
State of the Art in Java-based
Information Visualization on

Mobile Devices
BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Christian Osebitz
Matrikelnummer 0426358

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Dipl.Ing. Bilal Alsallakh, Dr.techn.
Dipl.Ing. Tim Lammarsch, Dr.techn.

Wien, 23.04.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

State of the Art in Java-based
Information Visualization on

Mobile Devices
BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Christian Osebitz
Registration Number 0426358

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dipl.Ing. Bilal Alsallakh, Dr.techn.
Dipl.Ing. Tim Lammarsch, Dr.techn.

Vienna, 23.04.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Abstract

Developers of mobile applications are facing the question of how information can be visualized
on mobile devices in an effective way. While modern mobile-based web browsers can support
the development of interactive web-based visualizations, native mobile applications can cur-
rently deliver significantly better performance in terms of speed and scalability in the volume of
data.

However, due to limited resources available on mobile devices such as power supply, avail-
able screen size and the capabilities of the operating system, desktop applications can not be
readily ported to mobile applications without accounting for these limitations. For example,
although the Android mobile operating system is based on Java, it does not support Java appli-
cations that use the built-in Java graphical libraries. When writing an application for visualiz-
ing abstract data on Android-based devices the question occurred, whether there are alternative
graphical libraries satisfying the needs or whether it is necessary to implement this functionality.
A search on the topic of information visualization on mobile devices revealed that it is a rela-
tively new and active topic, with many software libraries and expert discussions being dedicated
to it. In this work, I first survey available information visualization libraries for developing Java-
based Android mobile applications. I then summarize key features of the libraries including
supported chart types, possible interaction with the charts such as zooming or panning and list
key figures reported by the library provider such as the number of downloads and the number
of mobile applications that use the library. As a result interested developers get an overview of
these libraries along with a comparison of the key features and figures. Based on this overview,
I select five libraries and conduct a detailed performance test by measuring rendering time and
memory usage on datasets having different sizes. Both measures should be taken into con-
sideration when choosing a library for visualizing desired volumes of data on mobile devices.
This is because these devices might impose limitations on memory and computational resources
available for mobile applications.

i

Contents

1 Introduction 1

2 Related Work 3

3 Method 5

4 Overview of Libraries 7
4.1 Open source libraries . 8
4.2 Commercial libraries . 17
4.3 Discussion . 21

5 Comparison of Libraries Performance 25
5.1 Experiment . 25
5.2 Duration . 26
5.3 Memory usage . 28
5.4 Lines of code . 29
5.5 Discussion . 30

6 Conclusion 33

References 35

iii

CHAPTER 1
Introduction

The modern society is confronted with a data explosion. Stock trading at stock exchanges, enor-
mous simulations on supercomputers and devices like MRI-scanners lead to a large amount of
data [van Wijk, 2005]. Understanding abstract data is difficult. [Purchase et al., 2008] mention
that computer graphics and interaction can enhance the cognition of abstract data. Visualizing
information with graphics has the advantage that the abstract data will be represented not only
verbally but also in a second, pictorial way. In many ways a graphic communicates more infor-
mation than many words [Tversky et al., 2002]. Visualization has a growing role in a variety
of domain because it helps people to understand problems easier and make faster and better
decisions [Chittaro, 2006]. [Tversky et al., 2002] shows that an effective way of expressing pro-
cesses could be animation. [Tversky et al., 2002] also mentions that animation is a change over
time and that there are many different ways how this occurs from i.e. the simple movement of a
dot to a movement of the part of an object or system with respect to each other.

Information visualization can be created in various ways, e.g. with the use of commercial
programs like Microsoft Excel or Tableau, self-implemented programs or using programming
language specific libraries. Additionally, a variety of software libraries are available to allow the
development of interactive visualizations as part of a software system.

The prognosis of [Gartner, 2013] shows that the shipment of devices with Android operat-
ing system triple from 2012 to 2017. The shipment of PCs (desktop systems and notebooks)
decreases on the contrary. For this reason, mobile devices such as tablets, mobile phones and
ultra-mobile PCs gaining increasing importance in the software industry.

Mobile devices come with limitations for the software. There is a difference between in-
formation visualization on mobile and traditional devices. According to [Chittaro, 2006] and
[Yoo and Cheon, 2006] there are hardware restrictions such as screen size, height/width ratio
of the screen, CPU power and input devices. In addition to the hardware restrictions there are
limitations imposed by mobile operating systems, especially with Android. Google follows his
strategy to use a common-programming language but not supporting the whole development kit.
In the case of Android the Android-SDK is missing the AWT- and Swing-classes from the Java
development kit (JDK). These are basic classes for information visualization with Java. [Delap,

1

Scott, 2007]. Libraries used on desktop-systems cannot be used on Android devices but mobile
platforms using the Java-SDK for mobile devices (Java-ME) are able to.

