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Abstract—The visualization and analysis of dynamic social
networks are challenging problems, demanding the simultaneous
consideration of relational and temporal aspects. In order to
follow the evolution of a network over time, we need to detect not
only which nodes and which links change and when these changes
occur, but also the impact they have on their neighbourhood
and on the overall relational structure. Aiming to enhance the
perception of structural changes at both the micro and the macro
level, we introduce the change centrality metric. This novel metric,
as well as a set of further metrics we derive from it, enable the
pairwise comparison of subsequent states of an evolving network
in a discrete-time domain. Demonstrating their exploitation to
enrich visualizations, we show how these change metrics support
the visual analysis of network dynamics.

I. INTRODUCTION

The visual analysis of dynamic social networks is an emerg-
ing research topic. While several methods, both computational
and visual, have been proposed for, and applied to, static
networks, there is still the lack of a well-established set of
methods supporting the analysis of the evolution of a network.

Simple tasks for analysing the network evolution are the
examination and comparison of single occurrences of nodes
or links over time, as well as the identification of birth, death
and replacement events. Complex tasks require the analysis
of compound features, like the shape of change or the rate of
change not only at the node level, but also at the group and
network level [1].

If complex tasks are challenging, because they demand the
simultaneous consideration of temporal and relational aspects,
simple tasks might also be hard to solve, even when dealing
with relatively small networks. While the visualization of
animated graphs has been proposed as an effective technique
to support the visual analysis of dynamic networks [2], its real
effectiveness has been disputed. In certain cases, for example,
static depictions have been shown to be most effective in
visualizing trends [3]. In both cases of animation and static
visualization, the perceptual phenomenon known as change
blindness might occur [4], hampering the detection of changes
without specific visual cues. But which types of visual cues are
more suited for dynamic networks, and which level of detail
or abstraction should they have? One possibility is to highlight
all single changes of nodes and links between two subsequent
time steps [5]; another one is to compare some structural
metrics and visualize their trend over time [6]. The former
option points out each and every single change, with the

disadvantage that, for large and dense networks, they might be
too many and difficult to understand from a global perspective;
the latter only provides aggregated structural metrics, that lack
local details and might hide certain changes. For example, if
we only look at the variation of the degree centrality of a
certain node, we might not see any change of its relationships
if the number of added links is equal to the number of deleted
ones; similarly, if we look at the variation of the betweenness
centrality or the closeness centrality we might not see any
change if they are symmetric. Conversely, the highlighting of
an appearing or disappearing link between two nodes might
not help the analyst to understand the impact this change has
on the connectivity of the overall structure.

In order to properly support the visual analysis of dy-
namic networks, enhancing the perception of changes with
an appropriate balance of detail and abstraction or, in other
words, combining micro and macro features, we introduce the
change centrality metric. Also an adequate dynamic layout
for node-link diagrams can enhance the perception of change
[7]. But while showing relevant changes, it has to minimize
unnecessary changes, in order to support the preservation of
the user’s mental map [8]. As a secondary contribution of this
paper, we show how the change centrality can be exploited to
optimize a dynamic layout.

II. RELATED WORK

While several static metrics have been defined and are
widely used for Social Network Analysis (SNA) [9] and Data
Mining [10], dynamic metrics are a relatively new research
field. In recent years several extensions of existing static
metrics to the dynamic case have been proposed as well as
new dynamic ones. The time-scale degree centrality has been
defined as an extension of the static degree centrality that takes
into account both the presence and duration of links [11]. Ler-
man et al. [12] introduce an attenuation factor to the link du-
ration and on this basis define a centrality metric for dynamic
networks. By modelling social interactions as temporal events
and taking into account when they occur, Berger-Wolf and
Saia [13] introduce a framework consisting of several metrics
for the analysis of dynamic social networks. Other approaches
consider the time series of static centrality metrics measured
over subsequent time windows (e.g. daily or monthly), and
compute basic statistics [14], [15]. In general, new metrics
have been proposed for multidimensional networks, in which



the attributes of nodes and links chosen as dimensions are
not necessarily referring to time, but for example to the type
of relation in multi-relational networks. Berligerio et al. [16]
extend the degree centrality from the monodimensional to
the multidimensional case and introduce new metrics, namely
dimension relevance, dimension connectivity and dimension
correlation. Brodka et al. [17] define a cross-layer degree, that
is an aggregated node centrality measure across the relations
of a multi-relational network.

