

Contingency Wheel Visual Analysis of Large Contingency Tables

Bilal Alsallakh^{1;2}, Eduard Gröller¹, Silvia Miksch¹ and Martin Suntinger² ¹Vienna University of Technology, Austria ²UC4 Software, Austria

Introduction

The Visual Metaphor

A two-way **contingency table** is an n x m matrix that records the frequency of observations for each pair of categories from two categorical variables.

The **Contingency Wheel** is an interactive visual method for finding and analyzing associations in a large n × m table with m < 100 and n being 2 to 3 orders of magnitude larger than m. Columns \rightarrow Sectors

$\mathsf{Cells} \to \mathsf{Nodes}$

- angular coordinate by layout
- radial coordinate from *r_{i,j}* the strength of association
 between row i and column j

Conclusion

The Contingency Wheel enables analyzing and gaining insight into large tables (up to 500,000 x 100)

Effective visual and interaction metaphors for discovering and analyzing associations

Linked views effective in brushing and filtering data

Example: ca. 1 million ratings on 270,170 **books** by users in different **countries** Thresholds

- $f_{i+} > T_s$ on row significance
- $r_{i,i} > T_r$ on association strength

Links

– column-column associations

Future work

- Exploring different algorithms for node placement
- Using different association measures
- Hierarchical Clustering

Related Work

Eye \ Hair	Black	Brown	Red	Blond	Total
Brown	68	119	29	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Green	5	29	14	14	16
Total	108	286	71	127	592

Snee's hair-and-eye-color dataset

Selecting visible sectors from the bar chart Mapping attributes from linked views

User Interaction

Selecting nodes/links Assigning thresholds (*T*, and *T*,)

Correspondence Analysis

0.2

0.4

0.6

0.8

0.0

-0.4

-0.2

Using Color for Finding Patterns

