
in: The Fourth International Conference on Artificial Intelligence Planning Systems 1998 (AIPS-98), June 7-10, 1998, Carnegie Mellon
University, Pittsburgh Pennsylvania, USA, Menlo Park, CA: AAAI Press.

AsbruView: Visualization of Time-Oriented, Skeletal Plans

Silvia Miksch and Robert Kosara
Vienna University of Technology, Institute of Software Technology

Resselgasse 3/188, A-1040 Vienna, Austria, Europe
silvia@ifs.tuwien.ac.at, rkosara@wvnet.at

Yuval Shahar and Peter Johnson
Section on Medical Informatics, Medical School Office Building, x215

Stanford University, Stanford, CA 94 305 - 5479, USA
shahar@smi.stanford.edu, pete@mimir.demon.co.uk

Abstract°

Skeletal plans are a powerful way to reuse existing domain-
specific procedural knowledge. The main drawbacks are that
the compositions and the interdependencies of different
skeletal plans and their components are not lucid. The aim of
this paper is to overcome these limitations and to present the
visualization of time-oriented, skeletal plans. Within the
Asgaard project, we have developed a time-oriented and
intention-based language, called Asbru, to represent such
skeletal plans. The Asbru syntax is defined in Backus-Naur
form (BNF). Reading BNF or similar forms are next to im-
possible even for domain experts. We explored different
representations and automated knowledge-acquisition tools.
However, the domain experts did not accept any of these
representations. Consequently, we investigated different
metaphor graphics and ended up with a plan visualization
utilizing the metaphors of "tracks" and "traffic", called
AsbruView. We formatively evaluated different approaches
of this plan visualization with physicians applying treatment
protocols of mechanical ventilated newborn infants.

Introduction and Motivation

Our approach is oriented, but not limited to our application
domain: the medical (high-frequency) domain. Physicians
are faced with two problems: (1) the information overload
resulting from modern equipment, and (2) improving the
quality of health care through increased awareness of
proper disease management techniques. Treatment planning
from scratch typically is not necessary, as general proce-
dures exist which should guide the medical staff. These
procedures are called clinical guidelines or protocols.

Appropriate clinical protocols are only available for a
very limited class of clinical problems. Mostly, they are
expressed in natural language, but this kind of representa-
tion can not easily be transformed into a formal and struc-
tured framework (Herbert 1994). Additionally, clinical
protocols are not adjusted to the patient data-management
system and they are partly vague and incomplete concern-
ing their intentions and their temporal, context-dependent
representation. Clinical protocols are a way of pre-compil-
ing decisions that must be made, in which experts’

° Copyright © 1998, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

knowledge is distilled into a form of procedural knowledge.
Extracting and formulating the knowledge structure for
protocols is a non trivial task. Their implicit context must
be made explicit. The variability of clinical protocols pres-
ents an additional challenge. A medical goal can be
achieved by different therapeutic actions (e.g., in the
domain of mechanical ventilation: pressure-controlled,
volume-controlled, or ratio-controlled ventilation).

Besides using natural language, the most favored
attempts to capture and support clinical protocols, are flow
diagrams and flowcharting tools. Many medical experts are
used to working with these techniques. Flow diagrams are
useful for representing sequential states and actions in a
graphical way. However, it is quite difficult to cope with all
possible orders of plan execution and all the exception con-
ditions that might arise. The trouble is that this by necessity
can only cover a small subset of the possible situations and
possible paths through. Additionally, flow diagrams are
kinds of layering, which avoid to cope with concurrent
(parallel) actions, with different temporal dimensions, with
high numbers of possible transitions, and with mutual
dependencies of parameters. A possible way to overcome
these limitations are skeletal plans.

Similar problems were solved by procedural reasoning
systems (PRSs, Georgeff, Lanskey, and Schoppers 1986)
and situated and reactive planning (Firby 1989; Suchman
1987; Wilkins and Myers 1995). However, we need to have
greater temporal reasoning power and focus on issues such
as temporally extended goals (Bacchus and Kabanza 1996).

Skeletal Plans
A common strategy for the representation and the reuse of
domain-specific procedural knowledge is the representation
of that knowledge as a library of skeletal plans. Skeletal
plans are plan schemata at various levels of detail that cap-
ture the essence of procedures, but leave room for
execution-time flexibility in the achievement of particular
goals (Friedland and Iwasaki 1985). Thus, they are usually
reusable in different contexts.

