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Kurzfassung

Die visuelle und interaktive Datenanalyse stellt ein großes Forschungsgebiet dar, das
sich erfolgreich in kommerziellen Anwendungen und Systemen durchgesetzt hat um
Analytikern zu ermöglichen Schlüsse und Erkentnisse aus ihren Daten zu ziehen. Im Nor-
malfall befinden sich in den Daten Fehler, die es meistens erschweren oder gar unmöglich
machen mit einer bestehenden Analyse zu beginnen ohne zuvor Vorverarbeitungsschritte
durchzuführen. Mit Visual Analytics Methoden ist es möglich Fehler zu identifizieren
oder zu korrigieren und die Daten in ein nutzbares Format zu überführen. Jedoch müssen
dabei unterschiedliche Aspekte berücksichtigt werden: (1) welche Operationen angewandt
wurden um Fehler zu beheben, (2) welche Auswirkungen sie auf den Datensatz hatten
und (3) ob die verwendeten Routinen die Fehler auch auf angemessene Weise behoben
haben. In dieser Dissertation werden Datenqualitätsmetriken und Unsicherheitsmaße
berechnet um Provenienz aus Bearbeitungs-Operationen und Vorverarbeitungs-Pipelines
zu erstellen. Im Kontext dieser Arbeit werden Qualitätsmetriken als Maße definiert,
die die Prävalenz von Fehlern in einem Datensatz beschreiben, Unsicherheiten werden
eingesetzt um das Ausmaß von Unschärfe, die durch Verarbeitungsschritte entsteht,
zu quantifizieren. Werden solche Maße als Provenienz über die Zeit gespeichert, ist es
Analysten möglich abzuschätzen wie Vorverarbeitungsschritte einen Datensatz verändert
haben und ob Probleme, die zu Beginn entdeckt wurden, mit Operationen gelöst wurden,
die die restlichen Daten kaum verändert haben. Das stellt sicher dass der veränderte
Datensatz möglichst dem originalen Datensatz entspricht.

Im Zuge dieser Dissertation wurde eine Benutzer-zentrierte Design Methodologie verwen-
det um Visual Analytics Prototypen und Visualisierungs-Techniken zu entwickeln. Die
Designs haben das Ziel die Forschungsfelder Datenqualität, Provenienz und Unsicherhei-
ten in einem interaktiven Ansatz zu vereinen. In dieser Arbeit präsentiere ich (1) eine
neue Methode Datenqualitätsmetriken zu erstellen und anzupassen um Qualitätsprobleme
in tabellaren und zeitorientierten Datensätzen zu analysieren; (2) ein Provenienz-Modell
basierend auf Bearbeitungs-Operationen, welches auf Datenqualitätsmetriken aufbaut
um die Qualitätsentwicklung über alle Verarbeitungs-Schritte hinweg zu verfolgen; und
(3) Methoden welche es ermöglichen Unsicherheiten in univariaten und multivariaten
Zeitreihen zu quantifizieren und zu visualisieren. Diese Unsicherheiten ermöglichen es das
Ausmaß an Unschärfe auf eine Zeitreihe durch eine Bearbeitungs-Operation abzuschätzen
und so eine angemessene Parameter-Einstellung zu finden, die Fehler und Rauschen aus
der Zeitreihe entfernt ohne unnötig viel Information zu verlieren. All diese Anwendungen
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und Methoden wurden basierend auf angewandten Echtzeit-Nutzungsszenarien entwickelt
und wurden mittels qualitativen und quantitativen Studien evaluiert um sicherzustellen,
dass es Analysten erlaubt ist die Probleme angemessen zu lösen.

Die Ergebnisse des iterativen Designs und der Evaluierung zeigen dass Datenquali-
tätsmetriken und quantifizierte Unsicherheiten angemessen sind, um den allgemeinen
Qualitätszustand eines gegebenen Datensatzes abzuschätzen. Weiters konnte ich finden
dass Datenqualitäts-informationen ebenfalls effektiv dafür verwendet werden können,
um einen Provenienz-Graphen aus Datenverarbeitungs-Prozessen zu annotieren damit
die Veränderung der Qualität über die Zeit bestimmt werden kann. Unsicherheiten,
die aus Vorverarbeitungs-Pipelines generiert werden, können verwendet werden um die
Auswirkungen der Operationen genauer zu betrachten und so dem Analysten helfen, eine
Balance zwischen notwendiger und exzessiver Vorverarbeitungsschritte zu finden.



