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Abstract. In this paper we describe ways to transform a curve consti-

tuted by a series of data points delivered by monitoring devices into a

series of bends and lines between them. The resulting qualitative rep-

resentation of the curve can easily be utilized in a Knowledge Based

System.

Since the representation obtained resembles the way humans describe

curves, e.g. "this bend is not sharp enough to be normal", the transfor-

mation of the data described in this paper promises to facilitate knowl-

edge acquisition in the �eld of interpreting high-frequency data in the

medical domain.

Our analysis performs best on curves that are periodical but too irreg-

ular to be analyzed by Fast Fourier Transformation or other standard

methods.

1 Introduction

In all �elds of medicine one is confronted with rhythmical data. By rhythmical

we mean data which shows repeated patterns which slightly vary from instance

to instance but still have enough in common to make it interesting to compare

them, like ECG.

If such patterns are strongly regular, they can easily be analyzed by Fast

Fourier Transformations (FFT) [2], which are a widely used and fairly exploited

method. The result of such a transformation is a spectrum of frequencies, from

which each oscillation is composed. While meaningful in some �elds of applica-

tions, like music or signal processing, this type of information by itself is not

meaningful for medical experts in most cases. Furthermore, the data available

in medical high-frequency domains, like in arti�cial ventilation of neonates, is

rarely regular enough to yield useful results when analyzed by FFT.

In many domains, like ECG, there is a long tradition in analyzing graphs and

thus a lot of { in part informal { knowledge about the appearance of a graph

and the health status of the corresponding patient. The way a graph appears to

a human depends on the fashion of the bends it makes (sharp or smooth), the

direction and straightness of the lines between them (steep, at, up, down), and

the relative position of characteristic points in the graph within one oscillation.

These types of characteristic features are far away from conventional tools

for the analysis of oscillating data, since they focus only on the mathematical



aspects of the data like frequencies or other highly abstract parameters. It is

nearly impossible to transform the experiences of human experts in analyzing

a graph in their mind and the way they formulate their constraints into such a

mathematical set of parameters.

To bridge this gap, we developed a method to abstract characteristics similar

to those used by human experts from a graph. In particular, we decompose the

graph into a sequel of repeated patterns. Each is described by a set of bends and

lines in between. A bend is placed in the graph where it changes its direction. It

has a "sharpness" de�ning how rapid the change takes place and a position. A

line is place between each pair of bends to represent the points in between. Its

important feature is the inclination it shows.

Of course both the amount of sharpness of a bend necessary to consider it

signi�cant and the minimum distance of neighboring bends required to distin-

guish them from noise will vary from person to person and from case to case.

Still there is consensus on most of the important cases.

These abstracted characteristics can be visualized as bar charts or graphs.

They can also be used to match the graphs with the conditions of rules in a

knowledge base like "If the ascent of the �rst line exceeds that of the third then

. . . " or "If the distance of the 2nd and 3rd corner decrease by more than 50 %

during the �rst minute of measurement, then . . . ".

Thus, existing knowledge about the interpretation of graphs can be utilized

with signi�cant less e�ort on information transformation compared to the use of

conventional tools which require highly abstract input.

Of course, such abstractions can only be done retrospectively, or at least with

a signi�cant delay when done on-line. Lacking data from ICUs at the moment

(for technical reasons), we demonstrate our algorithms on data from ergonomic

studies in rowing which show the same characteristics as the clinical data for

which the algorithms were intended.

In section 2 we show how our approach di�ers from other work. In section

3 we explain our approach in depth. In section 4 we describe the obtained data

and how to use this data to bridge the gap towards knowledge-based systems.

In section 5 we list the bene�ts of our approach.