We are facing the question whether or not these Java libraries will meet the needs of in-
formation visualization on mobile devices on Android. Do existing charting and visualization
libraries fit the needs for data visualization on mobile devices? This work gives an overview
of existing libraries and their key figures to make better decisions to choose a library which is
appropriate for the requirements of a given application.

The next chapter introduces some related work from the information visualization domain.
Chapter 3 describes the methodology followed in this work, in particular, how available li-
braries were found and compared which libraries were selected for detailed performance anal-
ysis. Chapter 4 gives overview of found libraries and a detailed description and comparison
of these libraries. Chapter 5 reports the results of detailed performance test was performed for
selected libraries, along with discussion of these results. Chapter 6 concludes with summary of
the work, lessons learned, and future challenges in Java-based mobile visualizations.

2

CHAPTER 2
Related Work

Interactive visualization in web browser based applications is the focus of [Lammarsch et al.,
2008]. Several Technologies such as Java, Silverlight and Flash are compared against each other
on criteria such as animation, interactivity and future perspective. The study was conducted on
standard PCs without accounting for the restrictions that come with mobile devices (as men-
tioned in Chapter 1). One of the main results is that there is no general solution. Each pro-
gramming platform has its advantages and disadvantages. Simply porting visualizations from
desktop computers to mobile devices is impossible due to the limitations of mobile devices
[Chittaro, 2006]. The following papers focus on the design and enhancement of information
presentation on mobile devices. [Chittaro, 2006] depicts that the design process of visualiza-
tions on mobile devices differs from the traditional visualization because of the restrictions on
mobile devices. The focus is how to design more effective visualizations and to avoid failures.
Different information types have different needs so the information types handled in five mobile
visualization classes (text, pictures, maps, physical objects and abstract data). [Yoo and Cheon,
2006] also show that the aspects of visualization distinguish on the type of information to visu-
alize. The authors define three conditions for effective information processing. First, choose a
layout based on the information type and an effective use of the limited screen. Second, use visu-
alization algorithms optimized for mobile devices. Third, use animations for better recognition
of information change.

Information visualization with Java on mobile devices is a quite new area. This is why
much information on this topic has been published in forums, blogs or conventional websites.
One example is a popular entry on a question and answer (Q&A) website is [StackOverflow,
2012]. The page is a discussion about good graphing packages for Android. Information about
libraries was posted and the libraries are ranked. The solution supported by the questioner called
RapidAndroid [Dimagi, 2009] has a description that the library is an implementation of a SMS
gateway (send and receive SMS without mobile device). For this reason, it was not feasibe for
us to test this library, and there were no additional information about charts on the product page.
Therfore, this library is not considered.

3

Several other addressing similar questions such as [Reddit, 2013], often refer to [StackOver-
flow, 2012].

4

CHAPTER 3
Method

At the start of the project we decided to describe and compare the libraries based on information
published on product sites. The search started with academic search engines Google-Scholar
and CiteSeerX. The following terms were used as search keywords:

• graphics

• charts

• Android

• library

The result was not satisfying because it’s a relatively new area with few related results. The next
step consisted of searching the web with the same keywords using Google as a search engine.
One noteable search result was the (Q&A)page described in Chapter 2 [StackOverflow, 2012]. A
variety of Java-based charting libraries for mobile devices were proposed by various contributors
to the discussion on this page. These libraries, along with other ones returned by our search have
been collected and analyzed for relevance to this work based on the following criteria:

1. Popularity of the library
A large number of downloads and mobile applications using the library is an indication of
user acceptance

2. License / price
Is the library commercial or distributed under an open source license? If the library was
commercial the price was noted, and the possibility of a testing a trail version is reported

3. Last activity
Is the Library still under development? This is measured by the existence of new releases,
software fixes, and feature enhancements

5

4. Charts
Which chart types are supported

5. Interactivity
Is interaction with the chart possible? Example interactions are zooming and panning

6. Additional information
This includes special features provided by the product page that are worth considering,
such as capability of GPU rendering

In the next step some libraries were picked based on the information on number of charts
and the reported performance of the libraries. For each library a performance test with paral-
lel coordinates chart with a large amount of lines was created and the results were compared
according to the following criteria:

1. Duration
Time to render the chart

2. Memory usage
Memory used by the app with and without drawing the lines

3. Lines of Code
Number of lines of code to draw the chart

Chapter 5 outlines major advantages and disadvantages of the libraries selected for performance
test.

6

CHAPTER 4
Overview of Libraries

This section presents the results of the research on visualization libraries for mobile devices.
The results are compared in the next table to give an overview. The table is ordered descending
by the number of downloads and the number of supported chart types.