Abstract

Visual and interactive data analysis is a large field of research that is successfully used in
commercial tools and systems to allow analysts make sense of their data. Data is often
riddled with issues, which makes analysis difficult or even not feasible. Pre-processing
data for downstream analysis also involves resolving these issues. We may employ Visual
Analytics methods to identify and correct issues and eventually wrangle the data into a
usable format. Various aspects are critical during issue correction: (1) how are the issues
resolved, (2) to what extent did this affect the dataset, and (3) did the used routines
actually resolve the issues appropriately. In this thesis I employ data quality metrics and
uncertainty to capture provenance from pre-processing operations and pipelines. Data
quality metrics are used to show the prevalence of errors in a dataset, and uncertainty can
quantify the changes applied to a data values and entries during processing. Capturing
such measures as provenance and visualizing it in an exploratory environment can allow
analysts to determine how pre-processing steps affected a dataset, and if the issues, that
were initially discovered, could be resolved in a minimal way, so the data is representative
of the original dataset.

Within the course of this thesis I employed a user-centered design methodology to
develop Visual Analytics prototypes and visualization techniques that combine techniques
from data quality, provenance, and uncertainty research. This work presents (1) a
novel method to create and customize data quality metrics that can be employed to
explore quality issues in tabular and time-oriented datasets, (2) a provenance model for
capturing provenance from data pre-processing, leveraging data quality metrics, and using
visualization to show the development of quality throughout a pre-processing workflow,
and (3) methods for quantifying and visualizing uncertainty in univariate and multivariate
time series to analyze the influence of pre-processing operations on the time series. These
approaches were developed using real-world use cases and scenarios and were evaluated
using qualitative and quantitative user studies to validate the appropriateness of my
approaches. The results of the iterative design and evaluation shows that data quality
metrics and uncertainty quantified from data pre-processing can be used to assess the
overall quality of a dataset. The data quality can furthermore be used to annotate
provenance captured during data wrangling, which allows analysts to understand and
track the development of quality in a dataset. Uncertainty quantified from pre-processing
can be used to assess the impact that pre-processing operations have on datasets and
thus support analysts find a balance between necessary and excessive pre-processing.
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CHAPTER 1
Introduction

1.1 Motivation

Data analysis is likely preceded by a pre-processing workflow to bring the data into usable
form. People spend countless hours trying to prepare data in a particular way, changing
the structure, transforming values, and cleansing data entries. To make data analysis
possible, the data often need to be cleaned, aggregated, transformed into a particular
format. Pre-processing data is an iterative process in which transformations are applied
consecutively. It fosters awareness of Data Quality (DQ) for the next steps in the data
analysis process and for the interpretations of the results and insights. Analysts often
find themselves in a dilemma of DQ: are the data sufficiently clean so that they can
commence downstream analysis?

Performing data cleansing, i.e., ridding the dataset of quality problems and inconsistencies,
is necessary to correctly identify different types of errors in the dataset and appropriately
resolve them. Different cleansing operations will change the effects on the data. For
instance, if an entry is missing individual cells, an analyst might remove these entries if they
contained vital information, and in turn continue with a smaller dataset. Alternatively, if
non-critical information is missing but can be imputed (e.g., by interpolating values), the
analyst might try to keep these entries and retain the original dataset’s size. Downstream
analysis often requires data to be available in a particular format and structure, which
demands re-formatting the original data. For recurring analysis with updated or streaming
input data, automatic scripting can be set up to automatically pre-process the new
datasets. However, auditing the results of these automatic transformations is rarely
possible without requiring detailed inspection of the original and pre-processed data.
This is exacerbated by large data sizes: Detailed inspection of the raw data to look for
unresolved issues is impossible without assistance.

