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3Universiẗat Augsburg, Lehrstuhl Softwaretechnik und Programmiersprachen
86135 Augsburg, Germany

4Dutch Institute for Healthcare Improvement CBO
Churchilllaan 11, 3527GV Utrecht, Netherlands

5University of Nijmegen, Institute for Computing and Information Sciences
Postbus 9010, 6500GL Nijmegen, Netherlands

6Vienna University of Technology, Institute of Software Technology
Favoritenstraße 9-11/188, A-1040 Vienna, Austria

October 21, 2005

Abstract

ObjectivesDuring the last decade, evidence-based medicine has given rise to

an increasing number of medical practice guidelines and protocols. However, the

work done on developing and distributing protocols outweighs the efforts on guar-

anteeing their quality. Indeed, anomalies like ambiguity and incompleteness are

frequent in medical protocols. Recent efforts have tried to address the problem of

protocol improvement, but they are not sufficient since they rely on informal pro-

cesses and notations. Our objective is to improve the quality of medical protocols.

∗This work has been done in the framework of the EU project Protocure (IST-2001-33049 – Protocure,
Improving medical protocols by formal methods). Seehttp://www.protocure.org/ (last accessed 1
October 2005).

†corresponding author
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ApproachThe solution we suggest to the problem of quality improvement of

protocols consists in the utilisation of formal methods. It requires the definition of

an adequate protocol representation language, the development of techniques for

the formal analysis of protocols described in that language and, more importantly,

the evaluation of the feasibility of the approach based on the formalisation and

verification of real-life medical protocols. For the first two aspects we rely on ear-

lier work from the fields of Knowledge Representation and Formal Methods. The

third aspect, i.e. the evaluation of the use of formal methods in the quality improve-

ment of protocols, constitutes our main objective. The steps with which we have

carried out this evaluation are the following: (1) Take two real-life reference pro-

tocols which cover a wide variety of protocol characteristics; (2) Formalise these

reference protocols; (3) Check the formalisation for the verification of interesting

protocol properties; and (4) Determine how many errors can be uncovered in this

way.

ResultsOur main results are: a consolidated formal language to model medi-

cal practice protocols; two protocols, each both modelled and formalised; a list of

properties that medical protocols should satisfy; verification proofs for these proto-

cols and properties; and perspectives of the potentials of this approach. Our results

have been evaluated by a panel of medical experts, who judged that the problems

we detected in the protocols with the help of formal methods were serious and

should be avoided.

Conclusions We have succeeded in demonstrating the feasibility of formal

methods for improving medical protocols.

Keywords: Medical Protocols, Medical Guidelines, Modelling of protocols, Veri-

fication of protocols, Formal Methods
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1 Introduction

During the last decade, evidence-based medicine has given rise to an increasing num-

ber of clinical practice guidelines and protocols1. Medical guidelines are “systemati-

cally developed statements to assist practitioners and patient decisions about appropri-

ate health care for specific circumstances” [1]. They provide clinicians with health-care

recommendations based on valid and up-to-date empirical evidence. In this way, guide-

lines facilitate the spreading of high-standard practices that otherwise would have much

less impact. Moreover, it has been proved that adherence to guidelines and protocols

may reduce health-care costs up to a 25% [2].

A high number of medical guidelines have been published in the literature and on

internet, making them more accessible. However, the work done on developing and dis-

seminating guidelines far outweighs the efforts on guaranteeing their quality. Indeed,

anomalies like ambiguity and incompleteness are frequent in medical guidelines [3].

Furthermore, guidelines can be inconsistent because of the lack of familiarity of the

designers with certain principles and notations. These problems preclude the effective

application of guidelines, and hinders their potential benefits.

Recent efforts have tried to address the problem of guideline quality improvement.

The medical community has sought to organise and integrate guidelines into compendi-

ums, to make them more accessible, usable and comprehensible. With the aim of en-

suring a high degree of quality, the organisations promoting these initiatives have also

set minimal standards for the inclusion of guidelines and protocols in the compendi-

ums. These standards take into account, for instance, the relevance and validity of the

sources employed in their development. We believe that these approaches are not suf-

ficient, since they rely on informal processes and notations. As a result, many practical

guidelines and protocols still contain ambiguous, incomplete or even inconsistent ele-

ments. Even when such ambiguity is intentional, in order to allow for differences in

organisational or personal practice, it is important to state this explicitly.

An appropriate representation language, with clear and well-defined semantics,

would enable the systematic verification of guidelines and protocols by formal meth-

ods. In addition, unlike the post-dissemination activities mentioned before, this ap-

proach would make quality improvement possible during the early stages of develop-

ment. Research from the fields of Computer Science and Artificial Intelligence can be

of help in both the definition of an adequate representation language and the develop-

1Although the terms protocol and guideline differ (the term protocol is in general used for a specialised

version of a guideline), in this paper we use them indistinctively.
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ment of techniques for the formal analysis of guidelines. The representation language

must give means to represent, explicitly and in a non-ambiguous way, the relevant

knowledge about guidelines and protocols. Based on the formal semantics of this lan-

guage, the analysis techniques should allow for the determination of consistency (no

contradictions) and correctness (objectives are satisfied).

Taking this into account, the solution we suggest to the quality problem of cur-

rent guidelines and protocols relies on the utilisation of formal methods. Currently,

protocols are described using free text, flowcharts and/or tables. Our proposal con-

sists in translating these informal descriptions into a formal language, with the aim of

analysing different protocol properties. In order to assess the feasibility of this novel

approach, we have carried out a case study in the formalisation and verification of

medical protocols. Throughout our case study we have shown not only that medical

protocols can be expressed in terms of logic, but also that they can be subject to formal

verification. Even more, we have demonstrated that both formalisation and verification

can serve to detect critical flaws in existing protocols. Indeed, the idea of improving

medical protocols by formal methods has shown to be both feasible in practice and

useful.

This paper reports on the different phases and results of our case study. The struc-

ture of the paper is as follows. Section 2 describes our approach in terms of the steps we

have carried out. The structure of the paper follows these steps. We start with the selec-

tion of the case studies in section 3. Section 4 discusses the modelling of the selected

cases in a special-purpose knowledge representation language, namely Asbru. We give

the formal underpinning of Asbru in section 5, such that we are able to formalise our

protocols in a logic in section 6. We identify a number of properties of guidelines and

give their formal counterparts (section 7). We then report on the verification results in

section 8, and continue with the evaluation thereof by a team of experts (section 9).

Section 10 contains related work, and finally section 11 concludes and discusses future

challenges.

