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In medical domains, like Intensive Care Units both large amounts of on-
line data and expert knowledge are available, but their automatic
combination is hindered by practical concerns, like poor signal quality. In
this chapter we present a set of methods to bridge this gap between
erroneous high-frequency raw data and high-level symbolic
representations. Interpretation of high-frequency data requires both time-
oriented data validation and analysis resulting in high-level qualitative
descriptions. The validation process consists of time-independent, time-
point-, time-interval-, and trend-based methods to detect errors in the
observed raw data as well as methods for its repair. The aim is to arrive at
the most reliable data possible to obtain. The analysis abstracts different
types of qualitative information concerning trends, values, and quality of
the data. We developed various robust algorithms for both periodical and
non-periodical curves to arrive at qualitative descriptions over time and to
cope with artifacts in the data, which cannot possibly be detected in the
previous validation steps.

1 Introduction
Most Intensive Care Units (ICUs) are well equipped with modern devices
for patient monitoring. On-line recording of patient data and storage in



computer-based patient records (CPR) and patient data management
systems (PDMS) become common-place in today’s ICUs. Currently, the
medical staff is suffering from information overloading caused by too many
channels of on-line recording and from a vast amount of false alarms due
to simple alarming policies (Lawless, 1994).

On the one hand, during the last years, several sophisticated knowledge-
based monitoring and therapy-planning systems have been introduced
(Uckun, 1994). These systems concentrate on optimizing data analyses
and interpretation, on applying different kinds of accessible knowledge and
information to enrich the reasoning process, and on minimizing manual
data input by improving the technical equipment at modern clinics and by
accessing computer-based patient records. However, particular time-
oriented data-analysis methods are needed to cope with data in high-
frequency domains and to ensure proper operation in life-threatening
situations.

On the other hand, the monitors available at the ICUs are equipped with
alarming systems, which can only detect obvious errors. These alarming
systems apply simple methods of range checking, which are obviously too
simple to be useful in a complex medical setting. As a result, the medical
staff has a burdensome time to distinguish dangerous situations from false
alarms. So, the supporting monitoring and therapy-planning systems are
ineffective without error-detection methods because of the quite poor
quality of the data (Carlson et al., 1993).

Therefore, we are aiming to overcome the problem of information overload
and to improve the quality of data by applying the following four strategies:
First, we propose data validation methods to arrive at reliable data. The
importance of data validation has been neglected in the past—the data
received from the monitors is more faulty than is often realized (Gardner et
al., 1992). Intensive efforts to detect artifacts require the combination of all
information available, cross-validating various data sources, inspecting
and reasoning about data points over time, and looking at trends to get a
complete and consistent picture of the situation of the patient of the past
and at present. In section we describe the methods for data validation and
repair implemented in VIE-VENT, an open-loop knowledge-based
monitoring and therapy planning system for artificially ventilated newborn
infants (Miksch et al., 1993; 1996; Horn et al., 1997), which has been
tested and evaluated in real clinical scenarios.

Second, data analysis methods are needed, which can handle time-
oriented states and events, shifting contexts, and different expectations
concerning the development of parameters. The process of this analysis is
called temporal data abstraction. We describe the methods implemented in
VIE-VENT and upcoming improvements in section . An advantage of using



these qualitative descriptions is their unified usability and
interchangeability in further reasoning processes, regardless of the origin
of the described data.

Third, a lot of non-systematic errors, called noise, can be eliminated by the
data validation methods. However, not all errors can be detected.
Therefore, the temporal data abstraction methods should be made less
sensitive to such errors and at the same time provide information about the
estimated quality of the data. In section we describe the calculation of a
reliability score as a byproduct of the validation as implemented in VIE-
VENT and in section we describe our approach to utilize statistical
measures for the reliability of the data in the abstraction process.

Fourth, periodic high-frequency data call for a method to reason over
changes in the form of the oscillations—not only its frequency and
amplitude—in an intuitive way. Descriptions in terms of frequency
spectrums or function matrices as used by popular approaches in the field
of signal processing are not compatible with the representation physician
use when describing curves. In section 4.3 we describe our ongoing
research on this topic.

In section 2 we describe the need for data validation and abstraction and
describe the characteristics of the used data. We present our approaches
to preprocessing data (time-oriented data validation) in section 3 and those
to time-oriented data abstraction in section 4. The evaluation and benefits
of our approach are discussed in section 5 and future work in section 6.

2 Motivation - The Characteristics of the Data

2.1 The Need for Time-Oriented Data Validation

In the following we will motivate the necessity of effective data validation
illustrating our experiences with medical on-line data from ICUs.

We evaluated on-line data sets obtained from newborn infants with various
respiratory diseases. The data were collected from the monitoring system
of a neonatal Intensive Care Unit (NICU) once per second (16-28 hours of
continuous data recording for each newborn infant). The data sets consist
of measurements of continuously assessed quantitative data (e.g.
transcutaneous partial pressure of oxygen (PtcO2), the pulse frequency
(PULS) given from pulsoximetry), discontinuously assessed quantitative
data (e.g. ventilator settings like PIP, PEEP, results of invasive blood-gas
analyses like pH, PaO2 where a denotes a measurement from arterial



blood), and continuously assessed qualitative data (e.g. clinical
parameters like spontaneous breathing effort, chest wall extension).

Visualization and analysis of these data sets enabled a closer insight into
the validity and the quality of the observed data, as well as the importance
of secure and trustworthy data for further reasoning:

1. Small movements of the infant resulted in an unexpectedly high volume
of data oscillation. This is specifically a problem of pulsoximetry. For
example, small movements of the neonate result in sequences of
unusable oxygen saturation (SaO2) measurements.

2. The measurements were frequently invalid caused by external events,
which have to be performed regularly (e.g. calibration of
transcutaneous sensors every three to four hours, scheduled
endotracheal suctioning).

3. Continuously and discontinuously assessed measurements, which
should reflect the same clinical context, frequently deviated from each
other as a result of the individual situation of the patient or of variations
in the environmental conditions under which the sensors operate.

4. Additional invalid measurements were caused by on-line transmission
problems or were unexplainable.

5. Some errors occur because different people input data from in different
environments and in different experimental settings.

Noisy and erroneous data is a serious problem—the data analysis and
data mining methods should be made less sensitive to such non-
systematic errors. In the machine learning literature the problem of noisy
data has been expensively studied. On the one hand, when generating the
rules from training data, the noise should be eliminated to make the rules
more general and accurate. On the other hand, in some systems just the
opposite is true: adding the noise to training data resulted in smaller
misclassification of unseen examples ((Quinlan 1986) cited in (Cios,
Pedrycz, & Swiniarski, 1998)). However, in our domain noise is seen as
distracting from the real information and thus both data validation and
abstraction must provide various methods to minimize the influence of
noise on the outcome.