Attempting different methods to prepare a dataset can be valuable, analysts become
familiar with the attributes of the data, the value and application domain, and the

3



1. Introduction

dataset in general, but they often lead to dead ends. Frequently, analysts identify errors
in their pre-processing routines and need to revert the data processing, resulting in
tediously re-tracing their own actions. These operations and transformations are often
scattered across multiple applications, self-written scripts, or online processing tools.
Without providing detailed logging of the applied operations, parameter settings, and
their order, it can be pointless to reproduce the actions taken. On the other side, an
already pre-processed dataset without further information on what changes were applied
and how they affected the dataset can make analysts unfamiliar with the data doubt
their usefulness and trustworthiness. Trust is increasingly important in data analysis,
and the provenance of a dataset, i.e., storing any change applied to data, can be useful
for improving analysts’ confidence in the data.

According to Kandel et al., data wrangling is defined as “a process of iterative data
exploration and transformation that enables analysis” [KHP+11, p. 272]. Data cleansing
can be understood as the process of “detecting and removing errors and inconsistencies
from data in order to improve the quality of data” [RD00, p. 1]. Visual Interactive methods
can facilitate both data wrangling and cleansing approaches. Combining automated
techniques for detecting issues with interactive visualizations, analysts can explore the
dataset, identify issues and subsequently more appropriately resolve them. By computing
measures of quality and allowing analysts to investigate the prevalence of problems in the
dataset, they can make an informed decision if the data are usable in their current state,
or if it is necessary to resolve these issues. This depends on the downstream analysis
task, so analysts need to use their expertise and domain knowledge to assess quality.

Current data wrangling and cleansing allow visually profiling data and give a good
overview of the raw data. However, quality issues are often domain-specific, and analyst
unfamiliar with the data could overlook issues quite easily. By employing automatically
generated measures of quality to familiarize the analyst with the dataset, data wrangling
and cleansing can be facilitated by signaling if and where quality issues still remain. In
this work I will present new methods for detecting and exploring quality issues in data
wrangling and cleansing. I leverage DQ metrics to show the distribution of errors and
inconsistencies in the dataset, and employ this information to show the development of
quality across multiple transformation steps and wrangling branches, as well as utilize the
gathered information to quantify uncertainty that is inevitably introduced by wrangling
and cleansing a dataset. This will be illustrated on the concrete scenario of multivariate
time series data, a data domain where pre-processing is vital due to the often big scale of
the data.

1.2 A Visual Analytics Approach

Visual Analytics (VA) is defined as “science of analytical reasoning facilitated by visual
interactive interfaces”, according to Thomas and Cook [TC05, p. 4]. This field aims to
(i) enable analysts to obtain deep insights that directly support assessment, planning,
and decision-making, (ii) leverage human perception and the ability to understand large
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1.2. A Visual Analytics Approach

Figure 1.1: The scope of VA is an interdisciplinary field of different scientific research
disciplines [KMS+08].

amounts of information, (iii) transform and represent data to support visualization and
analysis, and (iv) support production, presentation, and dissemination of analysis results.
More specifically, Keim et al. [KKEM10] state that VA techniques enable analysts to
synthesize information and derive insight, detect the expected and discover the unexpected,
provide timely, defensible, and understandable assessments, and communicate these
assessment effectively for action. Thomas and Cook described the analytical reasoning
process to be iterative and support users in the sense-making task, which can also be
understood as knowledge crystallization. There have been various definitions of the VA
process and sensemaking in VA. Keim et al. [KAF+08] characterized the process of VA
as shown in Figure 1.2.

VA is an interdisciplinary field of research involving multiple disciplines, trying to leverage
human cognition as well as automated processing. As such, it combines data management
and processing, knowledge discovery, cognition and perception, statistical analysis, and
visualization research, among others (see Figure 1.1). The goal is to leverage the combined
strength of the different disciplines to emphasize human cognition and facilitate insight
generation and decision-making, while making the process traceable and the results
comprehensible by others.