2 Methodology

Our approach to solve the quality problem of medical guidelines and protocols relies

on the use of formal methods. The activities through which we have carried out the

assessment of this approach are the following:

1. Choose two real-world reference protocols which cover a wide variety of char-
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acteristics.

2. Formalise these reference protocols.

3. Check the formalised protocols through the verification of medically relevant

protocol properties.

An evaluation of the obtained results has been carried out with the help of a panel

of domain experts. The experts have categorised the uncovered errors according to

their criticality, ranging from serious errors to trivial ones. In this way, the detection

of either a serious error or several trivial ones can be considered as a success of our

project.

The formalisation of medical protocols can be tackled at different degrees. Since

we aimed at a formal verification, we chose the logic of the theorem prover KIV [4]

as our target formalism. Prior to the KIV formalisation step, we have carried out a

modelling step using Asbru, a specific-purpose knowledge representation language for

medical protocols [5]. Asbru was selected among the existing protocol representation

languages (see [6] for a review), because it allows for the description of various medical

aspects in a very precise way. The gradual formalisation strategy (first Asbru, then

KIV) has made the formalisation task feasible.

Figure 1 illustrates in more detail the process of our approach. First we have se-

KIV repre-
sentation

KIV 
properties

modelling (4)
formalisation (6)
of protocol

verification
(8)

Asbru
plans

original 
protocol

Asbru 
properties
(intentions)

formal
semantics 

(5)

protocol
properties

selection (3)

identification (7)
of properties

formalisation (8)
of properties

identification (7)
of properties

modelling (4)

Figure 1:Formalisation and verification of protocols in the Protocure project. Numbers

refer to the section where each step is discussed.

lected two medical protocols which cover together a wide range of protocol characteris-

tics (see theselectionstep in figure 1). Then the two selected protocols have undergone
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a gradual transformation into a formal representation. Starting from the original texts

(original protocol in the figure), the protocols have been modelled first in the Asbru

language (themodellingstep) and then translated into the KIV formal representation

(the formalization of protocol). The results of this transformation process have been,

respectively, a collection of Asbru plans representing the protocol (theAsbru plans) and

a set of KIV programs encoding these plans (theKIV representation). In order to make

this formalisation possible, a formal semantics has been defined for the main parts of

the Asbru language (theformal semantics). This is a crucial point in the process, since

the formal verification that we aim at is only possible with a precise semantics.

In parallel to the above transformation, a number of medically relevant properties

has been identified from an analysis of both the original protocols and their Asbru

version (theidentification of propertiesstep). The result of this step are theprotocol

properties) and their reformulation asAsbru properties. Then we have selected a sub-

set of the properties for which a formal proof seemed feasible, we formalised them

(the formalisation of propertiesstep), and we have carried out the necessary proofs to

verify them (theverificationstep). Finally, the results of the different steps have been

evaluated by a panel of medical experts, in order to assess the overall utility of our

approach.

The rest of the paper reports on the main results of the process, which is structured

according to the steps described above. The relevant section numbers are indicated in

figure 1.

3 Selection of reference protocols

Concerning the protocols that are the object of our study, we selected two examples that

cover a wide range of protocol characteristics. The first protocol is for the management

of jaundice in healthy term newborns [7] developed by the American Academy of

Pediatrics (AAP). The second protocol is for the management of diabetes mellitus type

2 [8], developed by the Dutch Association of General Practitioners (NHG). Next we

give some background information on the protocols and motivate their choice.

Medical protocols differ along several dimensions, which can be related to the con-

tents of the protocol or to its form, amongst others. Important dimensions are the

target usersof the protocol (e.g. general practitioners (GPs) or nurses) and theas-

pects of clinical practice it covers (e.g. diagnosis and/or treatment). Theperiod of

time to which the protocol applies is also characteristic, varying between short time-
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span (hours to days) and long time-span protocols (weeks to years). Concerning the

form , protocols are usually more or less structured textual descriptions, and sometimes

combine alternative formats, such as tables, lists or flowcharts.

The two selected protocols not only come from different organisations but also

differ in their characteristics. The diabetes protocol is aimed at GPs and covers both

diagnosis and treatment over a long period of time. The jaundice protocol is also de-

voted to both diagnosis and treatment but, unlike the diabetes protocol, is intended for

use in a hospital and over a short time-span. Regarding the form, the careful layout of

the diabetes protocol contrasts with the rather unstructured text of the jaundice proto-

col. The latter, however, includes complementary descriptions such as flow diagrams

describing the protocol procedure. Finally, the two protocols can be considered of high

quality: one is in daily use by Dutch GPs and the other is included in the repository

of the National Guideline Clearinghouse2. Criteria for inclusion in the NGC are that

the guideline contains systematically developed statements, was produced under the

auspices of medical specialty associations, is based on literature, and is developed,

reviewed, or revised within the last five years. Furthermore, both protocols have been

published in a peer-reviewed scientific journal. In summary, the chosen protocols cover

different aspects while fulfilling high quality standards, which makes them good can-

didates for our case study.

In the following sections will use the jaundice protocol as the main example in our

explanations, and we therefore give a brief description of this protocol.

The jaundice protocol.

Jaundice, or hyperbilirubinemia, is a common disease in newborns which is caused

by elevated bilirubin levels in the blood. Under certain circumstances, high bilirubin

levels may have detrimental neurological effects and thus must be treated. In many

cases jaundice disappears without treatment, but sometimes phototherapy is needed to

reduce the levels of total serum bilirubin (TSB). In a few cases, however, jaundice is a

sign of a severe disease.

The jaundice protocol of the AAP is intended for the management of the disease in

healthy term3 newborns. The guideline is a 10 page document which contains knowl-

edge in various notations: the main text; a list of factors to be considered when as-

sessing a jaundiced newborn; two tables – one for the management of healthy term

newborns and another for the treatment options for jaundiced breast-fed newborns; and

2Seehttp://www.guideline.gov/ , (accessed October 2005)
3Defined as 37 completed weeks of gestation.
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a flowchart describing the steps in the protocol. The protocol consists of an evaluation

(or diagnosis) part and a treatment part, to be performed in sequence. During the appli-

cation of the protocol, as soon as the possibility of a more serious disease is uncovered,

the recommendation is to exit the protocol without any further action.

We have now discussed theselectionstep from figure 1, and in the next section we

continue with modelling the protocol using the special-purpose language Asbru.

