maintain the mental map amongst the three different views: a feature of smooth
transitions was implemented, which allows for animated transits from one view
to the other.
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The basic idea of this general line of development was evaluated considerably
positive. Suggested improvements were mainly addressed to detail or implementa-
tion issues like the speed of the continuous layout, the duration of its re-stabilization
or of the transitions between views. Still the continuously provided visual inte-
gration and visual feedback, which arises from the combination of (A) and (B)
was consistently rated positively. The highlighting function was appreciated for
connecting different instances of evolving nodes or patterns across the time layers—
hence helping to strongly reduce visual work. When the mock-up-study showed that
finding the same node on other layers was quite time consuming (even in spite of the
given layout stability), the prototype feature of linked highlighting (red for the focal
node, hovered on any layer, yellow for all neighbouring nodes) solved this problem
entirely.

Similarly, the method of smooth transitions between different views was consis-
tently rated as supportive for the understanding of the operational principles of the
different dynamic views. On the one hand, the way how the display architecture of
a view is working, could be inferred just from observing the smooth transitions and
how layers are visibly re-arranged. As one participant of the prototype evaluation
put it, in the case of being new to the tool, the transitions could save hours to be
spent with reading a manual otherwise. On the other hand, several subjects pointed
out, that this feature should be made optional for the purpose of daily use, where
the mental maps of all views already would have been successfully deployed. Aside
these functional evaluations, the transitions of the tested prototype version were
rated as being too slow for efficient use.

By analysing strategies adopted by users to solve the assigned tasks, we conclude
that the techniques implemented to maintain the mental map were in general
working effectively. For example, considering the mental map preservation amongst
views (C), we looked at task 3, 4 and 5. These three tasks have a sub-task
in common, namely finding a certain node by visually inspecting the network.
Predefined settings provided JX view for task 3 and task 4, and 2.5D view for task
5. Even if we have not explicitly measured the task completion time, the ‘finding’
sub-task resulted to be much harder in 2.5D, because of perspective distortion of the
node-link diagrams, according to users’ oral feedback. We observed that some users
reminded the position of the user to be found in task 5 from previous explorations in
a different view, and this supports the idea that not only the mental map, but also the
learning curve is somehow preserved amongst views. Moreover, one user switched
to the JX view to find the requested node, and then back to the 2.5D to track its
temporal evolution; this observation suggests that the mental map is also preserved
when switching views for solving subtasks of a more complex task.

4.2 Avoidance of Visual Clutter

For static node-link diagrams, there is no a priori criterion for determining topo-
logical or geometric properties, but several “good” layout approaches have been
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proposed based both on computation and comprehension aspects [36]. Much
research is based on optimizing the graph layout to enhance perception and compre-
hension [17] like minimizing edge-crossing, preserving symmetry, minimizing edge
bends, minimizing edge length. There is also a research trend focused to optimize
consumability of huge networks [44].

Techniques to avoid clutter for static graphs are a pressing issue even for small
dynamic networks with 30–50 nodes since dynamics could multiply the information
to be displayed by time steps and relations over time. In the following section
we want to describe our efforts and insights at some decisive points during the
development process.

With the help of the mock-up study, we wanted to gain first insights into how the
perception of visual clutter (for a definition see [37]) can be influenced by different
layouts and where comprehension or interpretation problems arise if information
was hidden or compressed to reduce clutter. As described earlier, we used only two
time steps for the construction of the mock-ups and about 35 nodes—but even in this
case participants frequently reported clutter problems (“There are so many lines, I
can’t see anything”).

Our approach consisted of two analysis stages: At stage one, we collected
some basic behavioral indicators that have a relation to visual clutter, answering
questions how easy a single node can be found, how easy its number of relations
can be compared and how cognitively demanding this comparison process was. This
behavioral data was analysed by using data of users viewing behaviour with eye-
tracking methods. On the second stage, we looked for more subjective measures
and analysed users feedback and their reported problems. In contrast to the first
stage, also more complex tasks like structural analysis could be taken into account
and presumably more top-down processes in users cognition were involved.

Based on some selected results of the eye-tracking data, we want to provide a
first overview about the viewing behaviour of our participants with emphasis on
visual clutter. We selected a task where the relational dynamics of the actor Leonard
(Le) should be analyzed (see Table 1, tasks 6–8) for the three mock-ups with three
different network questions. We choose one of the simplest, least demanding tasks
to analyse effects of clutter on a near to perception level and to be able to include
non-experts who had no problem to solve these basic tasks. Another advantage to
select simple tasks for this analysis was that all participants used the same strategy
to solve this task (see next section).