Sense-making, as part of the iterative analysis process [TC05], is based on the iterative
sense-making loop for analysis by Pirolli and Card [Pir05]. They identified the process to
consist of two major loops, the foraging loop where users aim for seeking and extracting
information, and the sense-making loop that supports the user with building a mental
model that is based on the evidence found in the foraging loop. Users can iterate these
loops in bottom-up or top-down processes. In cognitive science, Klein et al. [KMH06]
presented a data/frame theory of sense-making, positing a closed-loop transition sequence
of mental model formation (backward-looking and explanatory) and mental simulation
(forward-looking and anticipatory). The sense-making models have been under continued
refinement, e.g., Sacha et al. derived a knowledge generation model [SSS+14], Federico
et al. [FWR+17] proposed to use explicitly and implicitly generated knowledge to assist
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1. Introduction

Figure 1.2: The VA process combines automated analysis and visual data exploration. To
discover insights and gain knowledge, there is a tight coupling between data, visualization,
models and the user [KAF+08].

VA and sense-making processes. Both approaches, however, made a clear distinction in
the knowledge generation models between the computational/machine and human/user
parts. Both approaches show that knowledge is a central element that can be fed back
into the model, but ultimately is the goal of an analysis process.

1.3 Problem Analysis

Visual-interactive data wrangling and cleansing approaches employ data profiling tech-
niques to gain insights into the currently analyzed dataset. Summary visualizations are
used to give analysts an overview of the data. In data cleansing these profiling techniques
are also used for detecting quality issues or inconsistencies that signal problems within
the dataset. Usually, particular application domains require specific anomaly detection
methods. The role of context for determining issues within a dataset is important, but
rarely considered in general data wrangling and cleansing tools. Hence, analysts resort to
specific tools that allow them to determine contextual problems in the dataset. In general,
current approaches in scientific literature lack the ability to detect and communicate
different types of quality issues, so that analysts are able to explore the issues of an entire
dataset consistently.

I propose to introduce customizable quality measures that detect domain-specific issues.
These quality measure can then be leveraged to support analysts during various data
wrangling or cleansing tasks: (i) Analysts can explore the distribution of quality issues
throughout the dataset. (ii) The quality measures can be computed throughout the entire
wrangling and cleansing process to log the development of quality over time. (iii) Saving
the changes in the dataset between transformation enables tracking how much the data
were changed, which can be used to quantify uncertainty from the wrangling/cleansing
process.
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1.3. Problem Analysis

Combining the use of quality measures with a VA approach for analyzing the prevalence
of quality issues and the qualitative state of the dataset will allow analysts to make
informed decisions on the usability of a dataset for downstream analysis. By employing
Shneiderman’s Visual Information Seeking Mantra [Shn96], I plan to provide users with
an overview first methodology, and provide means for filtering the data and getting
details on demand. Computing quality measures throughout the entire wrangling and
cleansing process and storing it as data provenance is expected to enable analysts explore
the development of quality over time. Provenance can also be explored by analysts to
make sense of preceding wrangling and cleansing efforts.

When wrangling and cleansing data, the original data is inevitably altered. Specifically,
in time series analysis, the data must be pre-processed, e.g., to smooth out sensor noise,
or reduce the data resolution by sampling. These changes reduce faithfulness in the data
and could cover up patterns in the data and analysts should be aware of these intrinsic
uncertainty. By quantifying uncertainty from data wrangling and cleansing operations,
it can be externalized and communicated to the analyst. This allows decision-making
under the awareness of uncertainty.

