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Abstract. Information Visualization produces a visual representation of
abstract data in order to facilitate a deeper level of understanding of the data
under investigation. This paper introduces ViCo, a metric for assessing
Information Visualization complexity. The proposed metric allows for the
measurement of Information Visualization complexity with respect to tasks and
users. The algorithm for developing such a metric for any chosen collection of
visualizations is described in general and then applied to two examples for
purposes of illustration.

1 Introduction

Within the field of visualization, Information Visualization aims for supporting indi-
viduals in understanding and detecting the relevant features of a field of interest.
Information Visualization is the use of computer-supported, interactive, and visual
representations of abstract data to facilitate cognition. The goal of Information
Visualization is to ease understanding, promote a deeper level of understanding of the
data under investigation, and foster new insight into underlying processes. The fields
of application may vary from scientific tasks to everyday purposes.

Important contributions to the field of Information Visualization have come from
various directions. In his seminal books on visualization Edward Tufte ([16], [17],
[18]) discussed a number of interesting visualizations. He also introduced a number of
recommendations for the design of such graphics (e.g., removing elements that do not
contain information, minimizing gray) and a number of interesting concepts to
enhance visualization design and analysis (e.g., macro and micro reading, which
enables readings of a visualization at various levels of abstraction and detail).



Information Visualization covers a broad field of visualizations and a number of
books try to present relevant knowledge on dos and don'ts of specific design elements
(e.g., [3], [14], [15]).

In many cases there is broad consensus on whether a specific visualization is good
or not good. However, there is little theory to support such judgment. One way to deal
with this situation is to develop benchmarks for the evaluation of visualizations where
standardized sets of data and tasks are visualized in various ways [8]. it is difficult to
quantitatively measure visualizations and to understand when to apply one
visualization compared to another. To address some of these limitations, we are
focusing on the development of an appropriate metric, called ViCo, by which to judge
visualization and Information Visualization in particular. Our approach takes into
account the tasks to be accomplished and the users’ knowledge and needs on the one
hand, and on the other hand, the difficult procedure of quantifying qualitative
information concerning what we call here cognitive elements or operations. Hence,
the metric ViCo can be seen as an algorithm that allows a quantitative comparison of
the relative complexity of a set of visualizations for any given situation.

For example, assume we have two visualizations and let #N be the number of items
being represented. Then, keeping all other parts being equal, the representation that
makes it necessary to read #N items once is substantially better than one that
necessitates reading #N * #N items. We want to facilitate the development of such
formulas and comparisons.

In the next section, we develop the conceptual fundamentals of the ViCo algorithm.
The algorithm itself is then introduced in the third section. The fourth section
illustrates the algorithm through two examples. Finally, we discuss related issues and
present concluding remarks.

The authors have experiences in task-specific approaches of Information
Visualization, which range from visualization for software development and
management consulting [5], to visual representations for various monitoring data and
processes of patients in intensive care units ([10], [12]) and for the design of shift-
rotas in various industries [6].

2 Conceptual Fundamentals

Here we present central conceptual fundamentals and definitions, which are needed to
proceed with our approach and then are heavily exploited in the later algorithm we
develop in section 3. These definitions include (1) reading and writing, (2)
comparisons and calculations, (3) tasks and users, (4) complexity, and (5) the metric.

¢ Reading and Writing

Berg [2], inspired by actor-network theory and work within Computer Supported
Cooperative Work (CSCW), tries to circumvent technological-determinist as well as
social-constructivist accounts in discussing the changes brought about by the use of
artifacts. He aims for a relational conceptualization of what such tools do, without
attributing the activities exclusively to the tool itself or to the person working with it.
He conceptualizes the activities associated with information technology in work



practices as reading and writing of artifacts. This enables a consistency of approach in
analyzing the paper-based and computer-based technologies. For his field of analysis
— electronic patient records — he describes the generative power of artifacts as
accumulating inscriptions and coordinating activities, thus making the handling of
more complex work tasks possible.