The first sub-task was to find the actor Leonard within the node-link diagram (see
Table 4). For this and further analysis, we used a subset of the test sample consisting
of experts and non-experts (n D 18), leaving out the group of involved participants
to prevent biases caused by the usage of previous knowledge.

Interestingly, the median duration to find Leonard with the help of the JX and
SPOCC plot were similar and higher than in the comet plot. Possible explanations
could be that the JX plot is small sized, since two separated networks require more
space than two merged networks. The SPOCC plot has less lines, but the coloring
might be responsible to have caused some distraction, since there is evidence from
other graph based eyetrackinb studies that lines are mainly ignored during the search
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Table 4 Amount of time to find Leonard (n D 18); medians for experts non-experts

Median duration to 1st fixation
on Leonard in milliseconds

Median number of fixations
needed to find Leonard

JX 3,043.0 12.5
SPOCC 3,457.5 12.0
Comet plot 1,693.0 7.0

Table 5 Glance durations on the Area of Interest (AOI) around Leonard in
milliseconds (Sum of fixation duration on node Leonard and Leonard’s direct
neighbourhood), n D 18

JX left JX right JX summed SPOCC Comet

Median 4,535.2 6,326.7 8,702.5 7,577.7
Mean 6,762.4 8,059.8 11,189.3 11,427.2
stddev 5,125.1 5,536.2 7,624.8 10,318.9
Sum 237,155.2 179,029.5 182,835.8

process [26]. The comet plot might be the one where the actors are most salient,
since the comet tails emphasize the nodes visually. A problem with this analysis
could have been learning effects, but it has to be noted that the participants had the
chance to become acquainted with the layouts and have seen and analyzed similar
structures in previous tasks.

After the users had found Leonard, the next sub-task was to compare Leonard’s
connections for two time points. To gather insights into the effort needed for this
sub-tasks, we summed all fixation durations on the node Leonard or Leonard’s direct
neighbourhood.

The SPOCC and the comet plot showed only small differences in the descriptive
statistics compared to the JX plot. At the JX plot, mean durations at one AOI were
clearly shorter which is a positive result for the readability of the network. This
finding is also in line with users feedback. To make a fair comparison, we have to
sum the left AOI and the right AOI in JX plot to compare the sub-tasks with the
other plots (see Table 5, row at the bottom). In summary, the amount of time needed
to solve the sub-task is clearly higher for the JX plot, possibly due to the additional
effort to close the lateral gap (see also Fig. 6, upper plot).

In Fig. 6 a comparison of the scan paths for each plot is shown—on the left the
original plots, on the right the same plots with paths overlaid. The thick red lines
denote the saccades or jumps of the eye, red blobs denote fixations and the size
of the blobs their duration. In the upper plot (JX plot), there are three main visual
attractors: actor Leonard on the left side and on the right hand side and the legend on
the lower right corner. Concerning the fact that the legend is frequently used—which
is a typical viewing behaviour when viewing graphs [42]—interestingly, only the
legend on the right side was used. Most of the smaller red blobs are short fixations
during the initial scanning for the label “Leonard”. During this scanning process,
both networks where scanned to find Leonard, but all of the 18 participants have
first fixated the AOI of Leonard on the left network.



640 M. Smuc et al.

Fig. 6 A comparison of JX plot (upper figures), SPOCC plot (middle figures) and comet plot
(lower figures). On the left hand side, the original plots are displayed, on the right hand side,
scanpaths are shown as overlays. Red lines denote scan paths, blobs the fixations and blob’s size
the fixation duration. The paths of the first half of the group of participants is shown (n D 9), since
the plots for the other half differed slightly to vary the experimental condition

As noted earlier, the size of the red blobs indicates the fixation duration, which
is also a marker of cognitive effort [24]. We analyzed also the fixation duration
statistically, since “a longer fixation duration indicates difficulty in extracting
information, or it means that the object is more engaging in some way.” [36]. We
have found significant differences between the three mock-ups, for experts as well
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Table 6 Median fixation
duration in milliseconds Experts Non-experts

JX plot 318.0 378.0
SPOCC plot 330.0 318.0
Comet plot 252.0 278.0

as non-experts: statistics showed shortest durations for comet plot and with a clear
difference to the two other plots (experts: c2 (2, N D 720) D 12.54, p D 0.002;
non-experts: c2 (2, N D 530) D 9.19, p D .01), longer durations for both SPOCC
and JX plot (no significant difference for experts c2 (1, N D 488) D .23, p D .63,
but significantly shorter durations when non-experts used the SPOCC plot: c2 (1,
N D 388) D 4.12, p D .042). In Table 6, the median fixation durations are presented,
with indicators for the demand of more cognitive effort for SPOCC and JX plot.

