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Abstract: Skeletal plans are a powerful way to reuse existing domain-specific procedural knowledge while
leaving room for execution-time flexibility.  Generic plan schemata can be instantiated and refined dynamically
by the executing agent over significant periods of time and in highly dynamic environments.  In the Asgaard
project, we are investigating a set of tasks that support the execution of skeletal plans by a human executing
agent, other than the original plan designing agent.  We are developing task-specific problem-solving methods
that perform these tasks in multiple clinical domains, given an instance of a clinical guideline plan and an
electronic medical patient record.  We point out the domain-specific knowledge roles required by each problem-
solving method, and present a text-based, machine-readable language, called Asbru, to represent and to annotate
execution plans.  We represent explicitly the intentions underlying these plans, as temporal patterns to be
achieved or avoided.  We introduce an automated knowledge-acquisition tool for clinical guidelines, which we
generated, using the PROTÉGÉ-II framework’s suite of tools, from the shared (global) ontology of the methods.

1 . INTRODUCTION: AUTOMATED SUPPORT OF PLAN EXECUTION
A common strategy for the representation and the reuse of domain-specific procedural knowledge
is the representation of that knowledge as a library of skeletal plans.  Skeletal plans are plan
schemata at various levels of detail that capture the essence of the procedure, but leave room for
execution-time flexibility in the achievement of particular goals (Friedland and Iwasaki, 1985).
Thus, they are often highly reusable.

Execution of skeletal plans often involves an interpretation by one agent of plans that have been
designed by another.  We are interested in problems that occur while trying to provide several
types of automated support to a human interpreting agent.  Automated support includes tasks such
as assessment of the applicability of the plan to a particular state of the world, guidance in proper
execution of that plan, monitoring of the execution process, assessment of the results of the plan,
critiquing the execution process and its results, and assistance in the modification of the original
plan.  We are focusing on domains that are time oriented with respect to both external states and
plan actions, and that might require intermittent execution of plans over multiple (possibly disjoint)
periods of time, an uncommon requirement in classical planning models.

We demonstrate our ideas in the context of the medical domain.  However, as can readily be seen,
the model presented is quite general.

1 . 1 . Background: Clinical Guidelines and Protocols
Clinical guidelines are a set of schematic plans for management of patients who have a
particular clinical condition (e.g., insulin-dependent diabetes).  Clinical protocols are a more
detailed version of clinical guidelines, used when the guidelines (possibly experimental) need to be
applied by care providers in a similar fashion and to enable statistical analysis of outcomes for
comparison among a set of guidelines (e.g., chemotherapy protocols for cancer therapy).  The
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application of clinical guidelines and protocols by human care providers involves collecting and
interpreting considerable amounts of data over time, applying standard treatment plans in an
episodic fashion, and revising those plans when necessary.  The guidelines often involve implicit
assumptions about the knowledge of the agent executing the plans, both in the data-interpretation
and in the treatment-planning phases.  Thus, clinical guidelines can be viewed as a shared library
of highly reusable skeletal reactive plans, whose details need to be refined and executed by a
reactive planner over significant periods of time when applied to a particular patient.

Clinical guidelines are often ambiguous or incomplete.  A diabetes guideline might recommend a
therapy target without any specific recommendations on ways to achieve it, or might suggest the
use of a drug without a precise dose.  Physicians often do not adhere to protocols, believing their
actions to be closer to the intentions of the protocol designers (Hickam, et al. 1985).  An automated
assistant should recognize cases in which the care-provider’s actions adhere to the overall
intentions, and continue offering useful advice even if the guideline is not followed literally.

1 . 2 . Related Approaches
During the past 15 years, there have been several efforts to create automated reactive planners to
support the process of protocol-based care over significant periods of time.  In the prescriptive
approach, active interpretation of the guidelines is given; examples include ONCOCIN (Tu et al.,
1989) in the oncology domain, T-HELPER (Musen et al., 1992) in the AIDS domain, and
DILEMMA (Herbert et al., 1995), EON (Musen et al., 1996), and the European PRESTIGE
Health-Telematics project, as general architectures.  In the critiquing approach, the program
critiques the physician’s plan rather than recommending a complete one of its own.  This approach
concentrates on the user’s needs and exploits the assumption that the user has considerable
domain-specific knowledge (Miller 1986).  A task-specific architecture implementing the critiquing
process has been generalized in the HyperCritic system (Van der Lei and Musen 1991).  Task-
specific architectures assign well-defined problem-solving roles to domain knowledge and facilitate
acquisition and maintenance of that knowledge.

Several approaches to the support of guideline-based care encode guidelines as elementary state-
transition tables or as situation-action rules dependent on the electronic medical record (Sherman, et
al. 1995), but do not include an intuitive representation of the guideline’s clinical logic, and have
no semantics for the different types of clinical knowledge represented.  Other approaches permit
hypertext browsing of guidelines via the World Wide Web (Barnes and Barnett 1995; Liem, et al.
1995), but do not use the patient’s electronic medical record.

None of the current guideline-based-care systems have a sharable representation of guidelines that
(1) has knowledge roles specific to the guideline-based-care task, (2) is machine and human
readable, and (3) allows data stored in an electronic patient record to invoke an application that
directly executes the guideline’s logic and related tasks, such as critiquing.  A sharable, human-
and machine-readable representation of clinical guidelines, that has an expressive syntax and task-
specific semantics, combined with the ability to interpret that representation in automated fashion,
would facilitate guideline dissemination, real-time accessibility, and applicability.  Such a
representation also would support additional reasoning tasks, such as automated critiquing, quality
assurance (Grimshaw and Russel 1993), and guideline evaluation.  A task-specific, sharable
representation would also facilitate authoring and modifying clinical guidelines.

A sharable skeletal-plan-execution language needs to be expressive with respect to temporal
annotations and needs to have a rich set of parallel, sequential, and iterative operators.  Thus, it
should enable designers to express complex procedures in a manner similar to a real programming
language (although typically on a higher level of abstraction).  The language, however, also
requires well-defined semantics for both the prescribed actions and the task-specific annotations,
such as the plan’s intentions and effects, and the preferences (e.g., implicit utility functions)
underlying them.  Thus, the executing agent’s (e.g., the physician’s) actions can be better
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supported, leading to a more flexible dialog and, in the case of the clinical domains, to a better
acceptance of automated systems for guideline-based care support.  Clear semantics for the task-
specific knowledge roles also facilitate acquisition and maintenance of these roles.