4 Modelling of the jaundice protocol in Asbru

Different languages have been proposed in the literature to represent medical proto-

cols. Most of them consider protocols as a composition of actions to be performed and

conditions to control them [9]. However, although the trend is changing lately, many

of the protocol representation languages in the literature are not formal enough for our

purposes. For instance, they often incorporate free-text elements which do not have

clear semantics. Exceptions to this are PROforma [10] and Asbru [5].

In this section, we present the main features of Asbru, we report on the Asbru

modelling of the protocols, and we conclude with lessons learned.

4.1 Asbru: a knowledge representation language for protocols

The main features of Asbru are: (i) medical protocols are viewed as hierarchical skele-

tal plans in the sense of AI planning, i.e. plans with sub-plans; (ii) it is possible to

specify the intentions of a plan, in addition to the action composition; (iii) a wide va-

riety of control structures can be used to specify the control within a plan; and (iv) a

rich language can be used to describe temporal annotations. Below we give a short

description of the main constructs of the language (see [11] for more details).

A medical protocol is considered in Asbru as a hierarchicalplan. The main com-

ponents of an Asbru plan are intentions, conditions and plan-body. We briefly discuss

these components.

The intentions are the high-level goals of a plan. Intentions can be expressed in

terms of achieving, maintaining or avoiding a certain state or action. The states or

actions to which intentions refer can be intermediate or final (overall). Thus, the label

“achieve intermediate state” means that sometime during the execution of the plan a

certain state must be achieved. In total there are twelve possible forms of intention:

[achieve/maintain/avoid] [intermediate/overall] [state/action].
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A variety of conditions can be associated with a plan, which define different as-

pects of its execution. The most important types of conditions are the following:

• filter conditions, which must be true before the plan can be started.

• abort conditions, which define when a started plan must be aborted.

• complete conditions, which define when a started plan can complete success-

fully.

• activate conditions, with possible values “manual” or “automatic”. If the activate

mode is manual, the user is asked for confirmation before the plan is started.

Theplan-body contains the actions and/or sub-plans to be executed as part of the

plan. The main forms of plan-body are the following:

• user-performed: an action to be performed by the user, which requires user in-

teraction and thus is not further modelled.

• single step: an action which can be either an activation of a sub-plan, an assign-

ment of a variable, a request for an input value or an if-then-else statement.

• subplans: a set of steps to be performed in a given order. The possibilities are:

in sequence (sequentially), in parallel (parallel), in any possible sequential order

(any-order), and in any possible order, sequential or not (unordered).

• cyclical plan: a repetition of actions over time periods.

In case a plan has subplans, in addition to the specification of the ordering (sequen-

tially, parallel and so forth), it is necessary to specify a waiting strategy to describe

which of the subplans must be completed so that the parent plan can be considered

successfully completed. It is possible to specify e.g. whether all the subplans should

be executed (“wait-for ALL”) or not (e.g. “wait-for ONE”, or “wait-for” some specific

plan).

Time annotationscan be associated with different Asbru elements (e.g. intentions,

conditions and even plan activations). A time annotation specifies (1) in which interval

things must start, (2) in which interval things must end, (3) their minimal and maximal

duration, and (4) a reference time point. Any of these elements can be left undefined,

allowing for the specification of incomplete time annotations. The general scheme for
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a time annotation is:

( [EarliestStartingShift, LatestStartingShift],

[EarliestFinishingShift, LatestFinishingShift],

[MinimalDuration, MaximalDuration],

Reference)

4.2 Asbru model of the jaundice protocol

In this section we show the main structure of our Asbru model of the jaundice protocol.

This illustrates the need for the variety of Asbru’s control structures. We also give an

example of a plan description that serves to illustrate the main Asbru features, such

intentions, various conditions and time annotations.

As the original document, the Asbru model of the jaundice protocol has as main

components a diagnostics part and a treatment part. It consists of about 40 plans and

has a length of 18 pages in a simplified Asbru notation. Figure 2 shows the overall

structure of the protocol as a hierarchy of plans.

The treatment phase, on which we focus here, consists of two parallel parts, namely

the actual treatments and a cyclical plan asking for the input of new age and TSB

values every 12 to 24 hours. Regarding the treatments (label (-) in figure 2), either

the “regular-treatments” or an “exchange-transfusion” can take place depending on the

bilirubin level. The “regular-treatments” plan contains the main treatment procedure.

It consists of two parts to be performed in any possible order (unordered): the feeding

alternatives and the different therapies (see label (*)); the plans in this group can be

tried in any order, one at a time.

Figure 3 shows the “phototherapy-intensive” plan, which describes one of the ther-

apies. Its plan-body simply contains a sub-plan activation pointing to a user-performed

action. One of its intentions is attaining normal bilirubin levels. It also contains differ-

ent conditions, e.g. one of the abort conditions specifies that the plan should abort as

soon as it fails to reduce the bilirubin levels in 4 hours.

4.3 Lessons learned

The task of modelling the jaundice protocol in Asbru has required a significant effort. It

is a typical knowledge engineering task, where the knowledge in the original document

is transformed into the Asbru notation, which implies devising an overall plan structure

and adding all the necessary details to make it executable. As result, the Asbru version
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disease
jaundice-
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*
blanching-skin

with-digital-
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icterometer-
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transcutaneous-
jaundice-meter-
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determine-extent-
cephalocaudad-
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prescribe-observation-
manual-activation

prescribe-normal-
phototherapy-manual-

activation

prescribe-exchange-
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- ask tsb-value
ask age-child

mandatory plans 

optional plans 

optional plans with
wait-for one 

type = any-order type = unordered 

type = sequentially type = parallel 

cyclical plan 

Legend:

Figure 2:Overview of the jaundice protocol in Asbru. The main entry point of the pro-

tocol is the “diagnostics-and-treatment-hyperbilirubinemia” plan – the three “check-

for-...” plans model a continuous monitoring of TSB level and two check-ups at spe-

cific time intervals. The plan “diagnostics-and-treatment-hyperbilirubinemia” is di-

vided into two subplans, for diagnostics and a treatment, to be executed sequentially.