To sum up the results of eye-tracking data, the comet plot seems to have
some advantages over the two other plots when used for simple, very elementary
tasks. Especially for the SPOCC plot we found hints for its high visual density
(corresponding to high cognitive requirements) during the scanning process (sub-
task 1) and sub-task 2.

In the second analysis stage, we also assessed think-aloud notes and feedback
from the participants about their impressions when working with the three mock-
ups: For the comet plot (see Fig. 4 for a zoomed view, left hand side) overlay
problems were reported frequently: One problem arises when a node doesn’t change
its position over time. In this case the node at t1 (orange circle, see Juliette) was
hidden by the node at t2. This kind of projection problem was difficult to grasp
since it was unclear where the orange relations belonged to and was mentioned by
many users. Users also reported that in case the node changed its position over time,
some relations at t1 got masked by the trajectories. It has to be noted that, as stated
earlier, users also frequently reported to have general comprehensibility problems
and needed more time to figure out how to interpret the dynamics than in the other
layouts.

Regarding the mock-up of the SPOCC plot (see Fig. 4, right hand side),
users frequently reported problems to follow the coloring scheme. The aim of
color-coding was to avoid visual clutter by using colors to compress information.
Exemplarily we presented only one blue relation instead of two relations if the
relation was stable. But color-coding gets easily difficult when used in network
dynamics. For example, if A relates to B in t1 (orange) and B relates to A in t2
(green), we have to display two relations (or define a new color for it, and this is
not the only combination). For this mock-up we decided to overlay such relations
with some transparency (alpha D .7), but many users mentioned that it is stressful to
deal with these “brownish lines”. An example where an orange and a green line are
mixed can be found in Fig. 4 (right hand side) with one of Juliette’s relations coming
nearly vertically at 1 o’clock from top. Users had to find the arrows to decompose
the direction. These findings, the knowledge that more time points will make the
whole topic even more complex, and the observation that many non-expert users
had difficulties to find structural changes by color based macro-reading led to the
decision to close this branch of development.
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From a design point of view, we gained the impression that users easily get into
problems with clutter in SPOCC plot but also the comet plot, where many users
reported to have troubles to understand the visualization at first glance and solve
more than basic tasks. So we identified color coding of ties to visualize dynamics
as a dead end road concerning the design decisions of the mock-up study, since
it worked neither for simple nor for complex tasks. Regarding the indicators of
movements with tails or trajectories, we decided to rework the visualization. For
prototype implementation, where interaction components can help to reduce clutter,
we therefore recommended the strict motto to hide as much information as possible
and make it available on demand only. But how much and which information can
and should be hided to be beneficial and where are the drawbacks?

In the final prototype evaluation, the superimposition view—initially displayed
with temporal trajectories like the comet plot, but without relations—got reasonable
positive feedback regarding clutter by many experts at first sight. However, some
of them stated that this reduced view does not provide enough information to be
interpreted safely since no relational information is available. Hence they are forced
to rely on movement information alone, which was seen as a general drawback of
this visualization. The interaction feature to highlight and show previous temporal
relations on demand, was therefore highly welcome for most participants, but seen
as too limited, since there was no opportunity for multiple selection.

To sum up the participative design of the SI view, both strategies—to show too
much or too little relations—have been criticized due to specific advantages and
disadvantages. As color coding of ties turned out to be very difficult to be used
for differentiating temporal dynamics only additional interaction methods will be
able to deliver the basis for a user-controlled solution. Such methods would help to
control the current amount of complexity to be shown (from no relations up to all
relations), as well as continuously adjustable node highlighting (from single nodes
and their relations up to multiple node selections), as well as various graph lenses
[5]. In our view, these methods will have to be combined and further fine tuned to
meet users full acceptance.

By providing this description how to deal with visual clutter, we wanted to
provide some insights about the difficulties, possibilities, and limitations to find
appropriate pathways through the methods and design space in the realm of dynamic
network analysis by the means of empirical user feedback during the development
process.

