
1

 THE ASGAARD PROJECT:
A TASK-SPECIFIC FRAMEWORK

FOR THE APPLICATION AND CRITIQUING OF
TIME-ORIENTED CLINICAL GUIDELINES

Yuval Shahar1), Silvia Miksch2), and Peter Johnson3)

1) Section on Medical Informatics, 251 Campus Drive,
Medical School Office Building, x215 Stanford University,

Stanford, CA 94305–5479, USA
Email: shahar@smi.stanford.edu

Tel: 1-650-725-3393
Fax: 1-650-725-7944

2) Vienna University of Technology,Institute of Software Technology
Resselgasse 3/E188,

A-1040 Vienna, Austria
Email: silvia@ifs.tuwien.ac.at

Tel: +43-1-58801-18824
Fax: ++43-1-58801-18899

3) The Sowerby Centre for Primary Care Informatics,
University of Newcastle, Newcastle upon Tyne,

NE2 4AA, UK
email: pete@mimir.demon.co.uk

in: Artificial Intelligence in Medicine, 14 , pp. 29-51, 1998.

Abstract: Clinical guidelines can be viewed as generic skeletal-plan schemata that represent clinical
procedural knowledge and that are instantiated and refined dynamically by care providers over significant
time periods. In the Asgaard project, we are investigating a set of tasks that support the application of
clinical guidelines by a care provider other than the guideline’s designer. We are focusing on application of
the guideline, recognition of care providers’ intentions from their actions, and critique of care providers’
actions given the guideline and the patient’s medical record. We are developing methods that perform these
tasks in multiple clinical domains, given an instance of a properly represented clinical guideline and an
electronic medical patient record. In this paper, we point out the precise domain-specific knowledge
required by each method, such as the explicit intentions of the guideline designer (represented as temporal
patterns to be achieved or avoided). We present a machine-readable language, called Asbru, to represent
and to annotate guidelines based on the task-specific ontology. We also introduce an automated tool for
acquisition of clinical guidelines based on the same ontology, developed using the PROTÉGÉ-II framework.

2

2.1 CLINICAL GUIDELINES
Clinical guidelines are a set of schematic plans for management of patients who have a particular
clinical condition (e.g., insulin-dependent diabetes). The application of clinical guidelines by care
providers involves collecting and interpreting considerable amounts of data over time, applying
standard therapeutic or diagnostic plans in an episodic fashion, and revising those plans when
necessary. Guidelines often involve implicit assumptions about the knowledge of the provider
executing the plans. Skeletal plans are plan schemata at various levels of detail that capture the essence
of a procedure, but leave room for execution-time flexibility in the achievement of particular goals
[Friedland and Iwasaki, 1985]. Thus, they are usually reusable in different contexts. Clinical
guidelines can be viewed as reusable skeletal plans that need to be refined by a reactive planner over
significant time periods when applied to a particular patient [Tu et al., 1989].

2.1.1 Automated Support to Guideline-Based Care

During the past 15 years, there have been several efforts to support guideline-based care over time in
automated fashion. Examples of specialized architectures include ONCOCIN [Tu et al., 1989], T-
HELPER [Musen et al., 1992], DILEMMA [Herbert et al., 1995], EON [Musen et al., 1996], and the
European PRESTIGE project. Other approaches to the task of supporting guideline-based care encode
guidelines as elementary state-transition tables or as situation-action rules dependent on the electronic
medical record [Sherman et al., 1995], but do not include an intuitive representation of the guideline’s
clinical logic, and have no semantics for the different types of clinical knowledge represented. Several
approaches permit hypertext browsing of guidelines via the World Wide Web [Barnes and Barnett,
1995] but do not use the patient’s electronic medical record.
None of the current guideline-based-care systems have a sharable representation of guidelines that (1)
has knowledge roles specific to the several guideline-based-care tasks, (2) is machine and human
readable, and (3) allows data stored in an electronic patient record to invoke an application that
directly executes the guideline’s logic and related tasks, such as critiquing. A task-specific human-
and machine-readable representation of clinical guidelines, that has an expressive syntax and
semantics, combined with the ability to interpret that representation in automated fashion, would
facilitate guideline dissemination, real-time accessibility, and applicability. Task-specific architectures
[Eriksson et al., 1995] assign problem-solving roles to domain knowledge and facilitate acquisition and
maintenance of that knowledge. Such a representation also would support additional reasoning tasks,
such as automated critiquing, quality assurance [Grimshaw and Russell, 1993], and guideline
evaluation, and would facilitate authoring and modifying clinical guidelines.

2.1.2 Support to Application of Clinical Guidelines as an Interactive Process

Application of guidelines involves an interpretation by the care provider of skeletal plans that have
been designed by the guideline’s author. Providing automated support implies an interactive process.
 Typical tasks include assessment of the applicability of the guideline to the patient, guidance in
proper application of a selected guideline, monitoring of the application process, assessment of the
results of the guideline, critiquing the application process and its results, and assistance in the
modification of the original guideline. For instance, clinical guidelines often have an inherent
ambiguity or incompleteness. To increase flexibility, an automated assistant should recognize cases in
which the care provider’s actions, although different from the guideline’s prescribed actions, adhere to
the overall intentions of the guideline’s designer, and should adjust accordingly its critique. To be
useful, the language in which clinical guidelines are represented needs to be temporally expressive
and should enable designers to express complex sequential, parallel, and cyclical procedures in a
manner akin to a programming language (although typically on a higher level of abstraction). The
language also requires well-defined semantics for both the prescribed actions and the task-specific
annotations, such as the guideline designer’s intentions. Thus, the care-provider’s actions can be
better supported, leading to a more flexible dialog and to a better acceptance of automated systems for
support of guideline-based care. Having clear semantics for the task-specific knowledge roles also
facilitates acquisition and maintenance of these roles.

3

Given these requirements, we have developed a text-based, machine-readable language, called Asbru.
The Asbru language is part of the Asgaard1 project, in which we are developing task-specific problem-
solving methods that perform execution and critiquing tasks in medical domains.
In Section 2.2, we introduce the design-time and execution-time intention-based model, the guideline-
application support tasks it comprises and their required knowledge roles, and our framework’s
overall architecture. Section 2.3 explains the syntax and the semantics of the Asbru language. Section
2.4 demonstrates how an automatically generated graphic knowledge-acquisition tool is used to
acquire Asbru guidelines from physicians. Section 2.5 discusses the operation of the Asbru interpreter.
 We will be illustrating our approach throughout by a guideline for controlled observation and
treatment of gestational diabetes mellitus (GDM) Type II.

