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Abstract

Analysis of ensemble datasets, i.e., collections of complex elements such as geochemical maps, is widespread in science and
industry. The elements’ complexity arises from the data they capture, which are often multivariate or spatio-temporal. We
speak of multi-ensemble datasets when the analysis pertains to multiple ensembles. While many visualization approaches were
suggested for ensemble datasets, multi-ensemble datasets remain comparatively underexplored. Our years-long collaboration
with statisticians and geochemists taught us that they frame many questions about multi-ensemble data as set operations. E.g.,
what are the most common members (intersection of ensembles), or what features exist in one member but not another (difference
of members)? As classical crisp set relations cannot account for the elements’ complexity, we propose to model multi-ensembles
as fuzzy relations. We provide examples of fuzzy set-based queries on a multi-ensemble of geochemical maps and integrate this
approach into an existing ensemble visualization pipeline. We evaluated two visualizations obtained by applying this pipeline
with experts in geochemistry and statistics. The experts confirmed known information and got directions for further research,
which is one Visual Analytics (VA) goal. Hence, our proposal is highly promising for an interactive VA approach.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

Many fields in science and industry use intricate algorithms and
simulations to study real-world phenomena ranging from, e.g.,
diesel engines [MGJ∗10] to weather [FKRW17]. The output of
these computations is i) often complex, i.e., multivariate or spatio-
temporal, and ii) usually dependent on the exact model config-
uration, such as parameter settings or initial conditions. Hence,
a single run is inadequate to comprehend the phenomenon or its
model. The collection of simulation outputs is known as an ensem-
ble dataset [WHLS19]. Typical analytic tasks include getting an
overview of the ensemble or parameter analysis. These tasks are
impeded because each individual member may have all the intri-
cate properties of a scientific dataset [KH13], but there are multiple
slightly different copies of it. For multi-ensemble data, the number
of ensembles quickly gets too large to visualize them directly, and
it is not obvious how to achieve computations across many ensem-
bles. Thus, we look for a principled and scalable approach allowing
us to carry out necessary analytic tasks.

This paper draws from extensive discussions with our collabo-
rating experts in statistics and geochemistry. They deal with multi-
ensemble datasets (specifically, ensembles of time series or geo-
graphic maps) and have the same goals as suggested for ensemble
visualization [WHLS19]. We realized that many answers they seek
from the multi-ensemble datasets pertain to four multi-ensemble
dimensions: Ensemble, parameter setting, member, and feature.

Specifically, our collaborators are, e.g., interested in the most com-
mon members in all ensembles (overview) or parameter settings
producing one member but not another (parameter analysis). In
addition, these relations can be formulated as set relations when,
for a suitable tuple of dimensions, one dimension acts as a set and
another as an element. We can then answer the question about com-
mon members as an intersection relation of all ensembles (acting as
a set) containing members (acting as elements). That is, assuming
we have a way of doing that, and it accounts for the uncertainty
arising from comparing complex objects. Set relations like those
cannot be computed with classical crisp sets as there is too much
uncertainty in real-world multi-ensemble data. We can rarely say
for sure that a given member exhibiting complex properties of sci-
entific data is in one ensemble but not in another. More likely, two
members will be simultaneously different and similar in some but
not other aspects. Therefore, in this paper, we propose using fuzzy
set theory to model such relations. Fuzzy relations bring a formal
basis to compute the uncertainty-aware set relations necessary to
handle multi-ensemble data. Our contributions are:

• application of fuzzy set theory to multi-ensemble datasets (Sec-
tion 4) yielding

• a multi-ensemble visualization pipeline based on fuzzy queries
(Section 5); and

• evaluation of the resulting visualizations with domain experts
(Section 6) using a real-world dataset.
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2. Related Work

An ensemble constitutes a collection of objects that often exist in
space, time, and a multivariate attribute space. Members of an en-
semble are expected to be similar in some aspects, as ensemble
data typically emerges from running a simulation with perturbed
parameters. Several surveys cover approaches to ensemble data vi-
sualization [KH13, WHLS19, XLWD19]. Multi-ensembles are less
explored, with a few examples being the following.