Library Distribution License /
price from

Last
activity

Number
of charts

Interac-
tivity

Additional infor-
mation

AChartEngine
[AChartEngine,
2015]

Version 1.1: 40.742
downloads
Version 1.0 26.510
downloads
Total: 3.000 mobile
applications

Apache Li-
cense v2.0

May 2013 12 Zoom
Pan

-

charts4j
[charts4j, 2013]

Version 1.3: 21.026
downloads

MIT Li-
cense

January
2011

8 Zoom Uses Google charts
API. Calculation in
the cloud

Androidplot
[Androidplot,
2013]

Version 0.6: -
Total: 500 mobile
applications

Apache Li-
cense v2.0

Septem-
ber 2014

5 Pan
Zoom

supports dynamic
and static charts

AFreeChart
[AFreeChart,
2011]

Version 0.0.4:
10.237 downloads

GNU
LGPL

April
2012

9 - Based on
JFreeChart 1.0.13

Chartdroid
[Chartdroid,
2015]

Version 2.0: 8.849
downloads
Total: 5 mobile ap-
plications

Apache Li-
cense v2.0

Novem-
ber 2010

5 - -

GraphView
[Gehring, 2015]

Version 4.0: -
Total: 26 mobile ap-
plications

GNU
LGPL

Decem-
ber 2014

2 Zoom -

Snowdon [Snow-
don, 2015]

- Apache Li-
cense v2.0

- 6 - -

Droidcharts
[Droidcharts,
2015]

- GNU
LGPL

Novem-
ber 2010

5 - Attempt to port
JFreeChart to
Android

7

HoloGraph-
Library [Nadeau,
2013]

- Apache Li-
cense v2.0

April
2014

3 - -

Processing [Pro-
cessing, 2015]

- GNU
LGPL

February
2015

- Zoom create graphics
with textures,
shades

RChart
[Java4Less,
2015]

Version 2.2: - 45,5$ April
2012

14 Zoom
Pan

3D line, bar and pie
chart
Bar with images in-
stead of label

aiCharts [Artful-
Bits, 2015]

Version 1.7: -
Version 2.0 beta: -

299$ - 14 Zoom
Pan

-

ShinobiCharts
[Controls, 2015]

Version 1.7 995$ - 9 - GPU rendering

Android chart li-
brary [NiftyMo-
bileApps, 2015]

Version 1.0: - 99$ - 6 - -

In the next two sections, the libraries are described in detail with additional information
and screenshots of example applications. Section 4.1 describes open-source libraries while Sec-
tion 4.2 describe commercial ones. Later the libraries will be handled in detail with additional
information and screenshots of example applications.

4.1 Open source libraries

License

All analyzed libraries have been published under one of the following open-source licenses:

1. Apache License v2.0
Code is free for use and modification. Modifications do not need to be released. Propri-
etary parts do not need to be under Apache license. Proprietary Parts based on code under
Apache license must contain a copy of the license.

2. GNU Lesser General Public License
Code is free for use and modification. Modifications have to be released. The LGPL-Code
needs to be modifiable by the end users. If direct in proprietary software, the software has
to be released. Using the code in form of a shared library (e.g. DLL) separates the LGPL-
Code clearly from the proprietary software parts and the proprietary part does not have to
be released.

3. MIT License
Code is free for use and modification. Modifications do not need to be released.

8

AChartEngine

[AChartEngine, 2015] is the widely distributed library. 3.000 mobile applications use this li-
brary. Twelve kinds of charts are supported and the interactions zoom and pan are possible. In
the last three years two new versions have been released. This indicates that further updates of
the library are likely. Figure 4.1 shows examples for three charts: a line chart, a range chart and
a combination of line and area chart.
Supported charts:

• line chart

• bar chart

• doughnut chart

• pie chart

• scatter chart

• area chart

• time chart

• bubble chart

• range (high-low) bar chart

• dial chart / gauge

• combined (any combination of chart)

• cubic line chart

9

Figure 4.1: A line chart, a range bar chart and a combined chart generated using AChartEngine
[AChartEngine, 2015]

charts4j

[charts4j, 2013] uses the Google charts API to create charts. This means that an internet connec-
tion is necessary to create a visualization. The library supports many features of the Google chart
tools, which are deprecated. Eight different types of charts are possible. Last change occurred
approximately four years ago. It’s possible that no new enhancements are planned. Figure 4.2
shows a radar chart and some basic line and bar charts.

Supported charts:

• line chart

• bar chart

• pie chart

• scatter chart

• radar chart

• XY chart

• map chart

• Venn chart

10

Figure 4.2: a line chart, a pie chart, and radar chart generated using charts4j and calculated in
the cloud [charts4j, 2013]

Androidplot

[Androidplot, 2013] is used in over 500 mobile applications and supports dynamic and static
charts. With zooming and panning they have two interactivity features mentioned on their page.
The latest release was in September 2014. The library is quite up to date but in version 0.6 which
can indicate that the work on the library is not finished yet. Figure 4.3 shows a line, pie and a
bar chart.
Supported charts:

• line chart

• bar chart

• pie chart

• scatter chart

• step chart

11

Figure 4.3: A line chart, a pie chart and a bar chart generated using Androidplot [Androidplot,
2013]