1.3.1 Research Methodology

VA solutions need to to satisfy both the integration of automated methods by employing
visual interfaces and other input techniques while providing visual methods for interactive
exploration. The applicability of these methods needs to be evaluated to validate if the
employed methods are appropriate for the data, the users, and the tasks. Miksch and
Aigner [MA14] derived a design triangle for designing VA of time-oriented data, which
I will use for deriving the design requirements of my VA solutions. They determined
that requirements towards developing VA solutions center around what kinds of data is
used, who the target users are, and what tasks these users want to conduct. These three
considerations are used to develop visual encodings, analytical and interaction methods
that satisfy three characteristics [MA14]: (1) Expressiveness refers to the requirement
of showing exactly the information contained in the data; nothing more and nothing
less must be visualized [Wij06], (2) Effectiveness addresses that the visual encoding
used leverages cognitive abilities to detect contextually relevant information [Wij06],
(3) Appropriateness involves the cost-value ratio for users to benefit from the employed
VA methods for a particular task [Mac86]. For visualization design and development,
Munzner’s Nested Model [Mun09] is employed. This model splits the visualization design
process into four levels and suggests evaluation methodologies for each level to ensure
these steps are explicitly followed and successfully passed before proceeding to the next
design step. The four levels of design consist of (i) characterizing problems and the
data, (ii) mapping them to abstract operations and data types, (iii) design using visual
encodings and interaction techniques, and (iv) creating algorithms for execution. In
particular, Munzner also lists the threats and possible validation methods of these nested
levels, as can be seen in Figure 1.4. This are considered to avoid pitfalls during design
and development, and choose an appropriate evaluation method for the individual levels.
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1. Introduction

Figure 1.3: The design triangle for designing VA of time-oriented data by Miksch and
Aigner [MA14].

Figure 1.4: A four-level nested model for designing and evaluating visualizations [Mun09].

Van Wijk presented a model of visualization [Wij06] and proposed an iterative design cycle:
(i) Setting up requirements, (ii) generating multiple possible solutions, and (iii) evaluating
these solutions towards the requirements to determine the best solution. He furthermore
associated a cost with developing and using visualizations, and considered it to be
measured for its utility by evaluating these costs. They range from initial development
cost, cost per user and per session – these might be computational costs – to perception
and exploration costs – time the user has to spend learning and getting used to the
visualization and possible interactions.

Iterating upon the nested model for visualization design and development, Federico et
al. [FAAM16] presented a nested workflow model for VA design and validation. They
generalized the design triangle for VA design of time-oriented data and introduced nesting
design levels into the three components of data, users, and tasks. They described tasks
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1.3. Problem Analysis

to be the central component of the nested workflow. For this matter they nest different
aspects within task characterization: (i) problem domain, (ii) operation abstraction,
(iii) visual encodings and interaction techniques, and (iv) algorithms. The data can be
seen as input and output of a VA solution and as such requires problem domain and
abstraction, whereas knowledge gained throughout an analysis should also be externalized.
The users need to be considered in the nested workflow, being affected by the problem
domain and being part of the interactive system. The workflow model is supposed to
evaluate whether users, given data or knowledge as input, can fulfill a particular task on
different levels of the nested workflow.

Brehmer and Munzner [BM13] engaged in abstracting and generalizing visualization tasks
by presenting a multi-level typology of abstract visualization tasks. They distinguish
this typology by three main questions: why, how, and what. The abstract task typology
can be used to describe existing visualization and VA tools. But it is also possible to
use it to prescribe and inform the process of designing new visualization or VA solutions.
These three main questions are also incorporated in Federico et al.’s nested workflow
model to decompose the characterized tasks on different levels of nesting. They showed
how their nested workflow model can be applied “to understand users’ environments,
work practices, and visual data analysis reasoning” [FAAM16, p. 6]. In Section 1.2 we
discussed the influence of sense-making and knowledge on VA. Matching these abstract
tasks to high-level decision making and validating if these tasks correspond to users’
mental models, Lam et al. [LTM18] attempted to derive tasks from analysis goals. This
should allow designing visualization and VA solutions that are more appropriate and
effective for the users and the tasks they are targeted at.

Pirolli and Card’s [Pir05] sense-making loop (see Figure 1.5) shows cycles and iterative
processes within the model indicate that foraging and sense-making is invoked in bottom-
up and top-down in an opportunistic way. Thus, if new insights suggest forward (bottom-
up) or backward (top-down) actions, users will iterate the model accordingly. The
sense-making loop can be utilized in VA solution development to determine which actions
should be supported. However, the model does not distinguish processes to be executed
by the human or the computer within a VA approach.

