
AsbruView: Capturing Complex, Time-oriented Plans |

Beyond Flow-Charts

Robert Kosara and Silvia Miksch
Vienna University of Technology, Institute of Software Technology

Resselgasse 3/188, A-1040 Vienna, Austria, Europe

rkosara@wvnet.at, silvia@ifs.tuwien.ac.at

Yuval Shahar and Peter Johnson1

Section on Medical Informatics, Medical School O�ce Building, x215

Stanford University, Stanford, CA 94 305 - 5479, USA

shahar@smi.stanford.edu, pete@mimir.demon.co.uk

Abstract

Flow-charts are one of the standard means of represent-
ing actions or algorithms in many domains. However,
applying
ow-charts in dynamically changing environ-
ments, like clinical treatment planning, reveals their
limitations. Flow-charts do not include the tempo-
ral dimension in their design, do not allow complex
paths through many components, and scale very badly.
These are only some of the requirements for a means of
communicating clinical therapy plans. As an alterna-
tive, a plan-representation language called Asbru was
designed, that overcomes all the limitations of
ow-
charts. It is, however, impossible for a domain expert
to work with Asbru directly. Therefore, a visualization
is presented here, called AsbruView, which uses three-
dimensional diagrams and metaphors | running tracks
and tra�c signs | to make the parts of Asbru easily
understandable and usable. Even very complex clinical
plans are easy to survey with AsbruView.

Introduction: Clinical Protocols

We are motivated by the demands in medical, real-
world environments: improving the quality of health
care through increased awareness of proper disease-
management techniques. The Health Maintenance Orga-
nizations (HMOs) are urged to increase productivity and
simultaneously reduce costs without adversely a�ecting
the quality of patient care. One step towards this aim
is the implementation of commonly accepted and stan-
dardized health care procedures. Treatment planning
from scratch typically is not necessary, as general clini-
cal procedures exist which should guide the medical sta�.
These procedures are called clinical practice guidelines

and protocols. A guideline can be de�ned as `a method,

that identi�es actions, that are to be performed and that

specify conditions that govern when it is appropriate to

perform them' (Pattison-Gordon et al., 1996). A clinical
protocol is a more detailed version of a clinical guideline
and refers to a class of therapeutic interventions 2. Such
protocols are used for utilization review, for improving
quality assurance, for reducing variation in clinical prac-
tice, for guiding data collection, for better interpretation

1Currently, Peter Johnson is working at: The Sowerby
Center for Primary Health Care Informatics, University of
Newcastle, Newcastle upon Tyne, NE4 6BE, UK.

2In Computer Science, clinical protocols can be inter-
preted as plans. Therefore, we are using the expressions
`protocol' and `plan' interchangeably.

and management of the patient's status, and for activat-
ing alerts and reminders, for improving decision support
(Pattison-Gordon et al., 1996).

Overview

The �rst section sketches the problem area, namely the
design of clinical therapy and treatment plans. Au-
thoring of such plans is a non-trivial task; therefore, a
means of representing such plans appropriately, a lan-
guage called Asbru, will be introduced in the second
section. Asbru, however, is impossible to use for peo-
ple working in the domain of therapy planning, and thus
a means of representing Asbru-plans in an understand-
able way had to be found. This visualization of Asbru is
calledAsbruView, and will be discussed in detail in the
third section. Flow-charts are most commonly used in
the medical domain. A short introduction to
ow-charts
will be given in the fourth section. Why we didn't choose

ow-charts, however, will be made clear in the �fth, �-
nal, section. We will end up with the conclusion and
future plans.