A plan-specification language of skeletal plan needs to
be expressive with respect to temporal annotations and
needs to have a rich set of sequential, concurrent, and
cyclical operators. Thus, it should enable designers to
express complex procedures in a manner similar to a real

programming language (although typically on a higher
level of abstraction), but in a more appropriate and useful
way. The language, however, also requires well-defined
semantics for both the prescribed actions and the task-
specific annotations, such as the plan’s intentions and ef-
fects, and the preferences underlying them. Thus, the
executing agent’s actions can be better supported, leading
to a more flexible dialog and, in the case of the clinical
domains, to a better acceptance of automated systems for
protocol-based care support. Finally, clear semantics for the
task-specific knowledge roles also facilitate acquisition and
maintenance of these protocols.

What Kind of Plan Visualization Do We Need?
We are aiming to support treatment planning using clinical
protocols, which can be seen as skeletal plans. To apply
skeletal plans to a dynamically changing environment, such
as medicine, these skeletal plans have to capture all the
requirements mentioned. The requirements in clinical
domains are often a superset of the requirements in typical
problem domains used in planning research.

We have developed a time-oriented, skeletal plan-speci-
fication language called Asbru. We tried to keep the lan-
guage as simple as possible, however, we ended up with a
quite complicated and difficult to comprehend language.
The Asbru syntax is defined in Backus-Naur form (BNF).
On one hand, reading BNF or similar forms are next to im-
possible for domain experts. On the other hand, flow dia-
grams, flow charts, or networks are not appropriate as
mentioned above. An appropriate, different visualization of
complicated plans is needed.

We need a plan visualization which is able to capture: (1)
hierarchical decomposition of plans (which are uniformly
represented in a plan-specification library); (2) time-
oriented plans; (3) sequential, concurrent, and cyclical
execution of plans; (4) continuous (durative) states, actions,
and effects; (5) intentions considered as high-level goals;
and (6) conditions, that need to hold at particular plan steps.
Additionally, all different time-oriented components of
skeletal plans should be visualized in an easy to understand
way. The domain experts, such as physicians, should
understand the basic idea of skeletal plans. However, the
domain experts do not need to be familiar with the syntax
of skeletal plans to author skeletal plans (clinical protocol).

Section 2 describes related techniques and their
limitations. Section 3 gives an overview about the Asgaard
project and the Asbru language. Section 4 sketches dif-
ferent approaches to describe Asbru using the medical
scenario of mechanical ventilation. Finally, the main
features of our plan visualization, called AsbruView will be
explained.

Related Visualization and
Knowledge-Acquisition Approaches

Visualization is concerned with exploring data and infor-
mation in such a way as to gain understanding and new

insights into the data and the processes. The goal of visuali-
zation is to promote a deeper level of understanding of the
data under investigation and to foster new insight into the
underlying process (Tufte 1990; Tufte 1997).

In the last years, many visualization techniques were
introduced to improve the understanding of the relationship
between several variables (e.g., Cole and Stewart 1993;
Frenkel 1988; Keller and Keller 1993). For example, Cole
and Stewart (1993) suggested to use metaphor graphics
(e.g., minute-ventilation rectangles representing the
mechanical ventilator data) and found that the human per-
formance to interpret mechanical ventilator data can be
improved significantly (Cole and Stewart 1994).

Other approaches concentrated on the knowledge-based
presentation of information, which plans how multimedial
documents and procedures can be presented to various
users (e.g., PPP and WIP (André 1997)).

Finally, there have been several efforts to create auto-
mated reactive planners to support the process and the
acquisition of protocol-based care over periods of time
(e.g., T-HELPER (Musen et al. 1992), PROMPT project
(Fox, Johns, and Rahmanzadeh 1997)). On one hand, they
are using automated (graphical) knowledge acquisition
(KA) tools, such as PROTÉGÉ-II (Musen et al. 1995), to
generate domain-specific knowledge-acquisition tools from
ontologies. On the other hand, they are utilizing graphical
workflow diagrams, similar to flow charts, to summarize
and to assist in the correct and timely enactment of specific
tasks, such as used in the PROMPT project (Fox, Johns,
and Rahmanzadeh 1997).

The need of different methods for time-oriented, task-
specific plan (and data) visualization—particular in modern
intensive care units—is quite evident. An electronic version
of flow charts and workflow diagrams are not applicable as
discussed in Section 1. Plan-based presentation of informa-
tion concentrates more on the user interactions and the
static information presentation than on the visualization of
the planning processes. Finally, the automated knowledge
acquisition (KA) tools, do not support the time-oriented
process- or plan-based concepts. They support acquiring
static ontologies, however there is no assistance for the ac-
quisition of time-oriented plans with different components.