With these requirements in mind, we have developed a sharable, text-based, machine-readable
language, called Asbru.  The Asbru language is part of the Asgaard*) project, in which we are
developing task-specific problem-solving methods that perform execution and critiquing tasks in
medical domains.  In the following we will introduce the underlying design-time and execution-
time model, the required knowledge roles, the skeletal-plan-execution support tasks, and the
architecture to perform these several tasks.  In addition, the syntax and the semantics of the Asbru
language will be explained using a medical example as illustration, namely a guideline for
controlled observation and treatment of noninsulin-dependent gestational diabetes mellitus (GDM
type II).  Finally, we will present an object-oriented version of Asbru, which we used for
generating an automated knowledge-acquisition tool by using the PROTÉGÉ-II framework’s tools.

2 . THE DESIGN-TIME VERSUS EXECUTION-TIME MODEL
During design time of a skeletal plan, an author (or a committee) designs a skeletal plan, such
as a clinical guideline (Figure 1).  The author prescribes (1) actions (e.g., administer a certain drug
in the morning and in the evening), (2) an intended plan—the intended intermediate and overall
pattern of actions, which might not be obvious from the description of the prescribed actions and is
often more flexible (e.g., use some drug from a certain class of drugs twice a day), and (3) the
intended intermediate and overall pattern of world states (e.g., patient states such as “morning
blood glucose should stay within a certain range”).  Intentions are temporal patterns of provider
actions or patient states, to be achieved, maintained, or avoided.

During execution time, an executing agent, such as a care provider in the medical domain,
performs actions, which are recorded, observed, and abstracted over time into an abstracted plan
(see Figure 1).  The state of the world (i.e., the patient in this case) also is recorded, observed, and
abstracted over time.  Finally, the intentions of the executing agent (in this case, the care provider)
might be recorded too—inferred from her actions or explicitly stated by the provider.

Execution time Design time

Guideline prescribed actions

Guideline intended plan

Guideline intended state

Care-provider observed actions

Care-provider abstracted plan

Care-provider state intentions

Patient  state

Figure 1.  The design-time versus execution-time model in a clinical domain.  Double-headed arrows denote a
potential axis of comparison (e.g., for critiquing purposes) during runtime execution of the clinical guideline.
Striped arrows denote an ABSTRACTED-INTO relationship.

*) In Norse mythology, Asgaard was the home and citadel of the gods, corresponding to Mount Olympus in Greek
mythology. It was located in the heavens and was accessible only over the rainbow bridge, called Asbru (or
Bifrost).
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2 . 1 . Support for skeletal-plan design and execution
Given the intention-based critiquing model for execution of skeletal plans, we can describe a set of
tasks relevant to the design and execution of such plans, and analyze the knowledge requirements
of problem-solving methods that perform these tasks (Table 1).  The verification and validation
tasks are relevant only during design time.  The rest of the tasks are relevant during execution time.

Each task can be formulated as answering a specific set of questions (see Table 1).  Furthermore,
each task can be performed by a problem-solving method (Eriksson, et al. 1995) that has an
ontology—a set of entities, relations, and domain-specific knowledge requirements assumed by
the method.  Since many of these knowledge requirements are common to different problem-
solving methods relevant to the same set of tasks, we combine them into a knowledge cluster, akin
to Pat Hayes’s notion of an axiom cluster (Hayes 1978; Hayes 1985).  Such a knowledge cluster
can be viewed as either the local ontology of the overall method configured by the combination of
the various problem-solving methods used to support skeletal-plan execution, or the global
ontology of these problem-solving methods.  Examples of knowledge roles include plan
intentions, author preferences, and runtime required conditions.  The semantics of the knowledge
roles used in our skeletal-plan representation language are discussed in the Section 3.  Given these
knowledge roles, we can define what knowledge is required to solve each task (see Table 1).

Table 1: The skeletal-plan-execution support tasks and the knowledge roles required by problem-solving methods
performing these tasks.  Common roles can be viewed as shareable by the methods requiring them.

Task Questions to be answered Required knowledge roles
Verification Are the intended plans compatible with the

prescribed actions?
Prescribed actions;
intended overall action pattern

Validation Are the intended states compatible with the
prescribed actions and intended plans?

Prescribed actions, intended overall
action pattern; intermediate and overall
intended states; plan effects

Applicability
of plans

What skeletal plans are applicable this time
to this world?

Filter and setup preconditions;
overall intended states; the world’s state

Execution of
plans

What should be done now according to the
execution-plan’s prescribed actions?

Prescribed actions; setup preconditions,
suspension, restart, completion, and
abort conditions; the world’s state

Recognition
of intentions

Why is the executing agent executing a
particular set of actions, especially if those
actions deviate from the skeletal plan’s
prescribed actions?

Executed actions and their abstraction to
executed plans; intended actions and
states; the world’s state; plan effects;
revision strategies; preferences

Critique of
the executing
agent’s
actions

Is the  executing agent deviating from the
prescribed actions or intended plan?  Are
the deviating actions compatible with the
author’s plan and state intentions?

Executed actions and their abstraction to
executed plans; intended intermediate
and overall action pattern; intermediate
and overall intended states; the world’s
state; plan effects; revision strategies;
preferences

Evaluation of
the plan

Is the plan working? Intermediate and overall intended states;
the world’s state; intermediate and
overall intended action pattern; executed
actions

Modification
of an
executing
plan

What alternative actions or plans are
relevant at this time for achieving a given
state intention?

Intermediate and overall intended states;
the world’s state; plan effects; filter and
setup preconditions; revision strategies;
preferences
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The following example demonstrates the tasks of plan-recognition and critiquing in the clinical
domain of monitoring and therapy of patients who have insulin-dependent diabetes.

During therapy of a diabetes patient, hyperglycemia (a higher than normal level of blood glucose)
is detected for the second time in the same week around bedtime.  The diabetes-guideline’s
prescribed action might be to increase the dose of the insulin the patient typically injects before
dinner.  (Insulin reduces the level of blood glucose.)  However, the provider recommends
reduction of the patient’s carbohydrate intake (e.g., bread) during dinner.  This action seems to
contradict the prescribed action.  Nevertheless, the automated assistant notes that increasing the
dose of insulin decreases the value of the blood-glucose level directly, while the provider’s
recommendation decreases  the value of the same clinical parameter by reducing the magnitude of
an action (i.e., ingestion of carbohydrates) that increases its value.  The assistant also notes that the
state intention of the guideline was “avoid more than two episodes of hyperglycemia per week.”
Therefore, the provider is still following the intention of the protocol.  By recognizing this high-
level intention and its achievement by a different strategy, the automated assistant can accept the
provider’s alternate set of actions, and even provide further support for these actions.

