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Abstract
Trust-ability, reputation, security and quality are the main concerns for public and private financial institutions. To detect fraud-
ulent behaviour, several techniques are applied pursuing different goals. For well-defined problems, analytical methods are
applicable to examine the history of customer transactions. However, fraudulent behaviour is constantly changing, which results
in ill-defined problems. Furthermore, analysing the behaviour of individual customers is not sufficient to detect more complex
structures such as networks of fraudulent actors. We propose NEVA (Network dEtection with Visual Analytics), a Visual Analytics
exploration environment to support the analysis of customer networks in order to reduce false-negative and false-positive alarms
of frauds. Multiple coordinated views allow for exploring complex relations and dependencies of the data. A guidance-enriched
component for network pattern generation, detection and filtering support exploring and analysing the relationships of nodes on
different levels of complexity. In six expert interviews, we illustrate the applicability and usability of NEVA.

Keywords: visualization, visual analytics, financial fraud detection
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1. Introduction

Detecting and understanding the network of related events is an im-
portant task in several domains such as biology, medicine, insurance
companies, retail companies, public sector and banks. Consider
the following sample questions: ‘How are those diseases linked?’,
‘What is the influence of this component on that treatment?’, ‘Which
selling products are linked, how and why?’ (see ‘the parable of the
beer and diapers’ case [Whi11]).

In financial institutions, network analysis is used to understand
users’ behaviour and to detect frauds. They often use automatic al-
gorithms to detect fraudulent events of single actors, such as as-
sessing if a transaction fits the transaction history of the respective
customer. The goal of such a technique is to reduce the amount of
false-positive and false-negative findings, to avoid harm in a mag-
nitude of hundreds of thousands of dollars. However, this type of
individual analysis system is sensitive and needs to be in constant
evaluation in order to ensure the quality of the results.

In this work, we focus on the detection and analysis of fraud-
ulent networks of bank transaction events. We analyse visual pat-

terns for different types of frauds (i.e. unauthorized transactions,
money laundering and straw persons). Besides dealing with a data
type with complex features such as time-oriented and multi-variate
aspects [AMST11], we propose the exploration and reasoning about
a network of individuals.

Pattern and outlier detection are common tasks of Artificial Intel-
ligence (AI) approaches in financial fraud detection (FFD).

The main challenge of applying AI techniques to FFD is the con-
stant adaptions required due to the creativity and fast change in
fraudulent strategies which lead to false-negative findings. False-
positive and false-negative findings come at expensive costs. While
false-positive alarms might lead to the accusation of innocent peo-
ple, false-negatives mean that fraudsters succeed to cause financial
harm to the bank or to innocent bank customers. While these are
two different circumstances, the fine-tuning of detection algorithms
for both need to be done in combination. More sensitive algorithms
lead to the detection of more frauds but also generate more false-
positive alarms. On the other hand, a more generic algorithm would
detect fewer frauds, and thus, more false-negative alarms would
be generated. Consequently, the calibration of their sensitivity is
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essential. Thus, in order to improve FFD, it is important (1) to con-
stantly adapt and balance the parameters of algorithms to identify as
many fraudulent cases as possible without triggering too many false
alarms and (2) to support informed reasoning about the output of
these algorithms, such as potential false-positive and false-negative
results.

Types of financial fraud are classified with respect to different
features, such as the amount of money, time of the transaction and
the relations of involved accounts. Besides applying AI for pattern
and outlier detection, one of themain challenges on FFD is detecting
fraudulent networks. However, performing subgraph search is an ex-
tremely demanding task and it is characterized as an NP-complete
problem. Even with punctual optimization available [Nei12, SS-
MIN16], this task would require a sweep of all nodes and their re-
lation layers recursively. Hence, this results in costly algorithms.
Since the negative impact of fraudulent attacks increases over time,
the task of FFD is of social and financial importance and it must be
detected as fast as possible.

Tasks of fraud detection are an open problem that require vi-
sual exploration, discovery and analysis [KTM09]. Visual Analytics
(VA) would offer great benefits by integrating human analysis into
this complex process [KMS*08]. However, the current solutions for
FFD mainly use data mining techniques, with just a few exceptions
involving VA techniques. Thus, we propose a VA approach for the
investigation of fraudulent networks, based on an automatic FFD
alert system. In this work, we focus on detecting specific types of
financial frauds, such as ‘straw persons’ and ‘money laundering’
within a financial institution. We designed this approach with re-
spect to Munzner’s nested model [Mun09], which makes it flexible
and extensible enough to be adapted to similar domains with simi-
lar multi-variate, relational and time-oriented aspects. We also used
the ‘Design Triangle’ by Miksch and Aigner [MA14] to identify the
target audience, define the data model and find the important tasks
in the target domain. Thus, our main contributions are:

• Designed in close collaboration with domain experts, NEVA
(Network dEtection with Visual Analytics) improves the network
analysis for FFD by intertwining automatic methods and visu-
alization techniques within an interactive exploration environ-
ment (Section 4).

• To the best of our knowledge, we present a new guidance-
enriched component for network pattern generation, detection
and filtering that supports different levels of analysis complex-
ity (Section 4.4).

• We illustrate the applicability and usefulness of NEVA with four
real-world tasks and discuss the lessons learned from an evalua-
tion session with six domain experts (Sections 5 and 6).

• We identify and elaborate on open challenges and possible future
research directions in the field (Section 7).

2. Related Work

This work is mainly motivated by the same problem discussed
in [LGM*18]. However, a network exploration and analysis per-
spective is brought by NEVA, to better contextualize that we cat-
egorize related works into the following seven topics:

VA for the financial domain. Looking for visual approaches for
financial data, we identified FinanceVis [DML14] which is a sur-
vey that provides a browser tool that includes over 85 articles re-
lated to financial data visualization. Moreover, Ko et al. [KCA*16]
presented a survey of approaches for exploring financial data. Mo-
tivated by a lack of information available, financial data experts
were interviewed about their preferences regarding automated tech-
niques, visualizations, data sources and interaction methods. This
survey highlights the many underexamined financial business do-
mains and argues for the need of more works presenting design,
development and results involving real-world financial data, as our
approach does.

Areas of Fraud detection. There are several state-of-the-art re-
ports with emphasis on general fraud detection. One of the first
modern analysis approaches concerning fraud detection was pub-
lished by Bolton and Hand [RJB02] in 2002. They identified four ar-
eas: credit card fraud, money laundering, telecommunication fraud
and computer intrusion. The same types of fraud were described
by Kou et al. [KLSH04] but are broadly classified into: misuse and
anomaly detection. These works supported our understanding of the
diverse fraud domains and their common approaches. However, no
analysed work presented a multi-variate, time-oriented, network VA
approach for FFD of banks transactions.

Financial fraud detection. One of the pioneers of designing visual
solutions to support FFD analysis was Kirkland et al. [KSH*99].
They present a tool called NASD, which uses visual techniques to
facilitate the interpretation of detected frauds. NASD’s regulation
Advanced-Detection System (ADS) is supported by five different
visualizations. Moreover, ADS combines detection and discovery
features that can support different domains. This work presents AI
for pattern recognition, visualizations to aid human reasoning and
data mining to support regulatory analysis. While this was pioneer
work in the field of FFD, they do not live up to state-of-the-art
features such as interactive exploration of the visualized data. Ar-
gyriou et al. [ASV14] aimed to find fraudulent activities committed
by employees of a company (internal frauds). In contrast to that, we
aim to investigate other types of frauds: fraudulent schemes involv-
ing a network of users (i.e. money laundering schemes).

