
Programm architecture

Project “TrainVis“

By: Markus Martin

Hansjörg Pripamer

Georg Prohaska 



1 Introduction

The goal of this project was to create a tool that can visualize a train schedule using four 

different views: A normal textual table, two different types of bar chart diagrams and finally a 

technique that uses lines that represent a train (after EJ. Marey). For further information about 

these visualization-techniques read the designdocument.

Since it was predetermined that we had to use the prefuse-toolkit, the programming language 

for the project had to be java. Our team consisted of three people and therefore a revision 

control system to synchronize the programming process was necessary. We used Subversion 

for that matter. Also all of us used the same integrated development environment (IDE) 

namely NetBeans which does support the Subversion-system.

2 Toolkits

The two “big” frameworks we used are Prefuse and TimeVis. Then there is another small 

toolkit we employed. Its name is JCalendar and it provides functionalities like a date-chooser 

(menu component) or classes to manage temporal data (especially dates).

2.1 Prefuse

Prefuse is a “Java-based toolkit for building interactive information visualization 

applications” (http://prefuse.org). As mentioned before the usage of this toolkit was specified 

by our tutor and so the project is based on its functionality.

Whenever a data table is loaded a new internal data table is created by using the makeData-

method in the Function class. In this new table every row specifies a train that goes from one 

station to another at ONE point in time. So if a train goes from A to B every day of the 

schedule there is a separate row for each day. This big table is also the biggest deficiency of 

the application since it cuts down the performance. There is surely room for improvement in 

this matter. 

The internal table is used by the four main classes to create the different visualizations. In the 

LineVis-class for example each row is used to create a VisualItem which can be rendered as 

one line. We implemented two different Renderers to draw the bars of the bar chart diagrams 

and the lines of the Marey diagram: BarChartRenderer and LineRenderer.

We used the action-model of prefuse to manipulate the data tables. The BorderFilter class (an 

inner class of LineVis) for instance renders all visualitems invisible that cross a specific 

border so that the lines don’t overlap the axis labels. 

2.2 TimeVis

“TimeVis provides a framework that enables Java developers to build applications to 

visualize any kind of temporal data without much effort.” The use of this framework was also 

specified by our tutor. We used it to assign the horizontal position of our visualitems on the 

panel. Each main-class (TextVis, LineVis, BarChartVisRel, BarChartVisAbs) has its own 

TimeScale-object which determines the timescale that is currently displayed. To synchronize 

the scales of all views we used a message-system that will be explained in the next section. 

Classes like TimeScalePainter and MouseTracker facilitated the creation of a good-

looking environment for our visualizations. 



3 Class diagram and program structure

The four most important classes of the project are TextVis, LineVis, BarChartVisRel, and

BarChartVisAbs. All of them derive from the Java-Swing class JPanel. Each of them 

encapsulates one form of visualization. You only have to pass consistent data tables to the 

constructor of these classes and everything will be displayed in the panel. 

The Main class contains the main method of the application. At first the user interface and the 

default data tables are loaded. Therefore a Menu object is instantiated which represents the 

toolbar of the application. As soon as everything necessary (consistent data tables) is existent 

the four visualization classes (TextVis, LineVis, BarChartVisRel, and BarChartVisAbs) are 

instantiated and loaded into a JTabbedPane.

We used the ChangeListener class and the messaging system of swing to communicate 

between the user interface and the four panels. Every time an UI-component is used to a 

message is fired to the tabbed pane which passes it to each visualization object. For example 

when checkbox for the stations is selected a _SHOWSTATIONS_ message is fired that 

contains the new value of the checkbox. This system is also used within the visualization 

classes: Whenever the current timescale is changed by zooming or panning the currently 

active panel fires a _STARTDATE_ and _ENDDATE_ message to let the menu and the other 

panels know.

Now let’s have a closer look at the visualization classes:

3.1 LineVis

This class accomplishes the Marey train-visualization. As described in section 2.1 the 

internal table created by the makeData method is used as a VisualTable. So each row of the 

table represents one VisualItem. The TimeLayout class (a class of the TimeVis framework) is 

used to calculate the horizontal positions of the items. For the drawing of the timescale in the 

background of the panel the LineTimeScalePainter class is used which is a slightly modified 

version of the TimeScalePainter class (also a part of TimeVis).



The rendering of each VisualItem takes place in the LineRenderer class which derives from 

the AbstractShapeRenderer class of prefuse. It may seem a bit awkward that this class needs 

to have the Visualization object passed in its constructor. This was necessary since in the 

Marey diagram a horizontal line is drawn between to stations if the stopover of the train takes 

a little more time. That’s why the information contained by one VisualItem is not sufficient 

for its rendering. 

3.2 BarChartVis

This class is an abstract class for both bar chart visualizations. Most of the work regarding 

the visualizations is done here. It provides functionality for zooming and panning. It also sets 

up the Display object and all necessary ActionLists and the BarChartRenderer that are 

needed to draw the visualization. Furthermore the process of train-selection is managed here

by handling all mouse events. That’s also where the tool tips for each item are created. 

3.3 BarChartRel

This class displays a duration bar chart. The start of every bar lies in the origin of the x-axis. 

Here the makeRelData method is used to create the internal data table because in this type of 

visualization there is only one VisualItem for each train necessary. Furthermore this class 

catches all necessary messages from the tab pane and executes the according actions.

3.4 BarChartAbs

Here all the trains are displayed in a time line chart. Since most of the work is done in 

BarChartVis this class only need to process the incoming messages.

3.5 TextVis

Here the data is just displayed as a normal text table. As in the other panels the messages are 

handled here. A JTextPane is used to display the table. 


