
A Visualization of Medical Therapy Plans
compared to Gantt and PERT Charts

Robert Kosara Silvia Miksch

Insitute of Software Technology (IFS), Vienna University of Technology
Favoritenstraße 9–11/E 188, A-1040 Vienna, Austria, Europe

http://www.ifs.tuwien.ac.at/asgaard/
E-mail: frkosara, silviag@ifs.tuwien.ac.at

Abstract

Medical therapy planning shares a number of properties
of project management. It is, however, different in a few
very important aspects — most notably, the more complex
notion of time it requires.

Asbru is a language that can represent medical therapy
plans in terms of time-oriented, skeletal plans. But due to
its formal nature, it cannot be used directly by physicians.
Therefore, we developed a visualization and user interface
to deal with plans defined in Asbru, which can deal with
most of its complexity.

We present this interface (called AsbruView), and discuss
its features and advantages over the two representations
typically used in project management: Gantt and PERT
charts.

Areas of Research: Information Visualization, Time in
problem solving

1. Introduction

Medical therapy planning plays an increasingly impor-
tant role in the everyday work of physicians. It is based
on the idea that a physician does not have to invent a new
treatment for each patient, but rather can make use of the
knowledge gathered by others (and him-/herself) by follow-
ing a clinical guideline or protocol. Only patients that do
not fulfill the conditions for applying such a standard treat-
ment must be planned for separately.

Treatment planning is different from project manage-
ment in several respects. The duration of a treatment is not
known beforehand, and does not play a big role in the as-
sessment of whether or not it was successful. A treatment
plan can be aborted at any time if it turns out to be ineffec-
tive, and another plan can be used instead. Often, several
different treatments or drugs have to be tried to find the best

for a given patient.
There are a number of ways to specify clinical protocols

(e.g., flow-charts, decision tables, etc.), but they lack many
features needed in this domain (for a more thorough discus-
sion see [5, 6, 7]).

Asbru is a language for specifying clinical protocols as
time-oriented, skeletal plans. In the Asgaard Project, we de-
velop methods to support the design and execution of plans
defined in Asbru1.

In Asbru, it is possible to specify actions as well as con-
ditions based on durations: a condition might only become
true if a parameter is above a certain value for a certain
amount of time, or a plan (we call the parts of a protocol
a plan) might be restricted to start within a certain interval,
end within another given interval, and also be confined to a
certain minimum and maximum duration.

Asbru itself, however, is a language with a LISP-like
syntax that is impossible to use by physicians (see Figure 1).
So we needed a visualization and user interface to enable
physicians to work with our tools and methods. This Vi-
sualization is called AsbruView. It is based on utilizing
metaphors to make Asbru’s concepts easier to understand
and use.

This paper is organized as follows: In section 2, we give
a short introduction to Asbru. AsbruView is described in
section 3. A comparison of AsbruView and Gantt and PERT
charts is given in section 4. The results of a usability study
of our AsbruView prototype are shortly discussed in sec-
tion 5.

2. Asbru Basics

A few of Asbru’s basic concepts will be presented here
briefly. For a more in-depth discussion, please see [6, 7].

1Many of the names in the Asgaard project are based on names from
Norse mythology. Asbru (also known as Bifrost), for example, is the rain-
bow bridge that leads to Asgaard, the home of the gods.



Asbru allows the definition of plans that use other plans
(similar to function calls in programming languages), which
are called sub-plans. Sub-plans are also defined in Asbru,
and can be used in many different plans. If a plan has a sub-
plan that is not defined elsewhere, that sub-plan is consid-
ered an action (to be performed by medical staff). This hi-
erarchical decomposition is an important concept for mak-
ing knowledge reusable, and also for structuring that knowl-
edge.

A plan’s execution is controlled by a number of condi-
tions. It is important to note that all conditions are defined
for certain time spans, unlike conditions in programming
languages (e.g., a condition becomes true when a patient’s
glucose level has been too high for three consecutive days).

Asbru also contains powerful means of data abstraction,
so that conditions can be triggered not only by values, but
also by their rate of change, etc.

In addition to sub-plans and conditions, each Asbru plan
contains preferences, intentions, and effects. These compo-
nents are important for critiquing, etc., but are beyond the
scope of this paper.