Transferring this conceptualization of computer artifacts to the field of Information
Visualization, a first element of complexity comparisons will relate to such reading
and writing of visualization. Specifically, how many things do users have to read or to
write for a given visualization?

e Comparisons and Calculations

Expanding on Berg’s [2] approach (i.e. considering the use of artifacts in terms of the
cognitive activities of users) one has to consider other activities that might be of
relevance for Information Visualization. Two additional activities are considered
here: comparisons and calculations. Comparisons deal with comparing one or more
elements of Information Visualizations with respect to specific features. Calculations
may influence the task or problem processing in two ways: first, that something can
be computed (compare [2]) and, second, the effort of computing may vary [5].

e Tasks and Users
Two critical elements are missing so far: fasks and users.

It is impossible to discuss the amount of reading, and writing, comparing, and
calculating that is necessary without specifying a task and supposing a user up front.
Only when it is clear whether a task is completed or not can one discuss the amount of
reading, writing, comparing, or calculating that is necessary.

Information Visualization complexity can only be discussed with respect to the
same tasks. Similar constraints are described in the field of designing maps. For
example, MacEachren [11] argues that there cannot be a discussion of how good or
bad a map is without knowledge on the various ways of its use.

Users are to be considered too. The analysis of visualization complexity cannot be
conducted without some reference to the users of a given visualization. Reason is that
the information users can gain by using an Information Visualization depends also on
their general and task-specific knowledge (e.g., to interpret graphics on various
accounting measures, one must understand the categories of accounting; to understand
the tableau of chemical elements, one must know something about chemistry).

e Complexity
We conceptualize the complexity of visualizations in terms of the operations — or
cognitive elements - needed to accomplish the tasks by users. This approach relates
strongly to the field of computational complexity [13], a part of computer sciences.
The proposed metric of complexity will not deliver a single number but will
describe a function with various variables (e.g., number of items to be compared). For
example, a simple algorithm for finding the median of n items uses k*n log n
comparisons, (where k is a constant of proportionality). Here “n” is a “variable”. In
computing, it is common to use the “size of the input” as the main variable. In our
case, we use variables to denote the different dimensions of input, which are relevant
to comprehend the visualization. Additionally, complexity analysis in computer



science provides both upper and lower bounds. For example, median finding has a
lower bound of 2n comparisons (a proof that any algorithm for median finding must
make at least this many comparisons), and an upper bound of about 3n (worst-case
runtime of the best algorithm for median finding) [1]. For our approach, it would also
be interesting to consider upper and lower bounds for visualization tasks.

In our case, the necessary variables may be difficult to identify and the number of
variables considered is expected to spread over time, as the analysis of a specific field
of Information Visualization matures and deepens. Though a function is more
difficult to handle than a single number, a function seems an appropriate way for the
comparison of visualization. For instance, researcher and designers can gauge which
visualization to use under what circumstances. Furthermore, it is not unusual to work
with functions to describe complexity. Again, computational complexity within
computer sciences works strongly with such elements.

e The Metric

Science distinguishes a number of ways to compare or describe features of objects of
interest. From a mathematical point of view, the highest level of such comparisons
leads to scalar, absolute values. On a level lower, observers would agree on the order-
ing and relative distances of complexity (e.g., 1-2-4; 3-6-12), or even weaker ordering
function (e.g., A>B, B> ().

As mentioned in the previous section we do think that the computation of
complexity relies on defining tasks to be accomplished by users. It would be too much
to expect the metric (and its procedures) to guarantee that its users of the metric reach
consensus on which tasks and user groups to take as the starting point. However, we
consider it plausible — and will discuss it later on — that it should be possible to come
up with a list of relevant tasks in close to all situations and to articulate reasonable
assumptions with respect to the users. Afterall, Information Visualization typically
makes use of information that already refers to such tasks and user groups.

Under the condition of shared assumptions regarding users and tasks, the metric we
develop will be able to compute the complexity of Information Visualizations on a
particular level.

3 Our Approach: A Metric for the Complexity of Visualizations

In the following we will describe the proposed algorithm to develop the metric of
complexity for a chosen set of visualizations, called ViCo (Visualization and
Complexity). We first describe the steps of the algorithm and then show their
application on two examples.

The algorithmic steps of ViCo are:

1. Analyze the tasks to be accomplished by the use of a set of given visualizations
and select those tasks to be taken as the basis of measurement.

2. Define minimal reading, writing, comparing, and calculating operations with
respect to users’ groups and variables of the data set to be visualized.