4.3 Multiple Problem Solving Strategies

Concerning the collected data of the final prototype tests, we analyzed the think-
aloud audio recordings and the prototype interaction screencasts, using a catego-
rization scheme during observation to extract information how their interaction
is related to their insights and categorizing the different solution strategies for
every task. This is comparable to the work of [31], who used a similar procedure
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with insights analyzing open tasks. We found interesting empirical results besides
correctness and confidence of users’ answers: we noticed multiple problem solving
strategies spanning both tasks and users, pointing out relevant differences in either
the alternative or the combined use of several prototype features.

The first empirical result refers to the integration of visual and analytical methods
and their balance. When addressing task 1, that was the toughest to accomplish and
registered the lowest correctness, most users looked for or asked for an analytical
method directly providing the numeric answer (that was actually missing, since the
given SNA component computes only node-level measures so far, and does not
provide any network-level measure such as density). Also for task 6, one user said
that a binary table would have helped her in tracking nodes’ presence more than any
visualization. Conversely, we noticed an opposite and unexpected behavior for task
3 and task 4. Task 3 required to compare the degree of a given node over time, and
these values are mapped to the color and size of nodes, by default settings; task 4
required to find the out-degree of a given node at a given time, and this value pops
out as a numerical tooltip on mouse over, by default settings. By analyzing these
tasks, we observed that some users disregarded the analytical hints and preferred
to find the (out-)degree just by counting the adjacent nodes, with the help of the
highlighting interaction. This observation would lead us to infer that users prefer
to visually solve those tasks they think they can manage, and to have recourse to
analytical methods for harder tasks. It is worth noting that for task 4 users who
counted were as confident as users who looked at the numeric tooltip, but the former
were less often correct than the latter. The analysis of task 5 showed us another
interesting user behavior: after finding the sign of the variation of the eigenvector
centrality by looking at the provided visual mapping of the analytical value (color
and size of the trajectory), some users rotated the 2.5D view or switched to the JX
view in order to verify whether the network topology was compliant and confirmed
the answer they gave.

Another interesting result, which we found from the analysis of the task
completion procedures, concerns the recourse to different views to solve the same
task. For task 6, for example, we provided a predefined setting with the 2.5D view
and all trajectories activated. Most users solved the task looking at the interruptions
of trajectories (an interruption on the left side indicates a node who has joined
the network, an interruption on the right side indicates a node that has left the
network, and an interruption in the middle of two trajectory segments indicates
a short leave). In answering the second part of the task, about the relational
consequences of these changes, some users switched forth and back to other views,
while others kept on using the predefined view and 3D navigation. For task 7,
some users switched from the predefined SI view to the 2.5D view, where they
looked at the slopes of trajectories to investigate movements of nodes. In Fig. 7
we can compare the exploration strategies of two subjects dealing with task 1. This
figure not only shows a temporal view of the interaction logs (i.e. which views and
which interactions were used or performed and when), but also task lengths and
occurrences of insights. In this context, an insight is meant as a guess, a partial
answer (in the sense of knowledge-building insights; see [8]), or any additional
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Fig. 7 Interaction graph for task 1 of the prototype test. While the first two rows show task
duration (gray, row T) and occurred insights (light yellow, row R), rows 3–5 show the usage of
the main views (SI D blue D row V1, JX D green D row V2, 2.5D D red D row V3), whereas the
remaining rows show the usage of different interaction and exploration techniques

remark. In particular, the first two rows show the task duration (gray) and the
sequence of insights (light yellow). Then, the following three rows correspond to the
three views: superimposition (blue), juxtaposition (green), and 2.5D (red). Finally,
remaining rows show the sequence of different types of interactions: transition
between views (purple), 2D navigation (light green), 3D navigation (light blue),
change of layout stability (pink), highlighting nodes and/or their trajectories (light
purple), computing an SNA metric (orange), and showing additional details in the
info area or in the tooltip (light orange). Comparing the exploration behavior of
these two subjects, namely Subject A (top) and Subject B (bottom), we see that A
was faster, used as few interactions as possible and solved the task straightforwardly.
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Conversely, B seemed to exploit task 1 to play with the tool, exploring most of its
views and interactions. It is worth noting that both were possible expected behaviors,
given the openness of the first task.

