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Abstract.
In dynamically changing environments a planning system does not

have all the required information at the first place and the world state
can change, rendering the original plan invalid. Consequently, taking
planning to complex, real-world domains calls for close coupling of
planning and plan execution, known as continual planning.

In domains where a high degree of adaptability is crucial and lit-
tle a priori knowledge is available, explorative approaches are suit-
able. In other domains where comprehensive knowledge is available
and human life depends on plan execution, like in medical treatment
planning, only approved and validated procedures are admitted. Even
more, these procedures constitute a rich asset in the planning task. To
combine the utilization of such knowledge with the flexibility neces-
sary in real-world applications, the Asgaard system integrates time-
oriented, skeletal planning with real-time monitoring. It features a
monolithic framework for the creation, verification, execution, and
critiquing of plans with extensive covering of temporal modeling and
data abstraction. In this paper, we describe the monitoring and plan
adaptation capabilities of Asgaard.

1 INTRODUCTION

Carrying planning into the real-world, one is confronted with many
issues not covered by classical planning [13, 15]:

� Large, structured, but incomplete and partially informal domain
knowledge must be utilized in the planning process.

� Parts of the environment are beyond the influence of the plan exe-
cuting agent.

� Actions, goals, and observations have a temporal dimension. Their
durations may only partially be known in advance.

� For many cases of uncertainty, the probability of occurrence itself
is unknown.

� Plans cannot be undone easily, once they are started. Instead, a
traversal plan must be inserted, if a plan should be replaced by
another one.

One of the basic approaches to cope with this host of challenges is
the introduction of a tightly coupled control loop between the gener-
ation and the execution of plans [15], called continual planning [5].
This control loop is constituted by the tasks of environment monitor-
ing, plan adaptation, and replanning, as detailed in the remainder of
this section.

� Environment Monitoring. When executing plans in a real-world
environment, monitoring the actual state of the world immediately
becomes an issue, as it turns out that there is no perfect model
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of reality. This implies that there are relations between quanti-
ties without defined numerical dependences. To overcome these
limitations, a particular environment monitoring is needed which
is able to observe the world states with knowledge-rich methods
[17].

� Plan Adaptation. In all fields of application there are some inci-
dents which are not predictable but whose possible occurrence is
well known. In technical domains a familiar example is the failure
of a unit. In the medical domain the complications (e.g., caused
by infections) are too manifold to be modeled in detail in advance.
Still a set of classes of exceptions can be found and for each class
some special plan can be devised to implement safe failure or to
start some action to undo the effects of the disturbance.
So under such a scheme of operation, the original plan is not im-
mediately failing if problems arise, but suspended. Meanwhile,
another plan is executed to cope with the problem. Of course,
there must be some meta-monitoring performed on the plan ex-
ecution to detect cases, in which the problems are not fixed within
a certain time. E.g., if a robot encounters another obstacle while
bypassing the first one, it is time to consider taking another route.

� Replanning. In cases where prepared alternatives are not enough
to cope with unexpected changes in the environment, new plans
must be worked out. Compared to planning from scratch, the pro-
cess of replanning is even more complicated by the fact that cur-
rently pursued plans, which are independent from those which
failed, stay on the list of agenda. Thus, all decisions must be made
in the context of the current situation. Additional plans must be
merged with those the agent has already committed to [12].

In section 2 we given an introduction to the Asgaard framework.
In section 3 we describe the modules of the Asgaard system con-
cerned with runtime issues: the data-abstraction, the monitor and the
execution module. In section 4 we compare Asgaard to related work
in the field.

2 THE ASGAARD FRAMEWORK

The Asgaard framework [22] outlines task-specific problem-solving
methods to support both design and execution of skeletal plans.
This project tries to build a bridge between the planning approaches
and the medical approaches, addressing the demands of the medi-
cal staff on the one side and applying rich plan management on the
other side. For the representation of plans, a time-oriented, intention-
based, skeletal plan-representation language, called Asbru, was de-
veloped [18].

2.1 Time-Oriented, Skeletal Plans

A common strategy for the representation and the reuse of domain-
specific procedural knowledge is the representation of that knowl-



edge as a library of skeletal plans. Skeletal plans are plan schemata
at various levels of detail which capture the essence of the procedure,
but leave room for execution-time flexibility in the achievement of
particular goals. Thus, they are usually reusable in various contexts.
The idea was originally proposed by Friedland [8] as a means to re-
duce the complexity of planning, called skeletal-plan refinement and
extended in Asbru by temporal time annotations to cope with the
temporal properties of actions and uncertainty about the occurrence
of states and events.