The Asgaard/Asbru Project

The aim of the Asgaard/Asbru1) project (Shahar, Miksch,
and Johnson 1996) is to design a planner based on time-
oriented, skeletal plans. The planner will support the design
and the execution of skeletal plans by a human executing
agent other than the original plan designer. During design
time the relevant tasks are:(1) plan verification and (2) plan
validation. During execution time the relevant tasks are:(1)
applicability of the plan to a particular state of the world,
(2) guidance in proper execution of plans, (3) monitoring of

1) In Norse mythology, Asgaard was the home and citadel of the

gods. It was located in the heavens and was accessible only
over the rainbow bridge, called Asbru (or Bifrost).

the execution process, (4) assessment of the results of
plans, (5) critiquing the execution process and its results,
and (6) assistance in the modification of the original plan.

The underlying requirement to develop a task-specific
planner is a plan-specification language. Therefore, within
the Asgaard project, we developed a time-oriented, skeletal
plan-specification language, called Asbru (Miksch, Shahar,
and Johnson 1997). During the design phase of plans,
Asbru provides a powerful mechanism to express durative
actions and plans caused by durative states of an observed
agent (e.g., many actions/plans need to be executed in
parallel or periodically). These plans are combined with
intentions of the executing agent of the plan. They are
uniformly represented and organized in the plan-
specification library. During the execution phase an
applicable plan is instantiated with distinctive arguments
(e.g., time-oriented patient data) and state-transition cri-
teria (e.g., activated, completed, suspended, or
aborted) are added to execute and to reason about dif-
ferent tasks. The intentions underlying these plans are
represented explicitly as temporal patterns to be
maintained, achieved or avoided.

A plan consists of a name, a set of arguments, including
a time annotation (representing the temporal scope of the
plan), and five components: preferences, intentions,
conditions, effects, and a plan body which describes the
actions to be executed. The general arguments, the time
annotation, and all components are optional.

Preferences bias or constrain the selection of a plan to
achieve a given goal and express a kind of behavior of the
plan (e.g., implicit utility functions).

Intentions are high-level goals at various levels of the
plan, an annotation specified by the designer, which sup-
ports tasks such as critiquing and modification. Intentions
are temporal patterns of executing-agent actions and
external-world states that should be maintained, achieved,
or avoided. Intentions may consist of:
(1) Intermediate-state: the state(s) that should be main-

tained, achieved, or avoided during the applicability of
the plan (e.g., the blood-gas levels are slightly below to
slightly above the target range);

(2) Intermediate-action: the action(s) that should take
place during the execution of the plan (e.g., minimize
level of mechanical ventilation);

(3) Overall-state-pattern: the overall pattern of states that
should hold after finishing the plan (e.g., patient had
less than one high blood-gas value per 30 minutes);

(4) Overall-action-pattern: the overall pattern of actions
that should hold after finishing the plan (e.g., avoid
hand-bagging).

Conditions are temporal patterns, sampled at a speci-
fied frequency, that need to hold at particular plan steps
to induce a particular state transition of the plan in-
stance. We do not directly determine conditions that
should hold during execution. We specify different con-
ditions that enable transition from one plan state into
another. A plan is completed when the completed con-
ditions become true, otherwise the plan’s execution

suspends or aborts. We distinguish between:
(1) Filter-preconditions need to hold initially if the plan is

applicable, but can not be achieved (e.g., subject is
female). They are necessary for a plan to become
possible;

(2) Setup-preconditions need to be achieved to enable a
plan to start (e.g., inspiratory oxygen concentration
FiO2 is less than 80%) and allow a transition from a
possible plan to a ready plan;

(3) Suspend-Conditions determine when an activated
plan has to be suspended—certain conditions
(protection intervals) need to hold (e.g., blood gas has
been above the target range for at least five minutes);

(4) Abort-Conditions determine when an activated,
suspended, or reactivated plan has to be aborted
(e.g., the increase of the blood-gas level is too-fast for
at least 30 seconds);

(5) Complete-conditions determine when an activated
or reactivated plan has to be completed success-
fully (e.g., returning to spontaneous breathing);

(6) Reactivate-Conditions determine when a suspended
plan has to be reactivated (e.g., blood gas level is
back to normal or slightly increased).

Effects either describe the functional relationship
between the plan arguments and measurable parameters or
specify an overall effect of a plan. Effects have a
likelihood annotation—a probability of occurrence.

