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Abstract. The execution of clinical guidelines and protocols (CGP)
is a challenging task in high-frequency domains such as Intensive
Care Units. On the one hand, sophisticated temporal data abstraction
is required to match the low-level information from monitoring de-
vices and electronic patient records with the high-level concepts in
the CGP. On the other hand, the frequency of the data delivered by
monitoring devices mandates a highly efficient implementation of the
reasoning engine which handles both data abstraction and execution
of the guideline.

The language Asbru represented CGPs as a hierarchy of skeletal
plans and integrates intelligent temporal data abstraction with plan
execution to bridge the gap between measurements and concepts in
CGPs.

In this paper, we present our Asbru interpreter, which complies
abstraction rules and plans into a network of abstraction modules by
the system. This network performs the content of the plans triggered
by the arriving patient data. Our approach evaluated to be efficient
enough to handle high-frequency data while coping with complex
guidelines and temporal data abstraction.

1 Introduction

In the field of medicine, the application of clinical guidelines and
protocols helps to improve the quality of care by ensuring the opti-
mal choice of treatment. Clinical guidelines are ”systematically de-
veloped statements to assist practitioner and patient decisions about
appropriate health care for specific clinical circumstances” [5]. Such
guidelines are based on the best empirical evidence available at the
moment [11]. A guideline describes the optimal care for patients and
therefore, when properly applied, it is assumed that they improve the
quality of care.

A precondition for the successful application of clinical guidelines
and protocols is automatic abstraction of context-dependent time-
annotated raw-data (e.g., percent of oxygen in blood at a certain
second) to high-level medical concepts (e.g., sufficient oxygen sat-
uration during an extended period of observation). This is performed
by temporal data abstraction.

In domains, like medicine, where comprehensive knowledge is
available and human life depends on plan execution, only approved
and validated procedures are admitted and direct control over the
planning process is crucial. The user community, namely the medical
staff, would refuse a system which does not offer maximum trans-
parency and coverage safety issues in the decision process.
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Within the domain of medicine, intensive care poses additional
challenges to plan execution. Here, the data arrives at a high rate
(at least 1 measurement for many input channels per second) and it
is error-prone due to measuring constraints (e.g., some sensors at-
tached are to the skin of the patient, whose movements may lead
to wrong measurements). The nature of the data raise the need for
elaborate pre-processing of the data, including complex knowledge-
based plausibility checks and correction heuristics which involve
multiple channels and time windows and the synchronisation of low-
frequency and high-frequency inputs. This processing together with
the sometimes complex propagation of plan states needs to be per-
formed in a timely manner to meet the real-time requirements of on-
line patient monitoring.

The safety considerations in this domain also demand that the
same system is used in online monitoring and validation of the guide-
line used therefore by running it on a large set of test data (previous
recordings of patient data).

To meet these requirements, we integrate time-oriented, skeletal
planning using the Asbru representation with real-time monitoring
and temporal data-abstraction.

In the following, we discuss related work in Section 2. The lan-
guage used to represent a clinical guideline in computer-executable
form is Asbru. It is described in Section 3. In Section 4 we explore
the details of the interpreter, illustrated by an example. The evalua-
tion and future work is described in Section 5 followed by the con-
clusion.

2 Related Work

Asbru is one of a wide range of computer interpretable representation
languages for clinical guidelines. We give a short overview of related
approaches here. See [18] for a detailed comparison.

EON was developed as a component-based, extensible architec-
ture, using Protégé for its internal representation [14]. It offers ad-
vanced decision criteria in the Protégé Axiom Language (PAL) or
using temporal queries in an external database. The EON architec-
ture was used in the ATHENA Decision Support System (DSS) [10].

GLARE [21] is a domain-independent system with tools for the
full life-cycle of clinical guidelines. The representation formalism
builds on a limited but comprehensible set of primitives and is de-
signed to cope with different types of temporal constraints, particu-
lar attention was paid to the role of periodic events. Guidelines are
stored in a database, an XML representation is planned.

The Guideline Interchange Format (GLIF3) [17] stresses the im-
portance of sharing guidelines among different institutions and sys-
tems. Guidelines can be designed at three levels: a conceptual, a
computable, i. e. verifiable, and an implementable specification in-



tended for incorporation into clinical systems. An execution engine
for GLIF3, named GLEE, was implemented recently [22].