2.2 A DESIGN-TIME VERSUS EXECUTION-TIME INTENTION-BASED MODEL
During design time of a clinical guideline, an author (or a committee) designs a guideline (Figure 2.1).
The author prescribes (1) actions (e.g., administer a certain drug in the morning and in the evening), (2)
an intended plan—the intended intermediate and overall pattern of actions, which might not be obvious
from the description of the prescribed actions and is often more flexible than prescription of specific
actions (e.g., use some drug from a certain class of drugs twice a day), and (3) the intended
intermediate and overall pattern of patient states (e.g., morning blood glucose should stay within a
certain range). Intentions are temporal patterns of provider actions or patient states, to be achieved,
maintained, or avoided.

Design time

Guideline prescribed actions

Guideline intended plan

Guideline intended state

Execution time

Care-provider observed actions

Care-provider abstracted plan

Care-provider state intentions

Patient state

Figure 2.1 The design-time versus execution-time intention-based model of a clinical guideline. Double-headed
arrows denote a potential axis of comparison (e.g., for critiquing purposes) during runtime execution of the
clinical guideline. Striped arrows denote an abstracted-into relationship.

During execution time, a care provider applies the guideline by performing actions, which are recorded,
observed, and abstracted over time into an abstracted plan (see Figure 2.1). The state of the patient also
is recorded, observed, and abstracted over time. Finally, the intentions of the care provider might be
recorded too—inferred from her actions or explicitly stated by the provider.

1 In Norse mythology, Asgaard was the home and citadel of the gods, corresponding to Mount Olympus in

Greek mythology. It was located in the heavens and was accessible only over the rainbow bridge, called Asbru
(or Bifrost).

4

2.2.1 The Guideline-Design and -Application Tasks

Given the intention-based model of clinical guidelines, we can describe a set of tasks relevant to the
design and execution of these guidelines and analyze the knowledge requirements of problem-solving
methods that perform these tasks (Table 2.1). The verification and validation tasks are relevant only
during design time; the rest of the tasks are relevant during execution time. Each task can be viewed
as answering a specific question (see Table 2.1).

Table 2.1 Several guideline-support tasks and the knowledge required to solve them. Common knowledge
roles can be viewed as shareable by the methods requiring them.

Each task can be performed by a problem-solving method [Eriksson et al., 1995] that has an ontology—
a set of entities, relations, and domain-specific knowledge requirements assumed by the method.
Since knowledge requirements (roles) are often common to several of the problem-solving methods, we

Task Questions to be Answered Required Knowledge
Verification of
a guideline

Are the intended plans achievable
by following the prescribed
actions? (a syntactic check)

Prescribed actions; intended overall
action pattern (i.e., the plan)

Validation of a
guideline

Are the intended states achievable
by the prescribed actions and
intended plan? (a semantic check)

Prescribed actions, intended overall
action pattern; intended states;
action/plan effects

Applicability
of guidelines

What guidelines or protocols are
applicable at this time to this
patient?

Filter and setup preconditions;
overall intended states; the patient’s
state

Execution
(application) of
a guideline

What should be done at this time
according to the guideline’s
prescribed actions?

Prescribed actions and their filter
and setup preconditions;
suspension, restart, completion, and
abort conditions; the patient’s state

Recognition

of intentions

Why is the care provider
executing a particular set of
actions, especially if those deviate
from the guideline’s prescribed
actions?

Executed actions and their
abstraction to executed plans; action
and state intentions; the patient’s
state; action/plan effects; revision
strategies; preferences

Critique of the
provider’s
actions

Is the care provider deviating
from the prescribed actions or
intended plan? Are the deviating
actions compatible with the
author’s plan and state intentions?

Executed actions and their
abstraction to plans; action and state
intentions of the original plan; the
patient’s state; action/plan effects;
revision strategies; preferences

Evaluation of a
guideline

Is the guideline working? Intermediate/overall state
intentions; the patient’s state;
intermediate/overall action
intentions; executed actions and
plans

Modification
of an executing
guideline

What alternative plans are
relevant at this time for achieving
a given state intention?

Intermediate/overall state
intentions; action/plan effects; filter
and setup preconditions; revision
strategies; preferences; the patient’s
state

5

combine them into a task-specific knowledge cluster. Examples of knowledge roles include plan
intentions, several types of preferences, and state-transition conditions.
The semantics of the specific knowledge roles used in the Asbru language are discussed in the Section
2.3. Given these knowledge roles, we can define what knowledge is required to solve each task (see
Table 2.1).
In this paper, we focus on the dynamic (runtime) execution, plan-recognition, and critiquing tasks.
However, are also looking at the static verification and validation tasks. Static verification of a
guideline plan involves the examination of an uninstantiated plan for logical consistency. An Asbru
plan is logically consistent, if none of its explicit or implicit logical constraints are violated; in
particular, the plan intentions are compatible with the prescribed actions. Such a verification is
essentially syntactic in nature (e.g., is visiting a dietician each Tuesday consistent with the intention of
visiting a dietician at least four times a month?) Validation involves a semantic check that the intended
patient states are compatible with the prescribed actions and intended plans. Of course, it is often
difficult or impossible to ascertain that any particular patient state will result from performance of
certain actions; but gross inconsistencies can be detected, given sufficient domain-specific knowledge,
such as expected effects of drugs and guidelines.
A subtask implicit in several of the tasks in Table 2.1 is the abstraction of higher-level concepts from
time-stamped data during the execution of the skeletal plan. Possible candidates for solving this
subtask include the RÉSUMÉ system and the temporal data-abstraction component in the VIE-VENT
system. The RÉSUMÉ system [Shahar and Musen, 1996] is an implementation of a formal, domain-
independent problem-solving method, the knowledge-based temporal-abstraction method [Shahar, 1997]
and has been evaluated in several clinical domains [Shahar and Musen, 1996]. VIE-VENT is an open-
loop knowledge-based monitoring and therapy planning system for artificially ventilated newborn
infants, which includes context-sensitive and expectation-guided temporal data-abstraction methods
[Miksch et al., 1996].