2.2 Knowledge Roles in Asbru

In Asbru, a plan consists of a name, a set of arguments, including
a time annotation (representing the temporal scope of the plan), and
five (optional) knowledge roles: preferences, intentions, conditions,
effects, and a plan layout (plan body). Each knowledge role is an
abstract label attached to domain knowledge. The knowledge role
indicates the role of this knowledge in the inference process [3].

Preferences constrain the applicability of a plan and guide the de-
cisions in the plan selection process. Intentions are high-level goals
which support tasks such as critiquing [1] and replanning. They are
represented by temporal patterns of actions and states that should be
maintained, achieved or avoided. Conditions are temporal patterns,
sampled at a specified frequency, that lead to transitions between
plan states. Effects describe the relationship between plan arguments
and measurable parameters. Plan layout describes the order and fre-
quency of the sub-plans’ execution.

All plans and actions have a temporal dimension and the plans’ ex-
ecution is controlled by a number of conditions (filter, setup,
suspend, reactivate, abort, and complete). A set of mu-
tually exclusive plan states describes the actual status of the plan dur-
ing the plan selection and the plan execution. An example of a plan
written in Asbru is given in Figure 1.

2.3 Temporal Patterns

Most planning systems represent time as states or instances, so con-
ditions in the plan library can be matched with observed values by
simple unification. In contrast, the Asgaard framework provides a
rich representation to describe the temporal dimension of values to
be observed.

The basic syntactic construct is the temporal pattern. All condi-
tions for the transition from one plan state to another are expressed
in terms of temporal patterns. A temporal pattern consists of one or
more parameter propositions or plan-state descriptions. Each param-
eter proposition contains a parameter name, a value description, a
context description and a time annotation.

The parameter name refers to a stream of input data or an abstrac-
tion thereof (e.g., qualitative state change over time). The value de-
scription can be a single value, a value range, or a combination of
ranges of qualitative values. The context describes a set of situations
under which the temporal pattern as a whole is valid.

The time annotation consists of a temporal reference point and
three time ranges limiting start, end, and duration of the period dur-
ing which the expression described by parameter name and value
description must evaluate to true. Each of the six values in the three
time ranges can be denoted as unknown. The values are called Ear-
liest Starting Shift (ESS), Latest Starting Shift (LSS), Earliest Fin-
ishing Shift (EFS), Latest Finishing Shift (LFS), Minimum Duration
(MinDu) and Maximum Duration (MaxDu). All these time shifts are

(PLAN plan-A
(INTENTION:OVERALL-STATE

(MAINTAIN par-1 (> 50) * *))
(SETUP-PRECONDITIONS

(par-1 (< 50) par-raising
[[_, _], [_, _], [10 MIN,_] ref])))

(ACTIVATED-CONDITIONS AUTOMATIC)
(ABORT-CONDITIONS ACTIVATED

(par-1 (< 30) par-raising
[[10 MIN, _], [_, _], [1 MIN, _],
*self*])

(SAMPLING-FREQUENCY 1 MIN))
(COMPLETE-CONDITIONS

(par-1 (> 55) par-raising
[[_, _], [_, _], [10 MIN, _],
*self*])

(SAMPLING-FREQUENCY 1 MIN))
(DO-SOME-ANY-ORDER

(plan-AA [[_, _], [_, _], [_, 1 MIN],
(ACTIVATED plan-A)])

(plan-AB [[_, _], [_, _], [_, 5 MIN],
(ACTIVATED plan-A)]))

Figure 1. Asbru example code. The purpose of plan-A is to decrease
par-1. This is achieved by alternately applying plan-AA and plan-AB

for a maximum duration of one minute and five minutes, respectively.
plan-A is automatically activated if par-1 is below 50 for at least 10

minutes. It is aborted, if par-1 stays below 30 for one minute, starting at
least 10 minutes after invocation of plan-A and completed if par-1 is

above 55 for at least 10 minutes.

related to the common temporal reference point. Different time an-
notations can have different reference points allowing for different
time lines for separate courses of actions.