2.1.1 Related Work

Classical artifact-recognition methods mostly come from the field of
statistical signal processing techniques and neural networks. Statistical
signal processing, like Kalman filtering, is computationally expensive (Sittig
& Factor, 1990). It puts much power in processing signals at a very low
level, which may be unnecessary, if we know from high-level reasoning



processes that the signal is useless. The same arguments hold for artificial
neural networks (Sittig & Orr, 1992).

Error detection is inevitable in anesthesia monitoring (van der Aa, 1990)
and post-operative care (Sukuvaara et al., 1992). The combination of
range checks and validation and invalidation rules has been successfully
applied by (Garfinkel et al., 1989) to eliminate false alarms and at least
range checking facilities are standard for today’s monitors in ICUs.
However, commonly used systems produce numerous false alarms—or, if
switched off—missing alarms (Lawless, 1994).

Most methods used today concentrate on numerical methods and do not
take into account the clinical context. These methods are successful for
particular problem characteristics—detecting values, which are not within
certain ranges and trend values, which are physiologically implausible. But
they cannot classify data as unreliable, because a large portion of
reliability checking is dependent on the correct interpretation of the clinical
context. Further, cross-checking of different parameters needs a very high,
abstract level of reasoning. Such a reasoning gives insight into the
reliability of measured data, both on a specific data point and on the trend
over some selected time period.

Avoidance of wrong alarms, reliable monitoring, and effective therapy
planning requires data validation procedures, which combine numerical
methods with validation methods operating on derived qualitative time-
oriented descriptions of state and grade values and various combinations
thereof.

2.2 The Need for Deriving Temporal Abstractions
Beside the quality of data, monitoring and therapy planning in real-world
environments involves numerous other data analysis problems:

1. Long-term monitoring requires the processing of a huge volume of data
generated from several (monitoring) devices and individuals.

2. The available data occur at various observation frequencies (e.g. high
or low frequency data), at various regularities (e.g. continuously or
discontinuously sampled data), and are of various types (e.g. qualitative
or quantitative data).

3. A time-oriented analysis process has to cope with a combination of all
these data sources.

4. The underlying domain knowledge about the interactions of parameters
is vague and incomplete.

5. The interpretation context is shifting depending on observed data.



6. The underlying expectations regarding the development of parameters
are different according to the interpretation context and to the degrees
of the parameters’ abnormality.

2.2.1 Related Work

Traditional theories of data analysis (Avent & Charlton, 1990; Kay, 1993)
mostly deal with well-defined problems. However, in many real-world
cases the underlying structure-function models or the domain knowledge
and models are poorly understood or not applicable because of their
complexity and because knowledge is often incomplete or vague.
Therefore, in the medical domain statistical analysis, control theory, or
other techniques are often unusable, inappropriate or at least only partially
applicable (Miksch et al., 1996; Horn et al., 1997).

To overcome the mentioned limitations, time-oriented analysis methods
were proposed to derive qualitative values or patterns of the current and
the past situation of a patient (e.g. transcutaneous partial pressure of
carbon dioxide (PtcCO2) is slightly below the target range, or PtcCO2 is
increasing). These data analysis methods are referred as data-abstraction
methods, a term originally introduced by Clancey in his classical proposal
on heuristic classification (Clancey, 1985). Temporal data abstraction
represents an important subgroup where the processed data are temporal.
Atemporal data abstraction is substantially simpler than temporal
abstraction, because time adds a new dimension and temporal
dependencies dramatically increase the complexity of a problem.

An advantage of using such qualitative descriptions is their unified usability
in the system model, regardless of their origin. Several significant and
encouraging approaches have been developed in the past years.

Haimowitz et al. (1995) have developed the concept of trend templates
(TrenDx) to represent all the information available during an observation
process. A trend template defines disorders as typical patterns of relevant
parameters. These patterns consist of a partially ordered set of temporal
intervals with uncertain end-points. Trend templates are used to detect
trends in time-stamped data. The RÉSUMÉ project (Shahar & Musen,
1996) performs temporal abstraction of time-stamped data without
predefined trends. The system is based on a knowledge-based temporal-
abstraction method, which is decomposed into five sub-tasks: temporal
context restriction, vertical temporal inference, horizontal temporal
inference, temporal interpolation, and temporal pattern matching. Larizza
et al. (1997) have developed methods to detect predefined courses in a
time series. Complex abstraction allows to detect specific temporal
relationships between intervals. The overall aim was to summarize the
patient’s behavior over a predefined time interval. Belazzi et al. (1999)



utilize Bayesian techniques to extract overall trends from cyclic data in the
field of diabetes. Keravnou (1997) focuses on the periodicity of events
derived from the patient history.

All these approaches are dealing with low-frequency data. Therefore, the
problems of oscillating data, frequently shifting contexts, and different
context-specific expectations of the development of parameters are not
covered.

In the field of NICUs, Hunter et al. (1999) developed a tool to detect
significant events like probe changes in recorded data from monitors. The
algorithm is based on joining temporal intervals until the error of the linear
regression calculated from the raw data points within that window exceeds
a particular threshold. Although our approach utilizing a spread (see
section 4.1 and (Miksch et al., 1999)) differs significantly, its development
was inspired by this.

3 Preprocessing: Time-oriented Data Validation
The parts of the data abstraction methods described in section 4 are
interwoven with the data validation process. First, the data validation
process uses the numerical values of the parameters to arrive at reliable
values which are transformed into unified qualitative descriptions by the
data abstraction process. Second, it applies these derived qualitative
descriptions to detect faulty measurements. The major aim of the data
validation process is to detect faulty measurements or artifacts and finally
to arrive at reliable measurements. An artifact is a situation where a
measured variable does not reflect the clinical context.

We perform a two-step data validation process based on different temporal
ontologies: first, a context-sensitive examination of the plausibility of input
data and second, applying repair and adjustment methods for correcting
wrong or ambiguous data. The final result is a classification of the input
data as “correct”, “wrong”, “unknown”, or “adjusted”. A measurement is
classified as “adjusted” if a “wrong” or “unknown” value is corrected by a
repair or adjustment method. If a faulty measurement is recognized and no
repair or adjustment method can be applied, the measurement is classified
as “wrong”. If no data for a measurement from the monitor is received and
no value could be estimated, then the measurement is classified as
“unknown”. Otherwise it is classified as “correct”. Not all methods
mentioned below lead to a final classification. Some of them (like, the time-
point-based functional dependencies) result in an intermediate and
ambiguous classification of “some are wrong”. This information is



forwarded to and handled by the repair and adjustment module which
provides strategies for repairing and adjusting not plausible or missing
values based on the same temporal ontologies as the data validation
module.
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temporal-based ontologies and the corresponding validation methods. On the right-
hand side the possible repair or adjustment methods are mentioned.



