
Co-Designing XML-based Languages and Classes
with Pontifex

Robert Kosara Klaus Hammermüller
Silvia Miksch

Vienna University of Technology, Institute of Software Technology,
Favoritenstraße 9/E188, A-1040 Vienna, Austria, Europe

<robert,klaus,silvia>@ifs.tuwien.ac.at

Abstract

While XML provides a number of advantages for the storage of data, there is little support
for the application programmer in building data structures that mirror such data. Document
Object Model (DOM) is very easy to use for small applications, but it lacks a number of features
(type safety, validity checks for CDATA fields, scalability). XML/Schema, on the other hand,
provides a number of interesting features, and probably will eventually lead to tools that can
create classes based on such a specification — but it is extremely complex, and simply not
existant yet.

Pontifex (latin for bridge builder) tries to fill this void by creating both a DTD and a Java class
library (including a SAX based parser) from a simple specification written in XML, and very
similar in structure to DTDs. The classes provide means of attaching listeners to every object,
and also to associate any kind of data with them, so the application does not have to mirror the
structure of the data.

1 Introduction

When developing an application that uses data from XML [1] files, one has to do at least two
things: design the language, and create the corresponding classes. While the first part can simply
be done using an editor, the second can become tedious if the language has many different tags,
or if it changes. With Document Object Model (DOM, [4]), a very generic and flexible solution
exists for the classes problem, but it is by no means perfect. Especially for large applications
and complex languages, programming becomes difficult and error-prone. DOM elements are
stored in generic nodes containing all information as strings without; there is also no possibility
to validate the content of CDATA fields.

Pontifex is based on the idea of co-designing a Document Type Description (DTD, [2]) and
corresponding classes at once. XML/Schema [5, 6] also seems to be going into this direction,
but unfortunately is not available yet (and also rather complex). Unlike DOM, Pontifex does
not provide a generic structure for unknown XML documents, but creates a specialized (and
static) structure from a specification; and unlike XML/Schema a close connection between the
functionality of a specialized XML application to a based XML-structure is intended.

In section 2, we discuss the differences between data-oriented languages and classes. In sec-
tion 3, we give an overview of Pontifex, followed by the description of its input language in sec-
tion 4, and its output in section 5. A comparison to DOM and XML/Schema is given in section
6.

1

2 Language vs. Classes

There are a few differences between a class definition and a language that need to be considered
before going into the details of how to create both from one specification.

While the order of elements does (or can) play a role in a language, it does not in a class. The
order of elements simply has no meaning at all.

A class is also “flat”, i.e., it cannot contain any substructures (at least not in Java — only
references to other objects are possible). But a language (especially when it is an XML application)
can contain nested statements of any depth. Such parts can also be repeated, which is inherently
not possible in a class definition.

A disjunction of elements can also not be expressed in a class definition, except if the dis-
junction is at the top level (which then amounts to the classes in the disjunction being derived
from the class containing it, see Figure 2). So it has to be expressed as a number of optional ele-
ments (i.e., references that can be null , with the additional condition that exactly one of them be
non-null at any given time).

3 Pontifex

Pontifex (latin for bridge builder) is a program that creates a DTD and classes from the specifica-
tion of a language (which is slightly more powerful in some repects than a simple DTD). One
advantage of this language (called HSL, see section 4) is that it is itself an XML application, and
therefore, XML editors can be used to write such a specification. Figure 1 gives an overview of
how Pontifex works.

Input to Pontifex is written in HSL, which basically mirrors the definitions in a DTD by pro-
viding tags for the definition of elements, attributes and elements’ children (see section 4).

Pontifex’ output consists of (see section 5):

• a DTD for the specified document

• classes and listeners, related to the defined elements in the DTD;

• a SAX-based [3] parser that will create instances of the created classes when parsing a file
in the specified language

• an HTML file containing documentation of the language

4 The Harmless Specification Language (HSL)

HSL1 is itself an XML application, and can therefore be edited with any data-oriented XML editor.
It consists of only a handful of tags that mirror many of the elements found in DTDs, and include
some information that is needed for generating useful classes.