Another approach for FFD is presented by WireVis’s [CGK*07],
using multiple coordinated views. The main idea is to explore big
amounts of transaction data through interactive views in order to aid
fraud detection. The approach highlights similarities between ac-
counts based on transaction keywords over time. WireVis clusters a
set of accounts based on their similar keywords, depicting relation-
ships among accounts and keywords over time. Thus, this approach
is limited to analysing transactions that present similar keywords in
its description. Due to the similar data type and the use of multiple
connected (and interactive) views, this is the most similar approach
to NEVA. However, NEVA is especially focused on the detection
and analysis of fraudulent networks, and thus, provides specialized
means for network pattern analysis.

Our previous approach, ‘complementing work’ [LGM*18], tack-
les the problem from a different direction and presents an integra-
tion of VA methods into an existing ‘detection and decision’ work-
flow. This approach combines automatic methods with well-known
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visualization techniques in order to lower the learning effort for do-
main experts. We developed our approach following the same ‘fa-
miliar well-known visualization’ design thinking. Different from
EVA [LGM*18], NEVA aims FFD support to frauds investigations
involving network aspects such as ‘money laundering’ and ‘straw
person’. On the other hand, EVA [LGM*18]’s main goal was the
discovery and reasoning about frauds coming from individuals his-
tory analysis as ‘unauthorized transactions’.

Automatic methods for FFD. A first financial flow analysis ap-
proach is presented by [SK95]. This work focuses on data aggrega-
tion in order to allow users to draw analytical conclusions and make
stock decisions. A more modern approach, EventFlow [MLL*13]
is a query and data transformation tool for temporal event data sets
designed to facilitate analysis. This approach provides aggregated
data visualization representations to track events that are related
over time.

Recent needs in FFD are presented by Dilla and Raschke [DR15].
The authors presented theoretical framework to predict how the in-
vestigators should apply VA techniques. They evaluated various vi-
sualization techniques according to different cognitive processes.
The discussion about the benefits of interactive data visualization
for fraud detection was one of the main discussion topics, which
was also used as one of the main points of our research. A deci-
sion support based on profile generation and analysis is presented
for online banking fraud analysis from Carminati et al. [CCM*14].
This semi-supervised approach provides no visual support for fraud
analysis. However, it is directly related to our approach since we are
also focusing on profile analysis for fraud detection. This approach
has a strong statistical meaning. We believe that VA methods have
great potential to improve the investigation of the FFD and enable
the analyst to better understand the lacks of the scoring systems.

Networks in finance. Allen and Babus [AB09] presented a non-
visual paper that discusses a node–link representation as being a
natural financial system representation which can efficiently explain
certain economic phenomena. Tekušová and Kohlhammer [TK08]
presents a node–link diagram that is generated using economic anal-
ysis methods. The system aims at showing patterns for large cor-
porate shareholder networks. It allows the visual analysis of cash
flows and the identification of shareholders. When targeting event
monitoring works, Huang et al. [HLN09] presented a VA frame-
work for stock market security. Aiming for a reduction of false
alarms produced by traditional AI techniques, this work presents
a visualization approach combining a node–link diagram for net-
work analysis and a 3D treemap for market performance analysis.
Didimo et al. [DLM14] presents a VA tool that allows the analysis
of different institutions and also the analysis of internal transactions
of a bank is considered. The paper describes the two different types
of network to correctly model the data.

One of the biggest influence to develop our approach comes from
the work of Cheng et al. [CNY*17]. This VA approach to loan net-
work risk management presents risk measurements by analysing
subgraphs flows in a bigger network. In this work, 20 subgraphs are
analysed during the study case. Even subgraph search being an NP-
complete problem there are algorithms that try to optimize the per-
formance of the task [SSMIN16, ZC16]. These subgraphs models

coupled with the subgraph search challenge inspired us to create a
‘Node-Link Patterns’ concept that allows us a subgraph exploration
with guidance (see Section 4). Wang et al. [WLS*18] proposed a
system of multiple coordinated views that support anomaly detec-
tion for global trade network analysis. The system takes localization
and events (i.e. armed conflicts) into consideration and relates them
to international trades.

Graph query. Some works have been demonstrating the effi-
ciency of using visual language to filter graphs in order to find ex-
pected patterns and results [PHT*17, PTE*16]. On the other hand,
VIGOR [PHE*18] is focused on supporting users to better reason
about graph query results (grouping nodes, adding labels to clus-
ters and so on). Parts of our approach allow also a ‘drawable’ query
design similar to [KZA10, CFT*08]. TeFNet aims to contrast tax
evasion, money laundering and fiscal frauds [DGL*19]. The query
language and the visualization techniques rely on a suitable timeline
approach that maps time to space. The approach presents efficient
results for large graphs. Like NEVA, the system has been tested
in a real working environment. However, NEVA provides means
for ‘drawable’ queries (see Section 4.4) developed especially for
FFD. Moreover, different from the auto-completion guidance dur-
ing query writing implemented by VISAGE [PTE*16], NEVA adds
guidance support during pattern drawing/querying (see Section 4.4).
After discussing with FFD experts, we decided to exclude approxi-
mate results as GRAPHITEs [KZA10] does only precise results in
order to not mislead any search or pattern understanding.

Guidance started in the area of Human Computer Interaction
(HCI) [Hor99] and was recently characterized in the context of VA
by Ceneda et al. [CGM*17]. Ceneda et al. define: ‘Guidance is a
computer-assisted process that aims to actively resolve a knowledge
gap encountered by users during an interactive visual analytics ses-
sion’. The authors extend van Wijk’s model of visualization, and
thus, they present a general model to facilitate in-depth reasoning
about guidance. To illustrate their model with examples, they use
existing guidance approaches from the literature. Three distinct de-
grees of guidance are described byCeneda et al.: (1) Orienting, tech-
niques that support building and preserving a mental map, (2) Di-
recting, presents to the user a pre-selection pool of possibilities (a
recommendation system is an example) and (3) Prescribing, tech-
niques that force the user to take the recommended next step. In a
literature review about guidance in visual data analysis [CGM19],
the authors highlighted the different guidance degrees (Prescribing,
Directing and Orienting) which can be used to classify guidance.
The guidance-enriched features implemented in NEVA, present a
degree of Directing guidance because they provide a set of alterna-
tive options that guide the analyst to avoid the formulation of useless
queries (see Section 4.4).

3. Financial Fraud Detection

We designed, developed and evaluated our approach in collabora-
tion with a national bank [Ers18]. Our main goal was to improve
the current FFD techniques used by our partner institution. How-
ever, before we present NEVA, we briefly discuss (1) the character-
istics of transaction data, (2) the complexity of detecting networks
of fraudsters, (3) a summary of the currently used pipeline for FFD
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Figure 1: The design overview of the transaction evaluation system. We present a new interactive VA approach to support the investigation
of suspicious behaviour. We highlight in orange how our approach fits into the workflow of FFD (III).

and (4) the scoring approach used to identify suspicious transac-
tions. Since we give a detailed description of these aspects in one of
our previous works [LGM*18], we just summarize the main aspects
here in order to ground our contribution.