The Problem Area: Authoring Clinical

Protocols

In most cases, physicians and other medical sta� need
not invent therapy or treatment plans for their patients
anew every time. The medical sta� can fall back on pre-
de�ned protocols. Such plans are usually represented in
free text, in decision tables, or in
ow-charts. Authoring
plans, however, is a non-trivial task. Part of its com-
plexity stems from the inappropriate means to represent
plans in order to communicate and reason about them.
Di�culties to author a treatment plan are on various

levels. Problems are also caused by the di�erent pur-
poses the plans or protocols are used for. The structure
and composition of a treatment plan are quite manifold.
Many variables must be accounted for and many di�er-
ent conditions must be taken into consideration. How-
ever, the instructions (the overall plan) must still remain
readable, understandable, and lucid. In a therapy plan,
a goal needs to be achieved in a certain time. The way
or path to this goal is not always obvious and can be
achieved following various paths. It must even be possi-
ble to perform actions that are not part of the actions'
set, but still follow the underlying intentions of a treat-
ment plan. This means, physicians often do not adhere
to protocols, believing their actions to be closer to the in-

tentions of the protocol design. Hence, a treatment plan
needs to capture the intentions too, allowing to continue
a particular plan even when the performed actions vary.

The plans' intentions can be used for di�erent pur-
poses, like critiquing. Does applying the plan really lead
to ful�lling its intentions? Can the plan be applied un-
der di�erent conditions, and if, which are those? These
questions are not only needed for the selection of the
correct plan for a certain patient, but also for improving
the plans, and thus the patient's treatment.

In medicine, new ways of solving problems are be-
ing discovered day by day, new side-e�ects are found,
etc. So treatment plans change very often, as new treat-
ments and new conditions are added, while others may
be changed or even removed entirely. This leads to the
problem, that after the development of a clinical plan
has been �nished, it may already be out of date.

Regarding these points, it is not surprising that clini-
cal protocols are often vague, incomplete and sometimes
even contradictory.

Representing Plans: Historical Synopsis

Clinical protocols or plans can be seen as procedures
or algorithms, which need to be executed depending on
health conditions of a patient and within a particular
time span. An appropriate modelling language and vi-
sualization (diagrams) capturing all di�erent features are
needed.

On the one hand, in Computer Science (particularly
in the research of Programming Languages and Soft-
ware Engineering), di�erent approaches were introduced
to capture such procedures, known as algorithms or
programs. It started in the early years of program-
ming. Some milestones: in 1947 the �rst graphical rep-
resentations of algorithms were designed, called
ow-
charts ((Goldstine and von Neumann, 1947)); after a
long discussion about styles of programming (e.g., goto-
less/goto-free programming), `structured programming'
and block structured diagrams were introduced (Nassi
and Shneiderman, 1973); followed by di�erent modelling
techniques, such as petri-nets, graphical (visual) pro-
gramming, and object-oriented programming (Goldberg
and Rubin, 1995). Additionally, di�erent computer-
oriented knowledge interchange languages (e.g., KIF
(Genesereth and Fikes, 1982)), ontologies (Guarina and
Giaretta, 1995), and plan-representation languages (e.g.,
PROPEL language (Levinson, 1995)) were discussed to
represent domain-speci�c procedural knowledge. In gen-
eral, these representations have signi�cant limitations
and are not applicable in dynamically changing environ-
ments, like medical domains (e.g., they assume instanta-
neous actions and e�ects; they neglect that actions often
are continuous (durative) and might have delayed e�ects
and temporally-extended goals; they overlook that unob-
servable underlying processes determine the observable
state of the world). A more detailed review is given in
(Miksch et al., 1997).

On the other hand, workers in Medicine and Medical
Informatics have recognized the importance of protocol-
based care to ensure a high quality of care. An important

approach was the de�nition of the Arden syntax (Hripc-
sak et al., 1994), which encodes situation-action rules.
This syntax has signi�cant limitations too: it currently
supports only atomic data types, lacks a de�ned seman-
tic for making temporal comparisons or for performing
data abstraction, and provides no way to represent clin-
ical guidelines that are more complex than individual
situation-action rules (Musen et al., 1995). Therefore,
the Arden syntax is not applicable for our purposes.
A common way to overcome these limitations is

the representation of the above-mentioned procedural
knowledge as a library of skeletal plans. Skeletal plans
are plan schemata at various levels of detail that capture
the essence of procedures, but leave room for execution-
time
exibility in the achievement of particular goals
(Friedland and Iwasaki, 1985). However, the basic con-
cepts of skeletal plans are not su�cient in the medical
domain, either.

Which Features Do We Need?