The knowledge generation model for VA presented by Sacha et al. [SSS+14] builds on the
exploration and the sense-making loop and separates tasks performed by the computer
system and the human component. Furthermore, the human reasoning process is extended
by a verification loop. The particularity of VA approaches allows a close connection
between the human and the computer through interaction and feedback observation, as
well as taking actions depending on the findings or the analysis goal (see Figure 1.6).
The goal of tightly coupling computer and human is to minimize the gulf of execution
and evaluation, as defined by Norman [Nor88, pp. 38]. They mention the role of trust in
this loop, which depends on the knowledge gained from confirming hypotheses. Sacha et
al. further iterated on this model to include uncertainty propagation and human trust
building in [SSK+16]. Different sources of uncertainty are inherent to multiple stages of
the knowledge generation model, and Sacha et al. discuss their propagation and possible
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Figure 1.5: Pirolli and Card’s [Pir05].

Figure 1.6: Knowledge generation model for VA by Sacha et al. [SSK+16].
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Figure 1.7: Knowledge generation model for VA including uncertainty propagation and
human trust building by Sacha et al. [SSK+16].

influences on steering and user intent. One of their propositions was to “analyze human
behavior in order to derive hints on problems and biases” [SSK+16, p. 7].

1.3.2 Evaluation

One vital topic in VA and visualization research is evaluating the outcome of the design
and implementation. Evaluating visualization and VA methods helps us understand how
users interact with the visualization/VA solution, and if the developed methods could
improve analysis or reasoning over existing approaches. Lam et al. [LBI+12] presented
seven types of evaluation used for evaluating visualization techniques or systems. They
differentiate between:

Understanding data analysis: These types of evaluation scenarios focus on trying
to externalize and quantify the mental models, user methodologies, and how well vi-
sualizations and interactions suit these. (1) Understanding Environments and Work
Practices (UWP): Eliciting formal requirements for design by understanding the work,
analysis, or information processing practices. (2) Evaluating Visual Data Analysis and
Reasoning (VDAR): Assessing a visualization tool’s ability to support visual analysis
and reasoning about data. This is done for a tool as a whole, as opposed to certain
functionality (compare Evaluating User Performance). However, it must be defined
how reasoning can be done within such tool, and how it is captured in an evaluation
environment. (3) Evaluating Communication through Visualization (CTV): Studying how
communication can be supported with visualization. Evaluation measures how effectively
messages are delivered and acquired, often through qualitative or quantitative metrics,
e.g., learning rate, or participants’ learning approaches. (4) Evaluating Collaborative
Data Analysis (CDA): Evaluating how a visualization tool supports collaborative analysis
and/or decision-making processes.

Understanding visualizations: Opposed to the first set of scenarios, where evaluation
tries to encapsulate how data analysis is conducted. This set of evaluation scenarios focuses
on understanding how the visualizations themselves are perceived and used. (1) Evaluating
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User Performance (UP): Quantifying measurable metrics of user performance often
analyzed with descriptive statistics. (2) Evaluating User Experience (UE): Determining
users’ experience and reaction to a visualization technique or system, which is often
a subjectively observed, collected, and measured result. (3) Evaluating Visualization
Algorithms (VA): Scoring visualization algorithms against existing solutions, in terms of
performance or quality.

The types of evaluation can be matched to Munzner’s nested model for visualization
design and development. Furthermore, Isenberg et al. [IIC+13] added another category
to these categories: Qualitative results inspection (QRI), which describes descriptive
statements by the author which should be implicitly assessed by the reader. They also
categorized the types of users demonstrated in case studies for UWP/VDAR scenarios: (1)
Domain experts, (2) Close collaborations between visualization researchers and domain
experts, (3) descriptions by visualization researchers, and (4) usage scenarios described
by visualization researchers. They also discussed considerations for future evaluation of
visualization design and systems: The authors should provide a clear statement on the
scientific contribution and application in real-world scenarios, with an indication towards
reporting UWP, VDAR, CTV, and CDA evaluation scenarios. Evaluation and reporting
on evaluation should be done rigorously, including “who participated”, “collaboration
details”, “how many people participated”, “the study protocol”, “controlling experiments
with rigor”, “reporting qualitative results inspection with rigor.”