NewGuide [4], a component-based multi-level architecture, inte-
grates the formalized model of medical knowledge contained in clin-
ical guidelines with workflow management, formally grounded in
Petri nets.

PROforma [6] combines logic programming and object-oriented
modelling, using R2L as its representation language. One aim of
the PROforma project is to explore the expressiveness of a deliber-
ately minimal set of modelling constructs. Similar to Asbru, effects
of plans are implemented in a computer interpretable form.

There are many guideline modelling approaches today, but only
few integrate strong data abstraction resources. This may be caused
by the fact that in most settings, data is entered manually which al-
lows to delegate the data abstraction task to the user by demanding
qualitative high-level input instead of the original data. However, the
integration of guideline execution into the clinical data flow becomes
more and more important in order to apply decision support systems
in clinical daily practice [12].

There have already been two attempts to implement an execu-
tion engine for Asbru. The first implementation created by Bosse [3]
translated the guideline into a representation suitable to be executed
in Clips. The implementation was customised for a single clinical
protocol and was therefore abandoned after the end of the project.

A more general implementation is AsbruRTM [8]. It has been used
to test Asbru guidelines in intensive care [9]. Unfortunately, As-
bruRTM only supports a subset of the available plan types in Asbru
Light and does not integrate advanced (temporal) data abstraction.

Spock [23] is a system for application of guidelines in Hybrid-
Asbru, which is a semi-formal guideline language that combines for-
mal structure with description text. Spock is therefore not suited for
fully-automated execution, but it can support a human agent applying
a guideline. Spock is integrated with the IDAN architecture [2] and
can utilize its temporal abstraction capabilities for decision support.

None of the above systems closely integrate plan execution and
the required data abstraction into the clinical data flow in a high fre-
quency domain such as intensive care. We therefore designed a seam-
less framework for the abstraction of data, the execution of plans
and monitoring the environment for relevant changes [19, 16] as de-
scribed in Section 4. It is complemented by a range of tools for the
authoring and visualisation of various aspects of the guideline and
the abstraction rules [1].

3 Representing Plans and Abstractions in Asbru

Asbru is a time-oriented plan representation language that describes
clinical guidelines as skeletal plans [20]. Skeletal plans are plan
schemata at various levels of detail, capturing the essence of the pro-
cedure, but leave room for execution-time flexibility in the achieve-
ment of particular goals [7]. Several knowledge roles are attached to
a plan: preferences, intentions, conditions, effects and a plan body,
which describes the actions to be taken.

Asbru’s distinguishing features are that (1) intentions, conditions,
effects and world states are temporal patterns, which allow reasoning
about the contained knowledge; (2) actions and states can be continu-
ous (durative); (3) the language allows to model temporal uncertain-
ties, different granularities, and repeated patterns in events, actions,
plans and world states; (4) plans are executed in sequence, all plans
or some plans in parallel, or unordered with or without mutual ex-
clusion; (5) because of the advanced (temporal) data abstraction ca-
pabilities, diagnosis and treatment can be tightly integrated allowing

each one to support the other one.
All conditions for the transition from one plan state to another are

expressed in terms of temporal patterns. A temporal pattern consists
of one or more parameter propositions or plan-state descriptions.
Each parameter proposition contains a value description, a context,
and a time annotation. The time annotation used allows a representa-
tion of uncertainty in starting time, ending time, and duration of an
interval. Start and end are defined as shifts from a reference point.
Reference points can be defined as sets of cyclical time points or ref-
erences to parameter changes, allowing repeated temporal patterns.

Asbru differentiates between seven plan states: considered, pos-
sible and rejected represent the plan-selection phase, activated, sus-
pended, completed and aborted represent the plan execution phase.

Asbru plan libraries are written in XML and consist of two major
parts, the domain definition section and the plans section. The plan
section contains the plan definitions as described above. The domain
definition defines both quantitative and qualitative parameters. These
can be directly input or abstracted from other parameters. There is a
wide range of abstractions available. They can be grouped into value
abstractions which exclusively deal with the value dimension of mea-
surements, and value aggregations where temporal abstractions are
applied on the measurement. The result of the abstraction is accessed
in the plans – both in conditions and assignments.