3. Develop the functions that describe the number of such operations needed to
accomplish such a task.

We make the assumption here that the visualizations under consideration include all
the information necessary to complete the tasks at hand. Though similar visualizations
([6], [10]) may vary substantially in what tasks they allow one to work on, this line of
inquiry shall not be pursued here, because we are focusing on approaches which stay
as simple as possible to communicate complex data and information in diagrammatic
form.

3.1 Tasks

The first step of ViCo is to define the tasks that are the basis of the later measurement.
In many cases this selection will be straightforward. For example,

- Understanding differences between object A and object B,

- Finding an object, or

- Being able to decide whether something is true or false.

In other cases, with a large number of tasks, a selection process may be needed. In
most cases it should be possible to come up with a reasonable number of the most
relevant tasks or at least relevant examples of tasks. However, if developers of an
Information Visualization have no idea about possibly relevant tasks that users will
try to accomplish with such Information Visualization, we would recommend to do
more exploration in that direction, before starting the work of visualization design and
analysis.

After selecting tasks, a further refinement is needed. A task is defines as such for
our further analysis if (and only if) we are able to determine whether it is completed
or not, and this typically calls for further refinement:

— Understanding differences between object A and object B with respect to pre-
defined quantity of features (e.g., all, some, a percentage, etc. of the features),

- Finding a particular object (e.g., the street within a map), or

- Being able to decide whether statements A, B, C are true or false.

Again we assume that such refinements should be possible in most or all practically

relevant situations.

3.2 Reading & Writing, Comparing & Calculating, and Users & Variables

As mentioned in the second section, Berg [2] focused on reading and writing opera-
tions. As long as we deal with visualizations drawn by the computer there is little
user-writing involved. However, if we take into account interactive parts of the
Information Visualization process, then the tasks of writing and typing become a
crucial part of the complexity analysis as well.

Besides reading and writing, we consider comparisons and calculations as separate
operations. It seems possible to develop additional categories as well that might help
to focus better on further activities (e.g., group processes). Our metric is open to such
extensions.



In the following we explain how the reading, writing, comparing, and calculating
operations are defined. At first glance this might look rather tricky. However, it is so
only to some degree, as we go for relative complexity of visualizations and not for
absolute complexity. We do not attempt to develop a metric that covers all possible
visualizations, for all possible tasks for all possible user groups. We go for a smaller
objective: We want to be able to compute the complexity for any given set of
visualizations with given tasks and given assumptions regarding the user group. This
allows for incremental enlargement for any specific field but avoids the pitfalls of a
universalistic approach.

Looking closer at reading, writing, comparing, and calculating, the question arises
at what level to measure these activities. It is possible to conceptualize these
operations in extremely complex ways. Again, we go for a smaller aim. We try to find
the simplest possible operations for a given set of visualizations.

When looking at simple conceptualizations, possible types of such operations
could look like the following. The conceptualization of reading, comparing, and
calculating, can be seen in analogy to the various levels of perception (see for
example [7]). Writing we conceptualize as straightforward activity:

At least three levels of reading operations can be distinguished:
1. Operations with the eye (e.g., finding a legend)
2. Basic operations for reading a letter or a word; or finding the next row, etc.
3. Cognitive operations (e.g., memorizing)

At least two levels of comparison operations can be distinguished:
1. Direct comparison
2. Comparison with memorizing

At least two levels of calculation operations can be distinguished:
1. Actual calculation
2. Cognitive processes in order to develop a way how to calculate

It is not always necessary to work with the operations on the visual level. Dropping
such measurement seems reasonable if no relevant differences can be expected
between the visualizations to be analyzed. This might be the case if the operations
defined (e.g., finding the start of row, finding a column) do not vary strongly between
the visualizations at hand. If high differences between visualizations can be expected
then measurement of eye movement should be done. Techniques to measure and
compare such eye movement are used within usability labs (e.g., eye tracking), and
the results of such measurements depict the time needed for a task or operation
depending on relevant variables (e.g., number of columns). Statistical measures would
then apply here.

The simplest measures — and those this article tries to exploit as far as possible —
are simple operations of reading a letter or a word, comparing two lines, etc. Such
operations should be selected on the highest possible level with respect to the visuali-
zations under investigation. For example, if two visualizations both rely on bars and
make it necessary to compare them, such basic operations could be: (a) Find pairs of
bars that shall be compared, and (b) Compare two bars.