2.2.2 Plan Recognition and Critiquing in the Application of Clinical Guidelines

The following example demonstrates the tasks of plan-recognition and critiquing in the domain of
monitoring and therapy of patients who have insulin-dependent diabetes.
During therapy of a diabetes patient, hyperglycemia (a higher than normal level of blood glucose) is
detected for the second time in the same week around bedtime. The diabetes-guideline’s prescribed
action might be to increase the dose of the insulin the patient typically injects before dinner. However,
the provider recommends reduction of the patient’s carbohydrate intake during dinner. This action
seems to contradict the prescribed action. Nevertheless, the automated assistant notes that increasing
the dose of insulin decreases the value of the blood-glucose level directly, while the provider’s
recommendation decrease the value of the same clinical parameter by reducing the magnitude of an
action (i.e., ingestion of carbohydrates) that increases its value. The assistant also notes that the state
intention of the guideline was “avoid more than two episodes of hyperglycemia per week.” Therefore,
the provider is still following the intention of the guideline. By recognizing this high-level intention
and its achievement by a different plan, the automated assistant can accept the provider’s alternate set
of actions, and even provide further support for these actions.
We consider a plan-recognition ability, such as demonstrated in the example, an indispensable
prerequisite to the performance of plan critiquing. Such an ability might increase the usefulness of
guideline-based decision-support systems to clinical practitioners, who often follow what they
consider as the author’s intentions rather than the prescribed actions. Note that we assume knowledge
about the effects of interventions on clinical parameters, and knowledge of legitimate domain-
independent and domain-specific guideline-revision strategies. Both intervention effects and revision
strategies can be represented formally [Shahar and Musen, 1995].
Intentions have been examined in philosophy [Bratman, 1987] and in artificial intelligence [Pollack,
1992]. As we explain in more detail in Section 2.3.2, we are viewing intentions formally as temporally
extended goals, comprising action or state patterns, at various abstraction levels.
The example also demonstrates a specific execution-critiquing model. In this model, five comparison
axes exist: the guideline’s prescribed actions versus the provider’s actual actions; the guideline’s
intended plan versus the provider’s (abstracted) plan; the guideline’s intended patient state versus the
provider’s state intention; the guideline’s intended state versus the patient’s (abstracted) actual state;
and the provider’s intended state versus the patient’s (abstracted) actual state. Combinations of the

6

comparison results imply a set of different behaviors of the guideline application by the provider.
Thus, a care provider might not follow the precise actions, but still follow the intended plan and
achieve the desired states. A provider might even not follow the overall plan, but still adhere to a
higher-level intention. Alternatively, the provider might be executing the guideline correctly, but the
patient’s state might differ from the intended, perhaps indicating a complication that needs attention
or a failure of the guideline. In theory, there might be up to 32 different behaviors, assuming binary
comparisons along five axes. However, the use of consistency constraints prunes this number to
approximately 10 major behaviors. (We also are investigating the use of continuous, rather than
binary, measures of matching).

2.2.3 The Conceptual Architecture

In the Asgaard project, we are developing different task-specific reasoning modules that perform the
guideline-support tasks shown in Table 2.1. Figure 2.2 presents the overall architecture.

Execution interpreter

Patient database

Guideline-
specification
library Task-specific

reasoning
modules

Plan recognition
Applicability

Critiquing

Temporal-query and
temporal-abstraction
 module

Domain-specific
knowledge bases

Intervention effects
Revision strategies

Temporal-abstraction

Care provider

Figure 2.2 The guideline–support architecture. Arrows denote data or knowledge flow.

The task-specific reasoning modules require different types of knowledge, often outside of the scope of
the guideline-tasks ontology. For instance, the knowledge-based temporal-abstraction method
implemented by the RÉSUMÉ module requires knowledge about temporal-abstraction properties of
measurable clinical parameters, such as persistence of their values over time when these values are not
recorded [Shahar, 1997]. These properties exist in the domain’s temporal-abstraction ontology [Shahar
and Musen, 1996]. The RÉSUMÉ temporal-abstraction module is part of a temporal-query and
temporal-abstraction module that is used to query the time-oriented patient record for both raw darta
and higher-level temporal abstractions and patterns. Currently, we are using the Tzolkin temporal
mediator [Nguyen et al., 1997] as the temporal-query and temporal-abstraction module. The Tzolkin
module includes, besides the RÉSUMÉ temporal-abstraction module, the Chronus [Das and Musen,
1994] temporal-query module and a controller that parses temporal queries and coordinates the two
modules.
Similarly, the plan-recognition and critiquing methods require generic and domain-specific plan-
revision knowledge [Shahar and Musen, 1995]; much of that knowledge might not be part of the
guideline specification, but can be represented in a separate knowledge base accessible to the
appropriate problem-solving methods (reasoning modules). Effects of specific interventions, such as
insulin administration (and, in general, of guidelines) can be represented as part of the guideline, but
can also be viewed as a separate knowledge base (Figure 2.2). The specifications of clinical guidelines
and of their independent components (we refer to either of these entities as plans in this paper) are all
represented uniformly and organized in a guideline-specification library. The library is a set of execution

7

plans expressed in our task-specific language. During the guideline-execution phase, an applicable
guideline plan is instantiated with runtime arguments.

2.3 ASBRU: A GLOBAL ONTOLOGY FOR GUIDELINE-APPLICATION TASKS
We have developed a language specific to the set of guideline-support tasks and the problem-solving
methods performing these tasks, which we call Asbru. Asbru enables a designer to represent a clinical
guideline, including all of the knowledge roles useful to one or more of the problem-solving methods
performing the various tasks supporting the application of clinical guidelines. The major features of
Asbru are that prescribed actions can be continuous; plans might be executed in parallel, in sequence,
in a particular order, or every time measure; temporal scopes and parameters of guideline plans can
be flexible, and explicit intentions and preferences can underlie the plan. These features are in contrast
to most traditional plan-execution representations, which have significant limitations and are not
applicable to dynamic environments such as clinical domains. Medical domains have certain
characteristic features: (1) actions and effects are not necessarily instantenuous: actions are often
continuous (have duration) and might have delayed effects; (2) goals often have temporal extensions;
(3 there is uncertinty regarding the effect of available actions; (4) unobservable, underlying processes
determine the observable state of the world; (5) a goal may not be achievable; (6) parallel and periodic
execution of plans is common. The requirements of plan specifications in clinical domains [Tu et al.,
1989] are a superset of the requirements of typical toy domains used in planning research. We have
defined a formal syntax for the Asbru language in Backus-Naur form [Miksch et al., 1997]. The Asbru
language combines the flexibility and expressivity of procedural languages (e.g., the Arden syntax
[Hripcsak et al., 1994]) with the semantic clarity of declaratively expressed knowledge roles. These
roles (e.g., preferences and intentions) are specific to the ontology of the methods performing the
guideline-support tasks.