4 The Asbru Interpreter
Conceptually, the Asbru Interpreter consists of three basic units: data
abstraction, monitoring, and plan execution. In the data abstraction
unit, various temporal or atemporal abstractions are applied to the
patient data to gain information at higher conceptual levels. The pro-
vided quantitative or qualitative data is monitored to detect temporal
patterns in the abstracted data. This information is used to control
the selection and execution of plans. This data flow is not unidirec-
tional, instead, the execution unit can interact with both monitoring
and abstraction unit to adjust the monitored patterns and to adapt the
abstraction process to the context given by the current plan states.

The interpreter has two different modes of operation: Batch mode
and interactive mode. In batch mode, a large set of records is read to
validate a guideline against patient data or to create complex abstrac-
tions of the data for later analysis. In interactive mode, data can be
read from monitoring devices in addition to the user input.

4.1 System Architecture
Figure 1 shows the parts of the interpreter on the implementation
level. The main parts are the Asbru Compiler and the Execution Man-
ager. The three conceptual components mentioned above – data ab-
straction, monitoring, and plan execution – are seamlessly integrated
in the module graph.

At program start-up, the Asbru plan library XML file is compiled
into a directed graph of modules. For each time step, the Execution
Manager enacts each of the modules in the network to process patient
data, monitor temporal patterns, and execute the plans in the guide-
line. These modules are largely compatible with each other, which
allows information extracted by any module to flow back into the ab-
straction or monitoring process. To handle complex networks with
many inputs in high-frequency applications, the Execution Manager
ensures that each module is enacted exactly when needed, allowing
for small time steps by some modules without the overhead created
by other modules which would not provide new information at that
moment.
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Figure 1. System architecture and data flow in the Asbru Interpreter. The
Asbru plan library is compiled into a directed graph of modules by the Asbru

Compiler. The Execution Manager uses this module network to process
patient data and execute the plans representing the guideline. The output of

the modules is provided in a uniform way, to be displayed in a graphical user
interface. In addition, all state transitions are documented in a log file which

is then translated to various table formats to ease the analysis of the
execution path.

The output of the system can be displayed in a graphical user in-
terface. In addition an interactive, graphical user interface currently
under development will allow the stepwise control of plan execution.
Using custom-built modules, the output can be integrated with the
control of medical devices in a close-loop setting.

During operation, the interpreter writes an extensive log file doc-
umenting all abstraction steps and plan state changes. This is later
transformed into various reports focussing on different aspects by
easily customisable post-processing tools.

This is of particular importance when validating a clinical guide-
line against a set of patient data, which is the current main application
of the interpreter.

4.2 Module Design

Each Asbru statement is translated to one or more modules. Some of
these modules are simple, while others implement complex logic. At
each time step, a module receives zero, one or more data points as in-
put from its precursors in the abstraction graph and generates zero or
one output data point. This output can be a simple time-stamped nu-
meric value, or a complex structure such as the linear regression of a
series of measurements, or the state of a plan together with synchro-
nisation tokens for its children and parent plan. An important group
of the modules – the temporal aggregation modules – produces out-
put at a lower rate than its input, thus relieving its successors in the
abstraction graph from the larger part of the data load by outputting
high-level concepts such as ”sufficient oxygen” only.

Modules can set alarms, to be triggered when a certain span of
time is elapsed. Here we distinguish between pre-alarms and post-
alarms depending on whether the alarm is triggered before or after
processing the data for this time step. This distinction allows the im-
plementation of both complex and convex temporal intervals. Alarms
are set by various monitoring and value aggregation modules.

The available modules can be divided into the following cate-
gories.

Constant modules and system variables. These are the simplest
category. They do not receive input. Constants modules are used to
implement the constants found in an Asbru plan. System variables
continuously produce values such as the current date.

Raw data modules. These modules interface the input channels and
map the raw-data parameter definitions in Asbru. In real-time op-
eration, they passively wait for arriving input data and return the
next available value. In batch mode they read data from files.

Value abstraction modules. This group comprises the logical and
arithmetic combination of inputs, and the mapping of quantitative
values to qualitative categories.

Value aggregation modules. In order to map high-frequency, error-
prone inputs to high-level concepts, it is mandatory to aggregate
series of measurements and to derive the abstractions from them,
and not from single measurements. Such aggregates can be de-
scriptive statistics applied to moving time-windows, or more com-
plex algorithms such as the spread [13].