While [IIC+13, LBI+12] described different types of evaluation types, Sedlmair et
al. [SMM12] determined a design study methodology framework. It consists of three
phases, precondition, core, and analysis. The framework should be followed linearly,
however the process is dynamically iterative, indicated by the backwards-facing arrows
in Figure [SMM12]. For example, the analysis phase could also be started early in
the process, which could in turn require re-thinking the chosen abstractions to more
clearly articulate them. In the discussion, they stress one important aspect for eval-
uating and interpreting results from a design study: “transferability is the goal, not
reproducibility” [SMM12, p. 2438]. So far, the methods for evaluating visualization and
VA approaches is done by formalizing user studies and testing hypotheses. Andrienko et
al. [ALA+18] presented a conceptual framework that defines VA as goal-oriented work-
flow that produces a model in the end, reflected in the data. Knowledge externalization
and representation to “capture, store, and reuse the knowledge generated throughout
the entire analytic process” [TC05, p.42] has continued to be an important concept,
and for many of the presented models (e.g., [SSS+14, FWR+17]) it is considered as a
central element that is generated from – and directed back into – the visual analysis
process. Simultaneously, the mental model should be externalized for later recall and
collaboration. Andrienko et al. advocate for collecting model provenance (also defined
as analytic provenance by Ragan et al. [RESC16]) to record the analysis process. They
propose to validate a developed VA solution against their proposed representation of the
VA workflow, as can be seen in Figure 1.9.

I intend to leverage existing taxonomies on provenance, DQ, and uncertainty analysis
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Figure 1.8: Nine-stage design study methodology framework by Sedlmair et al. [SMM12].

Figure 1.9: Representation of the VA workflow, by Andrienko et al. [ALA+18]: The
primary results are the behavioral model of the subject and the provenance of the model.
The secondary results are the externalized model representing the behavioral model and
the answers to the subject’s questions.
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to develop visualizations and VA systems that support knowledge generation and sense-
making. To validate if the requirements defined in the design triangle [MA14] are met, I
will conduct user studies and design evaluations to ensure the developed techniques are
appropriate, effective, and expressive.

1.4 Research Questions

From the above covered problem description and definition of VA I now formulate my
research questions that I aim to answer within the course of this thesis.

Main Question. Which VA methods can be found as appropriate to explore and
identify DQ issues in time-oriented data leveraging metrics, provenance, and uncertainty?

I want to further specify sub-questions to investigate aspects that have not been resolved
so far in scientific literature.

Sub-Question 1. Can DQ metrics be utilized in a data wrangling and cleansing appli-
cation as measures of quality for various types of data to give a visual overview of
the overall amount of issues as well as a detailed information about the errors in the
dataset? And how can VA methods be utilized to support identifying, understanding,
and correcting quality issues?

Sub-Question 2. How can uncertainty be quantified from data wrangling and
cleansing and how can it be visualized to assess the influence of the pre-processing steps
on downstream analysis?

Sub-Question 3. What kind of DQ information can be stored as data provenance
and used by analysts to comprehend the history of data wrangling and cleansing
steps and assess the qualitative condition of the dataset to judge the data’s usability?

1.5 Structure

The first part of this thesis defines the Problem. In this chapter, I introduced the use
of visual-interactive systems and motivated the problem statement. This was followed up
by discussing the employed research methodology and formulating my research questions.
To complement the problem descriptions and research methodology, the Related Work
chapter exhaustively covers the state of the art on VA and information visualization
research as well as visualization and interactive analysis of DQ assessment, uncertainty,
and provenance.

In the second part of the thesis I present the Proposed Solution, initially defining the
conceptualizations used in the developed approaches, defining notions of DQ, uncertainty
in time series pre-processing, and data and insight provenance from DQ. Chapter 4
presents MetricDoc, an approach for creating and customizing DQ metrics to visually
explore quality issues of tabular datasets. Chapter 5 leverages these DQ metrics and
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captures them alongside pre-processing operations to let users analyze the development
of quality during data wrangling. In Chapter 6 I present a new method for quantifying
uncertainty from pre-processing operations in multivariate time series (MVTS).