2.3.1 Time Annotation

The time annotation we use allows a representation of uncertainty in starting time, ending time, and
duration of a time interval [Dechter et al., 1991; Rit, 1986]. The time annotation supports multiple time
lines by providing different reference annotations. The reference annotation can be an absolute
reference point, a reference point with uncertainty (defined by an uncertainty region), a function (e.g.,
completion time) of a previously executed plan instance, or a domain-dependent time point variable
(e.g., CONCEPTION). Temporal shifts from the reference annotation represent uncertainty in the
starting time, the ending time, and the overall duration (Figure 2.3). Thus, the temporal annotation
represents for each interval the earliest starting shift (ESS), the latest starting shift (LSS), the earliest
finishing shift (EFS), the latest finishing shift (LFS), the minimal duration (MinDu) and the maximal
duration (MaxDu). Temporal shifts are measured in time units. Thus, a temporal annotation is
written as ([ESS, LSS], [EFS, LFS], [MinDu, MaxDu], REFERENCE). All temporal-shift constraints can
be unknown (unbound, denoted by an underscore,”_”) to allow incomplete time annotations.
To allow temporal repetitions, we define sets of cyclical time points (e.g., MIDNIGHTS, which
represents the set of midnights, where each midnight occurs exactly at 0:00 A.M., every 24 hours) and
cyclical time annotations (e.g., MORNINGS, which represents a set of mornings, where each morning
starts at the earliest at 8:00 A.M., ends at the latest at 11:00 A.M., and lasts at least 30 minutes). In
addition, we allow certain short-cuts such as for the current time, whatever that time is (using the
symbol *NOW*), or the duration of the plan (using the symbol *). Thus, the Asbru notation enables
the expression of interval-based intentions, states, and prescribed actions with uncertainty regarding
starting, finishing, duration, and the use of absolute, relative, and even cyclical (with a predetermined
granularity) reference annotations.

8

ESS LSS EFS LFS

MinDu
MaxDu

Time

REFERENCE

24 w 26 w 32 w 34 w

7 w
9 w

Time

CONCEPTION

w ... weeks

Figure 2.3 A schematic illustration of the Asbru time annotations. The upper part of the figure presents the
generic annotation. The lower part shows a particular example representing the time annotation [[24 WEEKS, 26
WEEKS], [32 WEEKS, 34 WEEKS], [7 WEEKS, 9 WEEKS], CONCEPTION]), which means "starts 24 to 26
weeks after conception, ends 32 to 34 weeks after the conception, and lasts 7 to 9 weeks." REFERENCE =
reference annotation, ESS = earliest starting shift, LSS = latest starting shift, EFS = earliest finishing shift, LFS =
latest finishing shift, MinDu = minimal duration, MaxDu = maximal duration. The annotation is thus ([ESS, LSS],
[EFS, LFS], [MinDu, MaxDu], REFERENCE).

2.3.2 The Semantics of the Asbru Task-Specific Knowledge Roles

A (guideline) plan in the guideline-specification library is composed of a set of plans with arguments
and time annotations. A decomposition of a plan into its subplans is attempted by the execution
interpreter, unless the plan is not found in the guideline library, thus representing a nondecomposable
plan. This can be viewed as a “semantic” halting condition, which increases runtime flexibility, since
the same plan might imply an atomic action for one clinical site, but might be decomposable into more
primitive actions at another clinical site. A nondecomposable plan is executed by the user or by an
external call to a computer program. The library includes a set of primitive plans to perform interaction
with the user or to retrieve information from the medical patient record (e.g., OBSERVE, GET-
PARAMETER, ASK-PARAMETER, DISPLAY, WAIT)). All plans have return values.
Generic library plans that are mentioned as part of an executing guideline have states (considered,
possible, rejected, and ready), that determine whether the plan is applicable and whether a plan
instance can be created (Figure 2.4).

9

(Ignored)

filter precondition
does not hold

setup precondition
does not hold

Ready

Possible

Considered

Rejected

setup precondition holds

filter precondition holds

start
conditionfilter precondition

does not hold

filter precondition
does not hold

Figure 2.4 Plan-selection states and their state-transition conditions in Asbru. These states are relevant to
library plans that are considered for execution.

Completed

reactivate
condition

Activated

Aborted

Suspended
suspend
condition

activated
abort condition complete

condition

suspended
abort condition

start
condition

Figure 2.5 Plan-execution states and their state-transition conditions in Asbru. These states are relevant to
instances of library plans that are being executed.

10

At execution time, a ready plan is instantiated. A set of mutually exclusive plan states describes the
actual status of the plan instance during execution. Particular state-transition criteria (conditions) specify
transition between neighboring plan-instance states. Thus, if a plan is activated, in can only be
completed, suspended, or aborted depending on the corresponding criteria; the suspended state is
optional and available for complex plans (Figure 2.5).
State-transition conditions are explained below. A plan consists of a name, a set of arguments,
including a time annotation (representing the temporal scope of the plan), and five (optional)
components: preferences, intentions, conditions, effects, and a plan body which describes the actions to be
executed. All components are optional. Every subplan has the same structure. Thus, a sequential
plan can include several potentially decomposable concurrent or cyclical plans.
We now examine in more detail each of the knowledge roles represented in Asbru.

Preferences. Preferences bias or constrain the selection of a plan to achieve a given goal. Examples
include:
(1) Strategy: a general strategy for dealing with the problem (e.g., aggressive, normal);
(2) Utility: a set of utility measures (e.g., minimize the cost or the patient inconvenience);
(3) Select-method: a matching heuristic for the applicability of the whole plan (e.g., exact-fit);
(4) Resources: a specification of prohibited or obligatory resources (e.g., in certain cases of treatment of

a pulmonary infection, surgery is prohibited and antibiotics must be used);
 (5) Start-conditions: an indication whether transition from a ready state of the generic plan to an

activated state of the plan instance is automatic or requires approval of the user.