Chartdroid

[Chartdroid, 2015] supports five chart types. According to its webpage, it has over 8.000 down-
loads but only five known mobile applications use this library. Interactivity is not supported. The
last activity is from November 2010. Figure 4.4 shows some examples provided by the product
page.
Supported charts:

• line chart

• bar chart

• doughnut chart

• pie chart

• scatter chart

12

Figure 4.4: Line and pie chart generated with Chartdroid [Chartdroid, 2015]

AFreeChart

[AFreeChart, 2011] is based on JFreeChart 1.0.13. It supports many of the features of JFreeChart
but not all. Eight chart types are supported. No information could be found about interactiv-
ity. Since April 2012 there has been no further activity. The Library is in Version 0.0.4. The
perspective of the library is hard to predict. JFreeChart will be enhanced [JFreeChart, 2011] so
it’s possible that new features will be ported to AFreeChart. Figure 4.5 shows a special type of
chart: a vector chart. Additional candlestick and pie charts are shown.
Supported charts:

• line chart

• bar chart

• pie chart

• scatter chart

• area chart

• candlestick chart

• vector chart

• combined charts (any combination of the above charts)

13

Figure 4.5: Candlestick, pie and vector chart generated with AFreeChart [AFreeChart, 2011]

GraphView

[Gehring, 2015] allows interactivity by zooming. The library only supports two types of charts.
The last release was in August 2013. That means, that the library is relatively new. Figure 4.6
shows a line and a bar chart provided by the product page.
Supported charts:

• line chart

• bar chart

Figure 4.6: Line and bar chart generated using GraphView [Gehring, 2015]

Snowdon

Little information could be found on the webpage of [Snowdon, 2015]. The library supports
different types of charts such as histogram and heat maps. Figure 4.7 shows a heat map generated

14

using Snowdon and a line and scatter chart.
Supported charts:

• line chart

• bar chart

• area chart

• scatter chart

• histogram

• heat map

Figure 4.7: Line chart, heat map and scatter chart generated using Snowdon [Snowdon, 2015]

Droidcharts

[Droidcharts, 2015] is another attempt to port JFreeChart [JFreeChart, 2011] to the Android
platform. Five chart types are supported. The latest activity was in November 2010 means that
AFreeChart is a two year younger attempt with more functionality. No screen-shots were found.
Supported charts:

• line chart

• bar chart

15

• pie chart

• XY line chart

• category bar chart

HoloGraphLibrary

[Nadeau, 2013] is a new library and started in February 2013. The last activity was in April
2014. Currently the library supports three types of charts but because it’s a new library updates
should bring further charts. Figure 4.8 shows sample charts provided by the product page.
Supported charts:

• line chart

• bar chart

• pie chart

Figure 4.8: A line chart, a pie chart and bar chart generated using HoloGraphLibrary [Nadeau,
2013]

Processing

[Processing, 2015] is a programming language, development environment and online commu-
nity are available. The development of Processing started in 2001. With version 2.0 they in-
troduced an Android and a JavaScript mode. The Android version of Processing is still in Beta

16

state. In contrast to the other libraries Processing is not a charting library. It provides graphics
from the sketch. Charts must be implemented by the developer. Figure 4.9 shows sample graph-
ics provided by the product page.
Supported graphical objects:

• 2D primitives

• 3D primitives

• (Bezier-)Curves

Figure 4.9: 3D, vector and bezier graphics created with Processing [Processing, 2015]

4.2 Commercial libraries

The commercial libraries do not report the number of downloads and mobile applications that
use the library. Only basic information such as chart types are made public.

RChart

[Java4Less, 2015] is the cheapest of the commercial libraries. It supports zooming and panning
and is the only library with 3D charts (line, bar and pie). A demo version is available. Figure
4.10 shows a 3D line chart, gauge chart and a multiaxes chart.
Supported charts:

• line chart

• bar chart

• pie chart

• scatter chart

17

• area chart

• gauge chart

• bubble chart

• radar chart

• multiaxes chart

• candlestick chart

• curve chart

• event chart

• stacked axis chart

• stacked bar chart

Price: starting with 45,5$ for a single binary license as of April 2015.

Figure 4.10: A 3D line chart, a gauge chart and a multiaxes chart generated using RChart
[Java4Less, 2015]

aiCharts

[ArtfulBits, 2015] is the second most expensive library. A large amount of chart types are
available as well as zooming and panning. Two Versions 1.7 and 2.0 beta are available. The
library can be tested with a trial version. Figure 4.11 shows screen-shots of the demo with
different charts on one side.
Supported charts:

• line chart

18

• bar chart

• pie chart

• spline chart

• area chart

• point chart

• bubble chart

• polar chart

• column chart

• doughnut chart

• candlestick chart

• funnel chart

• pyramid chart

• rose chart

Price: 299$ developer license as of April 2015.