Most of the above mentioned attempts to combine relational
and temporal aspects have the same shortcoming: these two
aspects are considered sequentially during the computation,
and not simultaneously. Either a relational feature (e.g. degree)
is computed for each time point, and then analysed over
time (summed, averaged, compared), or a temporal feature is
considered (duration, attenuation), and then used to compute
a structural metric. Conversely, we aim for a dynamic metric
that compares two subsequent time steps taking into account
both change events and their relational consequences.

III. COMPUTING CHANGES IN DYNAMIC NETWORKS

To address the limitations of existing approaches discussed
above, we propose a novel metric for dynamic networks,
discuss its properties and meaning, and provide the algorithm
for its computation. Furthermore, we introduce a set of derived
metrics and show their application to a small exemplary case.

A. Change centrality

Given a discrete-time dynamic network G = G(V, E,T),
a node ¢+ € V and two time points ¢; and ¢, we define the
1-step change ratio:
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where N¢(i) = {j € V : di(i,5) = 1} is the set of nodes
connected to node ¢ in one step at time ¢, where d; (i, j) is the
geodesic distance between node ¢ and node j at time ¢. Thus,
the 1-step change ratio of node ¢ at time ¢, ¢5 is defined as the
ratio between the cardinality of the symmetric difference of
the sets of 1-step neighbours of node ¢ at ¢; and ¢, and their
union. It can also be seen as the ratio between the number
of links added and removed and the number of links added,
removed, and remained:

B added 4+ removed
" added + removed + remained
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Considering the example network of Figure 1, node B keeps
its links to A and C, but looses its link with D; it looses one of
its three connections, then its 1-step change ratio is % Node
D and E loose all their connections, then their values of 1-step
change ratio are both 1. Nodes A and C do not encounter any
change, then their values are both zero (see also Table I).

It is worth observing that the 1-step change ratio is the
complement to 1 of the Jaccard similarity index (J) [18],
defined as the ratio between the intersection and the union:
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We name it change ratio because its value is minimum and
equal to zero when there is no change in the 1-step neighbours
of the node 7 from ¢; to ¢y, and it is maximum and equal to 1
when all the neighbours change. Additionally it is symmetric:
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Now, let us generalize it considering the neighbours reach-
able in n steps. Given a node ¢ € V' and two time points ¢;
and to, we define the n-step change ratio of ¢ between ¢; and
t22
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where NJ'(i) = {j € V : di(i,j) = n} is the set of nodes
connected to node 7 in n steps at time ¢. In particular, for
n = 0, by noting that d;(i,i) = 0, we obtain NP (i) = i.

Finally, we define the change centrality (CC) of node i
between time points ¢; and to as a linear combination of all
the n-step change ratios:

Cotl,tz (’L) = Z AnTy,tp (Z)
n=0

where e; = maxye 4, +,} €(4) is the maximum eccentricity of
node ¢ and a,, are linear coefficients.

The change centrality of a node is a measure of the
change of its connections over time, taking into account its
adjacent nodes, the adjacent nodes of the latter and so on. The
weight of changes of near and far neighbours depends on the
coefficients of the linear combination. By choosing coefficients
that decrease with n, the changes of farther neighbours will
contribute less to the total measure. In particular, if we put

1\n+1
an = (3)" . because of the convergence of the sum of
the geometric series we will obtain a rational-valued, non-
negative, normalized metric:
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Thus, the change centrality of a given node will be equal to
zero if no changes have occurred in the connected component
that node belongs to. It will have a value greater or equal to
0.5 if the node is present in only one of the two time steps
considered. It will get closer to 1 if the latter is true and the
network diameter gets larger.

Considering the network of Figure 1 and the corresponding
values of the change centrality (Table I), we observe that the
nodes with larger values of change centrality are D (which is
present in only one of the two time steps) and E (which looses
all of its connections). B has an intermediate value, since it
looses one out of its three 1-step neighbours. A and C are the
nodes with the lowest change centrality, because they have
changes only in their farther neighbours.

The change centrality is a centrality metric in the sense
that it measures how central a node is with respect to the
network changes, taking into account whether the node itself
has changed (appeared/disappeared), whether its neighbours
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Fig. 1. Example of a dynamic network at two subsequent time steps (¢1, ¢2).

TABLE I
VALUES OF CHANGE METRICS FOR THE DYNAMIC NETWORK OF FIG. 1

1-step change ratio
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have changed, and the ratio between stable and changing
neighbours. Moreover, it reflects increasing and decreasing
connections, but also zero-balance replacements, that might
have little effect on the overall network structure, but are
important when analysing ego networks. Furthermore, it gives
a measure of how local changes affect far nodes. Taking
into account these aspects, the change centrality is a node-
level metric that combines local and global features, from a
relational as well as from a dynamic perspective.