Köthur et al. [KWS∗15] propose a Visual Analytics (VA) ap-
proach to compare two ensembles of time series. They com-
pare all pairwise combinations of members with windowed cross-
correlation at several offsets and lags, and visualize the aggregated
results in a tilemap. This gives an overview of when in time the two
ensembles show similarities, but it is not possible to relate them in
any other ways. Cibulski et al. [CKS∗17] deal with a simulation
in engineering, where each simulation run yields a collection of
surfaces. They propose a coordinated multiple views system and
extensive data aggregation. Wang et al. [WLSL17] worked with a
meteorological simulation. Analysts were interested in the influ-
ence of the grid size, in addition to convection parameters. Nested
Parallel Coordinate Plots (NPCP) were suggested to support the
analysis, but the ensembles shown in the NPCP are fixed and few.
Finally, Piccolotto et al. [PBG∗22] describe a VA approach for the
analysis of up to ca. 20 ensembles of time series. In addition to vi-
sualizations supporting the pairwise comparison of ensembles, they
suggest a set-aware clustering scheme to obtain an overview of the
multi-ensemble.

Our four proposed dimensions may be viewed to form a 4D cube.
Cubes were proposed both as concrete data structures [GCB∗97,
WFW∗17, MLKS18] and conceptual models [BDA∗17, LCC∗20].
However, we do not frame our data model as such because the intu-
itive operations on 3D conceptual models vanish using a hypercube.

To summarize, recent work for visualization of multiple ensem-
bles focuses on rather few ensembles, presumably because it eases
visualization design. However, due to that fact, analysts are limited
in the amount of data that can be processed and in the questions
they can ask. With this paper, we aim to lay the required founda-
tion for the visualization of many ensembles.

3. Data Definition and Data Model

We present a formal data definition for everything used in Sec-
tion 6. The dataset we consider is the GEMAS geochemical sur-
vey [RBD∗14]. A publicly available version of the dataset con-
tains measurements of 18 elements associated to 2,108 loca-
tions across Europe. The “simulation model” we use is SBSS
[NOFR15, MBN22, PBM∗22]. For a high-level introduction to
SBSS see [PBM∗22], and for the statistical formulas and proofs,
see [NOFR15, MBN22]. Like Principal Component Analysis for
non-spatial data, SBSS obtains meaningful latent spatial dimen-
sions from multivariate spatial data, such as the GEMAS dataset.
Hence, one obtains a multi-ensemble dataset when varying SBSS
parameters and a member is an SBSS latent dimension.

The four dimensions we consider are parameter setting, ensem-
ble, member and feature (Figure 1). We define a member mi j as

Figure 1: Illustration of the data model (Section 3). SBSS produces
an ensemble (ei) of maps (mi j) from a parameter setting (pi) and a
multivariate spatial dataset (GEMAS geochemical survey). Ensem-
ble members are scalars (color intensity) at geographical locations
(circles). Features are named spatial masks referring to a member.

spatially distributed scalars, i.e., mi j ∈ R2 ×R, with R2 being the
two-dimensional position. All members use identical locations. Lo-
cations may be on a grid, but we do not require it. An ensemble ei
is only a container for members, i.e., ei = {mi1, . . . ,mik}, with k
being the amount of members in ei. All ensembles have size k. One
SBSS run with given parameter settings produces one ensemble.
This paper considers only one SBSS parameter, which is a ball-
shaped point neighborhood definition described by a circular ra-
dius. Hence, a parameter setting is a positive real number pi ∈ R+.
Finally, based on how domain experts analyze latent dimensions,
we model a feature f as qualitative observations in a member, e.g.,
a pattern that could be related to mineral deposits. A feature is a
partial ensemble member, i.e., the values of a member mi j at loca-
tions inside a user-defined simple polygon s f plus a text description
t f : f = (t f ,mi j[s f ]).