First, we need a plan representation, which (1) captures
a hierarchical decomposition of plans, (2) is expressive
with respect to temporal annotations, plan's intentions
and e�ects, (3) has a rich set of sequential, concurrent,
and cyclical operators. Thus, it should enable designers
to express complex procedures in a manner similar to
a real programming language (although typically on a
higher level of abstraction), but in a more appropriate
and useful way.
Second, we need a plan visualization which is able to

capture: (1) hierarchical decomposition of plans (which
are uniformly represented in a plan-speci�cation library);
(2) time-oriented plans; (3) sequential, concurrent, and
cyclical execution of plans; (4) continuous (durative)
states, actions, and e�ects; (5) intentions considered as
high-level goals; and (6) conditions, that need to hold
at particular plan steps. Additionally, all di�erent time-
oriented components of skeletal plans should be visual-
ized in an easy to understand way. The domain experts,
such as physicians, should understand the basic idea of
skeletal plans. However, the domain experts do not need
to be familiar with the syntax of skeletal plans (clinical
protocols) to author them.

The Plan-Representation Language

Asbru: A First Solution

Asbru3 re
ects all the described complexity in a language
using a LISP-like syntax.
In Asbru, the following parts of a plan can be speci�ed:

preferences, intentions, conditions, e�ects, and plan body

(actions).

Preferences

Preferences constrain the applicability of a plan (e.g.,
select-criteria: exact-�t, roughly-�t) and express a kind
of behaviour of the plan (e.g., kind of strategy: aggres-
sive or normal).

3Asbru is part of a larger project, called Asgaard. In Norse
mythology, Asbru (or Bifrost) was the bridge to Asgaard, the
home of the gods.

Intentions

Intentions are high-level goals that should be reached
by a plan, or maintained or avoided during its execu-
tion. These intentions are very important not only for
selecting the right plan, but also for critiquing treatment
plans as part of the ever ongoing process of improving
the treatment. This makes intentions one of the key
parts of Asbru.

Conditions

Conditions need to hold in order for a plan to be started,
suspended, reactivated, aborted, or completed. Two dif-
ferent kinds of conditions (called preconditions) exist,
that must be true in order for a plan to be started:
�lter-preconditions cannot be achieved (e.g., subject is
female), setup-preconditions can. After a plan has been
started, it can be suspended (interrupted) until either
the restart-condition is true (whereupon it is continued
at the point where it was suspended) or it has to be
aborted. If a plan is aborted, it has failed to reach its
goals. If a plan completes, it has reached its goals, and
the next plan in the sequence is to be executed.

E�ects

E�ects describe the relationship between plan arguments
and measurable parameters by means of mathematical
functions. A probability of occurrence is also given.

Plan Body (Actions)

The plan body contains plans or actions that are to be
performed if the preconditions hold. A plan is composed
of other plans, which must be performed in sequence,
in any order, in parallel, or periodically (as long as a
condition holds, a maximum number of times, and with
a minimum interval between retries).
A plan is decomposed into subplans until a nonde-

composable plan | called an action | is found. This is
called a semantic stop condition for the decomposition of
plans. All the subplans consist of the same components
as the plan, namely preferences, intentions, conditions,
e�ects, and the plan body itself. An in-depth discussion
of Asbru can be found in (Miksch et al., 1997).

Asbru Syntax

Plans in Asbru are written like in a programming lan-
guage, as text that follows a very strict syntax. An ex-
ample for a plan in Asbru syntax is given in Figure 1.

Asbru for Users: AsbruView
Its LISP-like syntax makes Asbru easy to understand for
people familiar with programming languages, but physi-
cians usually do not have degrees in Computer Science.
So a way of visualizing Asbru had to be found that would
make plans easy to overlook, while making all of Asbru's
features available.
These graphics are impossible to draw by hand, but

the use of a computer opens new possibilities, like
metaphor graphics and the use of colors.
We evaluated the Asbru language and our visualiza-

tion AsbruView with scenario-based techniques (Caroll,
1995) with collaborating physicians.

/HYHOV��
'HFRPSRVLWLRQ�
RI�3ODQV

3DUDOOHO�3ODQV

7LPH

6XESODQ�$
�

6XESODQ�$�

6XESODQ�$�

3ODQ�$

2
3

4

Figure 3: The representation of parallel plans.