The plan-recognition ability demonstrated in the example can increase the usefulness of guideline-
based decision-support systems to clinical practitioners, who often follow what they consider as
the author’s intentions rather than the prescribed actions (Hickam, et al. 1985).  We assume
knowledge about the effects of interventions on clinical parameters, and knowledge of domain-
independent and domain-specific guideline-revision strategies; both effects and revision strategies
can be represented formally (Shahar and Musen 1995).

The example also demonstrates a specific execution-critiquing model.  The five comparison axes
shown in Figure 1 imply a set of different behaviors of the execution.  A care provider might not
follow the precise actions, but still follow the intended plan and achieve the desired states.  A
provider might even not follow the overall plan, but still adhere to a higher-level intention.
Alternatively, the provider might be executing the guideline correctly, but the patient’s state might
differ from the intended, perhaps indicating a complication that needs attention or a failure of the
guideline.  Several typical behaviors in the medical domain are presented in Table 2.

Table 2: Typical execution behaviors defined by the critiquing task, based on comparison of guideline intentions,
physician actions and intentions, and patient states
Intended
action vs.
physician
action

Intended
plan vs.
physician
plan

Intended
state vs.
physician
intention

Intended
state vs.
patient
state

physician
intention
vs. patient
state

Description of the
behavior

+ + + + + physician executes protocol as
specified; protocol succeeds

+ + +  – – physician follows guideline,
has the same intentions, but
guideline does not work

– + + + + overall plan intention followed,
albeit  through different actions,
and it works

– – + + + physician follows neither
actions nor overall plan; state
intentions agree and both
succeed

– – – – – physician follows neither action
nor plan; state intentions differ,
and neither materializes
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In theory, there might be up to 32 (25) different behaviors, assuming binary measures of
comparison along five axes.  However, the use of consistency constraints (e.g., if the intended
actions are followed by the physician, the pattern formed by the physician’s actions [the physician
plan] must match the intended plan, assuming no contradictions in the original intentions) and other
reasonable assumptions prunes this number to about 10 major behaviors.  These behaviors are
used by the critiquing mechanism.  (We also are investigating the use of continuous, rather than
binary, measures of matching).

The meaning of intentions in general and for planning tasks in particular has been examined in
philosophy (Bratman, 1987) and in artificial intelligence (Pollack, 1992).  We view intentions as
temporally extended goals at various abstraction levels (Bacchus and Kabanza, 1996).

A subtask implicit in several of the tasks in Table 1 is the abstraction of higher-level concepts from
time-stamped data during the execution of the skeletal plan.  Possible candidates for solving this
subtask include the RÉSUMÉ system and the temporal data-abstraction component in the VIE-
VENT system.  The RÉSUMÉ system (Shahar and Musen 1993) is an implementation of a
formal, domain-independent problem-solving method, the knowledge-based temporal-abstraction
method (Shahar, in press) and has been evaluated in several clinical domains (Shahar and Musen
1996).  VIE-VENT (Miksch, et al. 1993) is an open-loop knowledge-based monitoring and
therapy planning system for artificially ventilated newborn infants, which includes context-
sensitive and expectation-guided temporal data-abstraction methods (Miksch, et al. 1996b).  These
methods incorporate knowledge about data points, data intervals, and expected qualitative trend
patterns to arrive at unified qualitative descriptions of parameters (temporal data abstraction)
(Miksch, et al. 1996a).

In the Asgaard project, we are developing different task-specific reasoning modules that perform
the skeletal-plan-execution tasks shown in Table 1, and we are applying these modules to clinical
domains.  Figure 2 presents the overall architecture.  The task-specific reasoning modules require
different types of knowledge, often outside of the scope of the execution-plan ontology.  For
instance, the knowledge-based temporal-abstraction method implemented by the RÉSUMÉ module
requires knowledge about temporal-abstraction properties of measurable parameters, such as
persistence of their values over time when these values are not recorded (Shahar, in press).  These
properties exist, however, in the domain’s task-specific temporal-abstraction ontology (Shahar and
Musen 1996).

Execution interpreter

Patient data

Guideline-
specification
l ibrary Task-specific

reasoning
modules

Applicability

Plan  recognition

Critiquing

Temporal-abstraction
module

Domain-specific
knowledge bases

Intervention effects

Revision strategies
Temporal-abstraction

Figure 2.  A skeletal-plan-execution architecture instantiated in the guideline-based care domain.  Arrows denote
data or knowledge flow.
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Similarly, the plan-recognition and critiquing methods require generic and domain-specific plan-
revision knowledge (Shahar and Musen 1995); much of that knowledge is not part of the ontology
of executable plans, but is represented in a separate knowledge base.  Plan effects can be
represented as part of the plan, but can also be viewed as a separate knowledge base (Figure 2).
The specifications of clinical guidelines and of their independent components (we refer to either of
these entities as plans in this paper) are all represented uniformly and organized in a guideline-
specification library.  The execution plans are expressed in our task-specific language, Asbru.

3 . ASBRU: THE EXECUTION-SUPPORT–METHODS GLOBAL ONTOLOGY
We have developed a language specific to the set of execution-support tasks and the problem-
solving methods performing these tasks, which we call Asbru.  Asbru enables a designer to
represent both the prescribed actions of a skeletal plan and the knowledge roles required by the
various problem-solving methods performing the several execution-support subtasks.  The major
features of Asbru are that prescribed actions can be continuous; plans might be executed in parallel,
in sequence, in a particular order, or every time measure; temporal scopes and parameters of plans
can be flexible, and explicit intentions and preferences can underlie the plan.  These features are in
contrast to many traditional plan-execution representations (e.g., (Fikes and Nilsson 1971; Tate,
Drabble, and Kibry 1994; Kambhampati et al., 1995)), which assume instantaneous actions and
effects.  Actions often are continuous and might have delayed effects and temporally-extended
goals (Bacchus and Kabanza 1996).  The requirements of plan specifications in clinical domains
(Tu, et al. 1989; Uckun 1994). are often a superset of the requirements in typical toy-problem
domains used in planning research.  We have defined a formal syntax for the language in Backus-
Naur form, and an object-oriented version that defines a task-specific skeletal-plan-support
ontology.  We used this ontology for generating an automated knowledge-acquisition tool by
employing the PROTÉGÉ-II framework’s tools (Musen, et al. 1995).  The Asbru language
combines the flexibility and expressivity of standard procedural languages (e.g., the ARDEN
syntax (Hripcsak, et al. 1994) in the clinical domain) with the semantic clarity of declaratively
expressed knowledge roles in the task-specific ontology.