Using cognitive operations [7] as a foundation of measurements may sound
unusual from the perspective of computer scientists. However, they are not as bad as



one might expect. For reasons of measuring complexity, we can simplify dramatically

by again defining basic cognitive elements (e.g., reading a word). These basic

elements can be used without further clarification as long as they are used in the same
way for all visualizations of interest in a situation.

For example, if the comparisons of numbers have to be made, such a “comparison”
would be a cognitive minimal element. It would not make sense to go into further
detail (e.g., understanding all the processes involved in such a comparison) as long as
the minimal element meets the following requirements:

1. Ttis used consistently with respect to the visualizations at hand (consistent).

2. It does not vary internally in relevant ways (e.g., words in visualization D are
dramatically shorter than words in visualization E) (invariant).

3. It does not overlap with other operations — either within or in between tasks or
visualizations (i.e., if two operations are used that somehow overlap in their util-
ity, they have to be split up in smaller operations) (irreducible).

If a cognitive element does not meet the above criteria then further refinement is

needed. Such refinement typically brings in features of users (e.g., users do or do not

know how to read a specific element of a representation) or additional variables (e.g.,

length of words). These variables may refer back to the task or to other features of the

process, the visualization, etc.

Whenever decisions have to be made regarding the level of knowledge of users one
can expect, this either brings in an additional variable or an assumption regarding the
users that holds true for all visualizations under investigation. Knowledge of users
may refer to general knowledge and capabilities or task-specific, situation-specific
knowledge. It is important to understand that this does not call for a complete col-
lection of all user knowledge. Only if a reading operation depends (in its feasibility or
complexity) on specific knowledge will a decision have to be made about whether to
assume that expected users will have that knowledge or to make a variable out of it
(compare the explanations about variables used in computational complexity in
section 2). The first approach simplifies the function but limits its applicability. The
second approach increases the scope of applicability of a comparison to more user
groups. However, this comes at the price of higher complexity of the function. We are
aware that such a set of assumptions regarding users can be increased indefinitely.
From a practical point of view however, the number of elements to be added will
depend on the interactions of those persons involved in developing the metric.
Therefore, the list should be limited, but open for later amendments.

Again, if designers of visualizations do not have an idea about their users, it seems
worthwhile to think about this. In most cases however it should be clear. If different
basic operations lead to different complexity results, this indicates weaknesses or
differences in these definitions.

Summing up, after defining a set of basic operations, the variables to be
considered, and (some) assumptions regarding the knowledge of the expected users,
we can start with the calculation. The variables of the complexity function are a side
product of the above analysis.



3.3 Develop the Functions to Compute the Number of Such Operations

After defining basic operations and variables one should be able to describe the com-
plexity of reading, writing, comparing, and calculating of Information Visualizations
in terms of software programs. Such programs finish when the corresponding task is
fulfilled.

Correspondingly, it is necessary to develop an algorithm that accomplishes the task
with the operations defined. Then — with standard techniques of computer sciences —
one can compute the complexity as a function of the variables introduced in a
reproducible way f]

The results of this approach should be rather stable. Algorithms should not vary too
strongly between applicants. A change of basic operations should only lead to a
change in the resulting function if it introduces a new operation or a new variable.
Both of these options are consistent with the metric.

The complexity of the algorithm (building upon well-defined tasks and well-
defined operations) then is also the complexity of the visualization. To facilitate
visualization comparisons, it may make sense to further simplify the functions
describing the complexity. The basic operations used in these algorithms have
constant time (they do not depend on variables!). Correspondingly, one operation can
be described as a multiple of the other Op1=a*Op2 by using scalars a, b, etc.

Summing up, a complexity analysis builds upon the elements listed in Table 1 (all
necessary definitions were given in the previous section):

Vis ={Visualization ;, Visualizationyg....}

Task  ={Tasks to be achieved with Vis }

User  ={ Assumptions about the users e.g., knowledge }
Var ={ Variables used in at least one operation }

Op =

operations (Var)
Vve Vis 3 algorithm to accomplish Y'te Task building upon these operations

operations (Var) is consistent A invariant A irreducible

Table 1. Definitions of the various elements of the metric ViCo.