In Fig. 8 we compare the exploration strategies of the same pair of subjects
dealing with tasks 2–7. While the correctness of answers is the same (100%) and
completion times are similar, we can identify very different patterns of interaction
and few similarities. Overall, we note that subject A switched views quite often,
while subject B never changed the pre-defined view that was offered by the
experiment setup. Moreover, A never performed 3D panning or rotation, which were
used quite often by B; conversely, A made an intensive use of the tooltip while B
used it very seldom. Nevertheless, there is a similarity in the layout adjustment,
which was performed by both users only for task 2 (clusters and their stability) and
task 7 (shifts from core to periphery).

Looking in detail at specific tasks, we also find more differences than similarities.
When dealing with task 2, for example, subject A started the analysis at a local
level with a lot of 2D zooming and panning and then some layout adjustments,
while subject B set the layout at first and then analyzed the network at a global
level, during a long visual reasoning phase without any interaction, besides some
highlighting in the end. For task 4 (node outdegree), both subjects had the same
interaction pattern, but with a difference: A gave an answer only after reading the
SNA value in the tooltip, while B counted highlighted nodes and gave the correct
answer, then used the tooltip to confirm it. Tasks 5 and 6, whose predefined view
was the 2.5D, also showed differences: subject A explored the view by highlighting
nodes and trajectories, while subject B navigated it in the 3D space. For task 5, in
particular, we can see as both subjects launched an SNA computation, but A looked
at the numeric value in the tooltip, while B looked at its visual mapping (as explained
above).

In general, considering all subjects of our study, we found that the different views
complement each other, and the ‘best’ view does not depend only on the data and
task, but also on users, who might have different strategies even if they belong
to a homogeneous group with a common background. Furthermore, even a single
user dealing with a single task, might find beneficial switching from one view to
another to ensure the correctness and/or the completeness of her insights. Similarly,
for many tasks there is no perfect choice between only visualization (node-link
diagrams) and only computation (numbers and tables), but the best choice is to
integrate both of them to support the visual analytics reasoning process. This
approach enables the user to exploit his/her preferred problem solving strategy at
best and to gain complex insights from a multifaceted methods approach to network
analysis. A possible disadvantage is that beginners might choose a wrong way, and
in more complex cases training might be needed to help them switching to the fastest
and most accurate strategy, but in general flexibility and multiple options seem to
be beneficial.
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Fig. 8 Interaction graph for the tasks 2–7 of the prototype test
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5 Conclusions and Future Research Questions

We have presented the main results of the evaluation of a visual analytics approach
to dynamic network analysis. After the description of the features of the existing
prototype, we provided insights into its participatory development process and
focused on the results of a final prototype evaluation. The main contribution of this
approach is to be seen in its consistent focus on users of visual analytics methods as
one of the crucial factors for a method’s utility and success in real world tasks and
data scenarios.

In case of the prototype we examined, this evaluation approach provided a fine
grained matrix, showing specific strengths, weaknesses and further development
suggestions. Aside from technical implementation issues, the continuation of the
outlined issues is obvious following three main strands we have pointed out:

Maintenance of the mental map: as a general aim, the extended preservation of
the analysts mental map is to be seen as one of the major challenges for future
developments of complex visual analytics methods and technologies. The aim is
to free the analysts cognitive capacities from visual efforts of searching, matching
or navigating, but focusing it earlier on intended tasks of pattern analysis and
exploration. Still, as our results show, the control of the amount of mental map
maintenance should be made optional for the purpose of daily use, where it could
have also been already successfully deployed as cognitive scripts and schemes.

Avoidance of visual clutter: from our empirical results, visual clutter turned
out to be a decisive aspect when developing visualizations for dynamic network
analysis, even for smaller networks and a small number of time points. For color-
coding of temporal aspects we could not derive a satisfying and sustainable solution.
Interactions could be of help to avoid cluttering, but they have to be carefully aligned
with users interactions patterns and exploration behavior. Extended interaction
techniques might include lens techniques or other smart interactions to open up
more space for all that ink that temporal visualization requires.

Multiple Problem Solving Strategies: we observed many different problem
solving strategies in a small group of subjects, sharing the same skills and coping
with the same task on the same data. In particular, subjects made different
recourse at either visual or computational methods. From this observation, we can
preliminary infer that a seamless integration of several views and computations in
a consistent framework seems to give better results than optimizing the design of a
single technique. As a result, we want to advocate the implementation of multiple
problem solving options and methods into complex information visualization tools
and technologies, for only this strategy seems to be able to cope with the diversity
of future users and their (evolving) tasks.
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