3.1. Transaction data

We used real data of money transactions from our bank partner for
the development of our approach. The data from a 2-year period
that represents payments and money transfers were anonymized
and internally checked by the bank before they made it available
to us. The transaction events have several categorical, numerical,
geospatial and temporal dimensions (i.e. money sender/receiver,
amount of money, location, time of execution, and others). While
our approach is focused on investigating relational features, we
also support the exploration of the most critical data dimensions
(such as the amount of money) that were identified by our col-
laborating domain experts. Moreover, we defined different cate-
gories of node types such as money senders and receivers based on
Cheng et al. [CNY*17] (see Section 4.4).

3.2. Problem complexity

Fraudsters tend to adapt their fraudulent strategies continuously.
This is why automatic algorithms, for instance, searching for a pre-
defined set of patterns, is unlikely to succeed in the context of FFD.
Automatic means can be used to identify abnormalities, however, a
human investigation is required to confirm the harmfulness of suspi-
cious cases. To support this task, VA techniques enable the human
to interact with the data and to improve the reasoning process. In
addition to frequent pattern changes of fraudulent attempts, several
other aspects add to the task complexity of FFD:

In one of our previous works [LGM*18], where we approach
a related problem of FFD and investigate data with the same

characteristics, we go into details about: (1) the scalability complex-
ity of dealing with hundreds of thousands of transactions per day,
(2) the context complexity of understanding the motivation behind
a financial crime, (3) the complexity of time-oriented data analy-
sis [AMST11] that might obfuscate some frauds and (4) the problem
of fraud classification which might include a huge number of sub-
classes of frauds due to the multi-variate nature of the data. All these
aspects were addressed during NEVA‘s design and implementation.

3.3. Methodology for FFD

In this subsection, we give an overview of the workflow pursued
by our collaborators to identify and reason about financial frauds.
According to the privacy policy of our collaborating bank, we can-
not go into details about the actual fraud detection algorithm. How-
ever, we roughly sketch the four steps of the used methodology:
profile generation, score generation, results interpretation and fraud
validation.

Profile Generation. For each customer, an automatic system gen-
erates a profile based on the transaction history of his/her ac-
count (see Figure 1(I)). Profile generation is a process that has its
own rules of execution and it is not synchronized with the other
steps of the workflow (i.e. profiles are recomputed every week or
every 10 transactions).

Score Generation. Each incoming transaction is compared with
the respective customer’s profile (see Figure 1(II)). For a new trans-
action, the algorithm considers data dimensions such as: operation
location, operation time, amount of money and other features to
compare the new action with the usual behaviour of that customer
(i.e. the customer’s profile). Then, the algorithm generate subscores
for each dimension and summarize them into one overall score. The
higher the score, the more suspicious is the transaction.
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Results Interpretation. This is the non-automatic phase of the in-
vestigation where the investigators analyse multiple transactions si-
multaneously, due to time constraints. Transactions whose scores
are over a given threshold are further filtered by pre-defined rules.
Based on their personal experience, the investigators then decide
whether an alarm should be considered fraudulent or not (see
Figure 1(IV)).

Fraud Validation. After deciding for a suspicious transaction, a
further personal investigation is required. The bank might stop the
transaction in some cases. From this step on, there are different legal
approaches that might be applied according to the type of fraud that
it seems to be.

3.4. Types of frauds

While types of frauds are manifold, in this subsection, we briefly
describe the types of frauds that we focus on.

Money Laundering aims to transformmoney from crime and cor-
ruption into legal money. Mostly, this type of fraud involves a net-
work of accounts. Straw Persons main goal is using someone with
low suspiciousness levels to get illegal money for someone else who
is not legally allowed to receive it. Unauthorized Transactions in-
volves transactions that were sent from a customer account but were
not authorized by the account owner.

3.5. Scoring approach

Due to security and privacy constraints of our collaboration partners
from the bank, we cannot describe the scoring algorithm in detail.
However, we compare it to another public approach from Carmi-
nati et al. [CCM*14]. In this approach, customer profiles are gen-
erated in a semi-supervised way outputting several kinds of statis-
tical measurements. This approach flags transactions as suspicious.
When evaluating our scoring algorithm by comparing it to the old
scoring approach used by the bank, we could confirm that domain
experts could detect 500% more confirmed fraudulent transactions,
preventing 86% of the financial losses [LGM*18].

4. NEVA Design and Implementation

We design NEVA by using a combination of two methodologies:
‘Nested Model’ [Mun09], and ‘Design Triangle’ [MA14]. While
the nested model methodology guarantees a flexible and extensi-
ble interactive approach, the design triangle methodology supports
a better understanding of the scope of the problem by the clarifica-
tion of the Data, User and Tasks.

Data. Financial transaction events constitute multi-variate, rela-
tional and time-oriented data, including details about the transac-
tions such as amount, time, sender, receiver, etc.

Users. Investigators from financial institutions that investigate and
validate alerts of suspicious transactions.

Tasks. The overall tasks are network-related fraud detection and
reasoning by means of profile analysis. These tasks include mainly
the reduction of false-negative and false-positive alarms, history

comparison, as well as the manual investigation of suspicious trans-
actions.

4.1. Requirements

In the context of fraud detection and the analysis of financial net-
works, there are still many unresolved challenges [KLSH04, AB09].
With our VA solution, we focus on supporting the tasks of ‘results
interpretation’ and ‘fraud validation’ (see Section 3.3). To support
fraud investigators during a better decision-making process, in col-
laboration with the domain experts, we agreed to address the fol-
lowing requirements:

R1: Identification of False-Negative Alarms. Aiming to over-
come the lack of accuracy of automatic algorithms, the exploration
and identification of hidden fraudulent accounts is an important
task that should be supported by the proposed solution. The system
needs to facilitate the reasoning about potential criminal networks.
It should not only be possible to investigate suspicious transactions
but also the accounts linked to them. By visualizing non-flagged ac-
counts (i.e. accounts that were not flagged as suspicious by the auto-
matic detection mechanism) in relation to flagged accounts (i.e. pos-
sible fraudulent accounts), investigators might be pointed to suspi-
cious behaviour that could not be detected by automatic algorithms.

R2: Identification of False-Positive Alarms. False-positive
alarms are transactions that were flagged by the automatic system
as potential frauds but actually they are not. The amount of false-
positive alarms varies according to the calibration of the automatic
system. However, 100% precision cannot be achieved (i.e. a good
trade-off has to be found between the number of false-positive
and false-negative alarms), and thus, there will always be false-
positives. Flagged transactions, however, lead to the investigation
of the involved accounts and their related network. This group of
accounts need to be inspected in order to reason about the potential
fraud, which leads to a further decrease of false-positive alarms. To
support informed decision making during the validation step (see
Section 3.3), the system has to support the visual analysis of the
network of flagged accounts and its related network.

R3: Identification of Different Types of Frauds. With the current
system, it is possible to automatically identify unusual behaviour.
However, the classification of this behaviour is still an open issue.
Classification, however, is essential to better understand the possi-
ble consequences of an alarm and make better informed decisions
on how to handle it. The system should support the investigation of
suspicious behaviour of accounts that are involved in flagged trans-
actions and their related network. Thus, based on the money flow
of accounts, the identification of different types of frauds should
be possible.