Intentions. Intentions are high-level goals at various levels of the plan, an annotation specified by the
designer that supports special tasks such as critiquing and modification. Intentions are temporal
patterns of provider actions and patient states, at different levels of abstraction, that should be
maintained, achieved, or avoided. We define four categories of intentions:
(1) Intermediate state: the patient state(s) that should be maintained, achieved, or avoided during the

applicability of the plan (e.g., weight gain levels are slightly low to slightly high);
 (2) Intermediate action: the provider action(s) that should take place during the execution of the plan

(e.g., monitor blood glucose once a day);
 (3) Overall state pattern: the overall pattern of patient states that should hold after finishing the plan

(e.g., patient had less than one high glucose value per week);
 (4) Overall action pattern: the overall pattern of provider actions that should hold after finishing the

plan (e.g., patient had visited dietitian regularly for at least three months).

Conditions. Conditions are temporal patterns, sampled at a specified frequency, that need to hold at
particular plan steps to induce a particular state transition of the plan instance. They are used for
actual execution (application) of the plan. We do not directly determine conditions that should hold
during execution; we specify conditions that activate the change of a particular plan state (see Figure
2.5). A plan instance is completed when the complete conditions become true, otherwise the plan
instance’s execution suspends or aborts (often, due to failure). Conditions are optional. We
distinguish six types of conditions:
(1) filter-preconditions, which need to hold initially if a generic plan is applicable; these conditions are

not goals to be achieved (e.g., patient is a pregnant female), and must be true to achieve a
possible state (see Figure 2.4);

(2) setup-preconditions, which need to be achieved (usually, within a given time delay relative to the
initial time of consideration of the plan) to enable a plan to start (e.g., patent had a glucose-
tolerance test) and allow a transition from a possible plan to a ready plan (see Figure 2.4);

 (3) suspend-conditions, which determine when an active plan instance has to be suspended (e.g., blood
glucose has been high for four days); these are informally the inverse of protection conditions in the
planning literature, which have to hold during certain time periods (see Figure 2.5);

 (4) abort-conditions, which determine when an active or suspended plan has to be aborted (e.g., there is
an insulin-indicator condition: the patient cannot be controlled by diet) (see Figure 2.5);

 (5) complete-conditions, which determine when an active plan is completed, typically, but not
necessarily, successfully (e.g., delivery has been performed) (see Figure 2.5);

 (6) reactivate-conditions, which determine when a suspended plan has to be reactivated (e.g., blood
glucose level is back to normal or is only slightly high) (see Figure 2.5).

11

Effects. Effects describe the functional relationship between either (1) each of the relevant plan
arguments and measurable parameters it affects in certain contexts (e.g., the dose of insulin is inversely
related in some fashion to the level of blood glucose) or (2) the overall plan and the clinical parameters
it is expected to effect (e.g., the insulin-administration plan decreases the blood-glucose level). Effects
can have a likelihood annotation—a probability of occurrence. Effects can be part of the guideline
library (when they annotate plans) and can also be stored in a domain-specific knowledge base
(especially for common plans, such as administration of drugs).

Plan-Body. The plan body is a set of plans to be executed in parallel, in sequence, in any order, or in
some frequency. We distinguish among three types of plans: sequential, concurrent, and cyclical. Only
one type of plan is allowed in a single plan body. A sequential plan specifies a set of plans that are
executed in sequence; for continuation, all plans included have to be completed successfully.
Concurrent plans can be executed either together, in parallel, or in any order. We distinguish two
dimensions for classification of sequential or (potentially) concurrent plans: the number of plans that
should be completed to enable continuation and the order of plan execution. Table 2.2 summarizes the
dimensions of the two plan types. Using the two dimensions, we define the plan subtypes DO-ALL-
TOGETHER, DO-SOME-TOGETHER, DO-ALL-ANY-ORDER, DO-SOME-ANY-ORDER, DO-ALL-
SEQUENTIALLY. The continuation condition specifies the names of the plans that must be completed
to proceed with the next steps in the plan.

Table 2.2 Categorization of plan types by continuation conditions and ordering constraints.

Continuation
Condition -->

Ordering
Constraints

All plans should be completed
in order to Continue

Some plans should be
completed in order to
continue

Start together DO-ALL-TOGETHER
(no continuation-condition; all
plans must complete)

DO-SOME-TOGETHER
(continuation-conditions
specified as subset of plans)

Execute in any order DO-ALL-ANY-ORDER
(no continuation-condition; all
plans must complete)

DO-SOME-ANY-ORDER
(continuation-conditions
specified as subset of plans)

Execute in total order DO-ALL-SEQUENTIALLY
(no continuation-condition; all
plans must complete)

A cyclical plan (a DO-EVERY type) includes a plan that can be repeated, and optional temporal and
continuation arguments that can specify its behavior. Start and end specify a starting and ending time
point. Time base determines the time interval over which the plan is repeated and the start time, end
time, and duration of the particular plan instance in each cycle (e.g., starting with the first Monday’s
morning, until next Tuesday’s morning, perform plan A every morning for 10 minutes). The times-
completed argument specifies how many times the plan has to be completed to succeed and the times-
attempted argument specifies how many attempts are allowed. Obviously, number of attempts must
be greater or equal to the number of successful plans. A temporal pattern can be used as a stop
condition of the cyclic plan. Finally, the plan itself is associated with its own particular arguments
(e.g., dose). The start time, the time base, and the plan name are mandatory to the specification of a
cyclic plan; the other arguments are optional.

2.3.3 Example: A Gestational Diabetes Mellitus Guideline

We represented in Asbru a Stanford University guideline for controlled observation and treatment of
gestational diabetes mellitus (GDM) type II (non insulin dependent). The guideline prescribes several
concurrent monitoring and management plans following a glucose tolerance test (GTT) between 140

12

and 200 mg/dl (Figure 2.6). The plan body consists of three plans that are executed in parallel (glucose
monitoring, nutritional management, and monitoring for insulin indication), exist in the guideline-
specification library, and are decomposable into other library plans.

(PLAN observing-GDM

;; the following time-annotations are local to the GDM example
(DOMAIN-DEPENDENT TIME-ASSIGNMENT

(SHIFTS DELIVERY <- 38 WEEKS) ;; domain-specific time shift from the CONCEPTION point
(POINT CONCEPTION <- (ask (ARG “what is the conception-date?”)))