The plan body is a set of plans to be executed in
parallel, in sequence, in any order, or in some fre-
quency. We distinguish among several types of plans:
sequential, concurrent, and cyclical. Only one type of
plan is allowed in a single plan body. A sequential plan
specifies a set of plans that are executed in sequence;
for continuation, all plans included have to be com-
pleted successfully. Concurrent plans can be executed in
parallel or in any order. We distinguish two dimensions
for classification of sequential or concurrent plans: the
number of plans that should be completed to enable
continuation and the order of plan execution. The
continuation condition specifies the names of the plans
that must be completed successfully to proceed with the
next steps in the plan. A cyclical plan includes a plan
that can be repeated, and optional temporal and
continuation arguments that can specify its behavior.

A plan in the plan-specification library is composed hier-
archically, using the Asbru syntax, of a set of plans with
arguments and time annotations. A decomposition of a plan
into its subplans is always attempted by the execution
interpreter, unless the plan is not found in the plan-
specification library, thus representing a nondecomposable
plan (informally, an action). This can be viewed as a
"semantic" stop-condition. Such a plan is referred to the
agent for execution, which may result in an interaction with
a user or an external calling of a program.

"Temporal Pattern" and "Time annotations"
Intentions, world states, and prescribed actions are
temporal patterns. A temporal pattern is either a parameter

proposition—a parameter (or its abstraction), its value, a
context, and a time annotation (e.g., the state abstraction of
the blood-gas parameter is normal, as defined in the context
of weaning therapy, during a certain time period)—, a
combination of multiple parameter propositions, or a plan-
state associated to an instantiated plan (plan pointer) and a
time annotation.

The time annotations we use allows a representation of
uncertainty in starting time, ending time, and duration
(Dechter, Meiri, and Pearl 1991; Rit 1986). The time
annotation supports multiple time lines (e.g., different zero-
time points and time units) by providing reference annota-
tions. Temporal shifts from the reference annotation are de-
fined to represent the uncertainty in starting time, ending
time, and duration, namely earliest starting shift (ESS),
latest starting shift (LSS), earliest finishing shift (EFS),
latest finishing shift (LFS), minimal duration (MinDu), and
maximal duration (MaxDu). The temporal shifts are associ-
ated with time units (e.g., minutes, days). Thus, a temporal
annotation is written as ([ESS, LSS], [EFS, LFS], [MinDu,
MaxDu], REFERENCE). ESS, LSS, EFS, LFS, MinDu,
and MaxDu can be "unknown" or "undefined" to allow
incomplete time annotation, denoted by an underscore "_".

To allow temporal repetitions, sets of cyclical time
points and cyclical time annotations are defined. Short-cuts
are used to allow starting a plan immediately at the current
time (using the symbol "*now*"), to use the activation of a
plan as reference point (using the symbol "*self*"), or to
allow that a condition holds during the span of time over
which the plan is executed (using the symbol "*").

The Way to AsbruView:
A Skeletal Plan Visualization

Having defined our Asbru language with all the different
components, the next step was to evaluate its applicability
with real clinical protocols. We tried various approaches to
fill the generic skeletal plans with real clinical treatment
protocols for infants’ respiratory distress syndrome.

First, we will roughly explain the medical scenario in
natural language. Second, we will show, how parts of the
example look like in BNF-based Asbru syntax. Third, we
will sketch our experiences using an automated KA tool
and conclude with the main limitations of the former two
approaches. These limitations lead to our metaphor
graphics of "tracks" and "traffic", called AsbruView, which
is illustrated afterwards. We performed scenario-based
evaluations of the different approaches with physicians
(Caroll 1995). The results of this evaluation influenced the
finial version of AsbruView.

Example: I-RDS (in natural language)
After infants’ respiratory distress syndrome (I-RDS) is
diagnosed, a plan dealing with limited monitoring possi-
bilities is activated, called initial-phase. Depending on the
severity of the disease, three different kinds of plans are
followed: controlled-ventilation, permissive-hypercapnia,

or crisis-management. Only one plan at a time can be acti-
vated, however the order of execution and the activation
frequency of the three different plans depend on the sever-
ity of the disease. Additionally, it is important to continue
with the plan weaning only after a successful completion of
the plan controlled-ventilation. After a successful execution
of the plan weaning, the extubation should be initiated. The
extubation can be either a single plan extubation or a
sequential execution of the subplans cpap and extubation.

The most important part is the subplan controlled-
ventilation. The intentions of this subplan are to maintain a
normal level of the blood-gas values and the lowest level of
mechanical ventilation (as defined in the context of con-
trolled ventilation therapy) during the span of time over
which the subplan is executed. This subplan is activated
immediately, if peak inspiratory pressure PIP ≤ 30 and the
transcutaneously assessed blood-gas values are available
for at least one minute after activating the last plan instance
initial-phase (as reference point). The subplan must be
aborted, if PIP > 30 or the increase of the blood-gas level is
too steep (as defined in the context of controlled
ventilation-therapy) for at least 30 seconds. The sampling
frequency of the abort condition is 10 seconds. The subplan
is completed successfully, if FiO2 ≤ 50%, PIP ≤ 23, f ≤ 60,
the patient is not dyspnoeic, and the level of blood gas is
normal or above the normal range (as defined in the context
of controlled ventilation-therapy) for at least three hours.
The sampling frequency of the complete condition is 10
minutes. The body of the subplan controlled-ventilation
consists of a sequential execution of the two subplans one-
of-increase-decrease-ventilation and observing.