R4: Guided Network Pattern Exploration and Search. The
changing behaviour of fraudulent attempts needs to be constantly
monitored. Thus, our system needs to provide efficient support to
reason about identified patterns of possible fraudulent attempts.
Moreover, searching for specific types of frauds (i.e. patterns) within
the comprehensive network of financial transactions should be
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Figure 2: Screenshot of NEVA (Network dEtection with Visual Analytics). (A.1, A.2) Temporal Views: the two views present temporal de-
tail (A.1) and overview (A.2) information. (B) Node-Link View: this view represents the network of the analysed bank accounts. (C.1, C.2)
Guidance-Enriched Pattern Search: In this panel, we allow filtering the accounts with respect to the connections between them by using slid-
ers (C.1) and changing the layout of the network through radio buttons (C.1). Moreover, we provide a guidance-enriched network pattern
specification, detection and filtering approach (C.2). (D) This view presents the history of inspected nodes for keeping track. In all views,
elements that represent suspicious data are highlighted in red.

supported. However, searching for arbitrary patterns within a huge
network of financial transactionsmight easily lead to cognitive over-
load. Thus, the user needs guidance on which patterns are worth in-
vestigating.

4.2. Data setup

Aiming to improve the current methodology for FFD (see Sec-
tion 3.3), we kept our main focus on analysing suspicious transac-
tions. Thus, instead of displaying the 77,000 accounts at once, we
propose an automatic initial filter based on the investigators’ work-
flow. Thus, we suggest a step-wise approach to identify additional
fraudulent cases that could not be identified by automatic means.
First, (1) we apply a filter on the data set to select just accounts
that contain alarming transactions. Next, (2) we select accounts that
had relations to at least two suspicious accounts. This process is
called ‘man-in-the-middle’ selection (see an example of a ‘man-in-
the-middle’ in Figure 8). Lastly, (3) we analyse the relations of all
found ‘man-in-the-middle’ accounts that are not only receptors but
also senders of money in order to find newly hidden ‘man-in-the-
middle’ accounts (this case is represented in Figure 7).

While the majority of accounts selected in this phase might not
seem suspicious at first sight, the investigators consider that ‘man-
in-the-middle’ accounts represent a certain logistic risk and require
further investigation. Those accounts are likely to be part of fraudu-

lent schemes. This analysis was previously conducted by analysing
spreadsheets. So, the data presentation made by our VA approach
in addition to the automatic FFD mechanism enhances the possi-
ble analysis scope by allowing investigators to interact visually with
the data.

4.3. Network event detection with visual analytics

The main idea of our proposed approach started as a further work
proposed by [LGM*18]. As a sequel to our former work, we
again developed this approach following the iterative design pro-
cess [Mun09]. We had several meetings with our collaborators to
discuss the data, the context, the problem and the tasks. During the
design process, we created a number of visual encoding designs and
asked for expert feedback. We iteratively designed several proto-
types with which we could test these designs, discard ideas and re-
fine interactions. Our approach was developed using web technol-
ogy (HTML, CSS, Javascript), as well as services and libraries such
as JQuery, D3.js and Google Material.

NEVA is composed of four main coordinated views that dis-
play different aspects of the data (see Figure 2). All views are
connected interactively. We opted for well-known visualizations in
order to keep the learning curve as low as possible, and thus, to
foster acceptance. However, all visualization techniques were cho-
sen with respect to their suitability for the data and the tasks at
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Figure 3: The two temporal views A.1 (detail) and A.2 (overview).
The selected account is displayed at the top left corner, while the
glyph legends are displayed on the top right corner. The investiga-
tors can also interact with the legend to filter the view.

hand [Mac86]. Next, we discuss the motivation of the different vi-
sual design choices made in our approach referring to A.1, A.2, B,
C.1, C.2 and D from Figure 2.

A.1, A.2: Temporal Views. The combination of both views (see
Figure 3) supports a detail and overview visual analysis of time-
oriented aspects of the data [CKB09]. With the main focus of repre-
senting an overview, the view A.2 is smaller and supports brushing
and filtering, which are then reflected in the detail view (A.1). By
brushing A.2, the user zoom in the corresponding time gap in A.1
and, thus, potential overplots in the time representation (A.1) are
spaced and clarified. In both views, rectangles highlight points in
time (represented by the x-axis) at which a transaction happened.
These rectangles present a colour opacity feature that when accu-
mulated over each other is decreased and, thus, facilitates the obser-
vance of overplots. The two views combination allows for analysing
temporal details while preserving context information.

We opted for a 1D representation in the ‘overview’ view A.2 in
order to keep it simple. This view serves two main functions, (1)
giving an overview of all events of the data set and (2) allowing to
zoom in and zoomout of the detail viewA.1with a brush interaction.
Due to that, we constructed this view with just enough space on the
y-axis for brushing and filtering at an overview level.

The ‘detail’ view A.1 was designed to allow for analysing tempo-
ral aspects of transactions, represented by triangles. While the ori-
entation of the triangles represents if a transaction was sent (triangle
up) or received (triangle down), the amount of money sent is repre-
sented by its position on the y-axis. The triangle’s size encodes the
suspiciousness score of the transaction and a red stroke indicates if
a transaction’s score is above a given threshold. Hovering the trian-
gles provides detailed information about the transactions. For rep-
resenting multiple transactions, we opted to present a glyph-based
approach in this view to better represent the collection of sent and
received transactions. We sort all transactions before plotting them,
from highest to lowest amount of money. Thus, small transactions,
which result in small glyphs, are always plotted in the last layer.
We tried bar charts but, when zooming out, one bar would need to
aggregate multiple transactions (losing information, as line charts
would do too) or to be very thin (losing visual appeal and adding
difficulty to interactivity).

B:Node–LinkView. Weuse visual variables to encode several fea-
tures in the node–link diagram. Link width encodes the number of
transactions between two nodes. Node size encodes how many con-

nections (i.e. transactions from or to other accounts) a certain node
has. In our scenario, the accounts that are investigated by means of
this node–link visualization are filtered to those accounts that have
been flagged as suspicious and other accounts that are connected to
these suspicious accounts. Thus, the more connections a node has
within this subset of possibly fraudulent accounts, the more sus-
picious it is itself. Thus, we use size to make them visible and to
highlight big players. We used node colour to represent four cate-
gories of accounts: orange nodes represent suspicious receiver ac-
counts, red nodes represent suspicious sender accounts, light blue
nodes are receivers that are non-suspicious so far and dark blue
nodes are non-suspicious senders. Since one of the main interest
of the investigators is to distinguish (1) ‘senders’ accounts from (2)
‘receivers’ accounts, to assure a good differentiation of sender and
receiver nodes, which are already differentiated by dark and light
colour shades, we decided for double encoding these also to node
shape: circles (senders) and squares (receivers). Node transparency
represents how many suspicious transactions an account has com-
pared to its total amount of transactions. The more suspicious trans-
actions are associated with an account, the less transparent we draw
the corresponding node. Node stroke is used during interactions to
highlight selected or hovered nodes. Interactionwise, the investiga-
tor can select nodes, drag the camera view and zoom in and out of the
view. When a node is selected, the view shows all first layer nodes
with links and all second layer nodes without its links. Selecting
second layer nodes for comparison is also supported.