(ABSTRACTION-ASSIGNMENT
(CYCLIC

MIDNIGHTS <- [0, 0 HOURS, 24 HOURS]
BREAKFAST-START-TIME <- [0, 7 HOURS, 24 HOURS]))

(PREFERENCES
(SELECT-METHOD EXACT-FIT) ;; The match in the filter conditions needs to be exact
(START-CONDITION AUTOMATIC)) ;; the plan starts as soon as it is ready, no user input

(INTENTION:INTERMEDIATE-STATE
(MAINTAIN blood-glucose-post-meal (<= 130) GDM-Type-II

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])
(MAINTAIN blood-glucose-fasting (<= 100) GDM-Type-II

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])
(INTENTION:OVERALL-STATE

(AVOID STATE(blood-glucose) HIGH GDM-Type-II
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [7 DAYS,_], CONCEPTION]))

;; avoid, throughout the guideline, a period of high blood-glucose level lasting more than 7 days

(FILTER-PRECONDITIONS
(one-hour-GTT (140, 200) pregnancy

[24 WEEKS, 24 WEEKS], [26 WEEKS, 26 WEEKS], [_,_], CONCEPTION])
(SETUP-PRECONDITIONS

(PLAN-STATE one-hour-GTT COMPLETED
[[24 WEEKS, 24 WEEKS], [26 WEEKS, 26 WEEKS], [_,_], CONCEPTION])
;; The patient must have completed a glucose-tolerance test (another plan in the library)

(SUSPEND-CONDITIONS
(STATE(blood-glucose) HIGH GDM-Type-II

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [4 DAYS,_], CONCEPTION]
(SAMPLING-FREQUENCY 24 HOURS)))
;; suspend if high blood-glucose level exists for at least 4 DAYS

(ABORT-CONDITIONS
(insulin-indicator-conditions TRUE GDM-Type-II *

(SAMPLING-FREQUENCY 24 HOURS)))
(COMPLETE-CONDITIONS

(delivery TRUE GDM-Type-II * (SAMPLING-FREQUENCY 24 HOURS)))
(REACTIVATE-CONDITIONS

(STATE(blood-glucose) (OR NORMAL SLIGHTLY-HIGH) GDM-Type-II
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION]

(SAMPLING-FREQUENCY 24 HOURS)))

(DO-ALL-TOGETHER
(glucose-monitoring)
(nutrition-management)
(observe-insulin-indicators)))

;; the plan body is a concurrent one; the three plans start together and all need to complete

Figure 2.6 A small portion of the representation of the guideline for management of non-insulin-dependent
gestational diabetes mellitus (GDM) type II. Double colons are followed by comments.

13

2.4 ACQUISITION AND MAINTENANCE OF GUIDELINE PLANS
Expert physicians need not have familiarity with the syntax of the Asbru language to author clinical
guidelines. Graphical knowledge-acquisition (KA) tools can be generated automatically by systems
such as PROTÉGÉ-II [Tu et al., 1995]. The KA tools can internally use the Asbru representation or its
equivalent, but that representation need not necessarily be known to the user. In addition to creation
of an internal (e.g., object-oriented) version of the plan, the KA tool should be able to generate a text-
based Asbru version. The Asbru version can then be used as a sharable machine-readable version that
does not depend on any particular platform and will also be useful for reading and editing by more
knowledgeable designers. We have explored the option of generating an automated graphic KA tool
for acquiring the set of shared knowledge roles, using the PROTÉGÉ-II suite of tools, with encouraging
results.

2.4.1 Modeling a Clinical-Guideline Ontology using the PROTÉGÉ II Methodology

PROTÉGÉ-II is a set of tools and a methodology to develop knowledge based systems. We used
PROTÉGÉ/Win (the Windows version of PROTÉGÉ-II) to develop the ontology and to generate a
graphical KA tool automatically from the ontology. This ontology is shared by the task-specific cluster
of problem-solving methods relevant to the support of skeletal-plan execution. In PROTÉGÉ-II terms,
we have developed a method ontology, global to all our problem-solving methods. By this we mean
that the ontology is in theory local (specific) to some hypothetical, all-encompassing method that
performs the task cluster, but is in practice global to (shared by) all the methods that perform subtasks
in that cluster. This is sensible in this case, as there is a great deal of overlap in the concepts needed
for the different tasks, and the roles undertaken by these concepts are the same in all their uses by this
set of tasks. The domain ontology in the case of clinical guidelines is also required, but not shown here.
The domain ontology specifies concepts, such as drugs, diseases, patient findings, tests, and clinic visit
types.

Figure 2.7 Part of the execution–support methods ontology, represented by the PROTÉGÉ/Win Ontology Editor.

14

Ontologies in PROTÉGÉ-II are represented as a hierarchy of classes. Each class is represented as a
frame with slots. Slots may be constrained to basic data types, or to be instances of another class
defined in the ontology, thus allowing the expression of relationships in the ontology. The
PROTÉGÉ/Win OntologyEditor tool was used to capture the ontology of the cluster of methods
supporting skeletal-plan execution. Figure 2.7 shows a portion of that ontology.
Once the ontology is defined, the PROTÉGÉ/Win LayoutEditor tool automatically generates a
specification of a graphical KA tool for this ontology. The specification of the KA tool is interpreted by
the PROTÉGÉ/Win LayoutInterpreter. It is possible to change the layout of the user interface to some
degree in the LayoutEditor. The resultant KA tool can then be used to acquire instances of the
ontology, which in this case would be guidelines in the Asbru language.
The knowledge roles in the Asbru syntax can be viewed as a set of slots in a frame-based ontology of
skeletal plans. The ontology that we have developed mirrors the BNF Syntax of the Asbru language.
As this language is not object oriented, the ontology is fairly flat, in that inheritance is not used
significantly. The concepts of inheritance and polymorphism can be usefully applied to this domain,
indeed it seems more natural to express the ontology in this form. As an example, all plans in the
current ontology share the same state transition criteria, which has been chosen as one which applies
to most actions. However, in a hierarchical ontology it is easy to create special subclasses of the plan
class which have variants of the state transition criteria. Such an ontology maps well as an object-
oriented language.

2.4.2 A Knowledge-Acquisition Tool for Support of Clinical-Guideline Execution

We have generated an automated graphical KA tool for the object-oriented version of the Asbru
language, using the PROTÉGÉ-II suite of tools, with encouraging results. Figure 2.8 shows an example
of a domain expert using the KA tool to acquire a part of the GDM type II guideline. The expert has
defined the body of the guideline as being composed of three parallel plans, all three to be started
together; one of the plans is being highlighted and examined, as wel as the overall state intention of
the top-level (GDM type II) plan.