We divide our methods into four types based on their underlying temporal
ontologies: time-point-based, time-interval-based, trend-based, and time-
independent validation and repair. Figure 1 gives an overview of the
particular categories and their interactions. A detailed description of the
whole process is given in (Horn et al., 1997).

3.1 Time-Point-Based Validation and Repair

The time-point-based category uses the value of a variable at a particular
time point for the reasoning process. This concept can handle any kind of
data. It benefits from the transparent and fast reasoning process but
suffers from neglecting any information about the history of the observed
parameters.

We distinguish the following validation and repair methods:

3.1.1 Validation: Range Checking

The range checking determines whether a quantitative value is within an
acceptable range. It is simple but has shown very powerful to detect
disconnections and missing measurements. Most modern ICU’s
equipment is able to perform range checks by itself.

We have enhanced this method by adding additional attributes, which
define the clinical context (e.g. arterial, IPPV). There are look-up tables for
all input parameters covering the plausible ranges. A parameter in the
look-up table is specified by a parameter name, a list of attribute
descriptors, an upper limit and a lower limit. For example, (CO2, (arterial,
IPPV), 10, 140), where “arterial” refers to the kind of blood gas analysis
and IPPV to the mode of ventilation.

3.1.2 Validation: Causal Dependencies

Causal dependencies establish a relationship between different
parameters. Qualitative values (e.g. chest wall extension = small) are
related to numerical ranges of other parameters (e.g. tidal volume < 5
ml/kg). A causal dependency can be bidirectional—as shown in the
example above—or unidirectional. In the bidirectional case we can only
conclude that some of the parameters are wrong if the dependency is
violated. The unidirectional case allows to invalidate a specific parameter.
For example, SaO2 is invalidated if we cannot find a valid pulse (from
pulsoximetry) or if we detect a substantial difference between the pulse
and the heart rate from ECG (HR, measured in beats/min):



valid (PULS) = false � valid (SaO2) = false (1)

| HR - PULS | > 8 � valid (SaO2) = false (2)

Equation 2 can be used only if we have a valid HR and a valid PULS. In
fact, such dependencies define an implicit ordering of parameters with
respect to the application of validation procedures.

3.1.3 Validation and Repair: Functional Dependencies

Functional dependencies are useful for both numerical and qualitative
parameters. Applying a functional dependency not only provides a mean
for validating the parameters of the function, but also for repair of an
invalid parameter.

Functional numerical dependencies are used to provide a value for a
dependent parameter and to check inadequate data transmission for
parameters where we know the exact functional relation.

Qualitative functional dependencies establish a relationship between
derived qualitative values of different parameters. Due to the unified
scheme for the qualitative values of all blood-gas measurements as shown
in section it is easy to compare different measurements. For blood-gas
measurements we expect that measures taken from different sites
(arterial, venous, capillary, and transcutaneous) belong to the same
qualitative data point region, or at least to the neighboring one. For
example, we expect the same classification of the transcutaneous PtcCO2
and the invasive capillary PcCO2 measurements. If we detect, e.g. PtcCO2
is substantially above the target range and PcCO2 is normal we remember
the ambiguity of the transcutaneous and the capillary carbon dioxide
measurement. Which of the values is more plausible depends on the static
reliability ranking discussed in section and the dynamic reliability score
computed by each of the various validation methods. Later on in the
validation process we will either invalidate one of the two measurements or
repair it using dynamic calibration.

3.1.4 Repair: Coping with Missing Values

This method is applied if a value is marked as “unknown”, “wrong”, or
“some are wrong” and if it could not be adjusted by any other method.
There are two options to deal with missing values:

• Simplified reasoning process. This process uses only a few—most
essential—parameters for further reasoning.



• No solution. When a critical situation has arisen in the past, no solution
can be derived and the recommendations of appropriate treatments are
delegated to the physicians.

Although not providing a solution might not seem to be a feature at first
glance, for a system deployed in the medical domain it is vital to ensure
that any output is based on solid grounds and that erroneous
recommendations are strongly prohibited. The other advantage of a
system “knowing its limits” is that operation is resumed immediately after
input is valid again, without any need for an intervention by the user, as
would be unavoidable for systems just “getting lost” in case of unexpected
failure of input devices.

3.2 Time-Interval-Based Validation and Repair

The time-interval-based category of validation and repair deals with the
values of different variables within a time interval.

We distinguish the following validation and repair methods:

3.2.1 Validation: Temporal validity

Temporal validity sets the time interval during which a parameter is valid.
We distinguish two kinds of temporal validity according to the regularities
of the sampled data.

1. For discontinuously assessed data there are two possibilities for setting
the valid time interval:

(a) The user can specify the duration of validity for each entered
datum. E.g., "PaO2 should be valid for the next 30 minutes”.

(b) For each parameter there is a predefined default maximum
duration of validity.

A discontinuously assessed parameter value looses its validity, if one of
the following conditions becomes true:

(a) the time interval of the parameter’s validity has elapsed,

(b) a new value of the parameter is available, or

(c) an external event (e.g. calibration of sensors) enforces to set the
parameter invalid.

The reliability score of a discontinuous parameter becomes smaller
over time. For each parameter, a temporal validity interval is defined,



which determines how long the time-interval-based repair method
dynamic calibration (see below) can be active.

2. Continuously assessed data are handled in a different way: instead of
valid time intervals we define invalid time intervals. The user can set a
parameter invalid explicitly, if specific external events take place (e.g.
calibration of sensors, new application of sensors, disconnection).

3.2.2 Validation: Stability Check

After a period of invalidity of a parameter it is essential to enforce some
(short) period of stability before the parameter is set back valid. This is
specifically true for rapidly changing parameters like SaO2. The stability
check defines allowed changes in the values of parameters. It compares
the new value of a parameter with previously assessed values within a
predefined time interval. This method is applicable for continuously
assessed data only. We distinguish two situations:

1. Allowed changes of parameter values without a therapeutic action: The
first value of a parameter, which is classified valid by all other validation
methods becomes a candidate for stability testing. During time interval
n we require, e.g.

∀i, i = 1,..., n : | SaO2(t) - SaO2(t + i) | ≤ ε (3)

1. For excellent stability of SaO2 we currently use n = 120sec and ε = 5%.
The effect of the stability check is a delay in setting a parameter valid
again. E.g., for SaO2 we will wait 120 seconds until the data values can
be used again. If the stability check succeeds, we are able to reuse the
values of the last 120 seconds. This results in a recalculation of the
trends.

2. Allowed changes of parameter values after a therapeutic action: we
expect a particular parameter to improve towards the normal range
after a certain delay time. Besides the fact that therapeutic actions are
not recommended in case the guiding parameters are invalid, a stability
check as defined above is less useful. A larger ε for the direction of the
desired improvement is used in this case.