Every plan has a type that specifies the order in which
its sub-plans must be performed, and whether all sub-plans
must complete successfully in order for the whole plan to be
successful. If not all sub-plans of a plan have to be executed,
the continuation condition lists the compulsory plans. A
plan can contain a specification of the time a sub-plan may
take (using time annotations, see below). Asbru’s plan types
are listed in Table 1.

One of the central ideas behind Asbru is that of the Time
Annotation. A Time Annotation consists of seven parts, any
subset of which (except the reference point) can be left un-
defined (in this list, action also means other types of events,
like conditions, intentions, etc.):

Reference Point. This is the point that all the other points
in time are defined relative to. It can be an abstract
point in time (e.g., conception).

Earliest Starting Shift (ESS). The smallest offset from
the reference point when the action can start.

Latest Starting Shift (LSS). The latest point in time when
the action must start.

Earliest Finishing Shift (EFS). The earliest point in time
when the action can end.

Latest Finishing Shift (LFS). The greatest offset from the
reference point when the action must end.

Minimum Duration (MinDu). The minimum amount of
time the action or condition must last. This is not nec-
essarily identical with the interval between LSS and
EFS. It is bounded, however, by this difference (it can
not be shorter) and the maximum duration.

Maximum Duration (MaxDu). The maximum duration
that the condition or action may last. It is bounded
by the difference between LFS and ESS, and the mini-
mum duration.

3. Two Views

We started out with one visualization to capture all as-
pects of Asbru [5]. This proved to be unusable however,
so we decided to provide two views: one that just contains
topological information (and that shows which conditions
are already defined), and one that gives detailed information
about the temporal extents of plans, conditions, etc. [3, 4]

The two views AsbruView now consists of (and any that
will be added eventually; for example one based on [11],
which we are currently working on) show the same data —
but from different “angles”.

To make this easier to understand, plans are drawn using
the same color in all views. It is also possible to show more
or less detail by showing or hiding a plan’s sub-plans. This
is also synchronized, so that the same amount of informa-
tion is visible in both views.

A separate control bar (on the right hand side, see Fig-
ure 4) is used to perform actions that affect the underlying
data that is shown in both views, like creating or deleting a
plan, or changing its name.

3.1. Topological View

Topological View is the more “interactive” view, because
not only are plans shown here (with the plans they contain,
i.e. the whole hierarchy of plans), they can also be moved. If
a plan is moved by the user, it can change its position within
its current super-plan, or be moved to different levels within
the hierarchy. A simple but effective method was used to
allow three-dimensional navigation on the two-dimensional
screen [3].

Plan Layouts

AsbruView’s Topological View stems from the remains of
the original design ideas [5]. We replaced the “exact” time
axis by an axis that does not have a scale on it, but that is
merely meant as a “direction”.

Thus, it is possible to express relations between plans,
like “A happens after B” or “A starts at the same time as
B” (see Table 1) by simply laying the corresponding objects
out along (or parallel to) the time axis.

The central metaphor in this view is that of a running
track (Figure 2). A plan is represented by such a track,
which the physician is considered to run along while treat-
ing the patient.



(PLAN I-RDS-Therapy
...
(DO-ALL-SEQUENTIALLY
(initial-phase)
(one-of-controlled-ventilation)
(weaning)
(one-of-cpap-extubation)

)
)

(PLAN one-of-controlled-ventilation
...
(DO-SOME-ANY-ORDER
(controlled-ventilation)
(permissive-hypercapnia)
(crisis-management)
CONTINUATION-CONDITION controlled-ventilation

)
)

(PLAN controlled-ventilation
(PREFERENCES (SELECT-METHOD BEST-FIT))
(INTENTION:INTERMEDIATE-STATE (MAINTAIN STATE(BG) NORMAL controlled-ventilation *))
(INTENTION:INTERMEDIATE-ACTION (MAINTAIN STATE(RESPIRATOR-SETTING) LOW controlled-ventilation *))
(SETUP-PRECONDITIONS (PIP (<= 30) I-RDS *now*)
(BG available I-RDS [[_, _], [_, _], [1 MIN,_] (ACTIVATED initial-phase-l#)]))

(ACTIVATED-CONDITIONS AUTOMATIC)
(ABORT-CONDITIONS ACTIVATED
(OR (PIP (> 30) controlled-ventilation [[_, _], [_, _], [30 SEC, _], *self*])