15

Figure 2.8 The Asbru knowledge-acquisition tool. The screen shot demonstrates acquisition of part of the
gestational diabetes mellitus (GDM) type II guideline from a domain expert. The main window shows the
guideline’s components and is generated automatically by the Protégé/Win tools from an Asbru ontology. Two of
the three subwindows show acquisition of one of three parallel (do-all-together) plans that the GDM guideline is
composed of; the third shows a definition of the GDM guideline’s overall state intention.

If the user is conversant with the syntax of the Asbru language, it may be quicker to design guidelines
by writing them in the language, using ‘copy and paste’ functions or editor macros. If the user, in
particular a domain expert, is unfamiliar with the syntax, then it is easier to use the KA tool. The
complexity of the ontology enforces the automatic generator of the KA tool to produce a user interface
with many cascading, small dialogs. Thus, for providing an optimal dialog, more control of the layout
of the automatically generated user interface was needed than was possible in early versions of
PROTÉGÉ/Win. Once this additional feature became available, we managed to generate and
customize significantly better KA tools, although more improvements can take place.
Another significant benefit of the KA tool approach is that it detects incorrect syntax while authoring a
guideline. Thus, implicit syntactic support is provided at no cost.
One of the interesting areas for acquisition of knowledge is the temporal annotations. We are
examining several alternatives to our ontology-based graphic interface, including a specialized string
editor that accepts as input the BNF syntax of temporal annotations, and creates automatically a
graphical KA tool that acquires legal strings from the user (Figure 2.9). The string editor is part of the
PROTÉGÉ/Win framework. We are also exploring other representations to facilitate acquisition from
domain experts, such as assuming that complex temporal patterns are composed of a small number of
temporal intervals, amongst which the user only needs to specify temporal and value relations, while
each is acquired as a separate instance.

16

Figure 2.9 The string editor. The screen shot is showing acquisition of part of a treatment guideline for
newborn infants who are being mechanically ventilated from a domain expert. In the string editor, the acquisition
process is guided directly by the Asbru langauge’s BNF syntax.

2.5 THE ASBRU INTERPRETER
We have implemented an interpreter for the Asbru language (i.e., a computational module that
performs the execution task). The Asbru interpreter is implemented in the CLIPS language
[Giarratano and Riley, 1994] and assumes as input a library of generic guideline plans represented as
CLIPS objects, and a top-level plan (with appropriate arguments, if relevant) to be considered for
execution. Guideline plans are acquired through the graphic KA tool generated through the
PROTÉGÉ/Win system, and can also be created directly from an Asbru pure-text version by a simple
1:1 mapping. Thus, the Asbru interpreter assumes a generic, objected-oriented intermediate
representation for plans that can be acquired directly from an expert physician using the graphic KA
tool or that can be created by a preprocessor (a parser) from an existing (text-based) Asbru guideline
written by a domain expert who knows the language. The Asbru interpreter creates as output plan
objects that refer to generic or instantiated plans, and communicates with the user by sending messages
involving plan objects (e.g., regarding execution of atomic plan instances that cannot be decomposed
further, or regarding the need to make certain set-up conditions true to make a possible generic plan
ready to be instantiated).
The Asbru interpreter goes through several distinct phases. In each phase, all plan objects (i.e., both
those that refer to generic plan types and those that refer to plan instances) that refer to (generic or
instantiated) plans in a particular state are processed. Therefore, the phases correspond roughly to

17

potential states of both generic plans and plan instances, and include consider, check-possible, check-
ready, and execute phases. The execute phase includes several subphases in which the abort, suspend, and
complete conditions of all plan-objects are being checked. In each phase, an appropriate list of plan
objects is processed. Thus, for instance, in the consider phase, the interpreter examines the filter
condition for all considered plans, changing their states to possible or rejected until the list of considered
plans is empty.
The Asbru interpreter implements several aspects of the pragmatic semantics underlying the Asbru
syntax. For instance, aborting any type of plan instance (e.g., an instance of a parallel plan) aborts all
its component plans (e.g., the plan instances executing in parallel as part of a Do-All-Together plan
type). The inverse is not necessarily true, and the effect of aborting a component plan on the parent
plan depends on the type of the plan.
We are implementing the plan-recognition and critiquing task by building on this model of
interpretation with respect to the execution model, and on our temporal-abstraction model [Shahar,
1997] and the Asbru temporal annotations with respect to the representation and querying of patient
data.

2.6 SUMMARY AND DISCUSSION
Representing clinical guidelines and the intentions underlying them in a standard, machine-readable,
and machine-interpretable form is a prerequisite for sharing clinical guidelines and for useful, flexible
automated assistance in the execution of these guidelines. The task-specific representation we suggest
supports several different knowledge roles that can be used by multiple reasoning modules, for direct
execution of a guideline and for related tasks such as recognition of care providers’ intentions and
critiquing their actions. In addition, the Asbru language places a particular emphasis on an expressive
representation for time-oriented provider actions and patient states. Temporal reasoning is important
for many clinical domains and needs to be supported.
Expert physicians need not have familiarity with the Asbru syntax to author clinical guidelines. We
used the PROTÉGÉ-II framework to develop an Asbru-like object-oriented guideline ontology and to
generate a graphical knowledge-acquisition tool automatically from the ontology. The tool acquires
instances of guidelines modeled in an object-oriented Asbru version.
We are continuing to develop the computational modules, focusing on the execution, plan recognition,
and critiquing modules.

Acknowledgments
Yuval Shahar has been supported by grants LM05708 and LM06245 from the National Library of Medicine, and
IRI-9528444 from the National Science Foundation. We thank Kinkoi Lo for implementation of the prototype of
the Asbru interpreter.

References
[Barnes and Barnett, 1995] Barnes, M. and Barnett, G. O. (1995). An Architecture for a Distributed

Guideline Server. In Gardner, R. M., editor, Proceedings of the Annual Symposium on Computer
Applications in Medical Care (SCAMC-95), pages 233-237, Hanley & Belfus.

[Bratman, 1987] Bratman, M. E. (1987). Intention, Plans and Practical Reason. Harvard University
Press, Cambridge, MA.

[Das and Musen, 1994] Das, A. K. and Musen, M. A. (1994). A Temporal Query System for Protocol-
Directed Decision Support. Methods of Information in Medicine, 33:358-370.

[Dechter et al., 1991] Dechter, R., Meiri, L., and Pearl, J. (1991). Temporal Constraint Networks.
Artificial Intelligence, Special Volume on Knowledge Representation, 49(1-3):61-95.