B. Change eccentricity, radius, and diameter

Considering the definitions of the previous section, we
derive additional measures of change at both the node and
the network level. Given a node ¢ € V' and two time points
t1 and to we define the change eccentricity of ¢ between t;
and to:

B, 4,(i) =min{n:r} , (i) #0}

that can be seen as the geodesic distance between node ¢ and
the nearest occurring change. Its value is equal to zero if the
node itself has changed (appeared/disappeared), and increases
as ¢ gets farther from changes. We put it equal to —1 (to
represent infinite distance) if no change has occurred in the
set of nodes reachable from i. Analogously to the classic
node eccentricity, we define two integer-valued network-level
metrics on the basis of the change eccentricity, change radius

and change diameter:
Rtl,tz = m.in Et17t2 (Z) Dtl,tz = Inax Etl’tQ (Z)
1 (2

The change radius is equal to zero if at least one node has
appeared or disappeared, it is equal to 1 if only links have

changed. The change diameter is a measure of the localization
of change within the network: the more locally concentrate the
change is, the larger the change diameter is. Both, the change
radius and the change diameter are set to —1 if no change has
occurred within a connected network.

We can also define a stable center for each time step, as
the set of all the nodes that have a change eccentricity equal
to the change diameter:

St17t2 = {7’ ev: Et17t2(i) = Dtlth}

In Table I we show the values of change eccentricity, change
diameter, change radius, and stable center for the simple
dynamic network of Figure 1. Node D is the node where the
change is localized: its change eccentricity, i.e. its distance
from the change, is zero, that is also the change radius of the
network. Nodes B and E are close to the disappearing node,
so their change eccentricity is equal to 1. Nodes A and C are
2 steps far from the change, so the value for both is equal to 2.
As this is the maximum value, it is also the change diameter
and identifies these nodes as the stable center of the network.

C. Algorithm

The change centrality (CC) for all the nodes of a graph G
between ¢1 and {2 can be computed by using the following
algorithm:

ChangeCentrality(G, t1,12)
for i € V(Gy2) do
if i € V(Gy) then

cC; =0
else

CcCc; =1
end if

for all j € [1..diameter] do
Ui ={v eV :duli,v) =j}U{v €V i da(i,v) = j}
Ni; ={v €V :du(i,v) =j}N{v €V : dpa(i,v) = j}
if {J;; # 0 then
CCiH = (‘U”
end if
end for

end for
return [CC]
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IV. VISUALIZING CHANGES IN DYNAMIC NETWORKS

In this section we discuss how the metrics we have intro-
duced above can be visually exploited for identifying changes,
comparing subsequent time steps and detecting temporal
trends; in other words, how these metrics can support the
visual analysis of dynamic networks.

We will use a research prototype software, ViENA [19],
based on a visual analytics paradigm. Visual Analytics can be
seen as an integrated approach combining visualization, human
perception and cognition, and data analysis [20]. According
to this paradigm, ViENA combines interactive visualizations
with a computational kernel, that provides several static and
dynamic SNA metrics as well as the change measures we



introduce in this paper. As for the visualization, we refer
to three views: in the juxtaposition view, node-link diagrams
of different time points are placed side by side (Fig. 2);
in the 2.5D view, the diagrams are drawn upon transparent
parallel planes, stacked along the horizontal axis (Fig. 3);
in the superimposition the diagrams are overlaid, links are
omitted but node trajectories are emphasized using arrows and
transparency (Fig. 4).

The presented change measures can enrich the visualization
and supporting visual reasoning and analysis. In detail, we
show how they can be: (1) mapped to node size and colour,
to facilitate the identification of changes and the comparison
of network structures over time; (2) taken into account for the
computation of an optimized dynamic layout.

The dataset we use is a real-world dynamic multi-relational
network consisting of 38 employees of a small organiza-
tion and their professional relationships (e.g., acquaintance,
communication, advice, collaboration), collected by 4 surveys
during 14 months [21]. Since the analysis of multi-relational
networks is out of scope of this work, we only refer to and
visualize mono-relational networks extracted from this multi-
relational dataset.