Example: I-RDS (in BNF-based Asbru Syntax)
(PLAN I-RDS-therapy ...
(DO-ALL-SEQUENTIALLY

(initial-phase)
(one-of-controlled-ventilation)
(weaning)
(one-of-cpap-extubation)))

(PLAN one-of-controlled-ventilation ...
(DO-SOME-ANY-ORDER

(controlled-ventilation)
(permissive-hypercapnia)
(crisis-management)
 CONTINUATION-CONDITION
 controlled-ventilation))

(PLAN controlled-ventilation
(PREFERENCES (SELECT-METHOD BEST-FIT))
(INTENTION:INTERMEDIATE-STATE

(MAINTAIN STATE(BG) NORMAL
controlled-ventilation *))

(INTENTION:INTERMEDIATE-ACTION
(MAINTAIN STATE(RESPIRATOR-SETTING) LOW

controlled-ventilation *))
(SETUP-PRECONDITIONS

(PIP (<= 30) I-RDS *now*)
(BG available I-RDS

[[_, _], [_, _],[1 MIN,_]
(ACTIVATED initial-phase-l#)]))

(ACTIVATED-CONDITIONS AUTOMATIC)
(ABORT-CONDITIONS ACTIVATED

(OR (PIP (> 30) controlled-ventilation
 [[_, _], [_, _], [30 SEC, _], *self*])

 (RATE(BG) TOO-STEEP controlled-ventilation
 [[_, _], [_, _], [30 SEC,_], *self*])))

(SAMPLING-FREQUENCY 10 SEC))

(COMPLETE-CONDITIONS
(FiO2 (<= 50) controlled-ventilation

[[_, _], [_, _], [180 MIN, _], *self*])
(PIP (<= 23) controlled-ventilation

[[_, _], [_, _], [180 MIN, _], *self*])
(f (<= 60) controlled-ventilation

[[_, _], [_, _], [180 MIN, _], *self*])
(STATE(patient) (NOT DYSPNOEIC)

controlled-ventilation
[[_, _], [_, _], [180 MIN,], *self*]))

(STATE(BG) (OR NORMAL ABOVE-NORMAL)
controlled-ventilation
[[_, _], [_, _], [180 MIN,_], *self*])

(SAMPLING-FREQUENCY 10 MIN))
(DO-ALL-SEQUENTIALLY

(one-of-increase-decrease-ventilation)
(observing)))

Example: I-RDS (using a KA-tool)
It is quite obvious that physicians will hardly use the Asbru
plan-specification language to author clinical protocols.
Therefore, we explored PROTÉGÉ-II/Win (the Windows
version of PROTÉGÉ-II, Musen et al. 1995) to automati-
cally generate a graphical KA tool. PROTÉGÉ-II is a set of
tools and a methodology to develop knowledge-based sys-
tems. We used an object-oriented version of the Asbru lan-
guage to develop the ontology. Once the ontology is de-
fined, the PROTÉGÉ/Win LayoutEditor tool automatically
generates a specification of a KA tool for this ontology.
The specification of the KA tool is interpreted by the
PROTÉGÉ/Win LayoutInterpreter. It is possible to change
the layout of the user interface to some degree in the
LayoutEditor. The resultant KA tool (see Figure 1) can then
be used to acquire instances of the ontology, which in this
case would be protocols in the Asbru language.

Benefits and Limitations of BNF-based Asbru
Syntax and the KA-tool
If the user, in particular a domain expert, is unfamiliar with
the syntax, then it is easier to use the KA tool than the
BNF-syntax. Another significant benefit of the KA tool ap-
proach is that it detects incorrect syntax while authoring a
protocol. However, the complexity of the ontology enforces
the automatic generator of the KA tool to produce a user
interface with many cascading and small dialogs. 2)

Our collaborating physicians evaluated the different ap-
proaches. The physicians got easily lost within too many
opened windows: they did not know, what to work on next,
which parts of the protocol had already been filled with
content and which parts were still missing, how the differ-
ent skeletal plans and subplans were connected, how to
read a plan in general, etc. These observations resulted in a
poor acceptance and understanding of the Asbru language.
Asbru's components are understandable to the language de-
signers, however, they were not comprehensible to the
medical staff. The physicians need more guidance (e.g,
which parts of the plans are filled with knowledge), or a
kind of simulation, how a possible way through the plan
library could look like. Therefore, we were investigating in
adding domain knowledge and visualization techniques,
which resulted in our plan visualization utilizing the
metaphors of "tracks" and "traffic", called AsbruView.