(0) and (*) are labels for group of plans.
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plan Phototherapy-intensive

intentions

achieve overall-state:(bilirubin = normal)
maintain intermediate-state: (and

(TSB-decrease= yes)in ([4h, -] [-, 6h] [-, -] SELF)
(TSB-change≥ 1) in ([4h, -] [-, 6h] [-, -] SELF) )

conditions

filter-precondition: (or (bilirubin = phototherapy-intensive)in NOW
normal-phototherapy-failure )

abort-condition: (or (and (bilirubin 6= phototherapy-intensive)in NOW
(not normal-phototherapy-failure )) /* and */

intensive-phototherapy-failure:
(and (bilirubin = phototherapy-intensive)in NOW

(or (TSB-decrease= no) in ([4h, -] [-, -] [-, -] SELF)
. . .) /* or */

) /* and */
) /* abort condition */

plan-body

Prescribe-intensive-phototherapy

Figure 3:“phototherapy-intensive” plan.

of a protocol is much more lengthy than the original text: the original jaundice protocol

is 10 pages, while the Asbru code (consisting of 40 plans) fills 18 pages in the simplified

notation, and 30 pages in its full XML format.

More importantly, numerous anomalies became apparent during the Asbru mod-

elling of the jaundice protocol. We use the term anomaly to refer to any issue prevent-

ing a satisfactory interpretation of the original protocol. Below we give examples of

the different anomalies we have found (see [12] for more details). For presentation pur-

poses they have been grouped into four general categories: ambiguity, incompleteness,

inconsistency and redundancy.

Ambiguity. Ambiguous protocol parts are inherently hard to interpret. For in-

stance, a problem we encountered while modelling the jaundice protocol was deter-

mining whether the terms “jaundiced”, “clinically jaundiced” and “clinically signifi-

cant jaundice by medical judgement” had the same meaning or not. These are terms

that are used in the flowchart form of the original protocol, but not defined elsewhere.

The problem with ambiguity is that it leaves space for wrong interpretations by the

medical practitioner, and therefore may have a negative effect on the decisions made.

Incompleteness.Incompleteness can be related either to insufficient information

or to entirely missing pieces of information. In either case, incompleteness hinders

a correct interpretation of the protocol. For example, the original protocol contains
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ambiguity incompleteness inconsistency redundancy

jaundice 1 10 6 0

diabetes 4 38 0 2

Table 1:Anomalies found in the jaundice and diabetes protocols.

a table with “factors to be considered when assessing a jaundiced infant”. One of

these factors is “rapid increase in the TSB level after 24-48 h”. However, what “rapid”

exactly means is missing in the protocol.

As an example of insufficient information we can cite a sentence of suggesting a

procedure for the choice of TSB monitoring times but without further details on it:

“determination of the rate of rise of TSB and the infants age may help determine how

often to monitor bilirubin levels and whether to begin phototherapy”.

Inconsistency. Inconsistencies are elements that may result in different (and even

conflicting) decisions given the same patient data. The problems derived from incon-

sistent elements are very serious and as such must be avoided.

The jaundice protocol presents several inconsistencies. For instance, we found an

inconsistency related to the applicability conditions of the protocol, which is meant for

“healthy newborns” according to the title. The protocol also specifies that “infants who

are clinically jaundiced at<= 24 hours old are not considered healthy”. However,

elsewhere in the protocol an action is advised for exactly these children (i.e. babies to

whom the protocol should not be applied): “a TSB level needs to be determined in

infants noted to be jaundiced in the first 24 hours of life”.

Redundancy. Whenever some part of the protocol can be removed without any

(noticeable) effect in the resulting recommendations, it can be considered redundant.

Although redundant elements are in principle harmless, the main problem is that they

may cause unnecessary inconveniences for the patient and efficiency loss in the care

process. We did not find any occurrence of this type of anomaly in the jaundice pro-

tocol. However, we did find redundancies during the Asbru modelling of the diabetes

protocol.

Table 1 shows the number of uncovered anomalies referring in the two protocols

of our case study. By far the most common anomaly in both protocols is incomplete-

ness. Other anomalies only occur in one of the protocols. No inconsistency was found

in the diabetes protocol whereas several were found in the jaundice protocol, mainly

between alternative formulations of the same recommendations between text, tables
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and/or flowcharts. Athough the two protocols differ in characteristics, these differences

in types of anomalies do not seem related to these different characteristics.

As table 1 shows, a significant number of anomalies can be detected through Asbru

modelling [12], [13]. These anomalies are protocol parts in which potential problems

might arise, and therefore indicate points where improvements are possible. The fact

that these anomalies were detected during the modelling of two high quality protocols

is already an important contribution of our approach.

We now continue with the formalisation stage (see figure 2), namely from Asbru to

formal logic. To make this step possible, a formal semantics of Asbru is needed. This

is discussed in the next section.

5 Formal semantics of Asbru

With the definition of a formal semantics of Asbru, we aim to achieve two goals: first,

the semantics should document the language, users should be able to understand the

details of Asbru; second, the semantics should be formal enough to derive a calculus. In

order to achieve the second goal, we use Structural Operational Semantics (SOS) [14]

to define Asbru. However, SOS rules are difficult to understand for people without

a formal background. Therefore, we use automata, which we depict as state charts

[15], to informally illustrate the semantics. In this section, we give an overview of the

semantics. A more complete definition of the semantics can be found in [16]

5.1 Overview

Asbru is a plan oriented language, and Asbru protocols are organized in a hierarchy of

plans. A parent plan can refer to other sub plans in its plan body. Conditions are used

to control the applicability of a plan and to monitor its execution. Conditions can be

monitored over time according to the so called time annotations. The sub plans in the

plan body can be organized using different body types (sequential, parallel, unordered,

or any-order). The current state of a plan – especially if a plan has been rejected,

aborted, or completed – is propagated to its parent and sub plans. If a plan is mandatory,

it must be completed; otherwise it may also be rejected or aborted.

The formal semantics of Asbru consists of two parts. An operational semantics

defines the plan execution engine, which is triggered with signals from an underlying

data abstraction unit. All Asbru plans run in parallel and communicate via shared
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SC: consider

F : [satisfied(filter tp)]

E: activate[. . .] /. . .

R: [¬ fulfillable(filter tp)]

A: [satisfied(abort tp)]

C: [satisfied(completetp) ∧ . . .]

RA: retry
...

Figure 4:Plan execution

variables and signals. The data abstraction unit takes different types of patient data and

provides signals to trigger plan conditions. Signals are also used by plans to control

the execution of sub plans.