The root tag of any HSL file is <hslspec> . It can contain a number of <option> tags, and
must contain at least one <element> definition. Every element definition contains zero or more
attributes, and zero or more children (see below). Usually, a class is generated for every element.
This can be overridden by setting the attribute makeclass to “no”. The superclass of the created
class can be given using the super attribute. If the class’s name should be different from the
name of the attribute (with the first letter converted to upper case), it can be specified with the
classname attribute.

1HSL’s name stems from a time when Pontifex was still called Heimdall, but it has retained its name, which is now
open to speculation about its true meaning. But because it is mostly harmless, it shall be called Harmless Specification
Language for the time being.

2

Specification
HSL

Pontifex

HSL Schema
DTD

Document
Instance XML

javac

predefined
classes JAR

Document
DTD

Instance-
Parser

Classes
JavaParser

JavaListener
Java

Documentation
HTML

compiled
classes JAR

Document
Java-Instance

Listener
Java-Instance

Figure 1: What Pontifex does. Grayed boxes are XML documents, white boxes are Java sources,
and rounded boxes are object instances in a Java virtual machine. Thick arrows represent data
flow, thin arrows with dots denote template-document type relationships.

An attribute is specified by its name and type (see table 1). In addition, a default value can be
given (using the default attribute), and it can be specified as an optional attribute (by setting
optional to “yes”).

A child is simply a reference to another element. It can be repeated exactly once, zero or once
(i.e., optional), zero or more times, or one or more times — this is specified using the repeat at-
tribute. If the name of the member variable to be generated for the child should be different from
its name, it can be specified using the impname attribute. Figure 2 shows two simple examples
of element definitions.

Groups are HSL’s analogue to parentheses in XML content specifications. Every group can
contain other groups and children, and have a type (conjunction (“andgroup”) or disjunction
(“orgroup”)), and a repeat (which is the same as for children) attribute. Groups can contain
the special child tag pcdata (which simply specifies a child of XML type PCDATA) as their first
element.

3

<element name="w" kind="abstract">
<child element="x" />
<child element="y" />
<child element="z" />

</element>

YX Z

W

C
b
c
d
e

A String

list<E>

D

<!ELEMENT a (c, d?, e*)>
<!ATTLIST a b CDATA>

<child element="e" repeat="zeroormore" />

<element name="a">
<attrib name="b" type="STRING" />
<child element="c" />

</element>

<child element="d" repeat="optional" />

<!ELEMENT w (x|y|z)>

Figure 2: Translation of two different kinds of elements (tree and abstract) into classes
(classes are written using capital letters, member variables using lower cas). The semicircle on
the right side denotes class inheritance.

4

5 Pontifex’ Output

5.1 Document Type Description (DTD)

The document type description (DTD) is basically a simple translation of HSL tags into DTD syn-
tax. Content specifications are generated from group and child lists; this also requires expanding
of abstract elements. No documentation at all is written to the DTD. This is not necessary, because
of the generated documentation (see section 5.4), and because changes should never be made to
the DTD, but to the HSL file.

5.2 Generated Classes

The classes generated follow the basic structure of the language. That means, a class is generated
for every element, and an instance variable is defined for every attribute.

5.2.1 Elements

There are four different types of class that can be generated (specified by the kind attribute in
the element definition), which determine the way an element’s children are handled. The most
common case is that of a tree, i.e., a member variable is created for every child, with the child’s
class as its type. If a child can be repeated, the type of the variable is a list. In the case of an
optional child, that variable can be null.

The second type of element is an abstract element. An abstract element acts like a macro (or
an entity definition) for the structure of the language. In terms of classes, an abstract element is
the superclass of its children (see Figure 2, right side).

Three more types are designed to more easily build text-oriented XML applications: list ,
flat and string . A node of type list only contains one member variable (in addition to the
member variables for its attributes): A list that contains all its immediate children (including
PCDATA sections), in the order they appeared. This is useful for providing a means of including
documentation that is written in XHTML [7], for example. The objects contained in this list can
contain children.

An element of type flat also contains a list, but this list is a flat list of all the elements
contained between the starting and closing tags of this element, no matter which hierarchy level
they appear on. This means, that member variables of objects in such a list that point to children
will contain the value null , even if they would otherwise point to obligatory children (and
therefore be guaranteed to be non-null after a successful parse).