AsbruView
Our plan-visualization approach was influenced by the idea
of metaphor graphics (Cole and Stewart 1993) and the
graphical-timetable design of Shinkansen Lines (Japanese
National Railroad) described in (Tufte 1990).

We have utilized metaphor graphics of "tracks" and
"traffic" to envision different time-oriented skeletal plans.
The basic element is a track, which represents a simple
plan. Stacking techniques are used to visualize the decom-
position of plans into subplans. We are using 3-dimensional
objects. The width represents the time axis, the depth repre-
sents plans on the same level of decomposition, and the
height represents the decomposition of plans into subplans.
The cube is rotated to the left to enable plan labeling on the
top of the track and to ensure readability in case of multiple
tracks. Figure 2 shows the treatment protocol of I-RDS
therapy, which is decomposed in four sequentially executed
subplans: initial-phase, one-of-controlled-ventilation,
weaning, and one-of-cpap-extubation.

We distinguish among several types of plans: sequential,
concurrent, and cyclical. The sequential plan is shown in
Figure 2. The additional four types of plans (parallel: DO-
ALL-TOGETHER, DO-SOME-TOGETHER; in any order:
DO-ALL-ANY-ORDER, DO-SOME-ANY-ORDER) are
depicted in Figure 3. If plans should be executed in parallel
means, they should start together, however, they do not

2) We were told that additional features will be available for more

control of the layout of the automatically generated user
interface in PROTÉGÉ/Win soon.

Figure 1: Screen shot of knowledge-acquisition tool, showing
a part of I-RDS protocol.

need to end at the same time. In case of "DO-SOME-
TOGETHER", the dotted line represents the optional plans
and the solid line represents the plans which must be com-
pleted successfully to proceed with the next steps in the
plan. (called continuation condition). If plans are executed
in any order, they may start and end at the same time, how-
ever it depends on their conditions and time annotations. In
case of "DO-SOME-ANY-ORDER", the dotted arrows
identify the optional plans and the solid arrows name the
plans included in the continuation condition.

We are using different icons to visualize the six kinds of
conditions (compare Figure 4). The sign "No Entry with
Exceptions" symbolizes the filter-precondition. The sup-
plementary sign stands for the exemptions, like "Except
Busses", which we are using to name the filter-conditions
(e.g., "Except Females" allows only females to enter the
track). The setup precondition is embodied by a turnpike,
which illustrates the fact that this condition can be achieved
(and thus the turnpike will be opened). The traffic light in-
cludes three kinds of conditions: red light symbolizes the
abort-condition, yellow light the suspend-condition, green
light the reactivate-condition. The finishing-line (flag)
stands for the complete-condition.

Our time annotation is illustrated in Figure 5. This kind
of visualization is applied to the temporal patterns. The
temporal dimensions of the plans and their subplans are
given in the horizontal axis directly (compare Figure 6).

The general rule of undefined components is that the un-
defined icons appear in gray. For example, the undefined
elements of the time annotation are gray in the lower part
of Figure 5, or the red light of the traffic light is gray in
Figure 6, which means that the abort-condition is missing.

To keep readability of the different components of the
Asbru language, we use a control panel (see Figure 6). The
control panel is used to choose which Asbru component
should be visible (in Figure 6 the left-hand side of the con-
trol panel) and which levels of decomposition are visible
(in Figure 6 the right-hand side of the control panel labeled
"Visible Levels"). In Figure 6, the visible level informs that
the first, second, and third levels of decomposition are visi-
ble (depicted by the arrows) and the conditions of the sec-
ond level are shown (depicted by the marked check-box
next to the label conditions and the big arrow next to the
second visible level). The finishing-lines (complete-
conditions) of all visible levels are shown to distinguish
unambiguously between the different tracks.

I-RDS Therapy

One of CPAP
ExtubationWeaningOne of Controlled VentilationInitial Phase

TimeI-RDS
Diagnosed

Extubated

Plans on the
Same Level of
Decomposition

Decomposition
of Plans

1
2

Figure 2: Stacking and sequential plans.