4. Fuzzy Relations

The first key idea to our approach is fuzzy comparison, which is
known as distance functions, dissimilarity metrics, or similarity
measures. As the name implies, these functions quantify the simi-
larity of two objects. Fuzzy comparison is crucial as all ensemble
members are expected to be slightly different copies of each other,
and perfect matches will be the exception. We assume appropriate
similarity measures sim(a,b) : X ×X → [0,1] exist, where X is any
of the four dimensions we consider and sim(a,b) = 1 iff a = b. The
second key idea is to use these similarity measures to compute the
association between instances of dimensions connected by an ar-
row in the data model (Figure 1). For example, a feature is highly
associated with a member if it has similar values at the relevant lo-
cations. A parameter setting is highly associated with an ensemble
if a similar parameter setting produced it. An ensemble is highly
associated with a member if it is similar to a member in the ensem-
ble. Fuzzy set theory, specifically fuzzy relations, is the formalism
allowing us to combine and build upon these ideas.

Fuzzy Sets. Fuzzy sets extend classical crisp sets by relaxing the
binary membership condition. It is replaced by a membership de-
gree µA(x) ∈ [0,1] that encodes to which degree an element x be-
longs to set A. A fuzzy set is thus A = {(x,µA(x)) | x ∈ X}. Fuzzy
sets allow similar operations as crisp sets, such as intersection,
union, or difference [Cha19]. In order to carry out these operations,
the fuzzy sets taking part may first be written in a tabular form (Ta-
ble 1). Fuzzy set relations are then computed column-wise, e.g., for
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a fuzzy intersection, a min() operator is applied per column and
yields {(y1,0.1),(y2,0.2),(y3,0.7)}.

y1 y2 y3
x1 0.1 0.5 0.9
x2 1.0 0.2 0.7

Table 1: Two fuzzy sets x1 and x2 written in tabular form.

Fuzzy Relations. Fuzzy sets are defined on the same domain
(Y = {y1,y2,y3} in Table 1). Fuzzy relations define the member-
ship degree on the Cartesian product X ×Y of two domains X and
Y , i.e., R = {(x,y,µR(x,y)|(x,y) ∈ X ×Y}. They may also be writ-
ten in tabular form (Table 2 with X being the ensemble dimension
and Y being the members), which we call a relation matrix. The
identical structure to the fuzzy set’s tabular form is why we say a
dimension can be viewed either as set or element in the relation: By
defining ei in Table 2 as the sets, we can compute, e.g., an intersec-
tion using column-wise min() operations just like described earlier
and obtain the degree to which a member belongs to all ensembles.
When we transpose Table 2, mi j are the sets and ei the elements.

R m11 m12 m13 m21 m22 m23
e1 1.0 1.0 1.0 0.1 1.0 0.6
e2 1.0 0.0 0.4 1.0 1.0 1.0

Table 2: Example relation matrix of ensembles and members.

Building Relation Matrices. We build a relation matrix for all
pair-wise combinations of dimensions in our data model. For four
dimensions, we find six such relations. Three of those relations are
characterized by a direct connection in the data model (Figure 1).
Appropriate similarity metrics populate cells in these relation ma-
trices. E.g., a cell with index i, j in EM (Ensemble × Member) holds
the largest similarity between any member of ei to m j . In PE (Pa-
rameter × Ensemble), a cell holds the similarity between a param-
eter setting pi and the setting p j that produced e j. In MF (Member
× Feature), we compare the values at locations in mi defined by
the feature’s spatial mask to the feature’s reference values. Hence,
we need one similarity measure for parameter settings and one for
members. Our concrete choices are explained in Section 6.

Computing Indirect Relations. Talking about the association be-
tween dimensions without a direct connection in the data model is
also natural. E.g., a parameter setting pi can be highly associated
with a feature if the feature is highly associated with a member,
which is contained in the ensemble produced by pi. Fuzzy com-
position allows a combination of two relations on different product
sets with a shared domain, i.e., R1 = X ×Y,R2 =Y ×Z. There are a
couple ways to carry out this composition [Cha19]; we propose the
max-product composition. For example, the common dimension
member is between ensembles and features. To compose EM and
MF to the relation EF (Ensemble × Feature), degrees µEM(ei,m)
and µMF (m, f j) for all m are multiplied, and the largest product is
kept. This way, we can fill in the gaps (EF, PF, PM) using existing
relation matrices (EM, MF, PE).