We included two different force directed layouts: a treemap lay-
out and a radial layout with cores (see Figure 4). A treemap-like sub-
division of the space with four divisions that represent the amount
of each account type (fraudulent receiver, fraudulent sender, nor-
mal receiver and normal sender) and pulls these node types towards
the centre of the respective subdivision. While creating attraction
centres at each region, the nodes also get influenced by node–link
spring forces. The influence of the spring forces avoid that the nodes
merge and clutter to the same region centre points, even when they
are being pulled in the same direction. The radial layout with cores
assumes a light gravitational force in the middle in order to keep the
elements close but the main aspect of it is the repelling force that the
nodes apply to each other. By coupling the repelling force from all
nodes with the link attraction force, we could obtain a network rep-
resentation that visually separates subgraphs of related events. Both
layouts pre-calculate the position of nodes and do not allow drag
and drop interactions in order to preserve the position of nodes, and
thus, the mental map of the user.

To represent the network connections, we decided for a node–
link view over a matrix view, since a node–link presentation better
supports path-finding [OJK18]. This feature facilitates the reason-
ing about circular schemes such as money laundering. While the
position of node elements for different layouts (which all highlight
different aspects of the network) presents an additional challenge,
node–link diagrams are better suited for reading information from
small and sparse graphs [KEC06]. In addition, a matrix view would
introduce challenges of sorting and positioning accounts so that rel-
evant accounts are close to each other to enable comparison, which
usually demands several sorts of interaction features. Another ben-
eficial feature of node–link diagrams is that they enhance reason-
ing about indirect paths between two and more nodes [KEC06].
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Figure 4: Two layout options presented by NEVA. On the left-hand side, a radial layout which is better suitable for path-finding tasks due to the
distribution of nodes on the available space. On the right-hand side, a treemap layout which groups the different types of accounts (fraudulent-
senders, fraudulent-receivers, normal-sender, normal-receiver) into an underlying treemap segmentation of the available space.

Moreover, a node–link representation provides several visual at-
tributes that can be used to support effective visual analysis with-
out resulting in a confusing visualization (i.e. link width, node size,
node colour, node transparency or node stroke). Furthermore, we
provide a subgraph ‘drawing’ feature (i.e. drawing node–link con-
nections) for querying the data set (see D: Guidance-Enriched Pat-
tern Search) which is a more intuitive approach than asking the in-
vestigator to draw a subgraph matrix.

C.1, C.2: Filters andGuidance-Enriched Pattern Search. In this
panel, we provide filtering relations between accounts with respect
to different features by using sliders (C.1), changing the graph lay-
out through radio boxes (C.1) and a guidance-enriched pattern gen-
eration, detection and filtering canvas (C.2). Based on themost com-
mon queries manually executed by investigators, we designed three
sliders that can be combined to narrow down the content of an in-
vestigation (see Figure 5C.1). These sliders are used to filter net-
work features (i.e. frequency of transactions and amount of money
involved) and to specify filter intervals for these network features
(min/max). Despite C.1 presenting a simple but very useful filter
functionality, C.2 presents a more complex approach that is ex-
plained in Section 4.4.

D: Selection History. This view helps to keep track of the network
investigations that have been performed. Through this view, we also
can reselect already investigated nodes.

4.4. Node–link patterns & guidance-enriched pattern canvas

Our approach to provide guidance for the detection of interesting
patterns within the network was motivated by the work presented by
Cheng et al. (see figure 15 in [CNY*17]). In their work, the authors
elaborate that different combinations of only four nodes generate
nearly 200 different types of subgraphs, however, just 20 of these
subgraphs could be found in the data set. Thus, as the number of
different possible combinations of n nodes increases exponentially,
we guide users in constructing subgraphs that are used to query the
data set. Showing them which combinations of patterns make sense

because they are actually present in the data considerably reduces
the number of possible subgraphs.

Besides simplifying pattern searches by allowing the user to sim-
ply draw the subgraph that should be queried, we also facilitate
these subgraph query constructions with guidance. Guidance is seen
as a computer-assisted process that gradually narrows the knowl-
edge gap that hinders effective continuation of the data exploration
and analysis. It provides prospective assistance so that users can
make sense of the data on their own [CGM19, CGM*17, CGM*18].
In analogy with the auto-complete text guidance assistant in VIS-
AGE [PTE*16], we propose a solution that preserves the inves-
tigator’s mental map. Common text auto-complete features might
disrupt an investigator’s mental map [PHG06, APP11] by suggest-
ing well-known or most used queries. Instead of influencing the
query with our guidance system, we apply guidance only to avoid
that queries will produce empty search results. Thus, we stepwise
guide the user through all possibilities of subgraph constructions
that actually exist in the customer graph. Node combinations that
do not exist in the data, cannot be drawn; only the ones that exist
are available. Moreover, our visual query approach is more user-
friendly than a text-based approach that might require scripting
knowledge. Based on Ceneda et al.’s definition of different guid-
ance degrees [CGM*17, CGM*18], we categorize the guidance de-
gree provided in view C.2 as: ‘directing guidance’, since it narrows
down the multitude of options which in theory are possible at each
step of constructing a subgraph, to those options that actually make
sense. The input is network data as well as the user’s actions (i.e.
which node is currently selected) and the output are possible ad-
ditions to the drawn subgraph, which is used to query the data. In
order to perform a guidance-enriched network pattern exploration
and search function (see Section 4.1), first, we defined four differ-
ent categories of nodes according to their relations [i.e. ‘Connector
(Co)’, ‘Flower Petal (FP)’, ‘Flower Core (FC)’ and ‘Sender Chain
(SC)’]. All four categories are described in Figure 5. Reducing a
pattern representation to these categories of linked nodes proved to
be very powerful by not only being able to represent all patterns de-
scribed in Cheng et al.’s approach [CNY*17] but also for being able
to construct anymoney flow subgraph existing in our real-world data
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Figure 5: C.2 shows four possible subnetwork structures to be selected. Connectors (Co) are receiver nodes that are in between sender nodes.
Sender Chains (SC) are sender nodes that are connected to each other. Flower Core (FC) is a sender node which is just connected to receiver
nodes. Flower Petal (FP) are receiver nodes that are only connected to one sender node. Overall, this is an example of possible patterns that
can be drawn and queried. C.1 provides sliders to apply interval filters. In C.2, the investigator drew a network pattern to query for: the black
nodes present two FC connected to three FP each. The investigator then connected the two FC by a Co node. At the right-hand side, we see
the query result of the applied filters and the drawn pattern. Light blue nodes are Cos, dark blue nodes are SCs, red nodes are FCs and orange
nodes are FPs.

set. The complete representation is guaranteed for our use case be-
cause each node from our data set falls into one of the four classes.
Thus, we use these node categories as a base for building the pattern
search feature in view C.2. When it comes to performance, all sub-
graph queries applied to our real-world data set (see Section 4.2)
during development and evaluation of NEVA, presented ‘instant’
results (i.e. execution average of 3 ms when using a computer with
Intel Core i5-2520 2.50 GHz with 8 GB RAM).