(RATE(BG) TOO-STEEP controlled-ventilation [[_, _], [_, _], [30 SEC,_], *self*])))
(SAMPLING-FREQUENCY 10 SEC)
(COMPLETE-CONDITIONS
(FiO2 (<= 50) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(PIP (<= 23) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(f (<= 60) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(state(patient) (NOT DYSPNEIC) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(STATE(BG) (OR NORMAL ABOVE-NORMAL) controlled-ventilation

[[_, _], [_, _], [180 MIN,_], *self*])
(SAMPLING-FREQUENCY 10 MIN))

(DO-ALL-SEQUENTIALLY
(one-of-increase-decrease-ventilation)
(observing))

)

Figure 1. An example of Asbru code (part of a clinical treatment protocol for Infants’ Respiratory
Distress Syndrome (I-RDS)).

All plans must complete
to continue

Some plans must
complete to continue

Start together Do-All-Together Plans
(no continuation-condition,
all plans must complete)

Some-Together Plans
(continuation-condition
specified as subset of plans)

Execute in any
order

Do-All-Any-Order Plans
(no continuation-condition,
all plans must complete)

Some-Any-Order Plans
(continuation-condition
specified as subset of plans)

Execute in
total order
(sequence)

Do-All-Sequentially Plans
(no continuation-condition,
all plans must complete)

Some-Sequentially Plans
(continuation-condition
specified as subset of plans)

Table 1. Plan Types in Asbru.



Tracks can be stacked on top of each other (hierarchical
decomposition), and laid out in different ways (Figure 4).
The way these objects are laid out is determined by the type
of the plan containing them (Table 1).

Conditions

Another important function of this view is to show which
conditions have been defined. To do this, we use metaphors
from traffic control, which also make the underlying con-
cepts easier to grasp (Figure 2).

The first traffic sign the runner encounters is a “no en-
trance with exceptions” sign, which is used for the filter
precondition. The traffic sign means that nobody may en-
ter the road this sign is put next to, except people who are
listed on a small additional sign — which is what the filter
precondition stands for: a condition that must be fulfilled in
order to start the plan.

A barrier is used as a metaphor for the setup precondi-
tion. If this condition is not fulfilled, the barrier is closed;
but it opens as soon as the patient meets the criteria — so
in contrast to the filter precondition, this condition can be
achieved through therapeutic actions.

A traffic light is used for three more conditions: The
red light stands for the abort condition (in this metaphorical
world, a red light never changes back to yellow or green).

The yellow light is used for the suspend condition. A
yellow light means “Attention!”, and this is in a way similar
to the meaning of the suspend condition (where an emer-
gency plan may be performed while this plan is suspended).
And it is also easy to understand that often a plan will first
be suspended, and if the emergency plan does not work, it
will ultimately be aborted from the suspended state.

The green light symbolizes the reactivate condition.
When after a suspension the criteria for continuing the plan
are met again, the green light signals that normal work can
continue now.

The finishing flag that the runner must pass in order to
win (or at least reach the goal) is used for the complete con-
dition. This finishing flag is usually drawn semi-transparent
in order not to obstruct the view to objects behind it.

All condition objects appear gray when the correspond-
ing condition is not defined, and in color when it is (in gen-
eral, not all conditions of a plan will be specified, because
it inherits some of them from the plan using it).

3.2. Temporal View

This view is based on the concept of LifeLines [9, 10],
which in turn is based on an old and quite powerful concept
called Time Lines [13] — Gantt charts are another applica-
tion of this concept.

We also make use of the idea of facets (also from [9,
10]) for different aspects of Asbru, like conditions, effects,

etc. (i.e., each of these aspects has its own facet that can be
opened or closed independently of the others, but that uses
the same time scale).

The focus of this view is not so much the topology of
plans (which is also visible, however), but the exact tempo-
ral dimensions of plans, conditions, etc.

Time Annotation Glyphs

LifeLines are very easy to understand, but are only useful
for events whose exact points in time are known (i.e., past
events). To use them for future events, we had to design a
glyph more complex than a simple bar, that would capture
all the (uncertain and possibly undefined) parts of a Time
Annotation.