3.2.3 Validation: Cross-Validation

Cross-validation of data from different sources is the time-interval-based
utilization of qualitative functional dependencies described in section 3.1.
Its specific use is the correlation of a parameter X which gives a quite
exact measurement but is rarely available with a parameter Y which is



inexact but available continuously. The basic assumption is that X behaves
like Y.

As an example taken from ventilation management, X is an invasively
measured blood gas and Y is a transcutaneous blood gas. If cross-
validation detects a significant qualitative difference between, e.g. PaCO2
and PtcCO2 as described above, and both parameters are not invalidated
by other methods, we apply dynamic calibration.

3.2.4 Repair: Dynamic Calibration

Dynamic calibration is a time-interval-based repair method, which repairs
continuously assessed data values by applying a repair function which
utilizes the difference between the discontinuously assessed data value X
and the corresponding continuously assessed data value Y. This repair
function adjusts the less reliable continuos value over a temporal validity
interval to the reliable value of X. The resulting repaired value of Y
receives a high reliability score which subsequently decreases over time.
More details can be found in (Horn et al., 1997).

3.3 Trend-Based Validation and Repair

Trend-based validation analyzes the behavior of a variable during a time
interval. A trend is a significant pattern in a sequence of time-ordered data.
Therefore, the following methods can handle only continuously observed
variables. They benefit from dynamically derived qualitative trend
descriptions presented in section 4.4.

Based on physiological criteria, four kinds of trends of the time-stamped
data samples can be discerned. They differ in the length of the sequence
of data they use to calculate the trend. Further, they differ in the validity
criteria for the determination of a valid trend. In monitoring more recent
data are more important compared to older measurements. Thus we
defined two criteria of validity to ensure that a trend is actually meaningful:
(1) a certain minimum amount of valid measurements within the whole
period, and (2) a certain amount of valid measurements during the last 20
percent of the time interval. These limits are defined by experts based on
their clinical experience. They may easily be adapted to a specific clinical
situation based on the frequency at which data arrives. Table 1
summarizes the trends and their criteria. For each kind of trend the actual
growth rate and the derived qualitative trend category is determined as
detailed in section 4.4.



percentage of valid measurements forkind of
trend

sequence
duration
(minutes)

whole
sequence

last 20% of
sequence

very short 1 50% 100%
short 10 40% 80%

medium 30 30% 60%
long 180 20% 40%

Table 1: Criteria of trend validity.

We distinguish the following validation and repair methods:

3.3.1 Validation: Range Check of the Growth Rate

A first basic check is the inspection of the growth rate. It is a sensible
method for recognizing problems with the technical equipment, e.g. sensor
loss. Range checks are applied on the very short-term trend and therefore
react very fast.

3.3.2 Validation: Højstrup Method Modified

The modified Højstrup method recognizes growth rates, which are
unacceptable after a certain amount of time. It recognizes implausible
values by inspecting the temporal behavior of measurements. The
temporal behavior is given as a function of measured values over time.
Measurements are classified as implausible if the growth of this function is
either too steep or the growth rate lies above a threshold and lasts for too
long. The basic idea is given in (Højstrup, 1992). We have modified the
algorithm to the needs of real-time monitoring in ICUs: the correlation
function K is replaced by a measurement for the deviation of the last two
points from the mean. We further may not assume a normal distribution of
the differences. Therefore, the error threshold E is derived from knowledge
about the maximum growth rate to accept and the desired rigidity of the
system.

The algorithm is given in (Egghart, 1995; Horn et al., 1997). The main
advantage of the method is the ability to select an area of growth between
a value where it never signals an invalidity and a value where it
immediately signals an invalidity. In between, the lower the growth rate the
longer it will take to signal an invalidity.



3.3.3 Validation: Trend-Based Functional Dependencies

Trend-based functional dependencies model expectations on trends. They
compare the behavior of two different parameters, which are related
measurements within the same physiological context. For example, SaO2
and PtcO2 both give insight into the oxygenation of the patient. However,
they react different in detail, but the global trend should be in parallel for
both. We use the qualitative trend categories described in section 4.4 to
compare the trends of such related parameters. The comparison is done
using the short-term trend and the medium-term trend. If the trends differ
by more than one category both measurements are marked as ambiguous.

A second usage of trend-based functional dependencies is to check
whether the desired effect of a therapeutic action takes place. It is
performed after a significant change of a parameter (ventilator setting),
which controls the condition of the neonate. The method utilizes a specific
delay time required to make a change in the ventilator setting visible in
monitored parameters. For example, an increase of the inspired oxygen
fraction FiO2 should cause an increase of the neonate’s oxygen level O2.
This should be visible after a delay of 10 minutes in SaO2 and PtcO2.

The combination of inspecting trends of different parameters, which
measure the same physiological context, with the inspection of trends after
a therapeutic action gives a quite good insight into the validity of
parameters. For example, if we find after an increase of FiO2 that SaO2 is
increasing, but PtcO2 is not, we can assume that PtcO2 giving invalid
readings due to some other causes, like bad circulation.

3.3.4 Validation: Trend Assessment

The assessment of the parameter development examines the short-term
trend. It compares two successive qualitative trend values of the
parameter. An invalidity of the parameter is signaled if the trend categories
are not the same or at least neighboring. The assessment procedure is
applicable for the short-term trend only. The very-short-term trend reacts
too rapidly to small oscillations of the values. The medium-term and the
long-term trend are too insensitive.

The qualitative trend-categories are divided in an upper and a lower region
by the normal region (see 4.4 for a detailed description of the process).
According to these regions the ordering of the qualitative categories is
defined as follows (compare figure 2):

• upper region: A1 - A2 - A3 - ZA - C

• lower region: B1 - B2 - B3 - ZB - D
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The lower region is not shown in figure 2 but in figure 10 and in table 2.

The assessment procedure compares the previous qualitative short-term
trend-category with the current one. If both belong to the same qualitative
category or to a neighboring qualitative category then the parameter is
validated as “correct”. Otherwise the parameter is classified as “wrong”.

The advantage of assessing qualitative trends is the ability to classify
changes on a basis, which is better founded physiologically. For severe
deviations from the target range we expect a return to the target range,
which is fast initially and becomes slower and slower the nearer we
approach the normal value. The trend-curve-fitting scheme and its
resulting qualitative trend categories dynamically models this behavior.

3.3.5 Repair: Estimating Missing Values

During a monitoring process the position of a sensor has to be changed
frequently and regularly. Therefore, the measurements are often missing.
The implicit assumption of missing measurements during such a position
change is that they will be steady keeping their previously observed
values.