Handling Duplicates. For a sufficiently large multi-ensemble
dataset, some members will be practically duplicates (e.g., m11 and
m22 in Table 2). This fact influences possible downstream aggre-
gations, e.g., weighted averages. Duplicates will have the same de-
grees in any fuzzy set computation. The duplicates’ data will be
over-weighted if we use the degrees as weights. To account for this,
we propose to add another dimension representatives, which will
be the centers of a partition-based clustering on the members (e.g.,
k-medoids [PJ09]). Clustering parameters (like k) can be defined
by the analyst or automatically set with grid search and clustering
quality metrics, such as a Silhouette index [LLX∗10]. Fuzzy rela-
tions are defined for representatives in the same fashion as other di-
mensions described before. We assume that the clustering is of suf-
ficient quality and captures the most important trends in the dataset.
We expect that the partitioning can be interactively changed in a
VA system. From now on, we will, for simplicity, say members but
mean their representatives. This step is optional when no such ag-
gregation is required later on.

5. Visualization Pipeline

The steps outlined in the previous section can be viewed as a vi-
sualization pipeline for multi-ensemble data, depicted in Figure 2.
Steps connected by red lines mark our proposal. After formulating
and computing a desired fuzzy set to analyze, we obtain instances
of a dimension (e.g., members) together with the degree to which
they belong to the fuzzy set. The result may again be viewed as a
traditional ensemble dataset, with the difference that in addition to
a categorical variable to which member the complex data belongs,
we have a quantitative variable in the degree. While in itself not an
advantage, it readily allows standard computations that may not be
as straightforward with traditional ensemble data. For instance, one
may compute aggregations such as weighted averages when using
the degree as weight. Another option could be to treat the degree
as another source of uncertainty to incorporate in data transforma-
tions if the VA pipeline is already aware of uncertainty [CCM09].
Once a fuzzy set is obtained, the pipeline suggested by Wang et
al. [WHLS19] remains applicable. In their pipeline (black lines in
Figure 2), an ensemble is optionally aggregated per member (using
the degree, in our case), then a visualization step produces possi-
bly multiple images, which are optionally composited into a single
image. In the last step, one may again use the degree variable for
visual encodings, e.g., as opacity.

Multi-Ensemble Data Ensemble Data (Aggregation)

Similarity Comp. Fuzzy Set Query Visualization

(Member Clustering) Relation Matrices (Composition)

Figure 2: Our proposed pipeline (red lines) combined with an ex-
isting ensemble visualization pipeline (black lines).

6. Evaluation Using Real-World Geochemistry Data

In this section we apply the proposed visualization pipeline to the
dataset and algorithm described in Section 3. Settings for the pa-
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rameter (ball radius) start from 50 km and increase up to 600 km
in 50 km steps (12 values). The output of SBSS is an ensemble
of maps, which show the latent dimensions. Latent dimensions in
SBSS are defined only up to sign and order, i.e., they are not or-
dered and a pattern of high values can be equivalent to a pattern of
low values. Hence, we select the absolute Spearman’s rank correla-
tion coefficient ρ as similarity measure for members. Values near 1
will point to high rank correlations, values near 0 to low correla-
tions. The similarity between parameter settings is calculated as
the ratio of ball radii. As the dataset is too big to just take a look at
(12×17= 204 maps, the 17 instead of 18 variables arise from some
necessary preprocessing of compositional data [Ait82, NOFR15]),
we iterate over all possible values of the clustering parameter k
and compute the Silhouette index [LLX∗10]. We use this index as
we need an unsupervised clustering quality metric due to the ab-
sence of ground truth data. We choose the value of k that maxi-
mizes this index, which is 18 (index value 0.573). Hence, we ob-
tain 18 representatives of members in the multi-ensemble. For fea-
tures we defined polygons (see Figure 3) that, from our discus-
sion with geochemists, we know relate to differences in soil type
or age [HMZ09]. Podzol is the typical soil type for boreal forests,
found in Scandinavia. The soil in the Baltics is younger than in the
Nordic countries and thus has different characteristics [RST∗00].
The soil in eastern Spain is characterized by significant accumula-
tions of calcium carbonate (Calcisol). The southern mainland part
of Greece is a mix of several soil types, hence any features found
there could indicate a latent process other than soil type. Each fea-
ture is characterized by consistently high or low values in the re-
spective area (not depicted in Figure 3).