Figure 4.11: Diverse charts from the aiChart Demo [ArtfulBits, 2015]

19

ShinobiCharts

[Controls, 2015] has nine types of charts. The license cost is the highest. The library utilizes the
GPU for rending the charts and should be very fast. Trial version can be downloaded. Figure
4.12 shows a chart on a tablet and on a mobile phone.
Supported charts:

• line chart

• bar chart

• pie donut chart

• scatter chart

• column chart

• histogram

• area chart

• stacked chart

• step chart

Price: 995$ per developer

Figure 4.12: Line and bar chart on tablet and mobile phone with ShinobiCharts [Controls, 2015]

Android chart library

[NiftyMobileApps, 2015] supports six chart types and is released in version 1.0. It has the fewest
number of supported charts but is much cheaper than ShinobiChart and aiCharts. The demo app
is available in the Google play store. Figure 4.13 shows some sample charts provided by the
product page.
Supported charts:

20

• line chart

• bar chart

• pie chart

• area chart

• point chart

• column chart

Price: 99$ developer license

Figure 4.13: Line, area and bar chart with Android chart library [NiftyMobileApps, 2015]

4.3 Discussion

In the sections above we get an overview of existing libraries. This overview is sorted by number
of downloads and mobile applications that use the library but which libraries are best in other
criteria e.g. number of chart types and time performance.

Number of charts

This section presents the results of number of supported chart types. The results are compared
in the next table to give an overview.

Library Line Bar Pie Doughnut Scatter Area Bubble Other charts
AChartEngine X X X X X X X time

range (high-
low) bar
dial / gauge
cubic line
combined

charts4j X X X - X - - XY
Radar
Map
Vehn

21

Androidplot X X X - X - - Step
Chartdroid X X X X X - - -
GraphView X X - - - - - -
Snowdon X X - - X X - Histogram

Heat map
Droidcharts X X X - - - - XY

Category bar
HoloGraphLibrary X X X - - - - -
Processing - - - - - - - -
RChart X X X X X X Gauge

Radar
Multiaxes
Candlestick
Curve
Event
Stacked axis
Stacked bar

aiCharts X X X X X X X Spline
Radar
Polar
Column
Candlestick
Funnel
Pyramid
Rose

ShinobiCharts X X X - X X - Column
Histogram
Stacked
Step

Android chart
library

X X X - X X - Column

The commercial libraries RChart and aiCharts have, with 14, the most chart types. This
libraries are followed by the open source library AChartEngine with 12. An advantage of the
two commercial libraries is that both have the highest number of charts and support zooming
and panning whereas AChartEngine has fewer charts and supports zooming and panning.

Time performance

The only charting library that delegates the calculations to the GPU is ShinobiCharts. Because
of that this library should be the fastest. charts4j calculates the charts in the cloud which can be
fast, especially for a large amount of data, but only if the connection to the cloud is fast enough.
The Processing library uses OpenGL for faster rendering. The other libraries do not provide any
information about the speed. They could only be evaluated with a benchmark.

22

Interactivity

Only a few libraries allow interaction with the charts. From the open source libraries these
are AChartEngine, Androidplot, charts4j, GraphView and Processing. Among the commercial
libraries, both aiCharts and RChart support interaction. The commercial libraries are in advan-
tage because they support more chart types with zooming and panning. Androidplot supports
panning and zooming but only 5 types of charts. GraphView supports panning and zooming
but only in line and bar charts. In AChartEngine zoom and pan are available. charts4j and
Processing allow zooming.

Future perspective of the open source libraries

The future of the commercial libraries will be left out because of the lack of their usage details
(number of downloads and number of mobile applications using them). We estimate they will be
enhanced in the future by the respective commercial companies. Among open-source libraries
AChartEngine, Androidplot, GraphView and HoloGraphLibrary all have their last activity in the
last two years and Processing has shown activity in 2015. We estimate these libraries will con-
tinue to be enhanced and supported. The last activities in Droidcharts, Chartdroid and charts4j
were about four years ago. We therefore estimate that the libraries will not be used actively in
the future.

Category Libraries
Number of charts RChart, aiCharts, AChartEngine
Time performance ShinobiCharts, charts4j, Processing
Interactivity aiCharts, RChart, Androidplot, GraphView, charts4j,

AChartEngine, Processing
Good future perspective AChartEngine, Androidplot, GraphView,

HoloGraphLibrary, Processing
Table 4.3: Overview of the Categories with most applicable li-
braries

23

CHAPTER 5
Comparison of Libraries Performance

Based on the results of chapter 4 the following libraries are compared against each other:

• AChartEngine

• Androidplot

• AFreeChart

• ShinobiCharts

• Processing

The libraries were picked based on the numbers of charts supported (AChartEngine, An-
droidplot, AFreeChart) or based on reported high performance (ShinobiCharts, Processing).