5.2 Plan execution

Plans behave as depicted in the state chart of Figure 4. Theplan control is divided

into the selection phaseselectionand the execution phaseexecution. Initially, a plan

is inactive. An external signalconsidertriggers the selection phase (transition SC). In

stateconsidered, the filter conditionfilter tp is checked. If the condition is satisfied,

control advances to stateready(transition F). Transitions E.1 and E.2 model manual

and automatic activation and are omitted here. If, during the selection phase, the fil-

ter condition is not fulfillable any more, the plan isrejected(transition R). In state

activated, the sub plans of the current plan are executed. How the execution of the

sub plan is controlled by the parent depends on its body type, i.e. the children can

be executed sequentially, in parallel, unordered, or in any-order. For each body type

there is a corresponding controlling state chart (see Section 5.3). The execution of sub

plans can be either completed successfully (transition C) or aborted, e.g. in the case

of emergency patient readings (transition A). Further reasons to reject or abort plans

(transitions R.1 - R.3, A.1 - A.4) are omitted here.
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Figure 5:Any-order control

Roughly, each transition corresponds to an SOS rule. For example, the rule

[[P.state= Considered]]σ da(Φ, σ) −→∗ da(true, σ′)
psmP (σ) −→ psmP (σ′[P.state← Ready])

whereΦ is the filter condition of planP , expresses that ifP is in stateconsideredand

the filter preconditionΦ is evaluated totrue 4 by the data abstraction unitda, planP

may progress to stateready.

5.3 Controls

The different body types may empose restrictions on the execution of sub plans. This

is done by deferring the generation of the eventsconsider, activate, andretry. Figure 5

contains a controlling state chart for a parent plan which executes its sub plans in any-

order. The selection phases are executed in parallel. The execution phases of the sub

plans are synchronized such that at most one sub plan is active at the same time. The

first plan to become selectable is activated (transitioni.a). Only if this plan terminates

(transitioni.T ) another one can be activated. If several sub plans reach stateselected

simultaneously, the choice is nondeterministic. If option “retry-aborted” is chosen,

then transitioni.r is used to initiate a retrial. See [16] for complete set of controlling

state charts for the Asbru control structures.

5.4 Data abstraction unit

The underlying data abstraction unit is not described in detail here and only its purpose

is summarized. The semantics of the abstraction unit is not operational, but functional

in nature. As input, measurements of patient parameters are taken. The type of pa-

rameters can be very different, ranging from quantitative values, like the bilirubin level

4σ is the current valuation, andσ′ is the next valuation.
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in blood, to boolean values, e.g. whether the patient is male or female. Data can be

provided as a continuous stream of patient readings (high frequency domains such as

artificial ventilation of prematured babies) or as sporadic measurements once every

month (low frequency domains like diabetes mellitus).

The incoming data is memorized in a global variable, the patient record. Quantita-

tive values can be abstracted to qualitative values. More importantly, if the data is time

annotated in an Asbru plan, the abstraction unit evaluates data over a long time period.

For example, the time-annotated condition

(bilirubin decrease< 1) in ([4 h, ], [ , 6 h], [ , ],now)

requires monitoring the decrease of the bilirubin level over a period of at least 4 hours

(modelled as EarliestStartingShift) and up to 6 hours (modelled as LatestFinishing-

Shift). The data abstraction unit abstracts from all these features and provides signals

to trigger the plan execution unit.

This section summarised our formal semantics for Asbru, a crucial element in our

process from figure 2. In the next section we will formalise a specific protocol (jaun-

dice) in logic, based on the semantics given above.

6 Formalisation of the jaundice protocol in KIV

In the second stage of the process (see figure 2) we have used the logic of the KIV

verification tool [4]. KIV is an interactive theorem prover with strong proof support

for higher-order logic and elaborate heuristics for automation. Currently, special proof

support for temporal logic and parallel programs is being added. In contrast to fully

automatic verification tools, the use of the KIV interactive tool allows for the verifica-

tion of large and complex systems, as has been shown by its application to a number of

real-world systems (distributed systems, control systems, etc).

Below we first describe the relevant aspects of KIV for Asbru specification and

verification, we continue with the formalisation of our case study, and conclude with

the lessons learned from this formalisation step.

6.1 KIV

KIV supports the entire software development process, i.e. the specification, the imple-

mentation and the verification of software systems. Forspecification, three aspects are
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important: specifications can be structured, and both functional and operational sys-

tem aspects can be described. A specification is broken down into smaller and more

tractable components, using structuring operations such as union , that can be used to

combine more simple specifications. For functional aspects, algebraic specifications

are used to specify abstract data types.

Complex operational behaviour can be specified using parallel programs. Programs

in KIV can contain assignments (v := τ ), conditionals (if ϕpl then ψ1 elseψ2),

loops (while ϕpl do ψ), local variables (var v = τ in ψ), nondeterministic choices

(chooseϕ or ψ), interleaving (ϕ || ψ) and synchronisation points (await ϕpl). For a

better support of Asbru, additional basic constructs have been implemented: interrupts

(break ψ if ϕpl), for modelling different plan conditions; and synchronous parallel ex-

ecution (ϕ ||s ψ), as well as any-order execution (ϕ ||a ψ), for a more direct translation

of plan-bodies. With the help of these constructs, the main features of Asbru can be

directly translated. Others still need to be encoded using additional program variables.

Concerning theverification, we use a variant of Interval Temporal Logic (ITL) [17]

to formulate properties. This logic is first-order and allows finite and infinite intervals.

Here we restrict ourselves to the temporal operators always (2 ϕ), eventually (3 ϕ),

next (◦ ϕ), andlaststep– which is true only in the last step of an interval. Single tran-

sitions are expressed as first-order relations between unprimed and primed variables,

where the latter represent the value of the variable in the next state. For example, the

formulav = 0 ∧ (2 v′ = v + 1)→ 3 v = n states that, if variablev is initially 0, and

the valuev′ in the next state is always incremented by one, then eventually the variable

will be equal to an arbitrary natural numbern.

In KIV, the proof technique for verifying parallel programs is symbolic execution

with induction. Details can be found in [18]. Since programs are treated as formulas

– for both, the semantics is a set of traces – they can be arbitrarily mixed. This gives

rise to a modular proof technique, which is very important for the verification of Asbru

plans as they tend to be large.

6.2 KIV formalisation of the jaundice protocol

In a first attempt to formally analyse Asbru plans, we have translated them into parallel

programs. The translation of the Asbru model into KIV has been done in a structure-

preserving way, by mapping each Asbru plan into a KIV specification containing a

parallel program. Thus, the structure of the jaundice protocol in KIV roughly mirrors

the Asbru model of figure 2. This gives the possibility to obtain feedback from the
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Asbru KIV

filter preconditionϕ body if ϕ then body

complete conditionϕ body break body if ϕ, update plan-state = ”complete”

abort conditionϕ body break body if ϕ, update plan-state = ”abort”

<<name>> (plan activation) <<name>>#(...) (procedure call)

do type=sequentially P1,... Pn P1;... Pn

do type=any-order P1,... Pn P1||a ... Pn

wait-for Pi body break body if some expression onPi-state

Table 2:Translation patterns of some Asbru constructs into KIV.

formalisation and verification phases in terms of the Asbru model, and to exploit this

structure during proof attempts. Table 2 shows some of the patterns that we used in the

translation of Asbru plans.