A glyph is a graphical object (often vaguely representing
a real object, like a face) whose features express the val-
ues of certain attributes that are to be shown [1, 2]. A glyph
must be distinguished from a metaphor, which usually more
closely represents a real object (like the traffic signs used in
Topological View), and whose features do not change with
values it represents. Our glyph (Figure 3) is also based on
a simple metaphor. The four starting and ending times are
drawn as little supports for the “MaxDu bar” lying on them.
On top of that bar, supported by diamonds (LSS, EFS), rests
the “MinDu bar”. Little arrows point towards the ESS, LSS,
EFS and LFS lines so that it is possible to recognize a time
annotation in which the EFS appears before the LSS (which
is possible if an action has to be performed within an in-
terval that is at least twice as long as the duration of that
action).

The minimum duration cannot be shorter than the dif-
ference between the LSS and EFS, otherwise its bar would
fall down between the supports. The same is true for the
maximum duration, of course.

Any undefined parts are displayed in gray, like undefined
conditions in Topological View (section 3.1).

If the LSS or EFS are not defined, the diamonds support-
ing the MinDu bar become rolls, indicating that they might
move. If, for example, the LSS and MinDu are defined (see
Figure 3, lower left), then the EFS is implicitly also defined,
and moves whenever one of the other two values is changed.

The glyph also communicates information about the
granularity (time unit) that was used to enter the data rel-
ative to the one it is displayed in (this has not been imple-
mented in the prototype yet, however). If the same granular-
ity is used, all parts have sharp edges. If they are different,
and the granularity of the current display is higher (coarser),
a circle is drawn instead (see Figure 3, upper right), in anal-
ogy to open intervals in mathematics (e.g., “from 0 to, but
not including, 1”). If the current granularity is finer, a zig-
zag pattern is drawn that covers the area of uncertainty (Fig-
ure 3, lower right).



(h
ei

gh
t)

(width)

(length)

Name Tag
L

ev
el

s

Parallel Plans Time

Open/Close plan
Running Track

Setup Precondition

Abort Condition
Suspend Condition
Reactivate Condition

Filter Precondition Complete Condition

Figure 2. Anatomy of an AsbruView Plan in Topological View.

t

t

Definition:
[[ESS, LSS], [EFS, LFS], [MinDu, MaxDu], Reference]

Example: [[2 d, 3 d], [_, 11 d ], [6 d, _], Diagnosis]

Reference

Diagnosis

MinDu and LFS defined to higher
precision than time axis

MinDu and LFS defined to lower
precision than time axis

ESS LSS

MaxDu

MinDu

EFS LFS

3 d

6 d

undef.

undef.2 d 11 d

Figure 3. Time Annotations, outline (adapted from [4]).



Figure 4. A screen-shot of the AsbruView prototype showing a part of a plan for ventilation of new-
born infants. Topological View is in the upper part, Temporal View in the lower part.



Plan Tree

The topology of plans is also visible in the left part of Tem-
poral View (see Figure 4), which is similar to tree views of-
ten used for displaying the contents of file systems. This
tree could also be understood as Topological View seen
from a bird’s eye view (not in the literal sense, but there
are parallels).

We use symbols to indicate different plan types (inspired
by block structured diagrams used in programming, [8]).

Each line of the tree view shows the name of one plan.
This vertical partition is colored using the plan’s color, and
used for showing its time annotation glyph.

4. AsbruView vs. Gantt and PERT Charts

The two views introduced above bear many similarities
to Gantt (Figure 5) and PERT (Figure 6) charts. The two fig-
ures mentioned show the same plans as specified in Asbru
syntax in Figure 1 and shown in the AsbruView screen-shot
in Figure 4. Because we do not know any actual bounds
for the durations of the plans in this example, the durations
given in Temporal View are actually not correct. Temporal
view does, however, provide the possibility of representing
any-order plans etc. that Gantt and PERT charts do not.

But AsbruView is better suited for application in medical
therapy planning (especially using Asbru) for the reasons
listed below. This comparison does not only compare As-
bruView to the other types of charts, but also contains a few
references to Asbru features. This is hard to avoid, because
of the close connection between Asbru and AsbruView.
Information Density. It communicates more information
than Gantt and PERT charts, without at the same time clut-
tering the display. A plan’s type, for example, is visible
from the way its sub-plans are arranged (Topological View),
or from symbols (Temporal View), so no arrows linking
plans are necessary. Arrows are needed in Gantt as well
as in PERT charts, but in neither of AsbruView’s views (at
least not for showing the sequence of plans — arrows are
used in Temporal View to indicate that a plan that is used
in an any-order plan can be performed at different positions
within the set of sub-plans).
Control Flow. Topological View can be seen as Asbru-
View’s counterpart of the PERT chart. Topological infor-
mation is displayed in both diagrams, but in AsbruView,
plans are arranged along axes to make their topology easier
to understand at one glance. Topological View better shows
the flow in the sense of “direction”.