The comparison is based on a performance test, the measurement of the memory usage, the
lines of code used to draw a chart and a list of advantages and disadvantages for every library.

5.1 Experiment

The performance criteria rendering duration and memory usage are measured while rendering
a varying number of lines in a line chart to simulate a parallel coordinate chart. The dataset
contains 5.000 records. Each library has to render a increasing number of lines.

Mobile applications will be created to run the tests on the mobile device. Each application
should work similar and distinguish only in the library specific part.

The device used to measure the performance has the following specifications:

• Qualcomm MSM8226 Snapdragon 400 @ 4x 1.20GHz Cortex-A7

• GPU Adreno 305

• 1GB RAM

25

• Android 4.4.2

• Processing

5.2 Duration
The first criteria for comparison is the rendering duration in milliseconds. Each library renders
a line chart with varying numbers of lines. The measurements starts with 1.000 lines and ends
with 5.000. The step size is 500 lines.

Library
Number of lines

1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000

Androidplot 1.826 2.757 3.565 4.461 5.535 7.472 8.759 10.832 12.558
AChartEngine 1.143 1.803 1.751 1.234 1.685 1.901 1.744 1.792 1.589
AFreeChart 1.118 4.501 7.968 13.676 21.981 32.370 46.897 67.527 69.715
Processing 707 1.012 1.402 1.702 2.057 2.332 2.714 2.966 3.371

Table 5.1: Rendering duration in milliseconds of varying number of lines be-
tween four libraries (ShinobiCharts is excluded as it fails to handle large number
of lines)

Figure 5.1: Comparison of rendering duration of varying number of lines between four libraries
(ShinobiCharts is excluded as it fails to handle large number of lines)

The measurement results in the table and figure 5.2 show that the rendering duration of
AFreeChart increases dramatically. AChartEngine levels the duration between 1,5 and 2,5 sec-
onds. The rendering time with Processing and Androidplot increases nearly linearly with the
number of lines. ShinobiCharts is not shown in this chart because rendering 90 lines needs more

26

than 15 seconds. Because of this the ShinobiCharts test only measures the difference between
using hardware acceleration and not using it.

Acceleration
Number of lines

10 30 50 70 90
With 1 86 944 3.933 9.031 18.611
With 2 81 877 3.616 8.875 18.930
With 3 115 859 3.492 8.817 18.356
With 4 106 844 3.442 8.919 18.723
With 5 97 909 4.300 9.602 18.903
Without 1 78 863 3.559 8.713 18.369
Without 2 154 860 3.604 8.872 18.529
Without 3 118 803 3.455 8.867 18.562
Without 4 109 840 3.472 8.846 19.044
Without 5 85 800 3.557 8.952 18.819

Table 5.2: Rendering duration in milliseconds of varying number
of lines with and without hardware acceleration in ShinobiCharts

Figure 5.2: Rendering duration with and without hardware acceleration in ShinobiCharts

Figure 5.2 shows the difference between drawing the chart with hardware acceleration and
without it. The measurements shows no significant difference between hardware acceleration
enabled or disabled.

27

5.3 Memory usage

This section shows the results of the comparison of the memory usage of the in section 5.1
described applications. The memory usage is measured for each step of number of lines while
running the test scenario described in section 5.2. For comparison the values of the garbage
collector (’GC_FOR_ALLOC’) were extracted from the log-files. The values are in Megabyte
(MB).

Library
Number of lines

1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000
Processing 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9
Androidplot 11,4 13,7 20,3 23,6 29,4 37,5 42,4 49,8 57,3
AChartEngine 9,1 11,0 14,2 17,8 20,8 21,7 22,8 24,7 28,8
AFreeChart 8,2 8,3 8,5 9,0 9,1 10,3 10,5 11,5 12,4

Table 5.3: Memory usage in Megabyte of mobile applications
rendering varying number of lines between four libraries (Shino-
biCharts is excluded as it fails to handle large number of lines)

Figure 5.3: Memory usage of mobile applications rendering varying number of lines between
four libraries (ShinobiCharts is excluded as it fails to handle large number of lines)

Figure 5.3 shows that Processing levels off whereas the memory usage of AFreeChart in-
crease up to 50% but uses still few memory. Androiplot doubles the used memory. AChartEngine
has the biggest increase in memory usage. 3,5 times more memory is needed to draw the line

28

charts in the experiment described in section 5.1. Except Processing all libraries increase the
used memory nearly linearly with the number of lines being rendered.

Library
Number of lines

10 30 50 70 90
ShinobiCharts 7 7,6 8,1 9,0 9,7

Table 5.4: Memory usage in Megabyte of mobile applications ren-
dering varying number of lines in ShinobiCharts

Figure 5.4: Memory usage in Megabyte of mobile applications rendering varying number of
lines in ShinobiCharts

Figure 5.4 shows that the memory usage of ShinobiCharts increases linearly up to 40%.