Metaphor Graphics: Running Tracks and

Tra�c Control

The most basic part of Asbru and AsbruView is the plan.
Inspired by examples in (Tufte, 1990; Tufte, 1997), a
rather unusual metaphor was found to represent these
plans: running tracks (see Figure 2 to Figure 4, and
Figure 6). Additionally, tra�c signs and other symbols
from the world of tra�c control were taken to symbolize
certain concepts (Miksch et al., 1998).
We are using three-dimensional objects. The width

represents the time axis, the depth represents plans on
the same level of decomposition, and the height repre-
sents the decomposition of plans into subplans: The sub-
plans of a plan appear `on top' of it. (see Figure 3).
The `base plane' of the diagram is the highest-level

plan. Underneath it a scrollbar is situated that can be
used to look at di�erent parts of the plan (in the time-
dimension) when only a part of it is being displayed
(zoom). The highest-level plan is supported by two thin
feet that act as controls for moving the scrollbar (see
Figure 4, 6, and 7).
A control panel shows the user, which plan levels are

currently displayed, and which aspect of the plans' de-
sign (e.g. conditions, intentions, etc.) are shown (Fig-
ure 2 and Figure 4).
A patient is considered to be allowed to enter the

running track when all preconditions become true for
him. These preconditions are represented by a `no en-
trance with exceptions' sign for the �lter-preconditions,
and a turnpike for the setup-preconditions. The char-
acteristics of the two preconditions are re
ected in the
metaphors: the setup-precondition can be achieved by
performing some action, so the turnpike opens. The
�lter-precondition cannot be achieved, just as the `ex-
ceptions' sign cannot be changed to gather access.
As long as no conditions become true that suspend the

plan (the corresponding condition is symbolized by the
yellow light of the tra�c light (see Figure 5)), the patient
`runs' (i.e. the plan's actions are performed). When the
suspend-condition becomes true, the runner must wait
for the green light (reactivate-condition). Should the
abort-condition (represented by the red light) become
true, the runner is stopped and not allowed to continue.
When the plan is completed (i.e., the complete-condition,
represented by the �nishing
ag, has become true), he
has reached the �nishing line | and can proceed to the

(PLAN controlled-ventilation
(PREFERENCES (SELECT-METHOD BEST-FIT))
(INTENTION:INTERMEDIATE-STATE (MAINTAIN STATE(BG) NORMAL controlled-ventilation *))
(INTENTION:INTERMEDIATE-ACTION (MAINTAIN STATE(RESPIRATOR-SETTING) LOW controlled-ventilation *))
(SETUP-PRECONDITIONS (PIP (<= 30) I-RDS *now*)

(BG available I-RDS [[_, _], [_, _], [1 MIN,_] (ACTIVATED initial-phase-l#)]))
(ACTIVATED-CONDITIONS AUTOMATIC)
(ABORT-CONDITIONS ACTIVATED

(OR (PIP (> 30) controlled-ventilation [[_, _], [_, _], [30 SEC, _], *self*])
(RATE(BG) TOO-STEEP controlled-ventilation [[_, _], [_, _], [30 SEC,_], *self*])))

(SAMPLING-FREQUENCY 10 SEC))
(COMPLETE-CONDITIONS

(FiO2 (<= 50) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(PIP (<= 23) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(f (<= 60) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])
(state(patient) (NOT DYSPNEIC) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*]))
(STATE(BG) (OR NORMAL ABOVE-NORMAL) controlled-ventilation [[_, _], [_, _], [180 MIN,_], *self*])
(SAMPLING-FREQUENCY 10 MIN))

(DO-ALL-SEQUENTIALLY
(one-of-increase-decrease-ventilation)
(observing))

)

Figure 1: An example of Asbru code (part of a clinical treatment protocol for Infants' Respiratory Distress Syndrome

(I-RDS)).