Using the described algorithm it is possible to develop the metric ViCo for any
chosen set of visualizations and correspondingly compute the relative complexity of a
set of visualizations. This measure of complexity relies on reasonable definitions of
tasks, reasonable assumptions regarding users, well-defined operations, and variables
describing features of the problems at hand that are considered in the assessment. In
the next section, we illustrate ViCo with two examples.

We are aware of the fundamental limitations in this field (e.g., the question whether an
algorithm is the simplest possible algorithm for the task to be accomplished cannot be
solved in general). However, we expect most actual algorithms to be simple, because the
building blocks of the algorithms — the operations — are complex. The complexity is in the
operations and not in the overall algorithm. For example, it is very difficult for us to code
good algorithms for face recognition, but people do this with ease. “Simple for the human
brain” does not mean “simple for us to code as an algorithm”.



4 Examples

In this section we explain how our complexity metric, ViCo, is applied to the
following two examples, (1) Tasting Whisky and (2) Visualizations of some issues
regarding the Challenger’s Disaster.

4.1 Example 1: Tasting Whisky

Tasting whisky is a very complicated task, which is done principally with the nose,
then by the tongue, etc. The taste of Whisky can be graded in 10 categories on the
scale of 0-3 for each (3 being the highest). If you use a star plot [4] (also called a
wheel) each category corresponds to a spoke of the wheel. When you finish the grad-
ing and join up the lines, a particular shape of wheel appears, which reflects the
characteristics of the Whisky. Figure 1, shows two examples: on the left-hand side the
star plot of “The Balevenie, 12 years old” and on the right-hand side “Glenfiddich”
(taken from http://www.scotchwhisky.com/).

Intenzity, Complexity

LLULTY Cereal

Flaral

Feinty Featy Featy

Fig. 1. Visualizing the taste of two types of Whisky. On the left-hand side, the star plot of “The
Balevenie, 12 years old” and on the right-hand side, “Glenfiddich” (taken from
http://www.scotchwhisky.com/)|

In the following Table 2, the visualizations (Vis), the Tasks (T), the assumptions
regarding the users (Users), the variables (Var) and then Operations (Op) are defined.
After that the algorithms for accomplishing two tasks (compare Table 2) with the
operations are described. Building upon that the complexity functions are developed.

Kind Name Explanations

Visl Star Plot See above Figure 1

T1 Highly Determine whether the whiskys under consideration
Similar? have highly similar features

T2 Identify Find and identify main differences of the whiskys
Differences

Users e are able to understand and read star plots

o arec familiar with the 10 features of whiskey
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Var #C e number of categories/spokes
Opl Read shape e read and comprehend the overall shape of a star
plot
Op2 Compare two e compare two shapes and decide whether they are
shapes highly similar
Op3 Read scale e read and comprehend a scale value
value
Op4 Find e after having read a scale name or value, find the
correspond- corresponding scale in another picture
ing scale
Op5 Compare two e compare two scale values and decide whether
scale values they are identical
Op6 Read scale e read and comprehend the scale name
name
Task 1: Highly Similar For TWO star plots
The Algorithm Read shape A (Opl)

Read shape B (Opl)
Compare two shapes A + B (Op2)

The complexity 2*0Opl + Op?2

Task 2: For TWO star plots for EACH Scale
Identify Differences Read scale value (Op3)

The Algorithm Find corresponding scale (Op4)

Read scale value B (Op3)
Compare two scale values (Op5)
Read scale name (Opé6)

The complexity #C * (2*Op3 + Op4 + Op5 + Opé)

Table 2. Example 1: Tasting Whisky, defining the elements needed to proceed with the
complexity analysis

The result of the task 1, which checks for highly similar features of whiskys is
2*0pl+0p2 and the result of the task 2, which identifies the main differences of the
whiskys is #C * (2*Op3 + Op4 + Op5 + Opé6).

The complexity metric ViCo could be easily expanded to consider further issues
(e.g., Var2=4#W, which covers the number of whiskys to be compared) or it could be
refined (e.g., Var3= #Identical counts the scales that do not show substantial
differences).