Asbru can be used to design specific plans as well as support the performance of different
reasoning and executing tasks.  Similar assumptions were made in the PROPEL language
(Levinson 1995).  During the design phase of plans, Asbru provides a powerful mechanism to
express durative actions and plans caused by durative states of an observed agent (e.g., many
actions and plans need to be executed in parallel or every particular time point).  These plans are
combined with intentions of the executing agent of plan.  They are uniformly represented and
organized in the guideline-specification library.  During the execution phase an applicable plan is
instantiated with distinctive arguments and state-transition criteria are added to execute and reason
about different tasks.  These tasks have been presented in Section 2.  We are using a medical
example to illustrate our language, namely a guideline for controlled observation and treatment of
gestational diabetes mellitus (GDM) Type II.  The entire example is listed in the Appendix.

3 . 1 . Time Annotation
Intentions, world states, and prescribed actions are temporal patterns.  A temporal pattern is either
a parameter preposition—a parameter (or its abstraction), its value, a context, and a time annotation
(e.g., the state abstraction of the blood-glucose parameter is HIGH, as defined in the context of
therapy for GDM type II, during a certain time period)—or a combination of multiple parameter
propositions (Shahar and Musen 1996).  The time annotation we use allows a representation of
uncertainty in starting time, ending time, and duration (Dechter, Meiri, and Pearl 1991; Rit 1986).
The time annotation supports multiple time lines (e.g., different zero-time points and time units) by
providing reference annotations.  The reference annotation can be an absolute reference point, a
reference point with uncertainty (defined by an uncertainty region), a function of a previously
executed plan instance (e.g., start plan instance A1 20 minutes after having completed plan instance
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ESS LSS EFS LFS

MinDu

MaxDu

Time

REFERENCE
˚

24 w 26 w 32 w 34 w

5 w

8 w

Time

CONCEPTION

w ... weeks

˚

Figure 3.  A schematic illustration of the Asbru time annotations.  The upper part of the figure presents the
generic annotation.  The lower part shows a particular example representing the time annotation [[24 WEEKS, 26
WEEKS], [32 WEEKS, 34 WEEKS], [5 WEEKS, 8 WEEKS], CONCEPTION]), which means "starts 24 to 26
weeks after conception, ends 32 to 34 weeks after the conception, and lasts 5 to 8 weeks."  REFERENCE = reference
annotation, ESS = earliest starting shift, LSS = latest starting shift, EFS = earliest finishing shift, LFS = latest
finishing shift, MinDu = minimal duration, MaxDu = maximal duration.

B1), or a domain-dependent time point variable (e.g., CONCEPTION).  We define temporal shifts
from the reference annotation to represent the uncertainty in starting time, ending time, and
duration, namely earliest starting shift (ESS), latest starting shift (LSS), earliest finishing shift
(EFS), latest finishing shift (LFS), minimal duration (MinDu), and maximal duration (MaxDu).
The temporal shifts are associated with time units (e.g., minutes, days) or domain-dependent units
(e.g., GESTATIONAL-WEEKS).  Thus, our temporal annotation is written as ([ESS, LSS],
[EFS, LFS], [MinDu, MaxDu], REFERENCE).  Figure 3 illustrates our time annotation.  ESS,
LSS, EFS, LFS, MinDu, and MaxDu can be "unknown" or "undefined" to allow incomplete time
annotation.  Also, in cases such as ([T1 HOURS, T1 HOURS], [T2 HOURS, T2 HOURS], [_,
_], REFERENCE), the time interval has exact starting and finishing times, T1 and T2,
respectively.  Therefore, the duration should not be specified, because (duration = T2 - T1) and
maximal duration is equal to minimal duration.

To allow temporal repetitions, we define sets of cyclic time points (e.g., MIDNIGHTS, which
represents a set of midnights, where each midnight is exactly at 0:00 am, every 24 hours) and
cyclic time annotations (e.g., MORNINGS, which represents a set of mornings, where each
morning starts at 8:00 am, ends at 11:00, and lasts at least 30 minutes).  In addition, we allow
short-cuts such as when a plan should start immediately at the current time, whatever that time is
(using the symbol *NOW*), or when a condition should hold during the span of time over which
the plan is executed, whatever that span is (using the symbol *).

For example,

MIDNIGHTS <- [0, 0 HOURS, 24 HOURS]

;;MIDNIGHTS is a set of cyclic time points

MORNINGS <- [[8 HOURS, 8 HOURS],[11 HOURS, 11 HOURS],[30 MINUTES, _],MIDNIGHTS]
;;MORNINGS is a set of cyclic time annotations or intervals with uncertainty concerning starting and ending that
uses midnights as a reference annotation

All domain-dependent time annotations, units, and time abstractions have to be defined in advance
to be applicable in all plans in the guideline-specification library.  The definitions ensure that site-
specific practice can be clarified and specified (e.g., DAYS start at 0:00 am or DAYS start at 7:00
am).  We allow variable assignments of time units, domain-dependent time-points, time-intervals,
and cyclic time abstractions.
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In addition, a sampling-frequency argument specifies the frequency of sampling the external-
wolrd’s data, such as when verifying the applicability of a particular plan.  Thus, we define a
sampling frequency for examining the plan’s state-transition criteria (see Section 3.3.3).

Our notation enables the expression of interval-based intentions, states, and prescribed actions with
uncertainty regarding starting, finishing, duration, and the use of absolute, relative, and even
cyclical (with a predetermined granularity) reference annotations.