In the following two examples we apply the red steps of Figure 2
and inspect the degrees ourselves to verify first that this part works.

Which Members Show One Feature But Not Another? We pick
something that we should be able to verify by visual inspection.
We will look for members that contain the Scandinavia (S) and
Greece (G) features, but not those in Spain (E) and the Baltics (B).
The relation in question is MF (Member × Feature), and we query
for (S∪G) \ (E ∪B). The best-matching member (degree 0.47) is
shown in Figure 3: There are lots of very low values in Scandinavia
and many very high values in Greece (good match to S∪G), but in
the Baltics there are neither high nor low values and in Spain the
high values do not cover the whole feature polygon (poor but not
terrible match to E,B). Hence, we can visually confirm the correct-
ness and quality of the query result.

Which Parameter Settings Produce All Features? The relation
in question is FP (Feature × Parameter) and we query for an in-
tersection of features as set. Setting 1 (kernel radius 50 km) is least
associated to this relation with a degree of 0.31, whereas settings 5–
9 (radii 250–450 km) are most associated with a degree of around
0.58. This pattern of setting 1 at the bottom and settings 5–9 at the
top persists also when we look at individual features, i.e., look at
rows in FP. We can infer that maps obtained with the three smallest
kernel radii 50–150 km do not show the defined features well. This
seems reasonable, as too small kernels might not capture patterns
over wide areas, but we discuss this further with an expert.

Next, we apply the complete pipeline and show resulting visu-

Figure 3: An example latent dimension from SBSS (plotted follow-
ing common practices in geochemistry [RFGD08]) with annotated
features (polygons). Crosses mark low and circles mark high val-
ues, polygons the areas in which we want to find mostly high/low
values. This latent dimension is a good match to the features in
Greece and Scandinavia, but less to those in Spain and the Baltics.

alizations to experts to verify the images’ usefulness. The experts
knew about the features we defined. Notably, we use one more re-
lation matrix (ME), so the evaluation covers half of all matrices.
We are convinced the remainder is also useful, but it is out of this
paper’s scope to present three more examples.

Figure 4a shows the latter of the previous two examples, i.e.,
the intersection of features (set dimension) defined in Scandinavia,
Greece, Spain, and the Baltics (Figure 3) with regard to parameter
settings (element). No aggregation is performed and we visualize
the degree as points on a common axis, which are composed by
superposition into a single visualization image. We chose a simple
and rather abstract visualization approach to illustrate our point.

Figure 4b shows the intersection of ensembles (set) w.r.t. mem-
bers (element), i.e., the most common members. The degrees were
then used as weights to compute a weighted average of all ensemble
members (aggregation). The map in Figure 4b shows this weighted
average on a diverging color scale (visualization). As latent SBSS
dimensions often show underlying physical processes [NOFR15],
very high (red) and low (blue) values should highlight areas in Eu-
rope that are special with regard to various physical processes, such
as climate, soil, land use or population density. And in fact it shows
high values in south-west France (Figure 4b-A), which is an area
that is distinct from its surroundings with regard to climate, soil,
rocks, and land use, among others [HMZ09]. Similar arguments
can be made for Norway or the Netherlands/Ruhr area (Figure 4b-
B), which are also distinctive areas in many atlas maps.