There are two possibilities to deal with missing measurements. First, a
stepwise backward checking provides the last reliable value and we
continue with this value as long as no other system change is detected.
The reliability score of estimated values decreases over time and a user
defined timeout prevents estimations based on values too old to be useful.
Second, applying the growth rate of the short-term trend we estimate a
“correct” value. A precondition is the stability of the trend. It is assumed to
be true, if the medium-term and short-term qualitative trend-categories are
identical. The trend-based estimation of a value is more accurate then
simply using the last valid value, provided stability of the trend.

Estimating values is less problematic when the medical staff follows the
general guideline that sensors should not be changed or calibrated during
critical phases of the neonate. However, if we cannot get valid
measurements over a longer period of time, the simplified reasoning
process is applied (see section 3.1).

3.4 Time-Independent Validation: Reliability Ranking

This last category is based on time-independent reliability ranking of
variables. From the medical and technical sampling point of view, there is
a well-defined priority which measurement is more reliable than another,
depending on different conditions.

This allows the definition of a reliability ranking scheme by the user. In
case of contradicting parameter values which cannot be resolved by other
methods, the more reliable one is selected according to the rating scheme.

Examples of reliability ranking of VIE-VENT are: arterial blood gases are
more reliable than venous blood gases; invasive blood gases are more
reliable than both transcutaneous blood gases and SaO2; SaO2 is more
reliable than PtcO2. On the one hand these lists facilitate the data-validation
task and on the other hand they also help the pruning of different and
concurrent therapy recommendations.

4 Data Mining - Time-Oriented Data Abstraction
There are two fields of applications for the data abstracted from measuring
devices in the clinical environment: Knowledge discovery and on-line
monitoring.

Knowledge discovery retrospectively looks at recorded data to find
significant patterns or to relate the raw data either to other information from



the patient data management system or to rules in a knowledge base
(Fayyad & Uthurusamy, 1996). On-line monitoring (a.k.a. intelligent
alarming) tries to detect dangerous situations in real-time and to suggest
countermeasures to assist the physician in the treatment process.

Both applications share most of their requirements concerning the data
abstraction process. The main difference lies in the point of view on the
data—retrospective vs. real-time. In retrospective analysis all information
for the whole period of interest is available. So for each point in time the
past, the present and the future are known. Opposed to this, in real-time
analysis, only past and present are known. In the following we will explain
the general approach first and discuss the special aspects of on-line
monitoring at the end of each subsection if appropriate.

We distinguish three basic qualitative abstractions of a curve at a given
position: state, grade, and bends. State (section 4.1) is the qualitative
expression of the value itself, e.g. slightly high, normal, or extremely low.
Grade (section 4.2) is the first deviation or slope of the curve, e.g. slightly
increasing or stable. Since both state and grade are not only extracted for
a single instant, but for a interval of time, the output of the abstraction
process is not a series of point data, but a sequence of time intervals,
during which a certain qualitative value stays stable.

Bend (section 4.3) abstraction transforms the curve from a series of data
points to a sequel of bends with lines in between. This representation
matches the intuitive or naive terms users often use when describing
curves like “first it goes up, then it makes a bend down, and then up
again”.

Trend curve fitting (section 4.4) is a method to abstract trends as utilized in
section 3.3 from state and grade of a value.

In section 4.5 we show how derived status information can be produced by
rules in a knowledge base using basic qualitative abstractions and
information from the validation process.

4.1 State Abstraction

The state of a value is its classification according to a list of qualitative
values and their borders, also called qualitative regions. E.g. the qualitative
region of normal transcutaneously measured pressure of CO2 (PtcCO2)
might be from 35 to 49 mmHg during ventilation mode IPPV. Figure 3
shows an example from VIE-VENT, where we defined seven qualitative
regions: s1, s2, and s3, for increased values, normal for values within the
target range and g1, g2, and g3, for decreased values.



The transformation from quantitative to qualitative values has four
advantages: First, qualitative information is easier to comprehend than an
number. Second, uniform rating schemes provide convenient access to the
data for rules applied on that data. Third, equal rating schemes for different
parameters make them comparable, even if their numerical values are not,
and independent of the origin of data. Fourth, the maintenance of a
knowledge base or reasoning component is facilitated if the medical
knowledge about value of a qualitative regions’ limits changed.
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Figure 3: Qualitative regions of PtcCO2 in the context of IPPV and IMV.

Each set of qualitative regions is valid for a certain context only. The
context is defined by the mode of ventilation—like in the above example—
by the diagnoses, or by constraints like acute problems or defects of the
patient. Changes in context are derived automatically from the input data.

Although this transformation seems simple, it is not when the data is noisy
like the signals obtained from monitors in the ICU environment.

Sophisticated data validation (as described in section 3) can contribute a
lot to the quality of high-frequency data. Still many signals recorded in the
medical domain exhibit more or less small random oscillations, which are
hard to separate from meaningful changes in the curve.



If such a curve would be changed to a series of intervals, during which the
qualitative value stays stable, and if the curve oscillates on the border
between two qualitative regions, these intervals would be too small to be
meaningful. In some cases the range of oscillation can be wider than the
width of each qualitative region which leads to unusable output for most of
the recording time.

There are two simple remedies to the problem: Averaging and thresholds.
Both fail, if the quality of the signal or the range of oscillation changes
dynamically as it is the case in the medical domain (e.g. small movements
of the patient lead to short periods of random oscillations in the measured
SaO2). To cope with such cases, we developed a method to abstract
qualitative values from a statistical representation of the distribution of data
points at each part of the curve called spread. It is explain third.

4.1.1 Averaging

The first approach—averaging—simply means that each measurement is
replaced by the average of a certain number of data points in its
surrounding. The approach is quite simple but the number of points
involved in the calculation and the kind of averaging (mean, moving
average, etc.) are very sensible parameters. Too much smoothing (e.g.
averaging too many data points) hides meaningful peaks in the curve while
moderate smoothing still fails to suppress more significant oscillations.

4.1.2 Thresholds

The second approach—thresholds—defeats errors by imposing a
threshold when crossing the border between two qualitative regions. Thus,
the qualitative value only changes, if the quantitative value exceeds the
borders of the current qualitative region by a certain percentage of its
width—the threshold. To avoid excessive postponement of changes in
cases where the quantitative value crosses the border of a qualitative
region but does not exceed the threshold, a timeout period is defined, after
which smoothing is terminated by defining the qualitative value according
to the current quantitative value, even if it is near a region’s border. Figure
4 illustrates such a smoothing algorithm implemented in VIE-VENT. The ε-
region corresponds to the threshold and the activated period reflects the
time period until the timeout is reached. In the example in figure 4, the
smoothing takes place from time point t until t + 7, called the smoothing
period. More details are given in (Miksch et al., 1993).

The problem lies in finding the best values for threshold and timeout. If
they are too big, every change in qualitative value is unnecessary
postponed. If it is too small, it does not suppress all undesired oscillations.