,�5'6�7KHUDS\

:HDQLQJ,QLWLDO�3KDVH 2QH�2I�&3$32QH�RI�&RQWUROOHG
([WXEDWLRQ9HQWLODWLRQ

7LPH

/HYHOV�
'HFRPSRVLWLRQ
RI�3ODQV

3DUDOOHO�3ODQV

&RQGLWLRQV

,QWHQWLRQV

3UHIHUHQFHV

(IIHFWV

7LPH�$VV�

&RQWURO�3DQHO
9LVLEOH�/HYHOV

�
�
�
�

$VEUX9LHZ

�

Figure 2: The decomposition of plans into subplans, and how sequential plans are represented.

,�5'6�7KHUDS\

5HGXFH�9HQWLODWLRQ
:HDQLQJ

2QH�2I�&RQWUROOHG�9HQWLODWLRQ

&ULVLV�0DQDJHPHQW3HUPLVVLYH
+\SHUFDSQLD&RQWUROOHG�9HQWLODWLRQ

:HDQLQJ

&RQGLWLRQV

,QWHQWLRQV

3UHIHUHQFHV

(IIHFWV

7LPH�$VV�

&RQWURO�3DQHO
9LVLEOH�/HYHOV

�
�
�
�

$VEUX9LHZ

7LPH

/HYHOV�
'HFRPSRVLWLRQ
RI�3ODQV

3DUDOOHO�3ODQV

�

�

Figure 4: Some of the plans are to be executed in any order. The solid line marks the plans that must complete.

UHG: Abort-Condition
yellow: Suspend-Condition
JUHHQ: Reactivate-ConditionFilter-Precondition

Setup-Precondition
Complete-Condition

Figure 5: Metaphor graphics used in AsbruView.

next plan.

Plans can be arranged in di�erent ways: sequentially,
concurrently and cyclically. Plans that should be exe-
cuted one after the other are simply put next to each
other in the time dimension. No arrows are needed to
link the plans.

Following Asbru-keywords, plans that should be exe-
cuted in parallel are called all-together or some-together
plans (depending on whether all or only a subset of them
must be executed). If the order of execution makes no
di�erence, the plans are called all-any-order and some-

any-order plans, respectively.

Plans that should be executed in parallel are put
alongside each other, so that more than one running
tracks exist for a certain `length' of time (see Figure 3).
To execute plans in parallel means, that these plans
should be started at the same time and be performed in
parallel. However, these plans may complete at di�erent
time points, depending on their complete-conditions.

Additional symbols are needed to visualize the other
operators. If not all plans of a set have to be executed,
but some can be omitted, a single solid line along the
base of a plan marks the plans that have to be per-
formed (called the continuation-condition), and a dotted
line marks the optional ones. In case of `any-order' plans,

a line is drawn on the underlying plan, providing an al-
ternative way. Plans that must be executed are marked
with a solid line, while optional ones are indicated by a
dotted line (Figure 4).
In Asbru, the amount of time a plan takes to execute is

not necessarily known beforehand. Thus, plans can not
only be rectangular, but also take irregular shapes in
order to show their di�erent start/end times (Figure 6).
The representation used for these time-annotations is

a more abstract one. Two horizontal bars, one above the
other, show the minimum and maximum duration of a
plan. The earliest and latest starting and ending times
are labeled, and two diamonds support the upper bar
(Figure 6). This is meant to indicate that the minimum
duration is dependant on the latest starting time and
the earliest �nishing time: if they moved farther apart,
the upper bar would `fall down'. However, the minimum
duration can be longer than the di�erence between latest
starting time and earliest �nishing time. If the earliest
�nishing time moves beyond the latest �nishing time, the
diamond `falls o�' the lower bar. So, despite its abstract
nature, this representation can be used to explain the
contraints as well as the possibilities of time annotations
in Asbru.
When a plan has many subplans, which have many

subplans themselves, it becomes di�cult to navigate be-
tween the levels. Colors are used as a `fourth dimension'
to make plans and their relations easier recognizable.
AsbruView will be used to author clinical plans. It

is therefore important to draw the planner's attention
to unde�ned components. The general rule of unde�ned
components is that unde�ned icons appear in gray. For
example, the gray setup- and �lter-condition in subplan
Reduced Ventilation Weaning in Figure 7. Gray compo-
nents can easily be spotted among the di�erent colors of
other parts of the diagram.
This rule also applies to control buttons that cannot

be used at the moment (compare the `left' and `right'

,�5'6�7KHUDS\

:HDQLQJ,QLWLDO�3KDVH 2QH�RI�&3$3
([WXEDWLRQ

2QH�RI�&RQWUROOHG
9HQWLODWLRQ

+1 day
+2 days + 7 days

+14 days
I-RDS
diagnosed

Extubation

7LPH

/HYHOV�
'HFRPSRVLWLRQ
RI�3ODQV

3DUDOOHO�3ODQV

�

Figure 6: Plans can have irregular shapes depending on their time-behavior.