Looking at an additional visualization that shows differences of corresponding
features (see Figure 2), the complexity and the savings can be easily computed.
Simplifying, if we assume that no additional operation is needed for finding the next
scale with a difference (which only holds true for small numbers) and #C is the
number of spokes and #Identical is the number of identical strokes, then the
complexity function would be (#C - #Identical) * (Op3+0pé6).

If we compare this result with the result of Table 2 (Task 2), them we can easily
recognize that the computational complexity of the second visualization applying the
same operators is much easier than the complexity of the other visualization.
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Differences of two whiskeys
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Fig. 2. Visualizing the differences of the two whiskys of Figure 1.

Further possible expansions of the analysis might consider, for example, how users
would deal with large numbers of comparisons. Then also user interactions (e.g.,
selecting two whiskys and switching to another visual representation) might become
relevant basic operations. A closer look at the basic operations might also lead to
refinement of the metric and to a better understanding of the visualization. E.g., to
what number of scales is a reading and comparison of shapes as a single operation
reasonably possible? To what precision is the reading of scale values possible?

4.2 Example 2:
Visualizations of some Issues Regarding the Challenger’s Disaster

Within the field of Information Visualization, scatter plots are another important class
of diagrams and visual aid. Such diagrams can lead to great insight, but also to its
occlusion. As an example for this Tufte [18] cites the accident of the space shuttle
Challenger.

History of O-Ring Damage in Field Joints (Cont) e O-Ring Damage Each Launch

AT ANA DA AR AR
o Bllall &l e RLIE Bl 10 °
0-Ring [ 0 [ II o}
1:';'; M ml M -E =
( £
i e 25
= !! £ESs
3 11 S o
A AB a S 4
) g .
i g 2
0 -
0 10 2 30 40 50 60 70 80 90
30 20 31 21 22 22 23 23 28 2 emperature (in Fahrnheit) at Time of Launch

Range of forecasted temperatures
for the launch of the Challenger on
January 28, 1986

Fig. 3. Visualization of the shuttle’s Fig. 4. Visualization of the shuttle’s
disaster showing the original diagram used disaster showing the final re-visualization
by the NASA and the booster rocket by Tufte [18].

manufacturer.
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There was the question about whether the shuttle should be launched on a cold day
(January 27, 1986). The decision depended on whether the temperature would make
the O-Ring that sealed the sections of the booster rocket unsafe.

The Figure 3 reprints one of the diagrams used in making the decision by the
booster rocket manufacturer. Based on that diagram, NASA decided to launch the
shuttle and the O-Ring was damaged and the shuttle crashed. The next Figure 4 shows
the re-visualization by Tufte [18]. It uses a simple scatter plot depicting the relation
between the two major variables of interest. Different types of damage are combined
into a single index of severity. The proposed launch interval of temperature is also put
on the chart to show it in relation to the data. The new diagram tentatively indicates a
pattern of damage below 70° or 60°.

In the following we discuss these two visualizations in terms of ViCo for the same
task of understanding whether there is a relation between temperature and O-Ring
damage. Table 3 shows the use of ViCo in detail.

Kind Name Explanations
Vis2 Diagrams See above Figure 3 and 4
T Relate Is there a relation between O-Ring damage
Damage and and temperature?
O-Ring
Users e are able to understand and read scatter plots
Var #N e number of shuttle’s starts
HO e number of O-Rings
Opl Read Damage e read and comprehend severity of O-Ring damage
Oop2 Read e read and comprehend the temperature
Temperature
Op3 Write Data e write down in corresponding column the damages
of O-Rings and temperatures
Op4 Calculate e compute the average and the measures needed to
Measures compare the data series
Op5 Read Shape & e read and comprehend the overall
Decide

shape/distribution of the data points
e make decision whether there is a very clear

relationship
Opé6 Read Data e read and comprehend data points
Points
Task: Relate Damage and For EACH start (#N)
O-Ring with Fig. 3 For EACH O-Ring (#0)
The Algorithm Read Damages (Opl)

Read Temperature (Op2)
Write Data (Op3)
Calculate Measures (Op4)

The complexity of Fig 3. #N * (#0 * Opl + Op2 + Op3 + Op4)
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Task: Relate Damage and Read Shape & Decide (Op5)

O-Ring with Fig. 4 IF no clear Relation THEN

The Algorithm For EACH Data-Point (#N)
Read Data Points (Op6)
Calculate Measures (Op4)