2 Related Work

On-line monitoring at Intensive Care Units (ICUs) produces a high volume of

high-frequency data generated by monitoring devices. These data need to be

analyzed and interpreted to reduce the information overload of the medical sta�

and to guarantee quality of patient care. The interpretation of time-series is a

very challenging task. The temporal properties are very important aspects in

the medical domain, particularly when dealing with the interpretation of con-

tinuously assessed data. The most common methods are time-series analysis

techniques [1], control theory, probabilistic or fuzzy classi�ers. However, these

approaches have a lot of shortcomings, which lead to apply knowledge-based

techniques to derive qualitative values or patterns of the current and the past



situations of a patient, called temporal data abstraction. Several signi�cant and

encouraging approaches have been developed in the past years (e.g., TrenDx [3],

R�ESUM�E [9, 10], VIE-VENT [7], Larizza et al. [6], Keravnou [5]).

These approaches rely on prede�ned qualitative descriptions or categories of

temporal data abstractions. For example, the R�ESUM�E project [9, 10] recom-

mends to apply state, gradient, rate, and simple pattern abstractions, Larizza et

al. [6] are using basic and complex abstraction, and the temporal data abstraction

module in the VIE-VENT system [7] tries to arrive at uni�ed, context-sensitive

qualitative descriptions applying smoothing techniques of data oscillating and

expectation-guided schemata for trend-curve �tting.

However, we are going one step back and want to explore, which kinds of

temporal data abstractions are need for rhythmical data. Therefore, we are not

presenting various temporal data abstraction methods for longitudinal data. We

are demonstrating a way to acquire complex data abstraction methods to ar-

rive at qualitative descriptions, like in an ECG trace "the peak of the P-wave is

increasing signi�cantly between 400 and 700 msec". A similar technique is the

"Time Series Workbench" [4], which approximates data curves with a series of

line-segments. However, we are going beyond the approximation by line-segments

and take the particular characteristics of a graph into account, like the "sharp-

ness" of a curve.

3 The Algorithm

While mathematicians might be horri�ed by the notion of a graph being a series

of bends connected by rather straight lines this resembles the cognitive model

most non-mathematicians use when looking at a graph. But how can we �nd a

formal de�nition of such an informal entity as a bend?

There are two indications for bends in a curve: First, the second-order deriva-

tive of the curve shows an minimum in places where the original curve does a

"bend to the right", i.e. changes from increase to decrease, and a maximum,

where the original curve does a "bend to the left", i.e. changes from decrease to

increase.

Second, we calculate linear regressions for a time window sliding over the

curve as described in [8]. In places where the curve shows a bend, reducing the

length of the interval will lead to a decrease in the standard error of the resulting

linear regression. In places where there is no signi�cant bend, shortening the time

window will not decrease the standard error.

We will �rst explain both approaches in detail and then discuss which of

them is more suitable for which type of data.

3.1 Using the Changes of the Derivative

Figure 1 shows an abstract example. A bend in the curve is a synonym to a

change in its derivative. The bigger the change in the derivative, the sharper the

bend { and the bigger the absolute value of the second-order derivative.
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Fig. 1. Abstract demonstration of bends in the original graph and its second-order

derivative: In places where the original graph shows a bend, the �rst-order derivative's

changes, which causes a peak in the second-order derivative.

While this notion is perfectly true for small derivatives, looking at changes in

the absolute value of the derivative will overemphasize relatively small changes

in places of high derivative. If e.g. a derivative of 10 changes by 2, this might not

seem too signi�cant to a human spectator while a change from 0 to 2 certainly

will. The second-order derivative is 2 in both cases. So its value will not reect

the users estimations. Figure 2 shows an example of a peak in the second-order

derivative where a human would not see a signi�cant change.

Turning to relative changes in the derivative only works for steep slopes and

will overemphasize changes in at regions of the curve. Instead, we are using

the angle of the derivative. So instead of the derivative itself we calculate the

angle � as tan� = �y
�x

and use the derivative of this function as indicator for

signi�cant changes in the curve.

Figure 3 shows an example, where this function nicely reects human per-

spective. The curve slightly but constantly turns up. So it is di�cult to say,

where a single corner should be. The derivative of the derivative's angle (i.e. the

angle of inclination of the original curve) is constantly but slightly increasing at

that part of the curve, resembling the humans indecision.