5.4 Lines of code

In this section the implementation effort will be compared. The libraries are compared against
each others by the lines of code used to draw the chart. Counted are only the lines that are
necessary to draw the chart and not the number of lines of code to run the whole app.

Library Shinobi Processing Androidplot AChartEngine AFreeChart
Lines of code 17 10 12 20 14

29

All libraries needed only a few lines of code. In Processing the fewest amount of lines of
code is needed but no axis and legends are implemented. The lines of code vary especially due
to setting the axis, the chart title and rendering parameter like stroke width, color and so on.

5.5 Discussion

The sections above show the results of the performance of the libraries tested. The next sections
point out the advantages and disadvantages each library.

AChartEngine

advantages disadvantages
twelve charts bad documentation
zoom, pan out of the box high memory usage
fast most lines of code needed
direct manipulation possible

Androidplot

advantages disadvantages
good documentation zoom, pan not out of the box
speed okay but getting slower with large data high memory usage

five charts
no direct manipulation

AFreeChart

advantages disadvantages
good documentation in combination with the
JFreeChart documentation

slow

little memory used no interaction
nine charts
direct manipulation possible
few lines of code needed

Processing

Processing do not support charts out of the box but based on the very good documentation it is
easy to create a user defined chart from the scratch with graphical primitives. Totally new types
of representing data could be created.

30

advantages disadvantages
very good documentation no predefined charts
large online community difficult to integrate into other mobile appli-

cations
fast Android version is still in beta state
low memory usage is described as not bug free by the product site
few lines of code no direct manipulation
wide range of visualization possible

ShinobiCharts

advantages disadvantages
nine charts expensive
low memory usage no interaction

much lines of code needed
very slow
no direct manipulation

As seen in the previous chapters and sections, there are a few libraries for charting and visu-
alization on mobile devices. Implementing the tests has shown, that the libraries are easy to
implement, when the app is set up correctly. Also there are only few lines of code needed to
show a chart.

The range of interaction is quite limited. Some libraries like AChartEngine and Androidplot
support zoom and pan whereas libraries like AFreeChart and ShinobiControls do not support
any interaction.

The performance of AChartEngine and Processing remains constant when rendering large
data. Other libraries are getting slower with the amount of data. ShinobiControls already gets
slow with beyond 50 lines drawn in the chart.

Except for Processing, all libraries are limited to drawing a set of charts. Processing supports
no charts out of the box but delivers an advanced visualization framework which is also available
for other technologies such as Java or JavaScript.

Feature
Libraries

AChartEngine Androidplot AFreeChart Processing ShinobiCharts

Documentation Bad Good Good Very good Okay
Interaction Zoom, pan Not out of Box No No No
Charts 12 5 9 0 9
Memory usage High High Little Low Low
Direct manipulation Possible No Possible No No
Lines of code Most needed Okay Few Few Much needed
Rendering Fast Okay Slow Fast Very slow

Table 5.11: Advantages and disadvantages of libraries

31

CHAPTER 6
Conclusion

This thesis gives an overview of Java-based visualization libraries for mobile devices to help
developers of mobile applications in choosing a library suited for their application.

The search for available libraries shows that commercial libraries generally support several
chart types but do not provide detailed information about the popularity of the library in terms
of number of downloads or mobile applications using it. On the other hand, the more an open
source library is used, the better is its documentation and the information on usage statistics.
The search shows that interaction with the rendered data is limited to some basic functionality
and that the guaranteed future of the open source libraries is doubtful. This work provides
detail feature analysis of available libraries, and compare them based on these features, to aid
developers choosing a suited library for their application.

This work further conducts performance analysis of selected libraries, in terms of running
time and memory usage. The performance test shows that assumptions like a library that uses
GPU rendering should be faster are not necessarily correct. It also shows that the rendering
duration can be a main criteria delivering a mobile application for large data. Another insight of
the performance test is that the used memory should be kept in view.

In further work the libraries can be tested in a more detailed way to prove the correctness
of the information of the product owner. Furthermore, other visualization frameworks for Java-
based desktop application can be ported to Android as was done with AFreeChart, Droidcharts
(both based on JFreeChart) or Processing.

33

References

AChartEngine (2015). Achartengine. Created at: n.d.. Retrieved at: April 5, 2015.
http://www.achartengine.org/.

AFreeChart (2011). Afreechart. Created at: 22.10.2011.. Retrieved at: April 5, 2015.
http://code.google.com/p/afreechart/.

Androidplot (2013). Androidplot. Created at: n.d.. Retrieved at: April 5, 2015.
http://androidplot.com/.

ArtfulBits (2015). aicharts. Created at: n.d.. Retrieved at: April 5, 2015.
http://www.artfulbits.com/products/android/aicharts.aspx.