Plan A

DO-ALL-TOGETHER

Plan C

Plan B

Plan A

DO-SOME-TOGETHER

Plan B

DO-ALL-ANY-ORDER

DO-SOME-ANY-ORDER

Plan C

Plan B

Plan A

Plan C

Plan B

Plan A

Figure 3: Plans to be executed in parallel (upper part) and in
any order (lower part).

red: Abort-Condition
yellow: Suspend-Condition
green: Reactivate-ConditionFilter-Precondition

Setup-Precondition
Complete-Condition

Figure 4: The icons of the six kinds of conditions.

Example: I-RDS (in AsbruView)
Figure 6 shows parts of the I-RDS protocol in AsbruView.
Three levels of decomposition are visible. The big arrow in
the control panel marks which conditions should be shown,
namely the conditions of the second level. The conditions
of the subplan one-of-controlled-ventilation are undefined,
therefore all the icons (including the flag) are gray. The
time annotation "*self*", "+10 min", and the black triangle

means, the subplan observe-blood-gas should last for at
most 10 minutes after the subplan itself is activated.

Figure 7 shows three levels of decomposition and the
intentions of plan controlled-ventilation (the third level of
decomposition is activated in the control panel). The time
annotations of the two intentions are very simple, because a
normal level of the blood-gas values and the lowest level of
mechanical ventilation should be maintained during the
span of time over which the subplan is executed.

Conclusion and Future Plans

We outlined the necessity for suitable plan visualization
and showed the metaphor graphical approach AsbruView,
which clarifies a complex plan-specification language in a
comprehensible way. We have utilized the metaphors of
"tracks" and "traffic". The applicability of AsbruView was
evaluated with scenario-based techniques. We applied
treatment protocols of mechanical ventilated newborn
infants and analyzed AsbruView’s expressiveness with
collaborating physicians.

AsbruView is based on a time-oriented and intention-
based language, called Asbru, to represent skeletal plans.
Asbru places a particular emphasis on an expressive repre-
sentation for time-oriented actions and world states in com-
bination with the underlying intentions as temporal patterns

Reference ESS LSS EFS LFS

Definition: [[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], Reference]

Example: [[_, _], [_, _], [180 MIN, _], *self*]

undef. undef. undef. undef.

MaxDu

MinDu

180 Min

self

undef.

Figure 5: Asbru’s Time Annotations: The upper part of the figure
presents the generic annotation and the lower part shows an

example.

�

I-RDS Therapy

Weaning

One of Controlled Ventilation

Initial Phase

self +10 min

Conditions

Intentions

Preferences

Effects

Time Ass.

Control Panel
Visible Levels

1
2
3
4

AsbruView

�

Crisis Management

Permissive Hypercapnia

Controlled Ventilation

Observing Blood GasSet Respirator Settings
(...)

Time

Decomposition
of Plans

Plans on the
Same Level of
Decomposition

I-RDS
Diagnosed

1

2

3

Figure 6: Parts of I-RDS treatment protocol in AsbruView: The conditions of subplans initial-phase and one-of-controlled-ventilation are
activated (second visible level).

to be maintained, achieved or avoided. It allows to use dif-
ferent granularities and reference points to represent multi-
ple time lines. Asbru’s representation includes the duration
of actions, their success or failure, and allows time anno-
tation of events, actions/plans, and world states with
uncertainty in their appearances. Asbru has a rich set of
sequential, concurrent, or cyclical operators, which enable
to express complex procedures. Preferences, intentions,
conditions, effects, and actions are specified on various
detail levels depending on their appearances and evidences.
Such a complex plan-specification language is needed to
capture all requirements of a dynamically changing
environment, such as medicine.

AsbruView is able to visualize most of the features of
Asbru in an easy to understand way and supports the navi-
gation through a complex plan-specification library.
Therefore, domain experts need not to be familiar with the
Asbru syntax to author a plan.

Currently, we are implementing the AsbruView in Java.
Additionally, we are improving the expressiveness of
AsbruView concerning the time annotations of events,
actions/plans, and world states with uncertainty in their
appearances and the cyclical plan visualization. Our final
aim is to use AsbruView during the design and the execu-
tion phase. Therefore, we will adapt AsbruView to be used
to author a protocol during the design phase as well as to
visualize the performed protocols during the execution
phase in a user-appropriate and task-specific way.

Acknowledgments. The authors thank Johannes Gärtner,
Werner Horn, Christian Popow, Franz Paky, Georg Duftschmid,
and Klaus Hammermüller for helpful comments and discussions.

References
André, E. 1997. WIP and PPP: A Comparison of two Multimedia
Presentation Systems in Terms of the Standard Reference Model
Computer Standards and Interfaces. Computer Standards and
Interfaces.