,�5'6�7KHUDS\

5HGXFH�9HQWLODWLRQ

2QH�RI�&RQWUROOHG�9HQWLODWLRQ

&ULVLV�0DQDJHPHQW3HUPLVVLYH
+\SHUFDSQLD&RQWUROOHG�9HQWLODWLRQ

:HDQLQJ

:HDQLQJ

7LPH

/HYHOV�
'HFRPSRVLWLRQ
RI�3ODQV

3DUDOOHO�3ODQV

�

�

Figure 7: Plans' conditions.

arrows for the scrollbar in Figure 6 and Figure 7).

What are Flow-Charts?

A
ow-chart is a diagram for representing algorithms and
showing the decision structure of a program. The basic
elements of a
ow-chart are little boxes and arrows. The
arrows connect the di�erent boxes and sketch the con-
trol
ow of statements (actions). These connectors can
be used to sequence particular statements, to loop over
one or more statements, or to go to another path of state-
ments (goto statement). The di�erent shapes of boxes
denote the various kinds of statements (e.g., circles are
start and stop buttons, little rectangles are commands or
actions; diamonds are decisions; advanced rectangles are
input and output data). Boxes can be numbered to refer
to other diagrams that re�ne their contents. When intro-
duced in (Goldstine and von Neumann, 1947), the little
boxes and their contents served as a high-level language,
grouping the inscrutable machine-language statements
into clusters of signi�cance.

When talking about
ow-charts, we refer to the `clas-
sic'
ow-charts de�ned by (Goldstine and von Neumann,
1947) and standardized in DIN 66001, not one of the
many extensions (e.g., (Martin, 1973; Nassi and Shnei-
derman, 1973)). These `classic'
ow-charts have a num-
ber of drawbacks, which may be of minor or no impor-
tance at all in other areas, but which make them impos-
sible to use for our problem domain.

Why Not Flow-Charts?

Time

Clinical treatment involves one very important variable
that is not accounted for in
ow-charts: Time. It can be
of vital importance to not only treat the patient right,
but also to apply the treatment on time, or a certain
number of times (with a certain interval in between).
Time also plays an important role for the conditions that
must be met in order to make use of a plan. A certain
observable may not trigger a plan simply because of its
value, but because of its behavior over time (e.g., rising
or falling at a certain pace, or for a certain time).
The progress of time is simply not visible in
ow-

charts, but in AsbruView, it is a part of the design.

Intentions

Another problem is what may be called the `real world'
problem. People don't always follow plans, however well
designed they may be. Physicians and nurses make their
own decisions, often without being aware of them. And
even if they don't follow the proposed actions of a plan,
they may still follow its intentions. In medicine, there
never is only one way to reach a goal, but there are many.
It is impossible for the designer of the plans to know and
to include all the di�erent paths into her skeletal plan.
Using
ow-charts, there would be no way of giving

physicians the freedom to choose alternatives that have
not been planned for by the plan's designers. Once the
proposed way is left, there is no going back to the plan.

Condition

Condition

FalseTrue

FalseTrue
Condition

ConditionConditionCondition Condition
GF

FalseTrue

T

F

T

F

T

F F

T

B

A

C

D E

Figure 9: A decision-tree in a
ow-chart.

With Asbru(View), physicians can choose di�erent
ways of achieving a goal, even such that the designers
of the plan have not thought of. As long as the intention
is the same, a physician or nurse may use any means in-
stead of the proposed ones, and still continue using the
plan as usual (for an example of intentions, see Figure 8).