The complexity of Fig. 4 Best Case: Op5

Worst Case: Op5 + #N* (Op6 + Op4)

Table 3. Example 2: Tufte’s visualization of some issues regarding the Challenger Disaster,
defining the elements needed to proceed with the complexity analysis

In the case of Figure 3, to achieve that task, 'normal' users will need a lot of
processing (including ordering and calculating appropriate measures, e.g., calculating
the averages of damage/no damage launches).  In the case of Figure 4, users can start
with capturing the shape of the data series, because the scatter plot is already
structured according to the two variables of interest. If a very clear picture emerges,
the task is achieved. Otherwise, again calculation is necessary. In Section 2 in the
paragraph about the complexity, we mentioned that complexity analysis in computer
science often provides both upper and lower bounds. In the above example for the
complexity measure of Figure 4, best case and worst case are these bounds.

In order to facilitate comparisons of the complexity measures of Figure 3 and
Figure 4, we further simplify their measures. As there are several operations, each
with constant length, we can introduce scalars (a, b, c, etc.) to express one as a
multiple of the other (compare Section 3.3). Let Op1 take X seconds, then Op2 takes
a*X seconds, Op3 takes b*X seconds, etc. Transforming the complexity functions
from Table 3, we get the following new measures

The complexity of Fig. 3. | #N* (#O + a + b + c)*X

The complexity of Fig. 4. | Best Case: d*X
Worst Case: (d + #N*(e + c))*X

With further simplifications we can compare the complexity of Figure 3 with the

worst case complexity of Figure 4: #O+a+b+c . With large #N we arrive at

——+e+cC
#N

#0+a+b+c
e+c

as Opé6 is not more complex than (#0+a+b) *X.

The comparison of the complexities still includes the element ¢ (coming from Op4
— calculating measures). This indicates that — if there is no clear shape — computation
is still necessary. For the example given, the data point at 53° strongly shapes the
overall impression. If this point would be considered to be an outlier then the picture
would be less clear and correspondingly computation necessary. It might be the case
that classical statistics is better and more informative to apply then. Still, the
visualization of Figure 4 would allow for an extremely quick check whether there is a
very clear relationship or whether calculation is necessary.

which shows that the visualization in Figure 3 is much worse as long
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5 Discussion and Conclusions

In the paper presented, we have argued for ViCo, a metric for the complexity of
various diagrams or more general approaches dealing with Information Visualization.
For this purpose, we defined several conceptual fundamentals: Tasks and Users,
Reading and Writing, Comparing and Calculation, and Complexity. Our approach is
mainly influenced and guided by two scientific fields, on the one side, the algorithmic
thinking and complexity theory in computer science [13] and, on the other side, the
study of cognition and perception in psychology [7].

Our goals were to utilize concepts from perception and cognition to arrive at
measures to judge the readability and the complexity of visualizations. We are defi-
nitely aware that perception and cognition work differently than algorithmic thinking
(for example, we did not address, how we are dealing with know-how or any kind of
learning effects to ease and facilitate the understanding of diagrams). We have
knowingly simplified some cognitive aspects (e.g., memorization of information,
know-how, learning) because we argue that in spite of such simplifications
meaningful comparisons can be made. Similar considerations hold true for temporal
aspects. Sometimes it may be necessary to actually measure times (e.g., with eye
tracking). However, in many cases ViCo can work without such measurement.

We are not aiming to explain intuitive understanding of diagrams or any kind of
visualizations. Additionally, we do not compare oranges with apples or scatter plots
with danger signs. ViCo goes for a smaller but still reasonable aim. We analyze the
readability of diagrams with respect to particular users and tasks. This means we are
comparing oranges of kind A with oranges of kind B.

Finally, we aim 'only' for relative complexity of visualizations and not for absolute
complexity. L.e., we do not attempt to develop a metric that covers all possible visuali-
zations, for all possible tasks for all possible user groups. We go for smaller objective:
We want to be able to compute the complexity for any given set of visualizations with
given tasks and given assumptions regarding the user group allowing for incremental
enlargement for any specific field.