3 . 2 . The semantics of the Asbru task-specific knowledge roles
A (guideline) plan in the guideline-specification (plan) library is composed hierarchically, using
the Asbru syntax, of a set of plans with arguments and time annotations.  A decomposition of a
plan into its subplans is always attempted by the execution interpreter, unless the plan is not found
in the guideline-specification library, thus representing a nondecomposable plan (informally, an
action in the classical planning literature).  This can be viewed as a “semantic” halting condition.
Such a plan is referred to the agent for execution, which may result in an interaction with a user or
an external calling of a program.  The library also includes a set of primitive (nondecomposable)
plans to perform interaction with the user or external devices such as asking the user for advice or
retrieving particular information from the medical patient record (e.g., OBSERVE, GET-
PARAMETER, ASK-PARAMETER, DISPLAY, WAIT)).  Plans have return values.

During the execution phase, an applicable plan is instantiated.  A set of mutually exclusive plan
states describes the actual status of the plan during execution.  Particular state-transition
criteria specify transition between neighboring plan states.  For example, if a plan has been
started, it can only be completed, suspended, or aborted depending on the corresponding criteria.
Figure 4 illustrates the different plan states and their corresponding transition criteria mentioned on
the arrows.  The gray triangle includes the three basic states and associated transition criteria; these
should always be defined.  The suspended and restarted states are optional and are available
for more complex plan types (the restarted state can be eliminated by combining it with the
started state into an active state and using temporal queries to differentiate between the two
types of active state).  The state-transition conditions are explained below.  Generic library
plans (i.e., plan types) also have states, such as considered, possible, rejected, and
ready, that determine if a plan type is applicable and whether a plan instance can be created.

suspended

restarted

aborted completed

started abort

complete

suspend restart

suspend

abort abortcomplete

Figure 4.  The various plan-instance states and associated state-transition criteria in Asbru.
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Figure 5.  Graphical representation of a clinical-guideline specification represented in Asbru.  Plan AA is of a
aequential type and includes plans A1 and A2 in sequence; plan A1 is of a concurrent type and includes plans such as
A, B, and C, and cyclical plan E.

A plan consists of a name, a set of arguments, including a time annotation (representing the
temporal scope of the plan), and five components: preferences, intentions, conditions,
effects, and a plan body which describes the actions to be executed.  The general arguments,
the time annotation, and all components are optional.  A subplan has the same structure (Figure 5).

The relationship between the various shared task-specific knowledge roles mentioned in Table 1
and shown in Figure 5, and the Asbru language syntax is shown in Table 3.

We shall now examine in more detail each of the knowledge roles represented in Asbru.

Preferences: Preferences bias or constrain the selection of a plan to achieve a given goal and
express a kind of behavior of the plan. We distinguish between:

(1) Strategy: a general strategy for dealing with the problem (e.g., aggressive, normal);
(2) Utility: a set of utility measures (e.g., minimize the cost or inconvenience);
(3) Select-method: a matching heuristic for the applicability of the whole plan (e.g., exact-fit);
(4) Resources: a specification of prohibited or obligatory resources (e.g., in certain cases of

treatment of a pulmonary infection, surgery is prohibited and antibiotics must be used);
(5) Start-conditions: an indication whether transition from a ready generic plan to the

started state of an actual plan instance is automatic (after applying the filter and setup
preconditions—see below) or requires approval of the user.



page - 11 -

Table 3: Relationship of Asbru syntactic elements to the task-specific knowledge roles
Task-specific knowledge role Syntactic element in Asbru

Preferences: constrain the selection of a plan PREFERENCES (STRATEGY, UTILITY,
LOOK-AHEAD, SELECT-METHOD,
RESOURCES, START-CONDITION)

Intended intermediate state: pattern that is
intended to hold during plan execution

INTENTION:INTERMEDIATE-STATE

Intended overall states: pattern that is intended
to hold at the end of plan execution

INTENTION:OVERALL-STATE

Intended intermediate actions: action pattern that
is intended hold during plan execution

INTENTION:INTERMEDIATE-ACTION

Intended overall actions: action pattern that is
intended to hold at the end of plan execution

INTENTION:OVERALL-ACTION

Filter preconditions that need to be true for the
plan to be applicable

FILTER-PRECONDITIONS

Setup preconditions that need to be achieved so
that the plan can start

SETUP-PRECONDITIONS

Suspension conditions that cause the plan to be
suspended

SUSPEND-CONDITIONS

Restarting conditions that restart a suspended
plan

RESTART-CONDITION

Abort conditions that abort the plan ABORT-CONDITIONS
Completion conditions that determine when the
plan is completed

COMPLETE-CONDITIONS

Prescribed actions PLAN-BODY
Effects of plans in relation to measurable
parameters

ARGUMENT-DEPENDENCIES
PLAN-EFFECTS

Intentions: Intentions are high-level goals at various levels of the plan, an annotation specified
by the designer, which supports tasks such as critiquing and modification.  Intentions are temporal
patterns of executing-agent actions and external-world states that should be maintained, achieved,
or avoided.  We define four categories of intentions:

(1) Intermediate state: the state(s) that should be maintained, achieved, or avoided during the
applicability of the plan (e.g., weight gain levels are slightly low to slightly high);

(2) Intermediate action: the action(s) that should take place during the execution of the plan
(e.g., monitor blood glucose once a day);

(3) Overall state pattern: the overall pattern of states that should hold after finishing the plan
(e.g., patient had less than one high glucose value per week);

(4) Overall action pattern: the overall pattern of actions that should hold after finishing the
plan (e.g., patient had visited dietitian regularly for at least three months).

For example (see appendix),

(INTENTION:INTERMEDIATE-STATE
(MAINTAIN STATE(mothers-body-weight-gain)

(OR SLIGHTLY-LOW NORMAL SLIGHTLY-HIGH) GDM-Type-II
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION]))

(INTENTION:OVERALL-ACTION
(MAINTAIN visit-dietitian regularly GDM-Type-II

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [3 MONTHS,_], CONCEPTION])
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Conditions: Conditions are temporal patterns, sampled at a specified frequency, that need to hold
at particular plan steps to induce a particular state transition of the plan instance.  We do not directly
determine conditions that should hold during execution.  We specify different conditions that
enable transition from one plan state into another (see Figure 4).  A plan is completed when the
completed conditions become true, otherwise the plan's execution suspends or aborts.  Aborting a
plan's execution is often due to a failure of the plan or part of it.  All conditions are optional.