Scalability and Object Orientation

In Asbru, therapies are broken up into small, manageable
parts. Once a part is de�ned, it can be used as a building
block for more complicated plans, that can themselves
be used as building blocks, etc.
In order to use these building blocks, one simply in-

cludes them in the plan (as an alternative, for exam-
ple). The conditions for applying the plan are part of
the `building block' plan itself, and thus need not be
rede�ned in every plan that uses it.
With
ow-charts, the decision would have to be made

on the `using plan' level, not that of the used plan. This
leads to huge `decision trees', once a larger number of
subplans needs to be selected from (see Figure 9).
When a patient is treated, a virtually unlimited num-

ber of complications may occur. In such a case, an
Asbru-plan is aborted, and the appropriate plan is
sought to deal with the complication. It is impossible
to add conditions and links for every complication when
using
ow-charts. So another means has to be used,
which shows how ine�ective and insu�cient
ow-charts
are for this domain.
This certain `object orientation' for conditions has an-

other dimension as well: Plans inherit the using plan's
preferences, intentions, conditions, and e�ects | but not
their actions. This increases the possible modularity of
the plans and decreases redundancy.

Complex Constructs

Flow-charts don't support di�erent kinds of decisions,
either. There is only one `if condition A is true then
goto � else goto �' construct. For practical purposes,
it is impossible to create a `do some of (�, �,
)', or a
`do �, �, and
 in any order', even if one could build
more complex parts from the available primitives. Some

of these constructs are possible, but make the resulting

ow-charts impossible to read | which clearly contra-
dicts the concept of
ow-charts.

Computer Aided Protocol Design

With most
ow-charting tools, one gets very little sup-
port when changing parts of a chart. Suppose there are
three plans, A, B and C in that order. After we have
drawn the arrows accordingly, we realize that C should
go in between A and B. So we have to delete the arrows
from A to B and from B to C, move C between A and
B, and then connect A to C and C to B.
AsbruView supports such changes: Simply take plan

C and drop it on the edge between A and B | it will be
inserted in the correct spot.
Conditions that have yet to be de�ned are displayed

in gray. This is an important help for the plan designer
to keep track of what has been done already and what
still needs to be done.

Miscellaneous

As mentioned, plans need not only be applied, but their
usefulness needs to be analyzed in order to improve the
quality of treatment. Flow-charts supply no means of
including a plan's intentions | AsbruView does. This
is, of course, also true for the di�erent kinds of conditions
(that cannot be further di�erentiated with
ow-charts),
preferences, and e�ects.
Real-world clinical plans tend to consist of a huge

number of actions and conditions and to be of a quite
complicated structure. Therefore, more complicated
plans are di�cult if not impossible to oversee, when
drawn using
ow-charts. Additionally,
ow-charting
tools typically provide no means for splitting a larger
plan into parts | especially in an `incremental' manner,
i.e., the decision to split the plan (and how) is made
after the design has been started.

Conclusion and Future Plans

We have described the various problems, which authors
of clinical plans face. Flow-charts are a very commonly
used representation for clinical plans. However,
ow-
charts are not the appropriate means for representing
such complex, time-oriented plans. We presented three-
dimensional diagrams, called AsbruView, which over-
come these limitations. The proposed diagrams utilize
the metaphor graphics of `running tracks' and `tra�c
control', to visualize such clinical plans in an easy to
understand way. The bene�ts of AsbruView are: (1)
to handle all temporal dimensions of plans, conditions,
intentions, and e�ects, (2) to cope with all possible, as
well as unpredictable, orders of plan execution, (3) to
deal with all the exception conditions that might arise,
and (4) to deal with domain-speci�c features, like plans'
intentions.
Currently, we are implementing AsbruView in Java.

During the design phase, physicians have been consulted
to improve AsbruView's usefulness for them and we are
continuously evaluating the features of AsbruView with
our clientele.

,�5'6�7KHUDS\

2QH�RI�&RQWUROOHG�9HQWLODWLRQ

&RQWUROOHG�9HQWLODWLRQ

,QWHUPHGLDWH�6WDWH��0DLQWDLQ�6WDWH�%*��1250$/�FRQWUROOHG�YHQWLODWLRQ

3HUPLVVLYH
+\SHUFDSQLD

,QWHUPHGLDWH�$FWLRQ��0DLQWDLQ�6WDWH�5(63,5$725�6(77,1*��/2:�FRQWUROOHG���
,QWHUPHGLDWH�6WDWH�����

7LPH

/HYHOV�
'HFRPSRVLWLRQ
RI�3ODQV

3DUDOOHO�3ODQV

�

�

Figure 8: A plan's intentions.