Chartdroid (2015). Chartdroid - native chart engine for android. Created at: n.d.. Retrieved at:
April 5, 2015. http://code.google.com/p/chartdroid.

charts4j (2013). charts4j - let the computer in the cloud build your charts. Created at: 27.02.2013.
Retrieved at: April 5, 2015. http://code.google.com/p/charts4j/.

Chittaro, L. (2006). Visualizing information on mobile devices. Computer, 39:40–45.

Controls, S. (2015). Shinobicharts - powerful, flexible ui controls for android. Created at: n.d..
Retrieved at: April 5, 2015. http://www.shinobicontrols.com/android/.

Delap, Scott (2007). Google’s android sdk bypasses java me in favor of java lite and
apache harmony. Created at: November 12, 2007. Retrieved at: October 10, 2013.
http://www.infoq.com/news/2007/11/android-java.

Dimagi (2009). Rapidandroid - an sms gateway on your phone. Created at: 17.07.2009.. Re-
trieved at: December 1, 2013. http://www.dimagi.com/rapidandroid/.

Droidcharts (2015). Droidcharts - porting jfreecharts library to android. Created at: n.d.. Re-
trieved at: April 5, 2015. http://code.google.com/p/droidcharts/.

Gartner (2013). Gartner says worldwide pc, tablet and mobile phone combined shipments to
reach 2.4 billion units in 2013. Created at: April 4, 2013. Retrieved at: October 10, 2013.
http://www.gartner.com/newsroom/id/2408515.

35

Gehring, J. (2015). jjoe64 developer blog - graphview library. Created at: n.d.. Retrieved at:
April 5, 2015. http://www.android-graphview.org.

Java4Less (2015). J4l rchart 2.2 (android edition). Created at: n.d.. Retrieved at: April 5, 2015.
http://www.java4less.com/android/charts.php.

JFreeChart (2011). Jfreechart. Created at: 22.10.2011.. Retrieved at: December 1, 2013.
http://www.jfree.org/jfreechart/.

Lammarsch, T., Aigner, W., Bertone, A., Gärtner, J., Miksch, S., and Turic, T. (2008). A com-
parison of programming platforms for interactive visualization in web browser based applica-
tions. In Banissi, E., Stuart, L., Jern, M., Andrienko, G., Marchese, F. T., Memon, N., Alhajj,
R., Wyeld, T. G., Burkhard, R. A., Grinstein, G., Groth, D., Ursyn, A., Maple, C., Faiola,
A., and Craft, B., editors, Proceedings of 12th International Conference on Information Vi-
sualisation (IV08), page 194–199. IEEE Computer Society Press, IEEE Computer Society
Press. <p>Vortrag: 12th International Conference on Information Visualisation (IV08), Lon-
don, UK; 2008-07-09 – 2008-07-11</p>.

Nadeau, D. (2013). Holographlibrary. Created at: 27.02.2013. Retrieved at: April 5, 2015.
https://bitbucket.org/danielnadeau/holographlibrary/wiki/Home.

NiftyMobileApps (2015). Android chart library. Created at: n.d.. Retrieved at: December 1,
2013. http://www.niftymobileapps.com/android-chart-library/.

Processing (2015). Processing. Created at: n.d.. Retrieved at: April 5, 2015.
https://processing.org/.

Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., and Ward, M. (2008). Theoretical founda-
tions of information visualization. in information visualization: Human-centered issues and
perspectives. In Kerren, A., Stasko, J. T., Fekete, J., and North, C., editors, Lecture Notes In
Computer Science, volume 4950. Springer-Verlag, Berlin, Heidelberg 46-64.

Reddit (2013). Reddit - basic data visualization in android develop-
ment. Created at: May 4, 2013. Retrieved at: December 1, 2013.
http://www.reddit.com/r/androiddev/comments/1dp0er/basic_data_visualization_in_android_development/.

Snowdon (2015). Snowdon - a simple, fast, graphing library for android. Created at: n.d..
Retrieved at: April 5, 2015. http://code.google.com/p/snowdon/.

StackOverflow (2012). Stackoverflow - any good graphing packages for an-
droid? Created at: April 11, 2012. Retrieved at: October 10, 2013.
http://stackoverflow.com/questions/424752/any-good-graphing-packages-for-android.

Tversky, B., Y, J. B. M., and Betrancourt, M. (2002). Animation: Can it facilitate. International
Journal of Human-Computer Studies, 57:247–262.

van Wijk, J. J. (2005). The value of visualization. Visualization Conference, IEEE, 0:11.

36

Yoo, H. Y. and Cheon, S. H. (2006). Visualization by information type on mobile device. In
Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation - Volume 60,
APVis ’06, pages 143–146, Darlinghurst, Australia, Australia. Australian Computer Society,
Inc.

37

	Introduction
	Related Work
	Method
	Overview of Libraries
	Open source libraries
	Commercial libraries
	Discussion

	Comparison of Libraries Performance
	Experiment
	Duration
	Memory usage
	Lines of code
	Discussion

	Conclusion
	References