We distinguish between:

(1) Filter-preconditions, which need to hold initially if the plan is applicable, but should not
be achieved (e.g., patient is a pregnant female), and are necessary for a possible state;

(2) Setup-preconditions, which need to be achieved to enable a plan to start (e.g., patent had a
glucose-tolerance test) and allow a transition from a possible plan to a ready plan;

(3) Suspend-conditions, which determine when a started plan has to be suspended (e.g.,
blood glucose has been high for at least four days); these implicitly what the planning literature
calls protection intervals  (Kambhampati et al. 1995), in which certain conditions need to hold;

(4) Abort-conditions, which determine when a started, suspended, or restarted plan has to be
aborted (e.g., there is an insulin-indicator condition: the patient cannot be controlled by diet);

(5) Complete-conditions, which determine when a started or restarted plan has to be
completed successfully (e.g., delivery has been performed);

(6) Restart-conditions, which determine when a suspended plan has to be restarted (e.g.,
blood glucose level is back to normal or is only slightly high); these can be seen as “automatic”
or “internal” reactivation conditions: others might be imposed by the higher-level plan.

For example,

(SUSPEND-CONDITIONS (OR STARTED RESTARTED) ;; two possible transition-source states exist
(STATE(blood-glucose) HIGH GDM-Type-II ;suspend if the glucose is HIGH during this period

[[24 WEEKS,24 WEEKS], [DELIVERY, DELIVERY], [4 DAYS,_], CONCEPTION]
(SAMPLING-FREQUENCY 24 HOURS))))

(ABORT-CONDITIONS (OR STARTED SUSPENDED RESTARTED)
(insulin-indicator-conditions TRUE GDM-Type-II *

(SAMPLING-FREQUENCY 24 HOURS))) ;abort simpler plan if there is an indication for need of insulin

Effects: Effects describe the functional relationship between the plan arguments and measurable
parameters (e.g., the dose of insulin is inversely related to the level of blood glucose) or the overall
effect of a plan on parameters (e.g., administration of insulin decreases the blood glucose).  Effects
have a likelihood annotation—a probability of occurrence.

For example, in the context of GDM, the dose argument of the insulin-administration plan has a
negative-monotonic relationship to the blood-glucose level, for any reaction time.  This effect
relation (ignoring in this case the temporal span and likelihood) is written as

(ARG-DEPENDENCY (dose GDM glucose_level NEGATIVE-MON
[[_, _], [_, _], [[_, _], *NOW*], _ ))

The overall effect of the plan in the context of GDM decreases the blood-glucose level, the reaction
time is between 10 and 60 minutes, and the likelihood is 0.97.  This overall effect is written as

(PLAN-EFFECTS (GDM glucose_level DEC
[[_, _], [_, _], [10 MINUTES, 60 MINUTES], *NOW*] 0.97))
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 Table 4: Categorization of plan types according to continuation conditions and ordering constraints
Continuation
condition -->

Ordering
Constraints

All plans should be
completed to continue

Some plans should be
completed to continue

Start together DO-ALL-TOGETHER
(no continuation-condition;
all plans must complete)

DO-SOME-TOGETHER
(continuation-conditions
specified as subset of plans)

Execute in any order DO-ALL-ANY-ORDER
(no continuation-condition;
all plans must complete)

DO-SOME-ANY-ORDER
(continuation-conditions
specified as subset of plans)

Execute in total order (sequence) DO-ALL-SEQUENTIALLY
(no continuation-condition;
all plans must complete)

------

Plan-Body: The plan body is a set of plans to be executed in parallel, in sequence, in any order,
or in some frequency.  We distinguish among several types of plans: sequential, concurrent, and
cyclical.  Only one type of plan is allowed in a single plan body.  A sequential plan specifies a set
of plans that are executed in sequence; for continuation, all plans included have to be completed
successfully.  Concurrent plans can be executed in parallel or in any order.  We distinguish two
dimensions for classification of sequential or (potentially) concurrent plans: the number of plans
that should be completed to enable continuation and the order of plan execution.  Table 4
summarizes the dimensions of the two plan types.  Using the two dimensions, we define the
operators DO-ALL-TOGETHER, DO-SOME-TOGETHER, DO-ALL-ANY-ORDER, DO-SOME-
ANY-ORDER, DO-ALL-SEQUENTIALLY.  The continuation condition specifies the names of
the plans that must be completed to proceed with the next steps in the plan.  For instance:

(DO-ALL-TOGETHER ; a sequential plan type in which continuation depends on completion of the preceding plan
(glucose-monitoring)
(nutrition-management)
(OBSERVE-insulin-indicators)); three subplans; the plan body of each can be of any type

the plans that must be completed to proceed with the next steps in the plan.

A cyclical plan (an EVERY clause) includes a plan that can be repeated, and optional temporal and
continuation arguments that can specify its behavior.  Start and end specify a starting and ending
time point.  Time base determines the time interval over which the plan is repeated and the start
time, end time, and duration of the particular plan instance in each cycle (e.g., starting with the first
Monday’s morning, until next Tuesday’s morning, perform plan A every morning for 10 minutes).
The times-completed argument specifies how many times the plan has to be completed to succeed
and the times-attempted argument specifies how many attempts are allowed.  Obviously, the
number of attempts must be greater or equal to the number of completions.  A temporal pattern can
be used as a stop condition of the cyclic plan.  Finally, the plan itself is associated with its own
particular arguments (e.g., dose).  The start time, the time base, and the plan name are mandatory
to the specification of a cyclic plan; the other arguments are optional.

For example, consider the following plan: “Administer 5 units of insulin every morning starting
with the first morning following the innitiation of the plan.”  This plan could be written as:

(EVERY 
(START (FIRST(MIDNIGHT) after (STARTED *self*))
(TIME-BASE [[8 HOURS, 8 HOURS], [11 HOURS, 11 HOURS], [_,_], MIDNIGHTS]

(administer-insulin 5)
END-EVERY )
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Note that morning is a cyclic time annotation and is represented in this case as the interval 8 a.m. to
11 a.m., expressed as a time shift from the cyclic set of time points MIDNIGHTS.  The duration
of administration of insulin in this case is not constrained, but it could be.  Note also that no stop
condition is defined in this case; the plan would continue indefinitely.

4 . ACQUISITION AND MAINTENANCE OF SKELETAL PLANS
Domain experts, such as expert physicians, need not have familiarity with the syntax of the Asbru
language to author skeletal plans, such as clinical guidelines.  Graphic knowledge-acquisition
(KA) tools can be generated automatically by systems such as PROTÉGÉ-II  (Eriksson, et al.
1995; Musen, et al. 1995; Tu, et al. 1995).  The KA tools can internally use the Asbru
representation or its equivalent, but that representation need not necessarily be known to the user.
In addition to creation of an internal (e.g., object-oriented) version of the plan, the KA tool should
be able to generate a text-based Asbru version.  The Asbru version can then be used as a sharable
machine-readable version that does not depend on any particular platform and will also be useful
for reading and editing by more knowledgeable designers.  We have explored the option of
generating an automated graphic KA tool for acquiring the set of shared knowledge roles, using the
PROTÉGÉ-II suite of tools, with encouraging results.