In practical applications, calculating the derivative as the di�erence in the

y-coordinate of two neighboring data points (divided by the di�erence in their

x-coordinate) does not work on noisy input data, because the small erroneous

oscillations of the curve might result in the derivative oscillating enough to hide

the overall tendency of the curve. Comparing each point with the point following

n points later instead of the ultimate neighbor (and placing the result in the

middle between the two points) often yields su�ciently smooth graph for the
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Fig. 2. The topmost graph shows the original data. In the middle the gray graph (that

with the bigger extrema) shows the absolute value of the �rst derivative and the black

graph shows the angle of inclination. At the bottom, the derivatives of both graphs in

the middle are shown. (The more moderate, black one is the derivative of the moderate

one in the middle). While the change in absolute value of the �rst-order derivative is

biggest in (a), the change in the angle associated with the derivative is biggest in (b).

Human spectators seem to prefer (b) over (a) if asked to de�ne the signi�cant corner

at this portion of the graph.
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Fig. 3. At gradual turns of the original curve (at the top), were a human spectator is

pressed hard to point at any exact position of a single corner, the indication function

(below) is trapezoidal resembling the humans indecision.

derivative without the need to smoothen the original curve. The number of

intermediate points n should be bigger then the typical wave length of erroneous

oscillations or { for nondeterministic noise { simply big enough to suppress the

portion of the noise in the result of

calculated derivative =
n � real derivative+ noise

n
= real derivative+

noise

n

where noise is the average distant between a measured value and the real

value, real derivative is the derivative of the ideal graph drawn from the real

values (which is not known, of course) and calculated derivative is the value

resulting from this calculation.

3.2 Using the Length of the Regression Line

The algorithm presented in the following seeks to detect bends in the graph

by �rst calculating a linear regression for short sections of the graph and then

checking whether reducing the size of the section reduces the standard error of

the regression line.

The reason for applying linear regression lies in its ability to give an abstract

representation of a set of data points and at the same time an estimate, how

will this abstraction represents the actual data (by the standard error). If the

regression line does not �t to the curve because it make a bend, then cutting the

ends of the line results in a signi�cantly reduced standard error. If the regression

line does not �t the curve because the curve is noisy, a shorter regression line



will have an equally high standard error as the original (full length) one. This

distinction can be exploited to detect bends in a graph.
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Fig. 4. The calculation of the linear regression is done for a time window of �xed size

sliding over the entire curve in small steps. (a) shows a single time window and the line

calculated from the data points within it. (b) shows a sequence of overlapping time

windows and the resulting lines.

As illustrated by �gure 4, we slide a window of consideration (time window),

which is of �xed size over the time axis of the curve in small steps. For each

instance of the time window, we calculate a linear regression for the data points

contained in it. As opposed to [8], for this application the step width should

equal the rate of data points (if there is one measurement per second, step

width should be one second) and the length of the time window should be short

enough to follow signi�cant bends but much longer than erroneous oscillations.

So, for example, if the sampling rate is 1 measurement per second and the

oscillations caused by noise show a wave length of up to 5 seconds, the step

width will be one and the size of the time window will be between about 7 and

10 seconds. We will thus receive one regression line per data point, calculated

from its 7 to 10 neighbors.

The standard error of a linear regression line shows, how well the points,

which are represented by that line �t together respectively to that line. The

bigger the average distance, the bigger the standard error.

For each regression line, we take a look at its ends (see �gure 5). On each

end, there might be some neighboring points on the same side of the line. If a

smooth curve takes a bend they will be numerous, if the graph is rather straight,

but oscillating around the line, there will be very few points at the same side of

the line.