Bacchus, F. and Kabanza, F. 1996. Planning for Temporally
Extended Goals, In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), 1215–1222.
Menlo Park, CA: AAAI Press.

Caroll, J. M. 1995. Scenario-Based Design - Envisioning Work
and Technology in System Design. New York: John Wiley&Sons.

Cole, W. G.; and Stewart, J. G. 1993. Metaphor Graphics to
Support Integrated Decision Making with Respiratory Data. Int.
Journal of Clinical Monitoring and Computing, 10:91-100.

Cole, W. G.; and Stewart, J. G. 1994. Human Performance
Evaluation of a Metaphor Graphic Display for Respiratory Data.
Methods of Information in Medicine, 33:390-396.

Dechter, R.; Meiri, L.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence, Special Volume on Knowledge
Representation, 49(1-3):61-95.

Firby, R. J. 1989. Adaptive Execution in Complex Dynamic
Worlds. Ph.D. diss., Yale University.

Fox, J.; Johns, N.; and Rahmanzadeh, A. 1997. Protocols for
Medical Procedures and Therapies: A Provisional Description of
the PROforma Language and Tools. 21-38. In Proceedings of 6th
Conference on Artificial Intelligence in Medicine Europe (AIME-
97), Berlin: Springer.

Frenkel, K. A. 1988. The Art and Science of Visualizing Data.
Communications of the ACM, 31(2):101-121.

Friedland, P. E.; and Iwasaki, Y. 1985. The Concept and
Implementaion of Skeletal Plans. Journal of Automated
Reasoning, 1(2):161-208.

Georgeff, M. P.; Lanskey, A. L.; and Schoppers, M. J. 1986.
Reasoning and Planning in Dynamic Domains: A Experiment
with Mobile Robots, SRI International, AI Center, TechNote 380.

Herbert, S. I. 1994. Informatics for Care Protocols and
Guidelines: Towards a European Knowledge Model. In Gordon,
C. J. and Christensen, J. P. eds. Health Telematics for Clinical
Guidelines and Protocols, Amsterdam: IOS Press.

Keller, P. R.; and Keller, M. M. 1993. Visual Cues, Practical
Data Visualization. New York: IEEE Press.

Miksch, S.; Shahar, Y.; and Johnson, P. 1997. Asbru: A Task-
Specific, Intention-Based, and Time-Oriented Language for
Representing Skeletal Plans. In Proceedings of the 7th Workshop
on Knowledge Engineering: Methods & Languages (KEML-97),
Milton Keynes, UK, Open University.

Musen, M. A.; Carlson, C. W.; Fagan, L. M.; Deresinski, S. C.;
and Shortliffe, E. H. 1992. T-HELPER: Automated Support for
Community-Based Clinical Research. In Proceedings of the
Sixteenth Annual Symposium on Computer Applications in
Medical Care (SCAMC-92), 719-723. New York: McGraw Hill.

Musen, M. A.; Gennari, J. H.; Eriksson, H.; Tu, S. W.; and
Puerta, A. R. 1995. PROTÉGÉ -II: A Computer Support for
Development of Intelligent Systems from Libraries of
Components. 766-770. In Proceedings of the Eighth World
Congress on Medical Informatics (MEDINFO-95).

Rit, J.-F. 1986. Propagating Temporal Constraints for Scheduling.
383-388. In Proceedings of the Fifth National Conference on
Artificial Intelligence (AAAI-86), Los Altos : Morgan Kaufmann.

Shahar, Y.; Miksch, S.; and Johnson, P. 1996. A Task-Specific
Ontology for Design and Execution of Time-Oriented Skeletal
Plans. In Proceedings of the Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada.

Suchman, L. A. 1987. Plans and Situated Actions: The Problem
of Human/Machine Communication. Cambridge University Press.

Tufte, E. R. 1990. Envisioning Information Cheshire, CT:
Graphics Press.

Tufte, E. R. 1997. Visual Explanation Cheshire, CT: Graphics
Press.

Wilkins, D. E. and Myers, K. L. 1995. A Common Knowledge
Representation for Plan Generation and Reactive Execution.
Journal of Logic and Computation, 5(6):731-761.

I-RDS Therapy

One of Controlled Ventilation

Time

Decomposition
of Plans

Plans on the
Same Level of
Decomposition

Controlled Ventilation

Intermediate-Action: Maintain state(respirator-setting) low

Intermediate-State: Maintain state(BG) normal

Conditions

Intentions

Preferences

Effects

Time Ass.

Control Panel
Visible Levels

1
2
3
4

AsbruView

ä

1

2

3

Figure 7: Intentions of plan controlled-ventilation.