3 ASGAARD’S RUN-TIME MODULES

In this paper we focus on three modules within the Asgaard frame-
work: data abstraction, environment monitoring, and execution. To
accomplish the task of plan management as a whole, a number of
other modules are indispensable [15], like visualization of the plans
both at design-time and run-time [14], plan verification and valida-
tion [6], and plan evaluation and critiquing [1].

3.1 Data-Abstraction Module

The data-abstraction module deals with the transformation of infor-
mation obtained from sensors or user input into a format suitable
for the monitoring module. Basically, a distinction between high-
frequency domains, in which sensors deliver input at a rate of several
records per minute or second, and low-frequency domains, where
data are (often manually) entered several times per day or week,
should be maintained. While high-frequency domains suffer more
from loads of data which are often erroneous, low-frequency do-
mains often suffer from missing values in a line of samples. Although
many of the features of the data-abstraction module are also useful
for low-frequency data, it is most crucial for high-frequency data.

The issues of data abstraction fall into three main categories: Data
validation, calculation of derived values, and transformation into
qualitative information.



3.1.1 Data Validation

Any data obtained from sensors, be it monitors in Intensive Care
Units (ICUs) or a sensors in robotics, varies in quality over time. Un-
der good conditions it is fairly reliable and exact, but under circum-
stances not directly visible to the monitoring process they become
very unreliable. E.g., the saturation of oxygen measured through the
skin of a patient can only be measured in satisfying quality if the
patient does not move. Even small movements cause the readings to
oscillate wildly. The data-validation module detects such situations
and marks the data as invalid to keep other modules from getting
confused by the wrong data. A thorough discussion of data-validation
issues, focusing on medical high-frequency domains, can be found in
[17].

3.1.2 Calculation of Derived Values

In addition to the original value, a number of statistical measures
derived from that value (and its neighbors) are important for some
monitoring tasks. Examples for such values are the slope and the
standard deviation.

Asgaard’s data-abstraction module calculates a linear regression
for a time window of constant size sliding over the graph of a param-
eter as new values arrive. By applying two time windows of different
size (e.g., one and five minutes) we obtain both short and longer term
trends of the parameters observed. Although this calculation is more
computational intensive than simple averaging, it is fast enough in
practical application. Additionally, it yields slope and standard devi-
ation as an important byproduct.

For alarming, one wants to know the time at which the value of
a parameter will reach a critical limit, if the current trend continues.
This can easily be calculated by intersecting the produced regression
line with the (horizontal) line representing the limit.

All these derived values are feed into the monitoring module in
addition to the original data.

3.1.3 Deriving Qualitative Information

The information described in the above section still has the form of
two-dimensional data-points describing the value of a parameter at a
certain instant of time.

For the purpose of reasoning on the observed data, two transforma-
tions are useful. First, the quantitative values should be transformed
into qualitative values. Second, instantaneous measurements which
have the same qualitative value, should be concatenated to an inter-
val over time during which the parameter’s value stays unchanged.
([16, 21].

The transformation to qualitative values is done using a list of
qualitative regions, each comprising the symbolic tag of the region
and its numerical limits. These limits are context sensitive: A dis-
tance of one meter might be near in one context but far in another.
Thus each list of limits is valid for a defined set of contexts only.
If the context changes, the change from one set of limits to another
should be gradually, otherwise the same quantitative value will map
to a different qualitative one in the very next moment.

3.2 Monitoring Module

The monitoring module bridges the gap between the data-abstraction
and the plan-execution module. It receives the above mentioned in-
tervals, during which a parameter proposition holds, from the data-

abstraction module and stores them in a list of observed parameter
propositions (OPPs).

The execution module specifies a list of temporal patterns which
are key to future state transitions of instantiated plans (compare Sec-
tion 2.2). These patterns are denoted monitored parameter proposi-
tions (MPP). Whenever an OPP matches a MPP, the execution mod-
ule is notified.

The time annotations (of MPPs) can, but need not, describe the
start or/and the end of the time interval during which the designated
parameter must hold a particular value. The start of this interval is
called positive or left flank, its end is called negative or right flank.

For the issue of monitoring the environment, the earliest time, at
which a certain temporal pattern can evaluate to true is of critical
interest.