[Eriksson et al., 1995] Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., and Musen, M. A. (1995). Task
Modeling with Reusable Problem-Solving Methods. Artificial Intelligence, 79(2):293-326.

[Friedland and Iwasaki, 1985] Friedland, P. E. and Iwasaki, Y. (1985). The Concept and Implementaion
of Skeletal Plans. Journal of Automated Reasoning, 1(2):161-208.

18

[Giarratano and Riley, 1994] Giarratano, J. and Riley, G. (1994). Expert Systems - Principles and
Programming. Second Ed. PWS Publishing Company, Boston.

[Grimshaw and Russell, 1993] Grimshaw, J. M. and Russell, I. T. (1993). Effects of Clinical Guidelines
on Medical Practice: A Systematic Review of Rigorous Evaluations. Lancet, 342:1317-22.

[Herbert et al., 1995] Herbert, S. I., Gordon, C. J., Jackson-Smale, A., and Renaud Salis, J.-L. (1995).
Protocols for Clinical Care. Computer Methods and Programs in Biomedicine, 48:21-26.

[Hripcsak et al., 1994] Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., and Clayton, P. D.
(1994). Rationale for the Arden Syntax. Computers and Biomedical Research, 27:291-324.

[Miksch et al., 1996] Miksch, S., Horn, W., Popow, C., and Paky, F. (1996). Utilizing Temporal Data
Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants.
Artificial Intelligence in Medicine, 8(6):543-576.

[Miksch et al., 1997] Miksch, S., Shahar, Y., and Johnson, P. (1997). Asbru: A Task-Specific, Intention-
Based, and Time-Oriented Language for Representing Skeletal Plans. In Motta, E., van Harmelen,
F., Pierret-Golbreich, C., Filby, I., and Wijngaards, N., editors, Proceedings of the 7th Workshop
on Knowledge Engineering: Methods & Languages (KEML-97), pages 9/1-9/20, The Open
University, Milton Keynes, UK.

[Musen et al., 1992] Musen, M. A., Carlson, C. W., Fagan, L. M., Deresinski, S. C., and Shortliffe, E. H.
(1992). T-HELPER: Automated Support for Community-Based Clinical Research. In Frisse, M. E.,
editor, Proceedings of the Sixteenth Annual Symposium on Computer Applications in Medical
Care (SCAMC-92), pages 719-23, McGraw Hill, New York, NY.

[Musen et al., 1996] Musen, M. A., Tu, S. W., Das, A. K., and Shahar, Y. (1996). EON: A Component-
Based Approach to Automation of Protocol-Directed Therapy. Journal of the American Medical
Information Association, 3(6):367-88.

[Nguyen et al., 1997] Nguyen, J., Shahar, Y., Tu, S. W., Das, A. K., and Musen, M. A. (1997). A
Temporal Database Mediator for Protocol-Based Decision Support. Proceedings of the AMIA
Annual Fall Symposium (formerly the Symposium on Computer Applications in Medical Care),
pages 298-302, Hanley and Belfus.

[Pollack, 1992] Pollack, M. (1992). The Use of Plans. Artificial Intelligence, 57(1):43-68.

[Rit, 1986] Rit, J.-F. (1986). Propagating Temporal Constraints for Scheduling. Proceedings of the Fifth
National Conference on Artificial Intelligence (AAAI-86), pages 383-388, Morgan Kaufmann, Los
Altos, CA.

[Shahar, 1997] Shahar, Y. (1997). A Framework for Knowledge-Based Temporal Abstraction. Artificial
Intelligence, 90(1-2):79-133.

[Shahar and Musen, 1995] Shahar, Y. and Musen, M. A. (1995). Plan Recognition and Revision in
Support of Guideline-Based Care. Proceedings of the Workshop Notes of the AAAI Spring
Symposium on Representation Mental States and Mechanisms, pages 118-126.

[Shahar and Musen, 1996] Shahar, Y. and Musen, M. A. (1996). Knowledge-Based Temporal
Abstraction in Clinical Domains. Artificial Intelligence in Medicine, Special Issue Temporal
Reasoning in Medicine, 8(3):267-98.

[Sherman et al., 1995] Sherman, E. H., Hripcsak, G., Starren, J., Jender, R. A., and Clayton, P. (1995).
Using Intermediate States to Improve the Ability of the Arden Syntax to Implement Care Plans
and Reuse Knowledge. In Gardner, R. M., editor, Proceedings of the Annual Symposium on
Computer Applications in Medical Care (SCAMC-95), pages 238-242, Hanley & Belfus.

[Tu et al., 1995] Tu, S. W., Eriksson, H., Gennari, J. H., Shahar, Y., and Musen, M. A. (1995). Ontology-
Based Configuration of Problem-Solving Methods and Generation of Knowledge-Acquisition
Tools: Application of PROTÉGÉ-II to Protocol-Based Decision Support. Artificial Intelligence in
Medicine, 7(3):257-289.

[Tu et al., 1989] Tu, S. W., Kahn, M. G., Musen, M. A., Ferguson, J. C., Shortliffe, E. H., and Fagan, L.
M. (1989). Episodic Skeletal-Plan Refinement on Temporal Data. Communications of the ACM,
32:1439-1455.

	THE Asgaard PROJECT: �A TASK-SPECIFIC FRAMEWORK �FOR THE APPLICATION AND CRITIQUING OF �TIME-ORIENTED CLINICAL GUIDELINES
	CLINICAL GUIDELINES
	Automated Support to Guideline-Based Care
	Support to Application of Clinical Guidelines as an Interactive Process

	A DESIGN-TIME VERSUS EXECUTION-TIME INTENTION-BASED MODEL
	The Guideline-Design and -Application Tasks
	Plan Recognition and Critiquing in the Application of Clinical Guidelines
	The Conceptual Architecture

	ASBRU: A GLOBAL ONTOLOGY FOR GUIDELINE-APPLICATION TASKS
	Time Annotation
	The Semantics of the Asbru Task-Specific Knowledge Roles
	Example: A Gestational Diabetes Mellitus Guideline

	ACQUISITION AND MAINTENANCE OF GUIDELINE PLANS
	Modeling a Clinical-Guideline Ontology using the PROTÉGÉ II Methodology
	A Knowledge-Acquisition Tool for Support of Clinical-Guideline Execution

	THE Asbru INTERPRETER
	SUMMARY AND DISCUSSION
	
	
	
	
	
	
	Acknowledgments
	References