As with averaging good parameter settings might be found for curves of
constant quality but no good solution can be found for dynamic changes in
quality of measurement.

This algorithm was implemented in VIE-VENT (Miksch et al., 1993; 1996)
but suffered from the inability to adjust the parameters in a way which fits
the changing quality of the input.
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Figure 4: Smoothing of a curve oscillation on the border between two qualitative
regions.

4.1.3 The Spread

To cope with these changing oscillations we developed a more complex
representation of the curve, which we call the spread (Miksch et al., 1999).
To calculate the spread, we slide a time window of constant width over the
curve in small steps. For each position of the time window, we calculate a
linear regression of the valid data points (i.e. not discarded by validation
methods described in section 3) within the window. On the center of the
line we plot the adapted standard error (sa).

s
sa =

√Nvalid

√Nmax (4)

This is the standard deviation (s) of the linear regression divided by the
square root of the number of valid data points involved in the calculation



(Nvalid) and multiplied by the square root of the maximum number of points
possible in the interval (Nmax).

Doing so we arrive at a vertical bar representing a statistically motivated
estimation of the distribution of the data points in the time window.
Connecting the ends of each bar with those of its neighbors yields a band
(called spread), which vertically follows the average of the curve and the
width of which shows the uncertainty involved in its calculation. The
smaller the spread, the better the quality of the curve. Figure 5 shows the
steps of the algorithm while figure 6 shows an example where the
qualitative value is not influenced by a short peak which is not considered
significant.
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Figure 5: Calculation of the spread. For a given time-window (1) we calculate the
linear regression line (long black line). On its center we plot the adapted standard
error (equitation 4) up and down (gray vertical bar). This is repeated for all
positions of the time-window (2). Connecting the ends of the bars (3) yields the
spread (4). It represents the distribution of the data points based on statistical
information.



Figure 6: Practical example of the spread application. The thin line shows the raw
data. The light gray area depicts the spread, the dark gray rectangles represent the
derived temporal intervals of steady qualitative values. The lower part of the screen
shot shows the parameters used. The length of the time window (interval) is set to
60 seconds. Thus the spread does not follow the short peak down at 14:04:45 but
shows the deviation from the general trend by increased width.

The spread is used to abstract qualitative values of the curve. The
qualitative value is changed only if both upper and lower margin of the
spread are outside the previous qualitative region. This is a very
conservative allocation strategy minimizing the changes in the qualitative
value, but is mostly suitable for retrospective analysis.

For the purpose of intelligent alarming it might be desirable to plot the error
bar on the rightmost end of the regression line instead of its center. In
addition, alarms can also be triggered if only one margin of the spread
crosses a certain limit e.g. if the upper margin of the spread enters the
“extremely high”-region. Applying this procedure, bad data resulting in a
wide spread cannot lead to delayed alarms, but might cause extraneous
ones.

The advantage of the spread over other approaches lies in its dynamic
adaptation to changing amounts of oscillations and missing data, which
are very common in the clinical environment.

4.2 Grade Abstraction

While other authors like Shahar (Shahar & Musen, 1996) describe
changes in the curve by two distinct qualitative values—gradient (e.g.
increasing) and rate (e.g. fast)--we combine both in one value, the grade. It
is the qualitative expression of the first deviation of the curve (e.g. fast
increase, slow decrease) and can easily be derived from the slope of the
regression lines calculated above. By drawing a spread for the slope too,



its advantages (as described above) can be used for the abstraction of the
grade too.

While current monitors mostly rely on the measured value of the
parameters—their states—there is a strong demand for systems doing a
more sophisticated analysis of the measured data. Defining alarms for
qualitative values of the grade in addition to those for the state can help to
avoid critical situations by drawing the physicians attention to problems
before they cause a crisis. To arrive at a meaningful picture the grades
measured over different periods of time together with the state must be
considered for each parameter.

4.3 Bend Abstraction

When asked to comment on a curve many people describe it as a series of
lines with bends of different sharpness in between. Motivated by this, we
developed an method (Miksch & Seyfang, 1999) to break a series of data
points into a sequel of bends with lines connecting them. Bends in a curve
can be detected by looking at the second deviation of its graph. A
minimum there indicates a bend to the right or down on the original curve,
a maximum indicates a bend to the left or up (see figure 7).

Figure 7: The bend abstraction. The basic idea in abstracting bends from a curve
is, that humans describe as bends and lines what the devices supply as series of
data points. Bends are defined as changes in the slope of the second deviation—in
places, where the original curve makes a bend, its second deviation has an
extremum.

To be more specific, first we calculate the angle of the slope of the original
graph. Second, we calculate the slope of that curve. The resulting curve is
called indication function. Each extremum or peek in the indication function
represents one bend. From the sequel of the bends together with the
original graph we derive corners and lines.



Each bend is described by the position of the corresponding extremum in
the indication function, the height of the corresponding peak in the
indication function, and the area of the peak.

The x-coordinate of the corner clearly equals the middle of the bend. The
y-value could be the y-coordinate of the nearest point in the original curve,
but to reduce influence of noise, it is necessary to take the average of
some of its neighbors into account too in most cases. Integrating too many
of them in the calculation will distort the result towards the inner side of the
bend.

The lines between the bends can either be drawn just as connections of
the corners of the curve, or they are calculated as a linear regression of
the points of the original curve between two bends.

Which version of the above definitions is taken depends on the focus or
preference of the users, which varies between different domains of
application.

The data abstracted this way can be used in three different ways:

4.3.1 Direct Visualization

An example for the direct visualization of bends is shown in figure 8. Each
bend in the original graph (at the top) is represented by a bar (on the
bottom), who’s height and area equals the height and area of the
corresponding peak in the indication function (in the middle). This method
is applicable to tasks, where the attention of the user must be drawn to
relatively small irregularities in a periodic curve.

4.3.2 Symbolic Representation

The information about the bend can be expressed in list to make in
accessible to symbolic reasoners like knowledge based systems or
machine learning tools. This is important to bridge the gap between raw
data delivered by monitors and knowledge bases using this knowledge in a
high-level way.

The following Example describes a graph consisting of a line increasing by
20 degrees for 100 seconds followed by a narrow bend to the right and 30
seconds of decrease.

((line 100sec up 20°)
(bow right narrow)
(line 30sec down 30°))
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b)

b)
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Figure 8: Visualization of bends. Starting at the top, we show the original graph,
the indication function and the bars representing the significant bends. a) shows an
example of an irregularity in the curve which a human could also detect if
concentrating on every detail: the bend in the right-most oscillation is not as sharp
as the corresponding one in the other oscillations. b) draws our attention to a
feature not perceptible by looking at the raw data: the long-spread bow to the left of
the second oscillation from the right is not as sharp as the others as indicated by
inferior height of the bar. The corresponding part of the original curve does not
seem different by itself. The significance of the features found in a) and b) depends
on the domain knowledge about the data represented by the curve.