A. Node size and colour

A typical way to enrich a node-link diagram by using
computed node attributes is mapping them to the sizes and the
colours of nodes. Figure 2 is a juxtaposition view of node-link
diagrams in which nodes are coloured and sized according to
their values of change centrality. Since the change centrality
is computed for each pair of subsequent time steps and is
symmetrical, we chose to map its values in the visual features
of the second time step of each pair; hence, the visual features
of nodes for each time step express what has changed with
reference to the previous one, while they are neutral for the
first time step of the sequence. In this way, nodes that are
present in only one time step of a pair are treated differently:
new nodes (present only in the second time step of a pair) are
highlighted, while dead nodes (present only in the first time
step of a pair) are not. For highlighting dead nodes, we can
change the perspective and map analytical values to the visual
features of the first time step of each pair. In any case, because
of our choice of the linear coefficients for the calculation
of this metric, the new/dead nodes are visually prominent.
At the same time, having chosen a logarithmic scale for the

t1 ¢ t2 - t3

Fig. 2. Change centrality mapped to node size and colour in a juxtaposition
view. Larger green nodes have encountered more changes in their connections
from the previous time step. Smaller blue nodes are more stable.

mapping of analytical measures to visual features, it is also
possible to identify smaller differences due to changes in the
far neighbours. On an overview level, we can observe that
more nodes join the network at ¢3 than at other time steps,
but at ¢3 there is also a group of nodes in the middle-bottom
of the diagram that are less affected by change (and appear
smaller and blueish).

Besides identifying appearing/disappearing nodes and com-
paring global changes between subsequent time steps, we
might be interested to track the amount of change a given
node encounters over time. To solve this task, we can use the
2.5D view and map the change centrality to both the colour
and the thickness of node trajectories. In Figure 3, looking at
the colour shading along the trajectory of a selected node, we
see how its change centrality varies over time, being maximum
at t3 (green shade).

t1 ( t2 3 t4

Fig. 3. Change centrality mapped to thickness and colour of a node trajectory
in a 2.5D view. The selected node has encountered more changes in its links
at time t3 (trajectory is more green and thicker) than at other time steps.

B. Dynamic layout

The computation of a good layout is a crucial issue for
the visualization of node-link diagrams, because of the per-
ceptual prominence of position amongst all visual variables.
In the case of dynamic networks the problem is even more
demanding, since the layout has to change enough to reflect
the evolution of the network, but not too much in order to
not confuse the user. This problem, well known in the fields
of graph drawing and visualization, related to enhancing the
perception of changes while preserving the mental map [8].
Several methods have been proposed for solving this problem
and Brandes at al. [22] group them in three main approaches:
aggregation, anchoring, and linking. With aggregation, node
positions are fixed, while in the latter cases, node positions
change according to the network evolution, to a certain extent.
Finding an optimal value for this extent is also an issue.
Moreover, empirical studies have shown that the optimal
amount of preservation of the mental map depends on the
data and the task [23], [24].

In our previous work [19], we have adopted a linking
approach combined with an interactive technique to enable
the user to continuously control the stability of the layout.
But this solution, as well as other methods based on linking



and anchoring approaches, has the limitation that the default
amount of displacement is the same for all nodes.

In this perspective, the change centrality metric can be
useful to optimize the dynamic layout. After having computed
the values of change centrality for the nodes of a network, we
use them to tune the displacements between time steps in our
dynamic layout.

All visualizations introduced in the figures above are ob-
tained with this optimized dynamic layout, but its advantages
are particularly clear if we consider a superimposition view
(Figure 4). Looking at the length of the arrows composing
node trajectories, we see the displacement of nodes across
subsequent time steps. In the dynamic layout computed with-
out the change centrality optimization, they all have the
same length. In the one computed with the change centrality
optimization, the length are different and reflect the actual
relational changes of each node. In this way the layout
provides not only a better overview of the network evolution,
but also specific details of which nodes encountered larger
changes and when.
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Fig. 4. Two superimposition views of the same network: a) dynamic layout
without change centrality optimization - the extents of node displacements
are all the same; b) dynamic layout with change centrality optimization - the
extents of node displacements correspond to the amounts of change in their
connections.

V. CONCLUSION AND NEXT STEPS

We have presented a set of novel metrics for the visual anal-
ysis of dynamic networks. Aiming to enhance the perception of
change and the gaining of both overview and detailed insights
on the network evolution, we have mapped these metrics to
size and colour to enrich interactive visualizations based on
node-link diagrams. Furthermore, we have shown how they
can be taken into account for the computation of optimized
dynamic layout. As future work, we plan to conduct user
studies in order to evaluate the usability and the utility of these
metrics to support different types of visual analytics tasks with
different types of datasets.

ACKNOWLEDGMENT

Our research is funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (FFG 820928) and
supported by the Laura Bassi Centre for Visual Analytics
Science and Technology - CVAST (FFG 822746).