In view C.2, the investigator can draw any subgraph by adding
and linking the previously proposed node–link patterns. When
drawing such a subgraph, NEVA guides the investigator by pro-
viding possible links to add to the subgraph, while avoiding non-
existing constructs or links that make no sense. The options are au-
tomatically calculated based on the node that the investigator selects
in the query canvas, and thus, the provided guidance is an active
answer on the user’s action and his/her knowledge gap (i.e. com-
plete awareness of which patterns exist in the customer graph). In
this way, our guidance support facilitates pattern generation, detec-
tion and filtering tasks [CGM*17, CGM*18]. Therefore, we name
it Guidance-Enriched Pattern Canvas.

Our guidance approach prevents two different types of common
errors when constructing subgraphs: First, if a structure cannot be
found in the current data set, it is not possible to draw this struc-

ture in the Guidance-Enriched Pattern Canvas. For instance, let us
assume that the maximum connections of any FC node in a data set
are three FP nodes. After drawing the third link from an FC node to
an FP node in the drawing area of view C.2, the FP node selection
option would be greyed out. The second type of error prevented by
our guidance system is the combination of patterns and nodes that
do not make sense (i.e. the logical structure and connection of differ-
ent types of nodes). For instance, two FP nodes cannot be connected
to each other, otherwise it would represent an SC node (SC). On the
other hand, at least two SC nodes must be connected to each other.
For each added node in the drawing area, the query is immediately
executed and all other views are updated accordingly. With that in
mind, we illustrate a real-world example in Figure 5. C.2 shows that
a Co node is selected (see the yellow bordered squared node) to ex-
tend the query pattern. Since a Co node cannot be linked to another
Co node and neither to an FP node, these options are greyed out.

Subgraph search algorithm. We first categorize all nodes in the
data set by categories (FP, FC, SC or Co). Once the nodes are cat-
egorized, we can search for matching subgraphs in the data model.
We defineGt = (Vt ,Et ) as our data model graph, beingVt the vertex
set and Et the set of ordered pairs of nodes representing the graph
edges. We also define |Vt | = n. The subgraph pattern that the user
constructs during a query is defined as Gp = (Vp,Ep). Next, we use
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our pattern matching algorithm to look for a subgraph Gr = (Vr ⊆
Vt ,Er ⊆ Et ). Considering that the Gp nodes represent different cat-
egories, which identify a set of nodes in Vt , this algorithm conducts
the following operations: (1) for every node category vp ∈ Vp, it ex-
tracts the nodes vt ∈ Vt that match the constraints defined in vp and
assigns them to Vr; (2) for every node now in Vr, it checks whether
its edges connect to Er. An edge et = (ut , vt ) ∈ Et belongs to Er if
ut , vt ∈ Vr and they were extracted from the two different categories
nodes in Vp connected by an edge ep ∈ Ep.

The algorithm has a quadratic asymptotic time complexityO(n2).
The first step (1) has to be repeated for each node in Vp, therefore it
has a complexity of O(|Vp|). We can perform the second step (2) in
O(d) time for each node, being d the out-degree of a node. There-
fore, considering that from Vp we extract the nodes to insert in Vr,
the time complexity of the algorithm is O(|Vr|d): |Vr| is at most
n (when the queried subgraph includes all the nodes in Vt ) and d
is at most n− 1 (when vr shares an edge with all the other vertices
in the graph).

However, in practice, we could find that also with very dense
graphs and real-world data our implementation was able to find sub-
graphs with an efficient time, enabling a real-time interactive explo-
ration. Even if the general pattern matching problem is NP-Hard, in
our case the problem is greatly simplified by the precalculated cat-
egories that maps the nodes in the target graph.

5. Solving Real-World Tasks with NEVA

In this section, we aim to present four real-world insights about
false-negative and false-positive cases that were confirmed by in-
vestigators using our approach.

Figure 6: The triangle relationship between three accounts, i.e.
the flagged accounts acc8315 and acc9711 as well as acc9540, an
initially non-flagged account. It is possible to observe high-value
transactions between the two flagged accounts and in addition, from
both accounts to the same target account (acc9540). This indicates
that acc9540 might be a fraudulent ‘straw person’.

Figure 7: A case that acc76, a non-flagged sender, is detected as
a ‘man-in-the-middle’ node that connects three flagged senders.
Moreover, it sent money to seven additional non-flagged accounts.
Thus, NEVA automatically includes these non-flagged accounts for
a comprehensive investigation of possible fraudulent networks (see
Section 4.2).

Figure 8: The selection analysis of the ‘man-in-the-middle’account
‘ib11196’. Although this account is connected to two fraudulent
senders, the temporal view reveals a non-suspicious behaviour of
only two received transactions of 30 € , which makes it very unlikely
that this account is involved in any fraud.

5.1. False-negative alarms

When inspecting the ‘acc9711’, one of the first network features
that appeared to the investigator is its connection with another
sender account, which would present an SC (see Figure 5). After
a quick inspection of the linked fraudulent account ‘acc8315’, the
node–link view reveals that both accounts have the non-flagged ac-
count ‘acc9540’ as a common receiver (see Figure 6). By observing
the multiple transactions involving a high amount of money from
the two connected fraudulent accounts, we conclude that the non-
flagged account ‘acc9540’ should also be considered suspicious in
case of a fraudulent network scheme.

Selecting the ‘man-in-the-middle’ (i.e. the non-flagged sender ac-
count ‘acc76’) revealed that it received money from three different
fraudulent senders (see red nodes in Figure 7). Since this account
has suspicious connections and is also a sender account, the ‘man-
in-the-middle’ search algorithm was also applied to its connections.
This revealed seven additional non-flagged senders that have com-
mon receptors with flagged accounts (see arrows in Figure 7). Fur-
ther investigation confirmed the involvement of those accounts in
a larger fraudulent network scheme. In this case, the ‘man-in-the-
middle’ selection highlighted a potentially fraudulent network of
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accounts that were not flagged as suspicious by the automatic de-
tection mechanism.

5.2. False-positive alarms

The account ‘acc4238’presents two flagged money transactions on
the same day to two different accounts. First, a 6500€ transaction
to account ‘ib3614’ that resulted in a score of 25, and second, a
50€ transaction to account ‘ib3613’ that resulted in a score of nine.
While the first transaction is worrisome, especially due to the high
amount of money involved, the second transaction involves just a
small amount of money. Although the second transaction resulted
in a much lower score than the first one, it still exceeded the thresh-
old of the automatic detection algorithm. This sensitive behaviour
might be a result of the first alarm (from the same day) and can be
neglected. Thus, this case presents a false-positive alarm that would
not be easily detected and justified without data exploration moti-
vated by a VA tool.

While ‘man-in-the-middle’ nodes are not flagged by the auto-
matic detection mechanism, investigators still consider them as
highly suspicious and used NEVA to further invest them individ-
ually. If an investigator analyses such a suspicious case and comes
to the conclusion that it is harmless, it can be considered a false-
positive alarm. In Figure 8, we present a case with a non-flagged
node (‘ib11196’) being the ‘man-in-the-middle’ of two different
fraudulent accounts (‘acc11598’ and ‘acc30692’). The two transac-
tions involved show a small amount of money (30€ each). Although
frequently sending small amounts of money could indicate a cer-
tain type of fraud, NEVA shows that those two relations do not have
any previous or subsequent involvement. Thus, it does not present a
critical account.