4.3.3 Interoscillation Reasoning

Many types of data recorded in the medical domain are periodic but
varying. Deviations have natural, pathological, technical, or unexplainable
origin. The field of signal processing provides a wide range of methods for
both noise reduction and detection of deviations. However, they are
designed for signals with technical origin, for which an exact mathematical
model is available. Many signals recorded in medicine lack such an exact
model. In some cases, there is a qualitative model, roughly describing the
interdependencies of some parameters, but not supplying an exact formula
for the calculation of the “real” values.



 
Figure 9: Visualizing the changes of the oscillation’s shape. Plotting a bend’s X-
coordinate (its offset within the oscillation) or the Y-coordinate (the value of the
original curve at this position) on a separate graph yields a very dense
representation of the bend indicating all its changes and deviations clearly.

Another aspect is the format, in which the curve or function is described.
Fast Fourier analysis, for example, describes periodic curves by a list of
frequencies and their amplitudes. For a physician this is a very unusual
way to look at an ECG.

As an alternative, we compare the position of each bend in an oscillation to
its position in other oscillations. This yields information on the change of
the oscillation’s appearance over time which is rather intuitive, since it is in
terms like “the second peak moved up by 10 % over the last minute”. In
many fields of application such formulations are compatible with the
knowledge acquired by human experts when looking at curves (without the
aid of computer systems).

On the one hand, plotting one dimension of a corner point in each instance
of an oscillation as a separate curve yield a graph which gives a clear
picture of the corner’s development over time, even when the time axis is
compressed (figure 9). On the other hand, this graph can be used as input
to data abstraction to obtain qualitative information about the development
of that detail of the oscillation.

As of this writing, we are examining the applicability of this approach to the
fields of ECG and CTG.

4.4 Trend Curve Fitting

Often the aim of a treatment correlates with bringing the value of some
parameter back to the normal region. In these cases the grade alone does
not give full information. Instead we are interested in learning whether the
value is improving i.e. approaching the normal region or not. An increase
of a value which is too high has different semantics than an increase of a
value which is too low.
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Figure 10: Expected improvement PtcCO2. Values which are too low should
improves by one qualitative step within 10 to 20 minutes while values which are too
high may take 20 to 30 minutes per step to improve.

In many cases there is also an estimation of how long it takes under
normal conditions for the value to return to normal. So we can distinguish
between normal improvement, too slow improvement and too fast
improvement. Figure 10 shows the trends implemented in VIE-VENT. In
this example, we demand that the value of PtcCO2 improves by one
qualitative step within 20 to 30 minutes. The algorithm is explained in
(Miksch et al., 1993). Table 2 summarizes the trends of a curve,
depending on its state and rate of change.



 values above the target range are  values below the target range are
A1 decreasing too fast B1 increasing too fast
A2 decreasing normally B2 increasing normally
A3 decreasing too slow B3 increasing too slow
ZA staying constant ZB staying constant
C increasing dangerously D decreasing dangerously

Table 2: Schema of trend curve fitting in VIE-VENT.

4.5 Derived Status Information

In many cases the trend or state of a parameter does not itself give
enough information. A rule base is needed to abstract more useful
information from the basics.

The qualitative temporal abstraction of monitoring variables makes it easy
to use simple rules to activate therapeutic actions. For example, rule R8-
therapeutic-actions states, that we recommend an increase of both
frequency and PIP, if the short-term trend of PtcCO2 is A3, ZA, or C, and its
state is above normal, i.e. s1, s2, or s3, and the input is classified as
correct.

(defrule R8-therapeutic-actions
activate-therapeutic-action-PtcCO2-ventilation”

(phase (kind therapy_recommendation))
(ventilation_phase (kind ippv))
?f1 <- (thp_recommendation ventilation)
(qual_trend_category (parameter PtcCO2)

(kind_of_trend short)
(qual_trend A3|ZA|C))

(qual_data_point_category (parameter PtcCO2)
(site tc)
(value s1, s2, s3))

(causal-explanation-validation (parameter PtcCO2)
(classification correct))

=>
(retract ?f1)
(assert (action (reason ventilation)

(BG PtcCO2)
(kind inc-f))

(action (reason ventilation)
(BG PtcCO2)
(kind inc-pip))))

The essential preconditions for triggering therapeutic actions depend on
the qualitative trend abstraction of the short-term trend (expressed as



qual_trend_category in the rule R8-therapeutic-actions) and the qualitative
state abstraction (expressed as qual_data_point_category in the rule R8-
therapeutic-actions). If the qualitative state abstraction is s1 or s2 or s3,
and the qualitative trend abstraction is A3 or ZA or C, then therapeutic
actions are recommended (increase ventilator settings). The second fact
ventilation_phase in the left-hand side (LHS) of rule R8-therapeutic-actions
refers to the mode of ventilation (i.e., IPPV) and indicates, that this rule
belongs to the set of rules dealing with the phase of Intermittent Positive
Pressure Ventilation). The last fact, causal-explanation-validation, supplies
the necessary explanations of the data validation process, namely the
classification of the particular validated parameter. The right-hand side
(RHS) of rule R8-therapeutic-actions specifies the therapeutic actions.
Each action-fact includes the kind of the recommended action and an
explanation of the circumstances: the fact (reason ventilation) refers to
“ventilation” process depending on the system model of ventilation), (BG
PtcCO2) refers to the relevant parameter, namely the blood gas
measurement, and (kind ?x) determines which particular action has to take
place (e.g. (kind inc-pip) means, that an increase of the peak inspiratory
pressure (PIP) is recommended).

5 Evaluation and Discussion

5.1 Empirical Evaluation

Within the VIE-VENT system (Miksch et al., 1993; 1996), we evaluated the
effectiveness of the above data-validation methods presented in section 3
utilizing a particular evaluation scenario consisting of two steps (Horn et
al., 1997): first, a visual inspection of the results of the data validation
process, and, second, a formal evaluation of the validation results.

Our sample consists of 640786 seconds (approx. 177 hours) of data
recordings from nine neonates. The age of the neonates was between four
days and six weeks, the weight between 690 g and 3460 g.

In the first step, the data from the first six patients (approx. 115 hours)
were used to tune the validation parameters, specifically to find suitable
parameters for the stability check and the Højstrup method. Additional
validation parameters, which could not be determined from the data
recordings, were derived from the knowledge of expert neonatologists. We
plotted the data curves and annotated the invalid data with rectangular
markers below each curve, when our data-validation methods recognized
errors. Two expert neonatologists examined the results. The parameters in



our data-validation methods were tuned towards the overall goal of
avoiding wrong therapeutic recommendations. As a consequence, the
data-validation methods marked all measurements as invalid which
depicted unusable signals. The remaining data (approx. 62 hours of
recording) have been used to verify the correctness of the data-validation
methods.