© 2023 The Authors.
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(a)

A

D

EC

B

(b)

Figure 4: (a) Degree of association (y axis) of kernel radii (x axis)
to features in Figure 3 (composition). (b) Cropped and annotated
visualization (aggregation) showing the intersection of ensembles
(set) w.r.t. members (element). Size encodes distance from the cen-
tral quintile. It suggests that, e.g, south-west France (A) is a com-
mon distinctive area. See Section 6 regarding other annotations.

We showed Figure 4a to a statistics/SBSS expert along with a
short introduction on how it should be read, that small kernels are
less associated with all the features we defined (Figure 3). He spec-
ulated that small kernels do not capture enough points, and thus the
estimation error in the SBSS procedure is too high. Indeed, when
we investigated this, it became apparent that point neighborhoods
of 50–150 km kernels are very small or empty. This changes from
the 200 km kernel onwards. The “dip” at 550 km could be related
to too large kernels, where the expert expects more noise to be cap-
tured, but this would require more research.

We then showed Figure 4b to an expert in geochemistry, who
is very familiar with the dataset we used, noting that it shows a
summary of the most common latent dimensions. Especially west
Norway was interesting to our expert, as “[during the course of
my research] this area repeatedly caught my eye as being special.
Something is happening there.” To investigate this, further research,
e.g., getting more soil samples or conducting different experiments
altogether, should be carried out. The high values in Spain (Fig-
ure 4b-C) and Ireland likely show mineral deposits, but would need

to be compared to other maps to verify if the locations match. Our
expert explained the patterns in south Poland and north Ukraine
(Figure 4b-D) with glacial sediments, and in Greece (Figure 4b-E)
with “the ophiolites with their high concentration of Nickel, Cobalt,
Chromium, and Copper.”

7. Discussion and Conclusion

Analysis of multi-ensembles is challenging as not only are ensem-
ble members complex scientific datasets themselves, but there are
now also potentially many ensembles. Existing visualization ap-
proaches focus on a small static collection of ensembles. As many
analysis questions can be framed as set relations, we propose in this
paper to model multi-ensembles as fuzzy relations. With those, set
relations can be computed while simultaneously accounting for the
complexity of ensemble members. We outlined our approach and il-
lustrated it with a real-world example. Experts found both expected
patterns in visualizations in Figure 4, that confirm known facts, and
unexpected patterns, that spark further research. This is exactly the
goal of VA [TC05]. Our approach thus seems very promising to be
further explored in an interactive setting. We believe our proposal
of fuzzy comparison to compute associations, then using fuzzy set
theory to compute queries, can in principle easily adapted to other
data types than those that our specific case required.

Some limitations apply. The choice of similarity measure is cru-
cial. It should naturally map to the unit interval, which excludes
some popular choices, e.g., Euclidean distance. Next, it must be
“directly proportional” to the actual change in the similarity of two
objects. Similarity measures that behave like sigmoids when plot-
ted against the actual similarity change, or exhibit significant steps,
are to be used cautiously. During fuzzy composition, two similar-
ity measures may be multiplied, which we believe is fine when
they show the properties mentioned earlier. Others may be more
cautious than us and focus on dimensions that work on the same
similarity measure (everything but parameter setting in our case).
Regarding computational efforts, presented fuzzy set operations on
fuzzy relations require simple column-wise operations, like min(),
which are easily parallelized and scale well also to larger relations.
More expensive are the pair-wise similarity computations, which
pose a one-time O(N2) effort for a static dataset.

Translating our approach to an interactive setting would induce
interesting future work. Intuitive interactions, possibly based on di-
rect manipulation, are necessary for analysts to build the desired
fuzzy set relations. At the same time, one would need to ensure that
the fuzzy calculations are transparent and explainable to human an-
alysts. Revealing internals, like relation matrices, might be a start
but insufficient. General visualization approaches exist for ensem-
ble data, like dimension reduction [NA19], but few were suggested
for fuzzy sets [PP10b, PP10a]. Combining and developing the re-
spective ideas could yield powerful visualizations for large multi-
ensemble datasets.
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