4 . 1 . Modeling a clinical-guideline ontology using the PROTÉGÉ-II methodology
PROTÉGÉ-II is a set of tools and a methodology to develop knowledge based systems.  We used
PROTÉGÉ/Win (the Windows version of PROTÉGÉ-II) to develop the ontology and to generate
a KA tool automatically from the ontology.  This ontology is shared by the task-specific cluster of
problem-solving methods relevant to the support of skeletal-plan execution.  In PROTÉGÉ-II
terms, we have developed a method ontology, global to all our problem-solving methods.  By this
we mean that the ontology is in theory local (specific) to some hypothetical, all-encompassing
method that performs the task cluster, but is in practice global to (shared by) all the methods that
perform subtasks in that cluster.  This is sensible in this case, as there is a great deal of overlap in
the concepts needed for the different tasks, and the roles undertaken by these concepts are the same
in all their uses by this set of tasks. The domain ontology in the case of clinical guidelines is also
required, but not shown here.  The domain ontology specifies concepts, such as drugs, diseases,
patient findings, tests, clinic visit types.

Ontologies in PROTÉGÉ-II are represented as a hierarchy of classes.  Each class is represented as
a frame with slots.  Slots may be constrained to basic data types, or to be instances of another class
defined in the ontology, thus allowing the expression of relationships in the ontology.  The
PROTÉGÉ/Win OntologyEditor tool was used to capture the ontology of the cluster of methods
supporting skeletal-plan execution.  Figure 6 shows a portion of that ontology.

Once the ontology is defined, the PROTÉGÉ/Win LayoutEditor tool automatically generates a
specification of a KA tool for this ontology.  The specification of the KA tool is interpreted by the
PROTÉGÉ/Win LayoutInterpreter.  It is possible to change the layout of the user interface to some
degree in the LayoutEditor.  The resultant KA tool can then be used to acquire instances of the
ontology, which in this case would be guidelines in the Asbru language.

The knowledge roles in the Asbru syntax can be viewed as a set of slots in a frame-based ontology
of skeletal plans.  The ontology that we have developed mirrors the BNF Syntax of the Asbru
language.  As this language is not object oriented, the ontology is fairly flat, in that inheritance is
not used significantly.  The concepts of inheritance and polymorphism can be usefully applied to
this domain, indeed it seems more natural to express the ontology in this form.  As an example, all
plans in the current ontology share the same state transition criteria, which has been chosen as one
which applies to most actions.  However, in a hierarchical ontology it is easy to create special
subclasses of the plan class which have variants of the state transition criteria. Such an ontology
maps well as an object-oriented language.
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Figure 6. Part of the eexecution–support methods ontology, represented by the PROTÉGÉ/Win OntologyEditor

 4.2. A knowledge-acquisition tool for support of clinical-guideline execution
We have generated an automated graphic KA tool for the object-oriented version of the Asbru
language, using the PROTÉGÉ-II suite of tools, with encouraging results.  Figure 7 shows an
example of using the KA tool to acquire a part of the GDM guideline (see appendix).

If the user is conversant with the syntax of the Asbru language, it may be quicker to design
guidelines by writing them in the language, using ‘copy and paste’ functions or editor macros. If
the user, in particular a domain expert, is unfamiliar with the syntax, then it is easier to use the KA
tool.  The complexity of the ontology enforces the automatic generator of the KA tool to produce a
user interface with many cascading, small dialogs.  Thus, for providing an optimal dialog, more
control of the layout of the automatically generated user interface was needed than was possible in
early versions of PROTÉGÉ/Win.  Once this additional feature became available, we managed to
generate and customize significantly better KA tools, although more improvements can take place.

Another significant benefit of the KA tool approach is that it detects incorrect syntax while
authoring a guideline.  Thus, implicit syntactic support is provided at no cost.

5 . SUMMARY AND DISCUSSION
Representing complex execution plans, such as clinical guidelines, and the intentions underlying
them in a standard, sharable, acquirable, machine-readable, and machine-interpretable form is
imperative for sharing execution plans and for useful, flexible automated assistance in the
execution of these plans.  In the multiple domains of clinical medicine, such a task-specific
representation is crucial for dissemination of modern clinical knowledge, since the use of clinical
guidelines can improve the quality of care (Grimshaw and Russel 1993).  The representation we
suggest supports several different knowledge roles that can be used by multiple reasoning
modules, both for direct execution of a guideline and for related tasks such as recognition of the
human executing agent’s intentions and for critiquing constructively that agent’s actions.
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Figure 7. Screen shot of knowledge-acquisition tool, showing a part of the GDM type II guideline

Besides explicit knowledge roles specific to the set of tasks involved in supporting skeletal-plan
execution, the Asbru language places a particular emphasis on an expressive representation for
time-oriented actions and world states.  Temporal reasoning is an important feature of dynamic
execution domains such as those of clinical medicine and needs to be supported.

In the Asgaard project, we are currently focusing on the development of the execution, plan
recognition, and critiquing problem-solving methods.
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APPENDIX: Example: A gestational diabetes mellitus (GDM) guideline in Asbru
We represented a part of a guideline, used at the Stanford University Medical Center for controlled
observation and treatment of noninsulin-dependent gestational diabetes mellitus (GDM type II), in
the Asbru language.  Implicit or unmentioned intentions and conditions in the guideline below have
been acquired from domain experts and appear in the Asbru representation of the example.

Observation and Treatment of Gestational Diabetes Mellitus (GDM)

GLUCOSE MONITORING:

(after GDM was dedected in third trimester pregnancy, tested by a

glucose tolerance test (GTT) being between 140 and 200 mg/dl)

(1) Patients will check glucose values four times/day (fasting and one hour

postprandial glucose)

(2) Preprandial, bedtime and 2 AM blood glucose will be added at the

discretion of the physician

(3) ... deleted ...

(4) Treatment goals should be no higher than 130 mg/dl for 1-hour post meals,

< 100 mg/dl fasting and preprandial

(5) ... deleted ...