Next we shrink the time window to skip those groups of points on both ends

which altogether lie on the same side of the curve and recalculate the linear

regression for this second, smaller time window. If the distance of the skipped

points exceeds the average distance of all points in the (�rst) time window to
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Fig. 5. If the graph shows a bend in the interval under consideration (example on

the left-hand side), there is a considerable number of data points on each end of the

regression line which lie on the same side. Skipping them in the recalculation of the

regression reduces the standard error to which the skipped points contributed signif-

icantly. If there is no bend (example on the right-hand side), skipping the few points

on the ends does not reduce the standard error.

the (�rst) regression line, the standard error of the second regression line will be

smaller than that of the �rst one. In this case we can assume that the deviation

of the points on the ends of the line are not just an incident, but caused by a

bend in the curve.

The di�erence in length between the �rst and the second time window as

well as the decrease of the standard error are measures for the "sharpness" of

the curve. Thus both of them can be used as indication function. Both only give

positive values. The direction of the curve can be derived from the side of the

regression line, on which the skipped data points lie. So we assign minus to bends

to the right and plus the bends to the left and supply the absolute value of the

indication function with this sign to produce an indication function compatible

with the one described in section 3.1.

3.3 Common Issues of Both Approaches

In both cases (second-order derivative and length of the regression line) a bend

in the curve will not yield only one high value at a single position on the time

axis, but a more or less signi�cant peak. Especially, bends with bigger radius

result in a series of peaks or a long at "hill" in the second-order derivative

respectively a "valley" in the curve showing the length of the regression line.

To suppress such concurring peaks one can simply de�ne a minimum distance

(along the time axis) and only chose the highest peak out of several of them if

their distance is below this threshold.

A better way is to consider both of two neighboring peaks only if they are

separated by a local minimum of a certain depth. To see the di�erence to the

above strategy consider the following cases: First, two sharp bends close to each

other and second, a long slight bend.



Two sharp bends produce two high peaks with a clearly distinguishable min-

imum (of the absolute value) in between. If you only consider the distance on the

time axis of the two peaks, you will have to ignore one of them, if you consider

the minimum between them, you will accept both peaks to be signi�cant.

A long slight bend results in a series of peaks with nearly no minimum

between them. If you consider the distance along the time axis, the �rst and

the last minor peaks might be far enough from each other to let both of them

seem justi�ed. If you look at the minima between them, you will ignore all but

one of them.

Many curves of real data show small opposite bends which should be con-

sidered as a single straight line. A small threshold for the absolute value of the

indication function does this job.

3.4 Comparing the Two Approaches

The �rst approach { the change in the angle of inclination { is very intuitive

if applied on smooth graphs. Applied on noisy input data, the graph of its

indication function can get too distorted to be usable.

The second approach { the length of the regression line { is harder to com-

pute than the �rst one. The outstanding advantage of linear regression is that

it minimizes the inuence of noise on the result. If the original graph shows nu-

merous random peaks, they can fool the second algorithm because they might

inhibit proper reduction of the regression line.

In such cases, a combination of both approaches performs best: The indica-

tion function is the change in the ascent of the regression lines.

1. The regression lines are calculated as described in section 3.2.

2. For each of them, the angle of inclination is calculated.

3. Then the resulting values are merge to a new function (replacing the �rst

derivative in the �rst approach)

4. The derivative of this function is calculated as the indication function for

detecting bends.

To summarize, given smooth input data, the �rst approach performs better.

The more smoothing is necessary before or while calculating the derivative, the

small this gain becomes.

4 The Output

4.1 The Extracted Characteristics of a Graph

As results of the transformation of the discrete data points into bends and lines

we receive three sequels of di�erent types of data: The bends, the corners of the

original curve at those places where bends were detected, and the lines between

the bends.



Bends Each bend is described by the position of its middle along the time

axis, the height of the corresponding peak in the indication function (second-

order derivative or length of regression line) and the area of the peak measured

from one intersection with the zero-line to the next. Figure 6 illustrates this

calculation for one bar, while �gure 7 gives a practical example.

x

value

time

x

h

time

(b)(a)value

Fig. 6. The height and area of the bar (b) representing a bend equal the height and

area (grayed) of the corresponding peak (a) in the indication function, the width of

the bar is the quotient of area and height.