Topological View also contains information about which
conditions are defined, which is another information PERT
charts are missing (because that information simply does
not play a role in these diagrams).
Temporal Uncertainty. While setting deadlines plays an

important role in project management (see below), it does
not in therapy planning. But a therapy or a sub-plan might
be restricted in its maximum duration, or the latest point in
time when it has to start. Such information is also important
in conditions, etc. This (complex) temporal information is
communicated by AsbruView’s Time Annotation glyphs.

Knowledge Roles. In Asbru, a number of so-called knowl-
edge roles can be defined: conditions, preferences, inten-
tions, and effects. All of them have a temporal dimension,
which can be displayed using AsbruView.

Optional Plans. Optional plans, which play a big role in
Asbru, are displayed using a question-mark texture — they
cannot be displayed in Gantt or PERT charts. This is also
true for any-order-plans — in Gantt and PERT charts, the
order of tasks has to be known.

Level of Detail. Temporal View as well as Topological
View allow the user to select the amount of information dis-
played, thus making it possible to both browse through a
plan quickly, and to see very detailed information. This is
another feature most implementations of PERT charts lack
(at least those we know).

Granularity of Time. AsbruView’s Time Annotation
glyphs also make it possible to see to which granularity a
point in time was defined, which is another information not
visible in typical Gantt charts. If the user views a Gantt
chart at a high resolution (i.e., seconds), an event specified
at an accuracy of an hour should not appear to be more accu-
rate than it really is (in physics, such a specification usually
implies an uncertainty of plus or minus one half base unit).

There are two concepts that are important in project man-
agement, but not in Asbru(View):

Milestones. The concept of a milestone does not play the
same role in therapy planning as in project management. A
milestone in a therapy cannot be specified by its date, only
by conditions the patient must fulfill. Temporal constraints
can play a role here, as well, but are only of secondary im-
portance, and if they are not met, different methods are used
and new milestones are introduced. The strict adherence to
exact dates necessary in project management is not of the
same importance in therapy planning.

A kind of milestone is typically implemented by splitting
a treatment up into several phases, so implicit milestones
exist at the end of every phase.

Critical Path. The main application of PERT charts is to
find the critical path through a project (i.e., the set of sub-
projects which delay the end of the whole project if they are
delayed). Because the duration of a treatment does not play
a role in treatments from a medical point of view, it is not
covered in Asbru (and neither are other administrative tasks
that are important for the operation of a hospital — Asbru
is only concerned with the work of the physicians).



�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����������������������������������������������������������������������
����������������������������

����������������������������������������������
��������������������������

������������
������

I-RDS Therapy

Initial Phase

Set Respirator

Observe Blood Gas

t

One of Controlled Ventilation

Controlled Ventilation

Permissive Hypercapnia

Crisis Management

Figure 5. Gantt Chart example. Black Boxes represent basic (atomic) actions, gray boxes group
actions into higher level tasks. This figure depicts the same plan as Figure 4 — the any-order plan
One Of Controlled Ventilation can not be displayed properly, neither can the fact that the bottom-most
two plans shown are optional

- 1d A 3d

B, C - A 5d

Controlled Ventilation Permissive Hypercapnia Crisis Management

Observe Blood GasSet Respirator

2d 1d

Figure 6. PERT Chart example. Each element contains its name, duration, predecessor(s), and start
and end dates. As in Figure 5, optional and any-order plans are not visible.



5. Usability

We implemented a prototype of AsbruView (Figure 4),
which we used to perform a usability study with six physi-
cians [3]. In this study, we first explained the system (and
the underlying design ideas of the Asbru language) to them
and then asked them to design a plan from their everyday
work. We used questionnaires based on [12] before and af-
ter the test to the participants’ impression of the system.

All participants found the metaphors easy to understand,
and remembered the different plan types after only one ex-
planation. Most participants said they could understand the
topology of a plan from the graphical depiction. Hierarchi-
cal decomposition and the depiction of optional and cyclical
plans was found easy to understand by all participants. Ma-
nipulation of plans was judged good, okay or bad by equal
amounts of participants. Manipulation suffered very much
from the lack of speed of the implementation. All partici-
pants criticized the speed of the system — this was mostly
due to its implementation in Java, but also because the test
environment was not always perfect.