In many cases the KIV translation closely follows the structure of the original Asbru

plan, except for small details. This means that a large part of the translation could be

done automatically (up to 80 %). Other translations needed additional encodings, and

therefore had to be done manually. The example in figure 6, corresponding to the

plan “phototherapy-intensive”, serves to illustrate a mixture of automatic and manual

translations that we have obtained. See figure 3 for the Asbru model of this plan.

This translation includes an await construct to model the filter preconditions of the

plan, as well as an interrupt (break) to monitor the conditions under which the plan

should abort. The KIV plan also shows the way in which time annotations can be

encoded, with the help of additional variables holding the time at which a plan has

been activated (such as phototherapy-intensive-activated).

6.3 Lessons learned

The KIV formalisation step has taken considerably less effort than the Asbru modelling

step [13]. This is mainly due to the structure preserving strategy we followed. Thanks

to this, the formalisation is largely a mechanical translation of Asbru plans into KIV

programs.

We cannot strictly say that the formalisation in KIV has contributed to the improve-

ment of the original protocol, as was the case in the Asbru modelling. Clearly, the most
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phototherapy-intensive#(var phototherapy-normal-prescription-activated, patient-data,

time, phototherapy-intensive-activated)

begin

await get-bilirubin(patient-data.tsb) = phototherapy-intensive

∨ get-bilirubin(patient-data.tsb) = phototherapy-normal

∧ phototherapy-normal-prescription-activated6= ⊥
∧ 4≤ time - phototherapy-normal-prescription-activated.value

∧ ¬ get-decrease(patient-data.tsb);

phototherapy-intensive-activated := mk-value(time);

break

prescribe-intensive-phototherapy#(; time)

if get-bilirubin(patient-data.tsb)6= phototherapy-intensive

∨ get-bilirubin(patient-data.tsb) = phototherapy-intensive

∧ ( 4≤ time - phototherapy-intensive-activated.value

∧ ¬ get-decrease(patient-data.tsb)

∨ . . .)

end

Figure 6:KIV translation of “phototherapy-intensive” plan of figure 3.
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important contribution of this formalisation stage is to produce a version of the proto-

col that can be used as the basis for verification of protocol properties as discussed in

sections 7 and 8.

Furthermore, the KIV formalisation has served to disambiguate unclarities in the

Asbru model that resulted from the modelling stage: a number of semantic problems

with Asbru were uncovered and resolved by refining the formal semantics of Asbru in

KIV.

7 Identification of protocol properties

In parallel to the formalisation process described so far (the right-pointing arrows in

figure 1), we have identified a number of protocol properties which were deemed poten-

tially interesting and medically relevant (the downwards-pointing arrows in figure 1).

Such properties require a deep understanding of both the disease and the protocol

dealing with it. These properties focus on aspects like the relevant clinical parameters

or the actions that the care providers are required to perform. As an example, when

treating diabetes with insulin, a desirable property of the protocol (as recommended by

our domain expert) is to distribute the morning and evening insulin doses according to

the ratio 2/3-1/35.

The correctness of plan intentions and properties based on medical indicators6 were

deemed of particular interest from a medical point of view. The correctness of inten-

tions aims at ensuring that the intentions of a plan follow from its body. As for the

properties about indicators, the goal is to verify that the protocol results in actions that

comply with certain quality criteria defined either in the protocol itself or by external

sources. In our case, we have exploited the indicators for jaundice treatment defined

by the MAJIC7 Committee [19]. These quality indicators for jaundice are formulated

by a different medical institution then the one who developed the jaundice protocol.

Therefore these indicators are not specifically defined for our protocol, which make

them more attractive to verify.

Notice that we are not claiming that we can verify any intention a plan may have,

in general, but rather that formal verification can be applied to determine under which

conditions a protocol complies with the intentions the developers had in mind.

5Of course whether this recommendation should be part of the protocol would have to be discussed with

the team of experts that developed the protocol.
6Indicators are measures to judge the quality of care, systematically engineered by medical experts.
7Making Advances against Jaundice in Infant Care
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8 Formalisation and verification of protocol properties

The formalisation of protocol properties and their verification constitute the final step

of the process. In this section we give two examples and summarise the lessons that we

have drawn from these verification experiences.

8.1 Verification of an intention

One of the intentions of the plan “phototherapy-intensive” is the reduction of the TSB

levels by at least 1 mg/dl within 4 to 6 hours. We can view this as a property that the

plan should satisfy, i.e. while executing the plan, there should be such a decrease. This

property was initially translated to the following ITL formula:

/* intention */

2 laststep

∨ pti-state6= activated∧ pti-state′ = activated

→ /* time annotation */

4 ≤ time− pti-acttime.value

∧ time− pti-acttime.value≤ 6

→ /* property */

get-decrease(pd .tsb,pti-acttime.value)

∧ get-change(pd .tsb,pti-acttime.value) ≥ 1

unlesspti-state′ 6= activated

Informally, this formula says that, if “phototherapy-intensive” is activated, when 4 to

6 hours have elapsed, there should be a decrease in TSB levels greater or equal than 1.

This is exactly the second conjunct of the second intention in figure 3.

The property was successfully proved in KIV, in a fully automatic proof of more

then a thousand steps. However, the proof was successful only after a number of proof

attempts. These attempts uncovered errors in the formulation of the intention, which

led to an improved formal semantics for Asbru intentions. This property was somehow

“easy” to prove, because the intention is enforced by one of the abort conditions of the

plan (see figure 6). In the next section we present a more difficult proof, which required

identifying the conditions under which the property should hold. As we will see, these

conditions describe the most usual cases of newborn jaundice.
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8.2 Verification of an indicator

The MAJIC indicators that appear in [19] have been refined by the same organisation

into different medical review criteria for the evaluation and treatment of jaundice in

infant care. This includes a set of 11 criteria which jaundice protocols must comply

with. Among these criteria, we selected indicator #7 for verification. The indicator is

stated as follows8:

INCLUSIONS If any phototherapy initiated

CRITERIA No more than one serum bilirubin level drawn after phototherapy is dis-

continued

This states that if the decision is made to apply phototherapy (which will involve draw-

ing bilirubin samples to measure the success of the therapy), then such a measurement

should no longer be repeated after the therapy is discontinued.