6. Evaluation

In order to estimate the usability of our approach, we conducted a
qualitative evaluation with six domain experts. By asking them to
answer three research questions (RQ), a qualitative study allowed
us to get the investigators feedback and reasoning about the insights
that were gained while using NEVA.

RQ1: Comparison. What are the advantages and disadvantages
of NEVA compared to the tools which investigators usually use?
RQ2: Insights. What kind of insights can be generated with
NEVA?
RQ3: Improvements. Do the investigator miss any features or
have suggestions for improvement?

Participants, Data set and Tasks. We recruited six potential in-
vestigators from our collaborating bank who had never seen the
prototype before. Qualitative studies are a useful means to gener-
ate insights with relatively few study participants [IIC*13, KP15].
All participants had previous experience with visualizations for
data presentation.

During the evaluation, we used an anonymized real-world data
set from our collaborators covering an interval from January 2013
to April 2015. After the data setup (see Section 4.2), 661 different
accounts with a total of 1 527 583 transactions of different types (i.e.

net banking transactions and automatic payments of bills) were se-
lected to be inspected. These tasks are structured according to the
analytical task taxonomy byAndrienko andAndrienko [AA06], dis-
tinguishing between elementary and synoptic tasks.

To evaluate the task performance of our approach, we stipulate
four tasks directly related to the proposed requirements (see Sec-
tion 4.1). Task 1 is designed to evaluate R1, Task 2 is designed to
evaluate R2 and so on.

Task 1: Identify false-negative alarms for any period of time.
Task 2: Identify false-positive alarms for any period of time.
Task 3: Find at least two types of potential frauds.
Task 4: Query any fraudulent pattern known to you.

Our evaluation design covers the highlighted problem complex-
ities (see numerical references of Section 3.2): Tasks 3 and 4 are
addressing context (2) and fraud classification (4) challenges, all
tasks are addressing time-oriented data analysis (3), and scalability
(1) is put to the test by the usage of a real-world data set with 77 000
accounts (see Section 4.2).

Procedure and Collected Data Analysis. The study procedure
took place in two locations, a meeting room at the university and
a meeting room at the bank headquarters. The participant and the
evaluation moderator were present. In addition, audio and video
recording software were used to support further data analysis. First,
a short introduction to the study’s goal and the meeting schedule
were presented. Next, a semi-structured interview took place in or-
der to better understand the current approach for network FFD and
the participant’s VA background. Then, the participant was invited
to perform the proposed tasks using NEVA. While interacting with
the prototype, the participant was encouraged to think aloud (RQ2).
After this phase, another semi-structured interview was conducted
in order to collect feedback (RQ1, RQ3).

After the evaluation session, we analysed the collected quali-
tative data (notes, audio and video recordings). In order to un-
derstand how effective our approach was supporting exploration
and sensemaking (RQ2), we opted to use Klein‘s model (see
also [KMH06a, KMH06b]) to interpret the collected data due to its
broad [PSM12] intelligence analysis approach. For this reason, we
adopted three categories fromKlein [Kle13] to categorize notes, au-
dio and video recordings.

Connection. These are the resulted insights of the combination of
two or more views. For example, two views showing different as-
pects of the same data elements.

Coincidence. These insights are results of events that in a first
moment do not present obvious connections but through the view-
ers’ eyes seem to have a relationship. For example, two data el-
ements with a similar outlier position might have the same non-
identified source.

Curiosity. These are motivation insights. For example, seeing one
data element positioned in a different place when compared to the
others, arouses the viewers’ interest in finding an explanation to that.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



12 R. A. Leite et al. / NEVA: Visual Analytics to Identify Fraudulent Networks

6.1. Results

All the participants were able to achieve satisfactory results on the
four tasks with an average duration of 12 min. The first interview
session (before trying the prototype) took about 15 min and the sec-
ond interview (after trying the prototype) took about 25 min.

In this subsection, we present the results from the evaluation ses-
sion with respect to our RQs.

6.1.1. RQ1: Comparison

The participants usually use visualization approaches for data anal-
ysis and presentation purposes. Some of the tools cited by the partic-
ipants were: Microsoft Excel [Mica], Microsoft PowerPoint [Micb]
and Tableau [tab]. From the available visualizations of the men-
tioned tools, they are most familiar with line charts, pie charts and
bar charts.

When comparing our approach to the other tools, some partici-
pants highlighted that interactivity of our approach was helping a
lot with the filtering of ‘interesting elements’ and the analysis of
relations. Concerning the system precision on representing and fil-
tering, one participant commented: ‘just by looking at the graphs
and interacting with it, I can detect a small number of suspicious
nodes and gaining an initial understanding of them’. Another par-
ticipant commented: ‘The interactive technique is not only good for
detecting suspicious patterns but also to exclude false alarms’. Be-
sides that, many aspects of our approach such as the design choices
of the node–link diagram and the temporal view, the history track
panel, the slider filters and mainly the network pattern drawing tool
were very well received. The participants also demonstrated an in-
terest in showing our solution to business, meaning that a potential
official tool could be created based on our prototype. With that and
other motivating statements, we reason that NEVA is a positive im-
provement to the current workflow of FFD investigators.

6.1.2. RQ2: Insights

Three kinds of insights were counted during the evaluation session:
Connection, Coincidence and Curiosity. We present the distribution
of a total of 178 identified insights (average of 29 for each partici-
pant) according to the performed tasks in Figure 9.Connection. The
dominant appearance (47.75%) of this insight is mainly due to the
multiple coordinated views of our approach which link the node–
link view (B), the temporal views (A.1, A.2) and the Guidance-
Enriched Pattern Search (C.1, C.2). For example, observing a node
in the node–link view would lead the investigator to select it and
analyse its transactions in the temporal view. Another example is

Figure 9: Insight summary. The appearance and the sum of each
insight type with respect to the tasks performed.

that investigators constantly checked changes in the node–link view
when drawing a pattern with the network pattern drawing tool. Co-
incidence. With the smallest appearance (14.60%), this insight pre-
dominantly occurred during Task 3. Since this task was about in-
vestigating different types of frauds, it is plausible that this insight
type is about finding hidden relations, played a main role. Curios-
ity. During the investigation of false-negative cases (Task 1), this
was the main insight type with six appearances. By interpreting sus-
picious transactions (i.e. links) in the node–link view, the investiga-
tors often inspected also the nodes to check if the transactions were
really suspicious. This represented (37.64%) of the total insights.

6.1.3. RQ3: Improvements

During the last part of the evaluation sessions, the participants were
encouraged to make suggestions about how the approach could be
improved from their point of view. The first suggested feature was to
allow excluding nodes and transactions in case the investigator finds
false-positive alarms. Another feature suggested was an ‘undo’ but-
ton that would return the whole system to how it was one action be-
fore. A mouse-over window for hovering edges, giving an overview
of the frequency of transactions between two nodes before inspect-
ing it in more detail in the temporal views was also desired. Con-
cerning the temporal views, a participant recommended to add a
selection box that would allow the investigator to observe only the
interaction between the two selected nodes instead of only high-
lighting them visually. We consider all other suggested improve-
ments as minor usability issues that will be added in the next itera-
tion of our approach.