NUTRITION:

(1) Patients should be taught a diet based on the patients weight, activity

level and number of fetus (regular meals: 3 meals, 3 snacks).

... (omitted for lack of space) ...
INSULIN THERAPY:

... (omitted for lack of space) ...
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The plan body consists of three plans that are executed in parallel.  These plans are decomposable
into other plans, which exist in the guideline-specification library.  Nondecomposable plans are
executed by the executing agent.  Plan names are written in bold characters.

(PLAN observing-GDM-Type-II

;; the following time-annotations are local to the GDM example

(DOMAIN-DEPENDENT TIME-ASSIGNMENT
(SHIFTS DELIVERY <− 38 WEEKS)
;; time shift from CONCEPTION
(POINT CONCEPTION <− (ask (ARG “what is the conception-date?”)))

(ABSTRACTION-ASSIGNMENT
(CYCLIC

MIDNIGHTS <− [0, 0 HOURS, 24 HOURS]
BREAKFAST-START-TIME <− [0, 7 HOURS, 24 HOURS]))

(PREFERENCES
(SELECT-METHOD EXACT-FIT)
(START-CONDITION AUTOMATIC))
;; The match in the filter conditions needs to be exact and the plan starts as soon as it is in a ready state

(INTENTION:INTERMEDIATE-STATE
(MAINTAIN blood-glucose-post-meal (<= 130) NIL ;; a raw data value (no context)

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])
(MAINTAIN blood-glucose-fasting (<= 100) NIL   ;; a raw data value (no context)

[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])
(MAINTAIN STATE(mothers-body-weight-gain)

(OR SLIGHTLY-LOW NORMAL SLIGHTLY-HIGH) GDM-Type-II ;; a context-specific value
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])

)
(INTENTION:INTERMEDIATE-ACTION

(MAINTAIN diet regular-meals GDM-Type-II
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION])

)
(INTENTION:OVERALL-STATE

(AVOIDED STATE(blood-glucose) HIGH GDM-Type-II
[[24 WEEKS, 24 WEEKS], [DELIVERY, DELIVERY], [7 DAYS,_], CONCEPTION])

;; avoid high blood-glucose level (as defined in the context of therapy for GDM type II) for more than 7 days
) ;; in the period from 24 conception weeks to delivery, using the estimated conception date as a reference point

(SETUP-PRECONDITIONS
(PLAN-STATE one-hour-GTT COMPLETED

[[24 WEEKS, 24 WEEKS], [26 WEEKS, 26 WEEKS], [_,_], CONCEPTION])
;; The patient must have had a glucose-tolerane test (another plan in the library) successfully completed

(FILTER-PRECONDITIONS
(one-hour-GTT (140, 200) pregnancy

[24 WEEKS, 24 WEEKS], [26 WEEKS, 26 WEEKS], [_,_], CONCEPTION])
(SUSPEND-CONDITIONS (OR STARTED RESTARTED)

(STATE(blood-glucose) HIGH GDM-Type-II
[[24 WEEKS,24 WEEKS], [DELIVERY, DELIVERY], [4 DAYS,_], CONCEPTION]
(SAMPLING-FREQUENCY 24 HOURS)))
;; suspend if high blood-glucose level (in the context of GDM type II therapy) exists for at least 4 DAYS

(ABORT-CONDITIONS (OR STARTED SUSPENDED RESTARTED)
(insulin-indicator-conditions TRUE GDM-Type-II *

(SAMPLING-FREQUENCY 24 HOURS)))
(COMPLETE-CONDITIONS (OR STARTED RESTARTED)

(delivery TRUE GDM-Type-II * (SAMPLING-FREQUENCY 30 MINUTES)))
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(RESTART-CONDITIONS ;; restart from a suspended state
(STATE(blood-glucose) (OR NORMAL SLIGHTLY-HIGH) GDM-Type-II

[[24 WEEKS,24 WEEKS], [DELIVERY, DELIVERY], [_,_], CONCEPTION]
(SAMPLING-FREQUENCY 24 HOURS)))

((PLAN-EFFECTS (GDM-Type-II glucose NORMAL
([_, _], [_, _], [10 MINUTES, 60 MINUTES], *NOW*) 0.97))

(DO-ALL-TOGETHER
(glucose-monitoring)
(nutrition-management)
(OBSERVE-insulin-indicators)

));; the plan body is a concurrent one and comprises three plans that start together, all of which need to complete

(PLAN glucose-monitoring
(PREFERENCES
(SELECT-METHOD EXACT-FIT)
(START-CONDITION AUTOMATIC))

(INTENTION:INTERMEDIATE-STATE
(MAINTAIN STATE(blood-glucose)

(OR NORMAL SLIGHTLY-HIGH) GDM-Type-II
[[24 WEEKS, 24 WEEKS], [26 WEEKS, 26 WEEKS], [_,_], CONCEPTION])

(SETUP-PRECONDITIONS
(glycometer-equipment-available TRUE GDM-Type-II *))

(FILTER-PRECONDITIONS
(GDM-Type-II-diagnose TRUE pregnancy *))

(DO-ALL-TOGETHER
(monitor-fasting-glucose (ARG NORMAL glucometer))
(monitor-one-hour-after-breakfast-glucose (ARG NORMAL glucometer))
(monitor-one-hour-after-lunch-glucose (ARG NORMAL glucometer))
(monitor-one-hour-after-dinner-glucose (ARG NORMAL glucometer))
(IF (physician-decided-more-analyses TRUE GDM-Type-II *)

THEN (monitor-alternative-times
(ARG NORMAL glucometer))

)))

(PLAN monitor-fasting-glucose (ARG glucose-value device)
(PREFERENCES
(START-CONDITION AUTOMATIC))
(EVERY
(START (FIRST(MIDNIGHT) after (STARTED *self*))
;; first midnight after started the current plan
(TIME-BASE [[-1 HOURS, -1 HOURS], [-10 MINUTES, -10 MINUTES], [_,_],

BREAKFAST-START-TIME])
(UNTIL (COUNT-APPEARANCE 3

(blood-glucose STATE(blood-glucose) HIGH GDM-Type-II
 [[24 WEEKS,24 WEEKS], [DELIVERY, DELIVERY],
[3 DAYS,7 DAYS], CONCEPTION] ))

;;elevated-blood-glucose more than 3 times

  (observe blood-glucose device glucose-value)
END-EVERY )