Monitoring modules. These modules handle temporal patterns,
such as parameter propositions, which control the state changes of
Asbru plans. A parameter proposition has several states. Initially it
is not fulfilled. As soon as an interval matches the time annotation,
the parameter proposition becomes fulfilled. If the reference point
is the symbolic value now, i. e. the current time point of evalua-
tion, then the parameter proposition can become no more fulfilled
in the future (provided that the condition or the context evaluate
to true no more). A detailed discussion can be found in [16, 19].
Other Asbru features which are also covered by modules of this
category are temporal constraints or constraint combinations.

Temporal abstraction modules. The patterns detected by monitor-
ing modules and aggregates of the measurements often need one
or more steps of temporal abstraction to detect complex patterns
in the input data such as ”five episodes of apoea followed by hy-
peroxemia during the previous hour”.

Plan modules. Modules in this category represent Asbru plans or
single plan steps. The network of parent and child plans is fully
integrated with the other modules to from the module graph. Thus,
the output from plan modules can be fed back into further abstrac-
tion steps.

The following actions are performed for each module: providing
optional control data, attend to pre-alarms, process input data, attend
to post-alarms and finally store the output of this module for use by
other modules down the abstraction stream.

A plan module that represents a logical decomposition of plans
needs to synchronise the plan modules representing its sub-plans. It
does this by sending special data points to these child plan modules.
Since the communication of plans with their children introduces cy-
cles in the module graph, it is necessary to invoke plan modules more
than once per data point received from the environment. Therefore,
we divide each external macro time step into several internal micro
time steps. This means that in-between processing two succeeding
data points, the internal state propagation is propagated first. This
does not introduce additional overhead as only the few concerned
modules consume compute time in this phase.

The execution manager ensures that each module is only en-
acted upon new input. Therefore, a large number of complex low-
frequency abstractions can be closely coupled with high-frequency
modules. Further details are given in [16].
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Figure 2. Sample module graph. The module graph maps directly to the
described Asbru model. A raw data module has been created for the

parameter SpO2, which is connected to a qualitative abstraction module.
The resulting qualitative value is compared against a qualitative constant.
This comparison module is connected parameter proposition module used
for the suspend condition of the normal ventilation plan module. Another
parameter proposition module is connected to the re-activate condition,

which uses the negated output of the comparison module as input. The three
other plan modules framed with a dashed line are shown to illustrate the
context of this example, but will not be further explained in this paper.

4.3 Example: Ventilation in Neonates

From the field of artificial ventilation in neonates, we extract the fol-
lowing fragment of a protocol controlling the fraction of inspired
oxygen based on measurements of partial pressure on oxygen in
blood.

An external monitoring device measures the saturation of oxy-
gen in blood SpO2). It delivers numeric values at a rate of
1 Hz. These values are abstracted to qualitative values. E.g.,
SpO2 below 80% is mapped to apnoe, while higher values are
mapped to decreased, normal and increased. If the qualitative
value of SpO2 equals apnoe for at least 4 seconds, then normal
ventilation should be suspended. In this situation, the patient
will receive emergency treatment by the medical staff. If the
patient returns to less critical state, as defined by SpO2 being
unequal apnoe for at least 10 seconds, normal ventilation is
resumed.”

In Asbru, SpO2 is a raw parameter. In addition, we introduce
an abstracted qualitative parameter SpO2-qualitative with the pos-
sible values apnoe, decreased, normal and increased, where apnoe
corresponds to SpO2 < 80%. Furthermore, we create a plan called
normal-ventilation with a suspend condition and a re-activate con-
dition, both realised using parameter propositions. Each parameter
proposition has reference point now. The first parameter proposition
has the condition SpO2-qualitative equal apnoe and the time anno-
tation minimum-duration = 4 sec. The second parameter proposition

 
 
 
 
 
 
 
 
 
 
Caption: 
Sample input data. The graph shows the measurements of saturation of oxigen in blood (SpO2). The 
horizontal line shows the threshold for apnoea (80%). The doted lines mark relevant time points 
described in the text. 
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Figure 3. Sample input data. The graph shows the measurements of
saturation of oxygen in blood (SpO2). The horizontal line shows the

threshold between the qualitative region of apnoe (below 80%) and the other
qualitative regions not relevant in our example. The dotted lines mark

relevant time points described in the text.

contains SpO2-qualitative not-equal apnoe and minimum-duration =
10 sec.