(1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

REFERENCES

J. Ahn, C. Plaisant, and B. Shneiderman, “A task taxonomy of network
evolution analysis,” Tech Report HCIL-2011-09, Apr. 2011.

J. Moody, D. McFarland, and S. BenderdeMoll, “Dynamic network
visualization,” Am. J. Sociol., vol. 110, no. 4, pp. 1206-1241, 2005.
G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko, “Effec-
tiveness of animation in trend visualization,” TVCG, vol. 14, no. 6, pp.
1325 -1332, 2008.

L. Nowell, E. Hetzler, and T. Tanasse, “Change blindness in information
visualization: A case study,” in Proc. of the IEEE Symposium on
Information Visualization (INFOVIS). Washington, DC, USA: IEEE
Computer Society, 2001.

J. Branke, “Dynamic graph drawing,” in Drawing Graphs, ser. LNCS.
Springer, 2001, vol. 2025, pp. 228-246.

M. Pohl, F. Reitz, and P. Birke, “As time goes by: integrated visualization
and analysis of dynamic networks,” in Proc. of the working conf. on
Advanced visual interfaces (AVI). New York, NY, USA: ACM, 2008,
pp. 372-375.

C. McGrath and J. Blythe, “Do you see what I want you to see ? the
effects of motion and spatial layout on viewers perceptions of graph
structure,” JOSS, vol. 5, 2004.

P. Eades and W. Lai, “Preserving the mental map of a diagram,” in
Proc. of the Int. Conf. on Computational Graphics and Visualization
Techniques (COMPUGRAPHICS). Elsevier, 1991.

S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

C. C. Aggarwal, Social Network Data Analytics, 1st ed.
Publishing Company, Inc., 2011.

S. Uddin and L. Hossain, “Time scale degree centrality: A time-variant
approach to degree centrality measures,” in Int. Conf. on Advances in
Social Networks Analysis and Mining (ASONAM),, 2011, pp. 520 —-524.
K. Lerman, R. Ghosh, and J. H. Kang, “Centrality metric for dynamic
networks,” in Proc. of the Workshop on Mining and Learning with
Graphs (MLG). New York, NY, USA: ACM, 2010, pp. 70-77.

T. Y. Berger-Wolf and J. Saia, “A framework for analysis of dynamic
social networks,” in Proc. of the ACM SIGKDD int. conf. on Knowledge
discovery and data mining (KDD). New York, NY, USA: ACM, 2006,
pp- 523-528.

D. Braha and Y. Bar-Yam, “From centrality to temporary fame: Dynamic
centrality in complex networks,” Complexity, vol. 12, no. 2, pp. 59-63,
2006.

M. Pohl and S. Diehl, “What dynamic network metrics can tell us
about developer roles,” in Proc. of the int. workshop on Cooperative
and human aspects of software engineering (CHASE). New York, NY,
USA: ACM, 2008, pp. 81-84.

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi,
“Foundations of multidimensional network analysis,” in Int. Conf. on
Advances in Social Networks Analysis and Mining (ASONAM), 2011.
P. Brodka, K. Skibicki, P. Kazienko, and K. Musial, “A degree centrality
in multi-layered social network,” in Int. Conf. on Computational Aspects
of Social Networks (CASoN), 2011, pp. 237 —242.

P. Jaccard, “The distribution of flora in the alpine zone,” The New
Phytologist, vol. 11, no. 2, pp. 37-50, 1912.

P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk, “A visual
analytics approach to dynamic social networks,” in Proc. of the Int. Conf.
on Knowledge Management and Knowledge Technologies (i-KNOW).
New York, NY, USA: ACM, 2011.

D. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, “Challenges
in visual data analysis,” in Int. Conf. on Information Visualization, 2006.
P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk, “Visual
analytics of dynamic networks - a case study,” in The Int. UKVAC
Workshop on Visual Analytics (VAW), 2011.

U. Brandes, N. Indlekofer, and M. Mader, “Visualization methods for
longitudinal social networks and stochastic actor-oriented modeling,”
Social Networks, to appear.

H. C. Purchase, E. Hoggan, and C. Gorg, “How important is the “mental
map”?: an empirical investigation of a dynamic graph layout algorithm,”
in Proc. of the I4th int. conf. on Graph drawing (GD).  Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 184-195.

P. Saffrey and H. Purchase, “The “mental map” versus “static aesthetic”
compromise in dynamic graphs: a user study,” in Proc. of the conf. on
Australasian user interface (AUIC). Darlinghurst, Australia: Australian
Computer Society, Inc., 2008, pp. 85-93.

Springer