The last type is string , which means that the object contains a string which contains a simple
string representation (with resolved character entities) of everything in between its start- and
end-tag.

For every member variable (regardless of whether it is for an attribute or a child), functions
are created that make accessing it possible (all member variables are declared protected). For a
simple attribute (i.e., one that is not a list), a get and a set method are generated. The get method
simply returns the value of the variable, the set method sets the variable to a new value, and calls
any listeners attached to this object. It is important to note that these methods are declared with
the right return and variable types, and not simply pass objects of class java.lang.Object .

For list attributes, three methods are generated: an add- and a remove method for adding and
removing elements to and from the list, and a method that returns an iterator pointing to the first
element in the list.

In addition, a method called toXML() is generated for every class, so that if the structure of
the data is changed, it can be written to a file again. This method returns a string that represents
itself and all its sub-nodes.

5

5.2.2 Listener Interfaces

For every element, a listener interface is generated that contains listener methods for every class
member. A class that wants to listen for changes in an object must implement the corresponding
listener interface.

Listeners are a standard method in many Java class libraries. If an object wants to be notified
of changes in another object, its class has to implement a special interface. It can then register
itself as a listener to that other object. When the observed object changes, it calls one of the
methods specified in the listener interface for all the registered listener objects. This makes it
easier to separate the underlying data from application specific parts (e.g., a user interface).

5.2.3 Attributes

Attributes are treated depending on their type — the translation of types between their HSL
specification and Java and XML types is given in Table 1.

HSL type Java Type XML Type
userdefined userdefined CDATA
STRING java.lang.String CDATA
INTEGER int CDATA
LONG long CDATA
FLOAT float CDATA
DOUBLE double CDATA
ID java.lang.String ID
IDREF java.lang.String IDREF
a|b|c int a|b|c

Table 1: Mapping of HSL, Java and XML types.

For enumeration types (i.e., a|b|c), a constant is defined for every item in the list (its name is
converted to all upper case letters for this purpose). The value 0 (zero) is never used for such a
constant, but is reserved for optional enumerated attributes that were not encountered in a parse
(for float and double attributes, NaN (“Not A Number”) is used in such a case). All constants of
the same name have the same value in the whole class library (they are declared in every class
that needs them, however). This was done to prevent problems with abstract types (where, if the
concrete type of the object is not known, the wrong constant could be used).

5.3 Parser

The classes alone are not enough to build an application on, of course, there needs to be a parser
that will create objects from an input file. This parser is also created by Pontifex. It is based on
a SAX compliant parser (at the moment, IBM’s XML4J [8] is used, but any other parser could be
substituted very easily), and contains just the code needed to create objects and do type checks
for integers, etc.

The parser class also contains a method called toXML() which converts a string to a valid
XML string (i.e., replaces all non-UTF8 characters by their entity definitions).

5.4 Documentation

Pontifex creates an HTML file that contains the DTD in a format that is easier to read than the
plain ASCII file (Figure 3). It also makes use of HTML by providing links between the uses of
elements and their definition (each use of a child is a link to its definition), and a cross-reference
section, which for every element lists the elements it is used in.

6

Additionally, elements contained in abstract elements are grouped and indented, so that they
are easier to recognize. When an abstract element is used, that element is not resolved (not
replaced by its parts), but a link is provided to that abstract group.

For every attribute and child, a short description can be given in the HSL file, which is written
to the HTML file as well. Element definitions can also contain documentation in XHTML, which
is also written to the HTML file. This allows for a slightly higher level of documentation (the tag
level, not the individual attribute level). These facilities cannot replace a higher level documenta-
tion of such a language (and the application). They make the maintenance of the basic language
documentation easier, however.

Figure 3: An example of the documentation generated by Pontifex for Asbru, the language used
in the Asgaard Project.