ViCo does (to some degree) analogous things in the field of Information
Visualization as GOMS does in the field of user interface design. GOMS (Goals,
Operators, Methods, and Selection rules) [9] is an analytical analysis technique. The
goal of GOMS is to radically reduce the time and cost of designing usable systems
through developing analytic engineering models for usability tests based on validated
computational models of human cognition and performance. The GOMS family
provides various methods to count and measure how long a user needs to accomplish
a task using a particular tool. Many variants of GOMS rely on measuring and
calculating actual times, which limits the field of application and makes it more
difficult to apply it for new types of information processing. However, this is just
what Information Visualization aims for. Furthermore, some limitations of GOMS are
inherited in our approach ViCo too, like differences between users, learning process,
mistakes in executing the basic operations and inside the interpretation step.

We are well aware of the fact that the procedures described above touch a high
number of questions that cannot be solved in general (e.g., comparison of algorithms,
accelerate possible algorithm, definition of minimal operations). However, these
questions can be tackled to an acceptable degree in most practical situations.
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Correspondingly, the procedure can contribute to better-informed decision making on
which visualization to use when in a way that is not possible with direct observation
or by measuring only the time that is needed to accomplish tasks as a whole.

Acknowledgements. We thank Monika Lanzenberger, Peter Purgathofer, Robert
Spence, Jessica Kindred, and the anonymous referees for their useful and constructive
comments. The Asgaard Project is supported by ,Fonds zur Forderung der
wissenschaftlichen Forschung® (Austrian Science Fund), grant P12797-INF.

References

1. Baase, S. & Van Gelder, A.: Computer Algorithms: Introduction to Design and Analysis
3rd ed.). Addison Wesley, Reading, Mass. [u.a.], (2000).

2. Berg, M.: Accumulating and Coordinating: Occasions for Information Technologies in
Medical Work. Computer Supported Cooperative Work: The Journal of Collaborative
Computing, 8 (1999) 373-401.

3. Card, S. K., Mackinlay, J. & Shneiderman, B. (Eds.): Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999).

4. Chambers, J., Cleveland, W., Kleiner, B. & Tukey, P.: Graphical Methods for Data
Analysis, Wadsworth, (1983).

5. Gartner, J.: Software in Consulting. Habilitationsschrift Thesis, Technische Universitét
Wien, (2001).

6. Girtner, J. & Wahl, S.: The Significance of Rota Representation in the Design of Rotas.
Scandinavian Journal of Work, Environment & Health, 24(3) (1998) 96-102.

7. Goldstein, E. B.: Sensation and Perception 5th ed.). Brooks/Cole Publishing Company,
(1998).

8. Grinstein, G. G., Hoffman, P. E. & Pickett, R. M.: Benchmark Development for the
Evaluation of Visualization for Data Mining. In Fayyad, U., Grinstein, G. G., et al. (eds.),
Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann,
San Francisco, (2002) 129-176.

9. John, B. E. & Kieras, D. E.: The GOMS Family of User Interface Analysis Techniques:
Comparison and Contrast. ACM Transactions on Computer-Human Interaction, 3 (1996)
320-351.

10. Kosara, R. & Miksch, S.: Metaphors of Movement: A Visualization and User Interface for
Time-Oriented, Skeletal Plans. Artificial Intelligence in Medicine, Special Issue, 22(2)
(2001) 111-131.

11. MacEachren, A. M.: How Maps Work The Guilford Press, New York, (1995).

12. Miksch, S., Horn, W., Popow, C. & Paky, F.: Utilizing Temporal Data Abstraction for Data
Validation and Therapy Planning for Artificially Ventilated Newborn Infants. Artificial
Intelligence in Medicine, 8(6) (1996) 543-576.

13. Papadimitriou, C. H.: Computational Complexity Addison Wesley, Reading, Mass. [u.a.],
(1994).

14. Schumann, H. & Miiller, W.: Visualisierung: Grundlagen und allgemeine Methoden
Springer, Berlin, (2000).

15. Spence, R.: Information Visualization ACM Press, New York, (2001).

16. Tufte, E. R.: The Visual Display of Quantitative Information Graphics Press, Cheshire, CT,
(1983).

17. Tufte, E. R.: Envisioning Information Graphics Press, Cheshire, CT, (1990).

18. Tufte, E. R.: Visual Explanation Graphics Press, Cheshire, CT, (1997).