This indicator was translated into the following temporal formula:

/* indicator */

2 laststep

∨ pd .under-phototherapy∧ ¬ pd′ .under-phototherapy

∧ pd .tsb= TSB0

→ 2 pd .tsb= TSB1 ∧ TSB1 6= TSB0 → 2 pd .tsb= TSB1

Informally, when phototherapy is discontinued, if another TSB value is measured, then

there will not be more TSB measurements (TSB history will stay the same).

Several attempts were made to prove that the “regular-treatments” subplan (fig-

ure 2) complies with this indicator. These attempts uncovered some problems in the

formalisation of the protocol. This insight was used to enhance the translation patterns

for Asbru plans. Finally, it was proved that the property doesnot hold! A counter

example was found, which consists in applying phototherapy once and then doing ob-

servation for more than 24 hours, allowing “treatment-hyperbilirubinemia” to measure

TSB twice. The analysis of this proof served to identify the assumptions under which

the indicator should be satisfied: (1) If phototherapy is discontinued, bilirubin levels

are “normal” ; (2) the observation plan will run for less than 24 hours; and (3) After

phototherapy and observation, bilirubin levels will still be “normal”. Given these addi-

tional assumptions, the proof could be completed successfully. (Proving the indicator

8The rationale of this indicator is beyond the scope of this work.
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for the “regular-treatments” plan in the Jaundice protocol involves thousands of proof

steps.) These assumptions were given to medical experts for review, who concluded

that they capture the most usual cases, i.e. for most of newborns the assumptions hold

and the protocol satisfies the indicator. Thus the assumptions explicitly define the cases

in which the indicator is satisfied. They could be used to improve the original protocol,

e.g. to document the cases in which the indicator might not be satisfied.

8.3 Lessons learned

The verification attempts have served to clarify any remaining problems in the Asbru

model. In particular, we discovered errors in the formulation of intentions which shed

light on the semantics of Asbru intentions.

More importantly, we have shown that it is possible in practice to systematically

analyse whether a protocol formalised in KIV complies with certain medically relevant

properties [20]. Various properties of the jaundice protocol have been the object of

formal verification using the KIV system, with different types of results. In some cases

the properties have been confirmed, which means that the formalised version of the

protocol complies with them. However, in other cases verification was problematic,

i.e. it was not possible to complete the proof unless we added additional assumptions

describing the conditions needed to make the property true.

The incorporation of the additional assumptions necessary to complete a proof

might seem an extremely difficult task, because of the high amount of medical back-

ground knowledge that is usually involved – e.g. about medical actions, treatment ef-

fects, etc. It is important to note that we have followed a pragmatic approach, namely,

assumptions have been identified as they were needed, by exploiting the information of

failed proof attempts, rather than eliciteda priori from domain experts and other valid

sources. For example, the assumptions that make indicator #7 true are statements of

the kind “if phototherapy is discontinued, bilirubin levels are normal”, rather different

from an exhaustive description of the effects of the different phototherapies. This re-

sults in a characterisation of the circumstances under which the property holds. The

obtained characterisation, after analysis by medical experts, could be used either to re-

define/restrict the property or to improve the original protocol text by documenting the

cases under which the property does (or does not) hold.
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9 Evaluation of results

In order to assess the overall utility of our approach, a selection of the results of the

formalisation and verification steps have been presented for evaluation to a group of

medical experts. The evaluation has been done by means of structured interviews in

which three different experts judged (1) the quality of the selected protocols, (2) the

criticality of the problems detected in the protocols, and (3) the utility of the approach

of quality improvement of protocols by formal methods.

Most of the problems detected in the jaundice protocol were not considered serious

from a clinical point of view. However, one of the experts, who is also involved in

guideline development, stated that some of the flaws were serious as they indicate lack

of care in designing the protocol, and therefore should be avoided. Concerning the

diabetes protocol, half of the flaws were not considered very serious, but the remainder

were judged as very serious, and one even extremely serious [21].

Finally, in general the three experts regarded the computer-supported systematic

analysis of protocols we carried out as an improvement over current methodologies.

The experts judged our approach especially promising for guideline development. In

addition, they mentioned that it constitutes an important first step to make computerised

support for guidelines possible.

10 Related Work

In this section we relate our work to currently ongoing work in the literature for com-

puterized medical guidelines and protocols. First of all we would like to emphasize that

although there is a lot work on decision support systems in clinical settings with respect

to medical protocols, there is only a small amount of work concerning the improvement

of medical protocols themselves.

In the last decade a number of languages for medical protocols have been developed

with different levels of formality. Although we have used Asbru as protocol represen-

tation language in our case study, we believe that the same can be done with other

languages like PROforma [22], EON [23] and others [24, 25], provided that they are

extended with a formal semantics (which most of these languages are currently lack-

ing). In this sense, our proposal constitutes a general approach to the improvement of

medical guidelines and protocols, and is independent of our specific choice for Asbru.

A rather different approach for improving a guideline is by critiquing the physician.
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Critiquing involves comparing the actions that physicians perform to solve particular

patient cases with the recommendations prescribed by the guideline for those cases

[26]. When deviations occur, critiquing can concentrate on the explanation thereof or,

alternatively, can provide a valuable input for guideline improvement [27]. If critiquing

is performed based on intentions [28], the physician’s intentions are inferred from the

patient data and the performed actions. These are then checked against the intentions

stated in the guideline. In [28], satisfaction of intentions depends on the data of a

specific patient, whereas in our approach we try to find general assumptions under

which the intentions hold for a given guideline, independently of the data of a specific

patient.

Another direction of related work is automated quality assessment of clinical ac-

tions and patient outcomes. This concerns deriving structured quality indicators from

formalized specifications of guidelines used in decision support [29]. In our work we

use such indicators as formal properties that the guideline must comply with.

We consider work such as [30–33] as other approaches to the improvement of med-

ical guidelines.

Together, these works cover a whole spectrum of properties of guidelines, ranging

from internal coherence properties related to the representation language to properties

which depend on the specific guideline, to general properties of guidelines such as

safety properties. The work of [30] and [32] fit in the beginning of this spectrum, while

the work of [31, 33] fits in the end.

The motivation of [30, 32, 34, 35] is slightly different from ours. They identify

anomalies in guidelines, but their focus is, as mentioned above, more on language

coherence properties, whereas our focus is mainly on properties specific to the protocol.