Corners The x-coordinate of the corner clearly equals the middle of the bend.

The y-value can be the y-coordinate of the nearest point in the original curve.

To reduce inuence of noise, it is necessary to take the average of some of its

neighbors into account too in most cases. Integrating too many of them in the

calculation will distort the result towards the inner side of the bend.

The Line in Between The lines between the bends can either be drawn just

as connections of the corners of the curve, or they are calculated as a linear

regression of the points of the original curve between the bend.

4.2 Interfacing Knowledge-Based Systems

To bridge the gap currently observed between data analysis and knowledge based

systems (KBS), we transform the output into clauses compatible with those use

by a KBS. In a �rst step, we gather the absolute values for each characteristic.

Then, we calculate the relative values (e.g. distance of corners). Finally, we

transform these quantitative values into qualitative ones via tables containing

the qualitative ranges for each parameter.
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Fig. 7. Starting at the top, we show the original graph, the indication function and the

bars representing the signi�cant bends. a) shows an example of an irregularity in the

curve which a human could also dedect if concentrating on every detail: the bend in the

right-most oscillation is not as sharp as the corresponding one in the other oscillations.

b) draws our attention to a feature not perceptible by looking at the raw data: the

long-spread bow to the left of the second oscillation from the right is not as sharp

as the others as indicated by inferior height of the bar. The corresponding part of the

original curve does not seem di�erent by itself. The signi�cance of the features found in

a) and b) depends on the domain knowledge about the data represented by the curve.



Absolute Values For each bend, the above abstraction yields the following

data:

{ The corresponding maximum in the indication function shows how sharp the

bend is.

{ The area of the corresponding peak shows how big (in degrees) the change

of the original graph is.

{ The x{coordinate shows the position of the corner on the time{axis.

For each line, the inclination of is computed.

Relative Values Each of the above values is measured against the average of

previous instances in an interval of time de�ned by the user. The deviation is

given both absolute and relative.

Qualitative Values The quantities computed in the two steps above are qual-

i�ed using a set of tables. The tables are grouped in a default hierarchy so for

each of it, it is possible to de�ne special values, but similar tables need not be

entered multiple times.

5 Bene�ts

The abstraction of characteristics from a stream of raw data points o�ers the

following opportunities:

Compact visualization Displaying only the important features of a graph in

an abstract form instead of the original graph allows for easy detection of trends

and outliers which otherwise would be buried in the overwhelming impression of

countless oscillations.

New Insights Plotting the representations of the features together with the

conventional graph of the curve draws the interest of the user to irregularities

not visible in the original graph without the need to be familiar with the new

representation beforehand. Thus, new insights can be gained by comparing the

conventional representation of the graph, the displayed features of some charac-

teristics and the underlying case (background information).

Bridge to Knowledge Representation The abstracted characteristics can

be matched against conditions from a rule base. So the curves can be tagged

according to a set of classi�cations stored in a knowledge base. This aspect is

crucial for the integration of high-frequency data and symbolic systems such as

the sceletal planning system implemented in the Asgaard project.



6 Conclusion

We have presented several methods to capture complex rhythmical curves by

transforming them into a sequel of bends, corners, and lines, based on the obser-

vation that a bend in the curve is synonym to a change in its inclination. These

feature vectors resemble the human understanding of repeating patterns in an

intuitive way.

Previous approaches in the �eld of temporal data abstraction focus on prede-

�ned qualitative descriptions or categories. We explore di�erent ways to extract

particular characteristics of a curve, which will lead to appropriate qualitative

descriptions.

Our approach is applicable to data where Fast Fourier Transformation fails

because the oscillations is not regular enough for such a strictly numerical algo-

rithm. Furthermore, a frequency spectrum is a less intuitive representation of a

curve than a set of corners and lines in many medical domains.
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