If only the starting time of a parameter proposition is given, action
can be taken after the positive flank has been observed, i.e. after the
observed parameter obtains the given value (compare left-hand side
of Figure 2). If the minimum duration is given, the specified amount
of time must pass after the positive flank before the temporal pattern
evaluates to true. Similarly, if the earliest finishing shift is given, this
point in time must pass, before the temporal pattern becomes true. If
the negative flank occurs before the earliest finishing shift the tem-
poral pattern can only become true if another positive flank occurs
which is followed by a negative flank after the earliest finishing shift.
These details are illustrated by the right-hand side of Figure 2.

If the time of the negative flank is specified, either by the max-
imum duration or the latest finishing shift, its occurrence must also
be observed before the temporal pattern can be considered true (com-
pare center of Figure 2). This means that phenomena whose temporal
extend is fully specified, e.g., labor pains lasting for one to two min-
utes, can only be observed a posteriori, since – most natural – they
must be over before one can say whether they lasted for one to two
minutes and not longer.

3.3 Execution Module

Mapping of plans and actual situations in the environment is done
on three distinct layers: Plan synchronization, plan adaptation, and
replanning.

3.3.1 Plan Synchronization

All plans in Asbru have time annotated conditions for their start
(filter and setup conditions), successful completion (com-
plete condition) and failure (abort condition). These annotations
provide flexible means for denoting temporal constrains on the dura-
tion of a plan.

The execution of a plan lasts until its targets are reached or its fail-
ure is definitely observed, i.e. it is feedback-driven. A plan which is
expected to decrease the temperature to below 20oC within 5 minutes
is not just executed for 5 minutes and then stopped without further
precautions. Instead it is executed until either the measured temper-
ature is below 20oC (possibly for a certain time of observation, to be
sure it stay below the limit) or until the maximum time allotted for
decreasing the temperature is elapsed.

3.3.2 Plan Adaptation

Plan adaptation is implemented as plan suspension and plan replace-
ment. Every plan can have a suspend condition under which it is
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Figure 2. Monitoring changing values according to different parameter propositions: In the first (leftmost) case, only the start is specified, so the parameter
proposition is fulfilled in the moment in which the positive flank occurs. In the second case (in the middle) only the end of the interval, during which the

temperature must be high, is specified, so the parameter proposition is fulfilled as soon as the negative flank occurs. In the third (rightmost) case, the minimum
duration is specified. So the parameter proposition is fulfilled that amount of time after a positive flank, provided that no intermediate negative flank occurred.

temporarily suspended. As soon as the reactivate condition is
true, the plan is resumed again.

The abort condition of a plan specifies the conditions, under
which there is no hope to achieve the plan’s goal. Aborted plans can
be replaced by alternative ones. There are two ways in Asbru’s syn-
tax to state alternatives: First, any plan can contain an “on-abort”-
clause stating a plan to be executed if this plan fails. Second, the plan
body can specify groups of alternative plans. The do-some-any-
order-statement specifies a set of plans which are tried one at a
time until all plans specified in the continuation condition have
completed successfully. If one sub-plan fails, the next one is tried.
If the last one in the list failed, the first one which has not already
completed successfully is tried again. This is tried until success or
expiration of the parent plan’s time annotation.

Plans stay active until they are either completed, aborted, or
suspended. If an alternative plan turns out to be more attractive
then the original one, it is not activated unless the original one fails.
This is not as restricting as it seems, since the condition, under which
a change to another plan is favorable, can be part of the abort con-
dition of the plan to cancel as it is in the setup condition of the
alternative plan. It ensures the proper implementation of intention of
the plan’s author.

3.3.3 Replanning

Replanning can occur for two reasons: Plan failure and additional
user requests. If a top-level plan fails, the execution module looks
for plans (in the plan library), which either have the same intentions,
or have effects which remove the reason for the failure of the current
plan. In both cases, temporal constraints (as given by the time anno-
tations in the conditions and for the plan as a whole) are observed.

Additional user requests can be specified by either selecting a plan
to be executed, an intention, or a goal (in the form of a parameter
proposition) to be achieved. As described by [4], users tend to specify
goals not only as parameter/value pairs but also as high-level target or
as action to be carried out. We thus allow all three forms of specifying
the users’ demands.