7. Discussion

In this section, we discuss (1) how our approach fulfills the previ-
ously defined requirements, (2) benefits of a potential integration
with EVA [LGM*18] and (3) limitations of our approach as well as
future research challenges in this field.

7.1. Requirements

We designed and developed NEVA to support a guided exploration
and informed reasoning about fraudulent networks in the field of
FFD. Our solution provides different levels of data abstraction.
Moreover, it supports important tasks in the context of FFD, such as
(1) inspecting relations between bank accounts, (2) analysing tem-
poral aspects of financial transactions with detail and overview in-
formation, (3) filtering the network of accounts with respect to the
characteristics of relations between accounts, (4) querying for spe-
cific network patterns supported by novel guidance mechanisms and
(5) identifying straw persons and ’humans-in-between’ by ranking
all accounts connected to a selected account in two layers: direct
connections (first-level connections) and all connections of these
first-level connections (second layer connections). Moreover, all
views are connected, i.e. they consistently reflect all changes ap-
plied to the data (i.e. filtering, selections, modifications).

Investigators can analyse temporal aspects using an overview and
detail approach of the temporal views A.1 and A.2 (Figure 2). Since
it is very difficult to encode all relevant data aspects in one view,
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these temporal views allow for the detailed inspection of transac-
tions while preserving the bigger picture. Another feature that sup-
ports reasoning about the temporal aspects of transactions is the
filtering consistency between the views. The combination of these
views helps to reason about the temporal sequence and consistency
of sent and received transactions of a selected account. Moreover,
our approach also enables direct comparison of the transaction his-
tories of two accounts. This feature supports the investigator in rea-
soning about a potential fraudulent collaboration between two or
more accounts.

Since we used a real-world data set for development and eval-
uation, our approach scales to the scope of data sets typically used
for real-world FFD tasks. Due to local law restrictions, bank institu-
tions are allowed to keep records for a maximum period of 7 years.
Thus, our approach scales well even to the highest possible number
of transactions existing in available data sets (32,175 transactions).

The node–link view allows for an analysis of connections be-
tween flagged and non-flagged accounts. After identifying suspi-
cious relations, by using the temporal view, we can reveal transac-
tions with suspicious features and/or to suspicious accounts. This
enables investigators to investigate these accounts and make better
informed decisions about the suspiciousness of these accounts, and
thus, to reveal potentially false-negative cases R1. Similar inspec-
tions can be performed the other way around, starting from accounts
flagged as suspicious and investigating the reasons for which this
account was flagged by the automatic detection mechanism. For ex-
ample, during the evaluation session (Task 2), one investigator fil-
tered the data displayed to a low amount of money transactions (us-
ing view D) and quickly inspected the remaining accounts. After a
few minutes, s/he could already confirm that a good part of those
accounts presented false-positive alarms R2.

The identification of different types of fraudulent behaviourR3 is
a very difficult and sensitive task that requires the combination of all
views of NEVA. The differences of account relations become more
evident during visual analysis. In addition, the understanding and
identification of fraud patterns might be registered for further usage
during a network pattern query R4. We also presented a tool (view
D) to guide the search for relational patterns that might support in-
vestigators in formalizing queries and also in the categorization of
fraud types.

7.2. Potential integration with EVA [LGM*18]

Since we already designed and developed an FFD tool focused on
different techniques, we strongly believe that NEVA would lend it-
self to be integrated with this approach. NEVA adds new features
for network analysis and tools to the investigation process. Using
interactions such as node selection, the investigator could link the
two approaches in order to perform different analysis without los-
ing the investigation track. Thus, as an extension, the best of both
approaches would sum up in a better and more complete solution.

7.3. Limitations & further work

Network pattern analysis and outlier detection are constant re-
search challenges. Additional layers of complexity should be con-

sidered when involving time-oriented and multi-variate data. Based
on current limitations, we derive research challenges to inspire fu-
ture works.

New Accounts Monitoring. Since our automatic algorithm is
based on scores which are calculated based on the account’s history,
we cannot efficiently evaluate newcomer accounts. Moreover, it is
known that some frauds involve completely new accounts in order
to hide from these algorithms. However, for those frauds other al-
gorithms apply. That being said, we strongly believe that FFD could
benefit from solutions for (1) analysing first steps of new accounts
individually and (2) keeping track of accounts that cannot be in-
terpreted by a history-based system. Another possible challenging
future work would be (3) to support the migration of new accounts
analysis for a score-based approach.

Subgraph Search Limitations. The Guidance-Enriched Pattern
Search (view C.2) provides a more intuitive search and better un-
derstanding of the data through its interactive and responsive explo-
ration. However, this (i.e. the subgraph isomorphism problem) is
an NP-complete problem. For the analysis of larger data sets, the
usability of this technique depends on the available computation
power and/or advances in the state of the art of subgraph match-
ing algorithms. However, as we did in NEVA, the performance of
the query algorithm can be improved when the attributes of nodes
are used to constrain searches.

Temporal Analysis of Multiple Accounts. NEVA’s temporal
views (A.1 and A.2) already support the temporal analysis and in-
spection of transactions. With these views, we provide support for
comparing two accounts. In future work, it would be interesting to
include a temporal view that supports the analysis of all accounts of
the selected network in a non-cluttered way.

Collaborative Investigation. Some analysis scenarios, such as a
governmental investigations, can be at huge scale and involve many
investigators over a grand period of time. Many countries recently
faced cases of political corruption involving illegal money transac-
tions that take years of analysis. Other examples of huge investi-
gations are Wiki Leaks [BHM13] and analysis of cryptocurrency
networks. These types of investigations might demand for a col-
laborative analysis. Distributing workload and double checking hy-
potheses would potentially present faster andmore objective results.

8. Conclusion

Based on our experience in this field and in tight collaboration with
domain experts from a national bank, we iteratively designed our
VA solution for FFD network analysis, called NEVA. Our approach
follows the VA principles of intuitive and interactive visualizations
in combination with analytical techniques. All design and interac-
tion choices were made with special consideration of the previously
defined requirements and with respect to the limited experience
of FFD investigators with visual exploration tools. Our approach
consists of an automatic computation of profile-based suspicious-
ness scores for each transaction in combination with and interactive
multiple-coordinated view approach to explore and reason about the
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behaviour of bank accounts. By showing ‘data variation’ [Rob07,
WBWK00] NEVA improves the quality and speed of the investiga-
tion process.

We designed and evaluated NEVA with real-world data and six
real-world domain experts, which helped to assess the required scal-
ability of the approach. The added value of our approach is sup-
ported by (1) the analysis of insights gained with the help of NEVA
during our evaluation session with real-world investigators (see Sec-
tion 6) and (2) the additional fraudulent cases identified with the
help of NEVA that were later confirmed by investigators to con-
stitute actual cases that demand for further investigation (see Sec-
tion 5). The results of the evaluation session helped us to assess
the positive impact of our approach in a real-world setting. The im-
provement of task performance and the number of insights gained
while using NEVA confirmed its usability and efficiency.

Based on our study results, we also propose possible future re-
search directions that not only would be of added value to the FFD
domain, but also to fields that share similar problems and data char-
acteristics (i.e. multi-variate, time-oriented and network data as-
pects), such as biology, medicine, insurance companies or the pub-
lic sector.
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