Our �nal aim is to use AsbruView during the design
and the execution phase. Therefore, we will adapt As-
bruView to be used to author a protocol during the de-
sign phase as well as to visualize the performed proto-
cols during the execution phase in a user-appropriate and
task-speci�c way.

Acknowledgements

The authors thank Johannes G�artner, Werner Horn,
Christian Popow, Franz Paky, Georg Duftschmid, and
Klaus Hammerm�uller for helpful comments and discus-
sions; and Leonore Neuwirth for her help with getting
hold of an important paper.

References

Caroll, J. M. (1995). Scenario-Based Design | En-

visioning Work and Technology in System Design.
John Wiley & Sons, New York.

Friedland, P. E. and Iwasaki, Y. (1985). The concept and
implementaion of skeletal plans. Journal of Auto-

mated Reasoning, 1(2):161{208.

Genesereth, M. R. and Fikes, R. E. (1982). Knowledge
interchange format, version 3.0 reference manual.
Tech.report logic-92-1, Computer Science Depart-
ment, Stanford University.

Goldberg, A. and Rubin, K. S. (1995). Succeeding with

objects: decision frameworks for project manage-

ment. Addison-Wesley, Reading, Massachusetts.

Goldstine, H. and von Neumann, J. (1947). Planning
and coding problems for an electronic computing
instrument. Part ii, vol.1, U.S. Army Ordinance
Department. reprinted in von Neumann, J. 1963.
Collected Works Vol. V New York: McMillian, pp.
80-151.

Guarina, N. and Giaretta, P. (1995). Ontologies and
knowledge bases. In Mars, N. J. I., editor, Towards
Very Large Knowledge Base. IOS Press, Amster-
dam.

Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz,
O. B., and Clayton, P. D. (1994). Rationale for the

Arden syntax. Computers and Biomedical Research,
27:291{324.

Levinson, R. (1995). A general programming language
for uni�ed planning and control. Arti�cial Intelli-

gence, 76(1-2):319{275.

Martin, J. (1973). The 'natural' set of basic control
structures. SIGPLAN Notices, 8(12):5{14.

Miksch, S., Kosara, R., Shahar, Y., and Johnson, P.
(1998). Asbruview: Visualization of time-oriented,
skeletal plans. In Proceedings of the 4th Interna-

tional Conference on Arti�cial Intelligence Planning

Systems 1998 (AIPS-98), Pittsburgh Pennsylvania,
USA, Menlo Park, CA. Carnegie Mellon University,
AAAI Press.

Miksch, S., Shahar, Y., and Johnson, P. (1997). Asbru:
A task-speci�c, intention-based, and time-oriented
language for representing skeletal plans. In Pro-

ceedings of the 7th Workshop on Knowledge Engi-

neering: Methods & Languages (KEML-97). Milton
Keynes, UK, Open University.

Musen, M. A., Gennari, J. H., Eriksson, H., W.Tu, S.,

and R.Puerta, A. (1995). PROT�EG�E-II: A com-
puter support for development of intelligent sys-
tems from libraries of components. In Proceedings

of the 8th World Congress on Medical Informatics

(MEDINFO-95), pages 766{770.

Nassi, I. and Shneiderman, B. (1973). Flowchart tech-
niques for structure programming. SIGPLAN No-

tices, 8(8):12{26.

Pattison-Gordon, E., Cimino, J. J., Hripcsak, G., Tu,
S. W., Gennari, J. H., Jain, N. L., and Greenes,
R. A. (1996). Requirements of a sharable guideline
representation for computer applications. Report
no. smi-96-0628, Stanford University.

Tufte, E. R. (1990). Envisioning Information. Graphics
Press, Cheshire, CT.

Tufte, E. R. (1997). Visual Explanations. Graphics
Press, Cheshire, CT.