In the second step in our evaluation scenario we compared the data points
found invalid by an expert neonatologist with the invalidation markers
produced by VIE-VENT. Currently, no widely accepted “gold standard”
exists to judge the correctness of the continuously assessed data of PtcO2,
PtcCO2 and SaO2. Therefore, we relied on the judgement of the domain
experts, experienced neonatologists.

For this evaluation study we took sequences of continuously assessed
data which show some variation. We selected continuous sequences of
4320 seconds length which contain at least two invalidation markers from
VIE-VENT.

From these sequences we randomly selected five sequences from
different patients. The selected sequences were presented to the expert
using high resolution plotting (without the invalidation markers of VIE-
VENT). The expert marked those data points which he judged invalid.
Table 3 gives the evaluation results from the comparison of the expert’s
and VIE-VENT’s invalidation markers. VIE-VENT’s perfect sensitivity is not
surprising due to the tuning of the parameters towards recognition of all
artifacts and unclear trends. The rather low specificity results from the
overall goal to avoid wrong therapeutic recommendations. A further
complication which lowers specificity is the fact, that the expert is able to
see the future development of a parameter from the plot. In contrast, VIE-
VENT operates in real-time. It has to wait for stability of a parameter until it
is set back valid. This increases the number of false positives but is an
effect caused by the constraints of real-time operation.

Parameter Sensitivity Specificity
SaO2 100% 88.9%
PtcO2 100% 83.2%
PtcCO2 100% 94.6%

Table 3: Evaluation of VIE-VENT’s data validation procedures.



5.2 Discussion

The high-level abstraction methods presented in section 4 lead to the a
series of opportunities both in visualisation and in interfacing knowledge-
based systems.

5.2.1 Compact Visualization

Displaying only the important features of a graph in an abstract form in
addition to the original graph allows for easy detection of trends and
outliers which otherwise would be burried in the overwhelming impression
of the data. Currently we are investigating into the application of various
abstract data representations in the field of ECG-analysis and ventilation
monitoring.

5.2.2 Bridge to Knowledge Representation

The abstracted information can be matched against conditions in a rule
base. So the curves can be tagged according to a set of classifications
stored in a knowledge base. This aspect is crucial for the integration of
high-frequency data and symbolic systems such as symbolic machine
learning, knowledge-based systems for intelligent alarming and a guideline
execution system like the one developed in the Asgaard (Shahar, Miksch,
& Johnson, 1998) project.

5.3 Overall Benefits

In the following we are summarizing the main benefits of our proposed
methods:

5.3.1 Improving the Quality of Data

The data recordings assessed from various channels of devices are more
erroneous than commonly expected. Applying our validation methods to
the observed on-line and off-line data sets resulted in automatic
elimination of most invalid measurements: false positive alarms were
reduced and errors of data interpretation were minimized.

5.3.2 Communicating Various Kinds of Time-Stamped Data Lucidly

The physicians need an overview over a certain period of time and over
various parameters which together give a more detailed, reliable, and
comprehensible picture of the patient’s condition. Our time-oriented data-



abstraction methods transform a huge amount of numerical, time-stamped
values into a convenient set of easy to understand qualitative descriptions
of the patient’s situation. This results in diminishing the information
overload by visualizing the available information in a user specific and
capable way: the physicians can recognize and predict a critical patient’s
condition more easily, which finally ensures a better treatment
management.

5.3.3 Bridging to Higher-Level Reasoning

More sophisticated reasoning tasks need more advanced representations
than numerical data or simple qualitative assessments. Our approach
facilitates tagging various time-oriented data sets according to a set of
qualitative and more intuitive classifications. These qualitative
characteristics over time can be matched against conditions from a rule
base, which results in more obvious and simple rule base. At the same
time, this rule base enables more powerful reasoning components to be
applied.

6 Future Research
Future work will focus on extending the methods’ understanding of the
underlying processes and on running elaborate evaluations.

6.1 Utilizing Qualitative Descriptions in Treatment
Planning

Previous version of VIE-VENT used standard forward-chaining rules to
formulate the knowledge about the data and its interdependencies. But
application domains like artificial ventilation of neonates can only be
described fully as a set of interweaving and interdependent treatment
processes.

Several researches try to formalize that in knowledge-based systems. Still,
for domains like ventilation in ICUs, most approaches do not seem
powerful enough (Miksch, 1999). Instead, a framework for time-oriented
modeling of treatment procedures (Shahar, Miksch, & Johnson, 1998) is
needed to proper represent the domain knowledge, which can lead to even
higher level abstraction of the data such as the assistance of the weaning
process through recommendations for the settings of the respirator.



6.2 Repetitive Temporal Patterns

In dynamically changing environments, like ICUs, the basic temporal data-
abstraction methods resulting in qualitative state, gradient, rate, or simple
pattern description (compare (Shahar & Musen, 1996; Shahar 1997;
Miksch et al., 1996)), are not sufficient.

High-level temporal data-abstraction methods are needed, which include a
wide variability in the behavior of a parameter, variability in the time
patterns a parameter shows, and specifications for relating different
temporal patterns of different parameters. They have to be able to
recognize and to describe recurring states, events, episodes, or actions
(e.g. information about the frequency of temporal patterns in the past, like
“three episodes of hyperoxemia during the last three hours occurred”).

6.3 Further Evaluation

To achieve acceptance by practitioners it is crucial to run extensive
evaluations both on recorded data and in real-time with all parts of the
system. Currently, we are working on evaluation scenarios to examine the
usefulness of our approach in the clinical setting of artificial ventilation of
newborn infants.

6.4 Conclusion

We described methods to validate and to repair potentially unreliable time-
oriented, high-frequency data and to abstract different kinds of qualitative
descriptions over time from the validated but still partially untrustworthy
data, in which some artifacts might remain unrecognized. Our methods
presented were successful in overcoming the problems the medical staff is
facing currently: first, to improve the quality of data to arrive at trustworthy
data and, second, to ease the information overload caused by various
channels of on-line and off-line data recordings. The methods support the
medical staff to easily comprehend the various continuously and
discontinuously assessed data utilizing different qualitative abstractions
over time and combination thereof.

Our approach was evaluated on data from artificial ventilation of neonates
and proved to reduce the number of wrong alarms while correcting most
artifacts in the data.

Future research will focus on adding high-level treatment planning to the
domain-knowledge base to implement an even deeper understanding of
the processes lying behind the observed data. This will improve the



performance especially in non-standard cases like life-threatening
situations which cannot be described by a simple set of rules.
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