In the first case, the plan is simply started – only plans with sat-
isfied filter and setup conditions are displayed in the list from
which the user may choose. In the second case, the plans which have
the same intentions are displayed to the user who selects one of them.
In the third case, all plans which have effects leading to the achieve-

ment of the stated parameter proposition are displayed to the user,
ordered by the likelihood of their influence as given in the effects-
slot in the plans.

4 RELATED WORK

The increasing emphasis on real-world applications has led re-
searchers to develop approaches that more closely match realistic
planning environments [5].

The Belief-Desire-Intention (BDI) model of agency [2, 9] inspired
several systems similar to Asgaard as well as the design of Asgaard
itself. The basic idea is to model the commitment of the agent ex-
ecuting the plans by separating fundamental, long term goals – the
desires – which might not even be achievable but still important (e.g.,
get rich) from short term goals – the intentions – which are inspired
by the desires but not necessarily causally linked to them (e.g., work
hard). The second, similar important contribution of the BDI model
to the planning community was to state clearly that the actions of the
planning agent are based solely on beliefs which result from observa-
tions and which change over time as opposed to the common closed
world model in which the planning agent has complete knowledge
and in which the environment does not alter in unforeseen ways.

Asgaard reflects these ideas, first by featuring a distinct knowl-
edge role to express the overall purpose of the plan and second by
explicitly modeling those situations, where the perception of the en-
vironment at execution time of a plan leads to doubting (and thus
suspending) or discarding (and thus aborting) a particular plan.

Two well-know approaches similar to Asgaard are Cypress [26]
and O-Plan [23]. Cypress is a powerful domain-independent frame-
work for defining reactive agents. However, it is an union of het-
erogeneous, loosely coupled modules, while Asgaard is based on
a monolithic design. O-Plan provides a hierarchical planning archi-
tecture to support planning and control with temporal and resource
constraint handling, but lacks the features of the BDI-architecture,
namely the separation, on the one hand, of overall aims and short-
times means and on the other hand, of actual world state and beliefs
of the executing agent.

In the field of robotics, a number of reactive control systems have
been developed which execute prepared plans but do not develop new
ones (e.g., RAPS [7], PRS [10]).

Rational Based Monitoring (RBM) [25] contributes a new view
on the issue of monitoring by proposing alternative-based moni-



tors in addition to plan-based ones. While RBM was developed to
control the planning process of Prodigy [24] and later adapted for
UCPOP [19] by Pollack and McCarthy [20], parts of this concept
resemble Asgaard’s plan-state model used by the execution module.
RBM’s plan-based usability-condition monitors are implemented by
Asgaard’s abort condition, but quantified-condition monitors are
currently missing. Alternative-based monitoring is performed by the
do-*-any-order-construct in Asgaard, although the currently
active plan is not disrupted due to an alternative becoming favorable
since this is rarely feasible in practical applications, given the extra
costs of changing plans. Still, one can add conditions, under which a
shift might appear favorable to the abort- or suspend-condition
to carry it out immediately.

5 CONCLUSION

Asgaard was originally designed for the medical domain. It is most
suited for domains with large and complex, but partly vague and
incomplete knowledge. In the medical field, direct control over the
planning process is crucial, since the user community, namely the
medical staff, would refuse a system which does not offer maximum
transparency and coverage safety issues in the decision process. Suit-
able plans are found through search in plan space applying meta-
plans called ”skeletal plans” [8]. These plans describe a set of sub-
targets to be reached by means of conditions, which must be fulfilled.
While the skeleton of the final solution is defined by the skeletal plan,
it does not define exactly, which sub-plans to select to reach the tar-
get. Instead, such plans are found by matching their intentions, their
conditions, and the context, for which they are defined, with those
demanded by the skeletal plan.

In this paper, we described Asgaard’s monitoring and plan-
adaptation capabilities in dynamically changing environments. As-
bru’s hierarchical structure and knowledge roles facilitate the ac-
quisition and maintenance of knowledge from domain experts. The
monitoring module presented ensures proper synchronization of plan
execution with a changing environment. The plan adaptation capabil-
ity handles problems arising during execution of a plan, which have
been foreseen at planning time. Replanning handles situations not
expected at the time the original plan was created by issuing a new
plan. This multi-step approach allows smooth reaction to unexpected
situations ranging from slight parameter deviations to total mission
failure.
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