The overall impression of most participants was good,
only one participant judged it okay.

6. Conclusion and Future Work

Medical therapy planning might look similar to project
management, but there are a few important differences. We
tried to cover them in the design of Asbru and AsbruView,
and so can provide a tool that is better suited for this task.

AsbruView seems to be quite usable for the target group
(physicians), which was, of course, the main reason for de-
veloping it.

We believe that users can work with complex temporal
information, even if they have little or no formal education
in logic or computer science, if they are provided with the
right tools.

We are now working on implementing other features of
Asbru in AsbruView, like intentions, preferences, etc. We
also have to find a way to represent cyclical plans — the
way this is done now is not satisfactory.

7. Acknowledgements

We would like to thank Dr. Shahram Adel, Dr. Sophie
Brandstetter, Dr. Maria Dobner, Dr. Gerhard Miksch, Pri-
marius Dr. Franz Paky, and ao. Prof. Dr. Christian Popow
for taking part in the evaluation.

The Asgaard Project is supported by “Fonds zur
Förderung der wissenschaftlichen Forschung” (Austrian
Science Fund), grant P12797-INF.

References

[1] H. Chernoff. The use of faces to represent points in k-
dimensional space graphically. Journal of the American Sta-
tistical Association, 68:361–368, 1973.

[2] M. C. Chuah and S. G. Eick. Glyphs for software visual-
ization. In 5th International Workshop on Program Com-
prehension (IWPC ’97) Proceedings, pages 183–191. IEEE
Computer Society Press, Dearborn, Michigan, May 1997.

[3] R. Kosara. Metaphors of Movement — A User Interface
for Manipulating Time-Oriented, Skeletal Plans. Master’s
thesis, Vienna University of Technology, Vienna, Austria,
May 1999.

[4] R. Kosara and S. Miksch. Visualization Techniques for
Time-Oriented, Skeletal Plans in Medical Therapy Planning.
In W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, and
J. Wyatt, editors, Proceedings of the Joint European Confer-
ence on Artificial Intelligence in Medicine and Medical De-
cision Making (AIMDM’99), pages 291–300, Aalborg, Den-
mark, June 1999. Springer Verlag.

[5] R. Kosara, S. Miksch, Y. Shahar, and P. Johnson. Asbru-
View: Capturing Complex, Time-oriented Plans — Beyond
Flow-Charts. In Second Workshop on Thinking with Dia-
grams 1998 (TwD98), pages 119–126. University of Wales,
Aberystwyth, UK, Aug. 22–23 1998.

[6] S. Miksch, Y. Shahar, W. Horn, C. Popow, F. Paky, and
P. Johnson. Time-oriented skeletal plans: Support to design
and execution. In Fourth European Conference on Planning
(ECP’97). Springer, September 24–26 1997.

[7] S. Miksch, Y. Shahar, and P. Johnson. Asbru: A task-
specific, intention-based, and time-oriented language for
representing skeletal plans. In Proceedings of the 7th Work-
shop on Knowledge Engineering: Methods & Languages
(KEML-97). Milton Keynes, UK, Open University, 1997.

[8] I. Nassi and B. Shneiderman. Flowchart techniques for
structured programming. SIGPLAN Notices, 8(8):12–26,
1973.

[9] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shnei-
derman. Lifelines: Visualizing personal histories. In Pro-
ceedings of ACM CHI 96 Conference on Human Factors in
Computing Systems, volume 1 of PAPERS: Interactive In-
formation Retrieval, pages 221–227, 1996.

[10] C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and
B. Shneiderman. Lifelines: Using visualization to enhance
navigation and analysis of patient records. In Proceedings of
the 1998 American Medical Informatic Association Annual
Fall Symposium, pages 76–80, Nov. 9–11 1998.

[11] J.-F. Rit. Propagating temporal constraints for scheduling. In
Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 383–388. Morgan Kaufman Publishers,
Inc., August 11-15 1986.

[12] B. Shneiderman. Designing the User Interface: Strategies
for Effective Human-Computer-Interaction. Addison Wes-
ley Longman, 3rd edition, 1997.

[13] E. R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, 1983.