6 Comparison to DOM and XML/Schema

Depending on the type of application, Pontifex has several advantages over DOM and XML
Schemas. It was designed for an application that deals with a relatively complex language (which
contains medical therapy plans), that is processed in a number of ways.
Specificity. Compared to DOM, the classes generated by Pontifex are more specific to the appli-
cation than DOM classes can be. An object has the type that is associated with the parsed tag, not
just a basic “XMLNode” type. All the references to an element’s children also have the correct

7

types. Additionally, enumerated types in attributes lead to the creation of symbolic constants,
that are more convenient (and faster) to use than comparing strings. This also applies to differ-
ent number formats, which are checked at parse time, so that the application can work with the
actual numbers instead of having to convert them and check them for validity.
Strict Typing. So using Pontifex, it is a lot more difficult to overlook a part of the program when
the language is changed, because the different types and method names in such unchanged parts
of the program will cause the compiler to complain. With DOM, the types of objects cannot
be checked at compile time, nor can the existance of attributes or children that are returned by
methods that get their names as strings as parameters.
Listeners. Listeners can be attached to every object, so that different parts of a program can react
immediately to changes in the underlying data.
Applicationd Data. An application can also attach their own data to objects using the application
data arrays provided. These store one reference per object and user (where “user” means an
independent part of the application). Any part of an application can acquire an index into this
array that is valid for all objects present in the current application. This way, the application does
not have to mirror (and maintain) the structure of the generated objects, but can still have its own
data easily accessible (see Figure 4).

View
Application
Object 1

Application
Object 2

Application

Base Data
Object 2Object 1

Data
Application

Figure 4: Application data arrays and how they are used.

Node Types. Pontifex is also more flexible on the element level than DOM. If one wants a flat
list of all the tags and text segments starting from a particular node, that is possible. This can be
convenient if one wants to include a node that only contains documentation that is to be written
as it is (or with minor changes, e.g., the insertion of links when certain patterns are recognized);
it also saves memory for nodes that are not needed if one only needs a string representation of
the contents of a node.
Availability. At the time of writing, XML Schema Part I and II are still working drafts. It is
conceivable that powerful tools will be built based on this defintion, some of which will be more
powerful than Pontifex. This is, however, not the case yet, and there will probably be many
applications that do not need the whole extent of what Schemas provide, and whose developers
will shun the immense complexity of XML Schemas. But Schemas also lack some features, like
the possibility of creating a kind of dictionary to validate inputs of numbers with units, where
the units can be changed without changing the Schema (so it is not possible to specify what is
called a picture in Schema).

7 Conclusion

While DOM is a powerful and flexible interface, it is too general for many applications that are
beyond a certain complexity. XML Schemas will hopefully one day provide means to create code,

8

but do not yet exist, and are also very complex. Creating classes by hand is not only tedious, but
also a maintenance nightmare.

Pontifex provides a simple yet flexible solution for these problems. It is more specific than
DOM, but also lacks many of the features of XML Schemas — but it is also a lot less complex.
For many applications now it should be an alternative to DOM that makes application devel-
opment easier and faster — especially in the early phases of a project — and that also provides
the information the compiler needs to do basic error checking far beyond what is possible with
DOM.

As soon as Pontifex is ready for its first release (which mainly means writing useful documen-
tation), it will be available from http://www.ifs.tuwien.ac.at/˜rkosara/pontifex/ .

Acknowledgements

Pontifex was developed as a tool for the Asgaard Project, which is supported by “Fonds zur
Förderung der wissenschaftlichen Forschung” (Austrian Science Fund), grant P12797-INF.

References

[1] Extensible Markup Language (XML) 1.0 (Recommendation). W3C, February 10, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210

[2] W3C XML Specification DTD (“XMLspec”, Report). W3C, May 11, 1998.
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

[3] SAX 1.0: The Simple API for XML. Megginson Technologies, May 11, 1998.
http://www.megginson.com/SAX/index.html

[4] Document Object Model (DOM) Level 2 Specification, Candidate Recommendation. W3C,
December 10, 1999.
http://www.w3.org/TR/REC-DOM-Level-1/

[5] XML Schema Part 1: Structures (Working Draft). W3C, 17 December 1999.
http://www.w3.org/TR/xmlschema-1/

[6] XML Schema Part 2: Datatypes (Working Draft). W3C, December 17, 1999.
http://www.w3.org/TR/xmlschema-2/

[7] XHTMLTM 1.0: The Extensible HyperText Markup Language. W3C, Januar 26, 2000.
http://www.w3.org/TR/xhtml1/

[8] XML4J 3.0: A Validating XML parser. IBM, June 12, 1999.
http://www.alphaworks.ibm.com

9