[30] tackles the problem that clinical logic specified in the guidelines may be in-

complete or inconsistent. If ”if-then” rules are used as representation language for

guidelines, incompleteness means that there are combinations of clinically meaningful

conditions to which the system (guideline) is not able to respond. The Commander tool

supports the verification of rule-based clinical guidelines using semantic constraints.

Commander is able to point out clinical situations where the rules are incomplete. In

their study of a guideline for childhood immunization, Miller et al. were able to identify

a number of missing immunization rules, which required a response by the guideline.

[34, 35] present a method for the verification and simplification of guidelines by

applying decision-table techniques. Their assumption is that a guideline can be de-

scribed as situation-action statements: If the antecedent circumstances exist, then one

26



should perform the recommended actions. They focus on two properties for verifica-

tion, namely completeness and consistency of a guideline expressed in terms of deci-

sion tables. Again, these properties are internal coherence properties, whereas we are

focussed on domain specific properties.

[31] uses another approach to improve medical guidelines, which can be considered

as exploiting general safety properties for guidelines, and therefore belonging to the

end of the spectrum (ie. general properties about guidelines). They work on safety

reasoning in protocols, and identify a number of generic safety principles. The idea

is that the same generic knowledge can be reused to generate specific safety clauses

when designing new treatment plans. These inclusion of specific safety clauses can be

considered as an improvement of the protocol.

Finally, it is also worth to mention that our work is consistent with some

approaches to protocol improvement from the medical communities [36]. For

instance, the appraisal instrument developed by the AGREE Collaboration [37]

http://www.agreecollaboration.org/ (accessed: 1 June 2005) stresses

protocol aspects that can be detected through formalisation, such as the specificity and

unambiguity of recommendations.

11 Conclusions and Future Challenges

11.1 Conclusions

In this paper we have shown that it is possible to formalise a significant piece of medical

knowledge to such an extent that it can be used as the basis for formal verification,

and that this verification not only is feasible but also useful for quality improvement

purposes. We have fully formalised two real-world medical protocols in a two-stage

formalisation process. Subsequently, we have used a theorem prover to systematically

analyse whether the formalisation complies with certain medically relevant protocol

properties. This process has revealed a number of anomalies which were judged to be

of medical relevance by a panel of independent medical experts.

Throughout this process we have obtained the following concrete results:

• a consolidated formal language to model medical practice protocols. The Asbru

protocol representation language has been extensively tested with two real-life

medical protocols. In a later stage, the semantics of the Asbru constructs has

been clarified and formally specified –formal semantics of Asbru. As result,
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Asbru has become aformal language for protocol representation.

• two protocols, each both formalised in Asbru and in KIV. The two medical

protocols used in our study have been gradually transformed into a formal rep-

resentation. Each of the (intermediate) versions of the protocols constitutes an

achievement, since it demonstrates that protocol formalisation is feasible.

• a list of anomaliesobtained during the formalisation process of our two case

studies.

• With the aim of carrying out a series of formal verification exercises, a number

of medically relevant protocol propertieshas been identified.

• verification proofs for these protocols and properties in KIV. Some of the pre-

vious properties have been selected for verification in KIV, and proofs have been

produced for them with different types of results. The fact that these proofs have

been completed shows that formal verification of protocols is feasible.

The main contribution of our work to show that it is indeed possible to formally

analyse medical protocols to improve their quality. If a protocol is developed with

certain goals in mind (expressed as intentions or indicators), formal verification can

serve to check whether the protocol actually complies with them. Even if this is not

the case, the verification attempts can be of help in obtaining counter examples and/or

assumptions which can be used to improve the original document.

Obviously, this achievement comes at a price: a significant amount of work has

been necessary for such an effort. Although we are not in a position to make strong

quantitative statements, the formalisation and verification exercise reported in this pa-

per has taken over a person-year to complete. However, this has been the first attempt

ever in verifying medical protocols with mathematical rigour. We expect that the nec-

essary effort should decrease in the future, e.g. with more direct KIV support for Asbru

protocols. Notice that our approach requires to have a team with a number of different

skills: a medical expert, a knowledge engineer (ideally trained in Asbru, and with some

medical background) and a formal methods expert trained in KIV.

11.2 Future Challenges

In this section we discuss some future challenges. We first discuss some challenges

concerning applying our proposed approach of protocol improvement. We continue

with some current problems in medical protocol development, which leads to the chal-

lenge of living guidelines.
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In this paper we have shown that our approach of applying formal methods for pro-

tocol improvement is in principal possible: we completed the entire process of mod-

elling and formalisation of both protocol and properties, and completed some proofs.

As we have seen, several techniques (modelling, formalising and verifying) enable

us to find anomalies in the protocols. Open question that remain are: when do we

need which type of techniques; what kind of anomalies can be found by using these

different techniques; would it be possible to use verification only in the critical parts of

the protocol, and how can we identify these critical parts.

We have used Asbru as the language for modelling protocols. Other less formal

guideline representation language like EON, Glif, GUIDE or others [24] could be used

as well. We expect that modelling in these languages can also detect anomalies. Al-

though, we expect that this would yield fewer anomalies because of the informal nature

of these languages.

Other techniques which could contribute to our formal methods approach is to use

model checking for proving properties, or to use an Asbru interpreter such that patient

data can be checked against the protocol.

An entirely different set of challenges arises from considering the two major prob-

lems with clinical guidelines from the medical perspective. Currently, the two problems

are:

1. At this moment, a guideline is a static document which cannot be modified eas-

ily. Consequently, recommendations can be outdated or no longer applicable in

practice, because most guidelines are only revised every 5 years, while scientific

and pragmatic knowledge is growing faster every year.

2. Practitioners’ adherence to guidelines is often insufficient.

These problems have led to future challenges, sometimes referred to as “living

guidelines”:

1. Update of the guidelines on a more continuous basis: clinical guidelines have to

become flexible, adaptable documents. The aim is to develop guidelines which

present up-to-date and state-of-the-art knowledge to practitioners. To make this

possible, guidelines have to be modular in structure, so that only part of a guide-

line can be adjusted and not the whole document needs revision.

2. Enhancing the adherence to guidelines by supporting them with computerised

tools aiming at integrating the guidelines more in the daily workprocesses of
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practitioners.

To make the approach of living guidelines possible, there must be some major

changes in the guideline development process. Most guidelines are authored in an un-

structured narrative form. Computer-based support for the authoring process depends

on a more formal, structured representation such as those investigated in this paper.

To incorporate guidelines in computerised systems, they must be developed in a more

structured way. Formal methods can be of help here. This will be an important first

step to enhance further computer-based support of guidelines and protocols.
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