Figure 2 shows the relevant part of the module graph that is gen-
erated by the Asbru Compiler based on this specification. In terms
of the overall concept, the monitoring task is performed by the pa-
rameter proposition modules, the data abstraction is provided by the
modules feeding them, and the modules shown below the parameter
proposition modules implement the plan execution.

In the following we discuss a typical series of events during ab-
stracting and monitoring the input using the described modules. Fig-
ure 3 shows an excerpt from monitored saturation of oxygen in blood
(SpO2).

Time point A represents one of many time steps during which the
plan normal ventilation is activated and no changes are required. The
value of SpO2 is above the threshold (80%). Therefore, the compar-
ison module does not create new output, after outputting false once
at program start.

At time point B, the SpO2 value falls below the threshold. There-
fore, the comparison module outputs true. The directly connected
parameter-proposition module at the left detects a positive flank,
i. e. a change from false to true in its input channel and sets
an alarm to current-time + 4s.

At time point C (i. e. 4 seconds after B), the alarm set at time
point B triggers and since the value of SpO2 did not change (i. e. no
negative flank occurred), the parameter proposition module reports
a found episode to the plan module. This means that the suspend
condition of the plan gets fulfilled and the plan changes its state to
suspended.

At time point D, the first parameter-proposition detects a negative
flank (SpO2 is no more in the range of apnoe, therefore the value of
the input changed from true to false) and changes its output to
no-more-fulfilled. In this case, this input has no consequence
for the state of the plan module. The second parameter proposition
module detects a positive flank, as the comparison module outputs



false now which is inverted by the not module. Consequently, the
parameter proposition module sets an alarm to current-time + 10s.

At time point E (i. e. 10 seconds after D), the previously set alarm
for the second parameter proposition module triggers and since there
was no negative flank for this module until then, this parameter-
proposition reports now a found episode to the plan module. There-
fore, the re-activate condition of the plan evaluates to true and the
plan resumes (i. e. it changes its state back to activate).

5 Evaluation and Future Work
An extensive real-world guideline for breast cancer [15] was mod-
elled in Asbru and test runs of the resulting model in the interpreter
were successful. Running the interpreter on patient cases will allow
the comparison between the expected outcome of applying the guide-
line and the actual outcome according to the model in Asbru.

This form of validation of the guideline is a very important link
between the verification of the model, which takes today’s verifiers
to their limits because of the complexity of the model, and the dis-
cussion of prototypical execution paths with domain experts, which
can only cover a small fraction of all possible paths.

Besides dealing with the low-frequency domain of breast cancer,
practical tests with high-frequency data showed that the interpreter
processes input from 10 channels and moderately complex abstrac-
tions thereof at a rate of more than 1 kHz on a standard PC. Most
clinical data is recorded at 1 Hz, or 200 Hz. We therefore conclude
that the computational performance is sufficient for real-time appli-
cations in clinical monitoring.

Future work will go into the construction of dedicated modules
to interface equipment at intensive care units. Similar modules will
allow the integration with other temporal abstraction systems. In ad-
dition, a graphical user interface to allow the interactive use of the
interpreter by non-computer experts is under development.

6 Conclusion
Plan execution in real-world high-frequency domains such as inten-
sive care units demand for tight integration of temporal data abstrac-
tion and plan execution to achieve the required intelligent reaction to
unpredictable changes in the environment, i.e., the patient state.

While the knowledge in such domains is abstract, partly vague or
incomplete, and often complex, the data arrives at a high rate and in
a format that is far from the level in which the domain knowledge is
specified. Translating the domain knowledge to such low levels by
a knowledge engineer leads to well known short-comings regarding
maintenance and assuring the correctness of the model.

We therefore designed an interpreter, which takes a high-level
specification of skeletal plans and temporal data abstraction and com-
piles them into a network of abstraction modules. Using elaborate
management of data flow, these modules process the data at a high
rate, even in complex configurations.

Tests have demonstrated that the interpreter can handle a complete
guideline, large sets of patient records, and high-frequency measure-
ments. Applications to large sets of data are currently in progress.
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