In the Evaluation & Results part, the developed designs and techniques are evaluated
using different evaluation methods: Chapter 7 shows case studies of applying the developed
systems in real-world scenarios, in Chapter 8 an iterative design methodology is presented
to iteratively validate visualization design during development of MetricDoc. Chapter 9
presents a user experience evaluation of the provenance analysis approach presented in
Chapter 5. Lastly, in Chapter 10 the uncertainty quantification methodology is used to
develop and evaluate a visualization design for time series segmentation results.

In the Conclusion I discuss the outcome of the proposed solutions and determine if
and how the research questions were addressed based on the implications found in the
evaluation results. I conclude my thesis by motivating future research directions.
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CHAPTER 2
Related Work

In this chapter, I will first introduce the foundations and definitions that the thesis
is based on, followed by the state-of-the-art in the relevant fields of DQ, uncertainty,
provenance, and time-oriented data analysis.

2.1 Foundation and Definitions

We base our fundamental understanding of quality on DQ research, which includes
DQ management and database research. Quality needs to be adequately controlled,
either in an organizational, architectural, or a computational level. In the course of
this thesis I will cover computational solutions for dealing with DQ. However, the goal
is that the presented VA solutions will help analysts better understand and leverage
information in the organizational and architectural levels. According to Sadiq [Sad13],
the computational solution space covers data record linkage, lineage and provenance, data
uncertainty, semantic integrity constraints (which will be referred to as DQ checks), as
well as trust and credibility. The emphasis on such diverse methodologies to detect, assess,
and improve DQ has historically been covered in visualization and VA research (e.g., data
management [CFS+06], interactive data wrangling [KPHH11] and cleansing [GAM+14]),
and until today illustrates that DQ continues to be an interdisciplinary field [LAW+18].

Most visualization and VA approaches assume that the input data contains a clean and
perfect set of entries. This can not be further from the truth, according to Dasu and
Johnson [DJ03] 80 % of the time spent analyzing a dataset constitutes data cleansing.
Hence, assessing DQ, and deciding when a dataset is “fit for use”, i.e., free of defects to
allow analysis and decision-making, is vital to reduce the time spent with data cleansing.

Pipino et al. [PLW02] also distinguished between subjective and objective assessment.
Hence, defining a general measure to use in a metric is only possible for objective
assessment. For subjective assessment, analysts may use custom measures.
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2.1.1 Data Quality

According to Dasu [Das13], a measure of DQ is always derived from a data matrix D =
{dij}, with i = 1, . . . , N representing a row of an entity, and j = 1, . . . , d corresponding
to an attribute. While D is the data generated by recording the real-world process P ,
it might not be faithful to what the analyst’s expectation D∗ (e.g., due to recording
issues, or perception differences). The disparity between D and D∗ can be seen as a
measure of quality: The less similar D and D∗ are, the lower the quality of the dataset.
Consequently, if we are able to make D and D∗ more similar by cleansing the data, we
can improve quality. In a controlled experiment we might know D∗, but in real-world
scenarios, it is unknown. Hence, it is not possible to determine whether D comes closer
to D∗ and still representing P faithfully. It is necessary to make a trade-off between
making D similar to D∗ and distorting the representation of P . Dasu [Das13] describes
data cleansing to be an iterative process that is divided into four stages: (1) Define and
Identify: establishing a notion of what constitutes a quality issue/data glitch, (2) Detect
and Quantify: defining functions to detect quality issues, (3) Clean and Rectify: selecting
adequate cleansing methods, and (4) Measure and Verify: quantifying the impact of the
applied cleansing methods.

The meaning of DQ is often depending on the context and application domain [DJ03].
Also, Batini et al. [BCFM09] described a DQ methodology that bases its measures on
input information and the application context. They generalized the methodology into
three phases, (1) state reconstruction (optional), (2) assessment/measurement, and
(3) improvement. For the assessment phase – i.e. measuring quality along relevant
quality dimensions, and comparing them to reference values to enable diagnosing – they
defined different steps to be followed, namely data analysis, DQ, identification of critical
areas, process modeling, and measurement of quality. In the following sections, I will
more closely look at formalizations of DQ dimensions, DQ errors, and how DQ metrics
and checks can be used to combine generic DQ dimensions with domain-specific constraint
validation and error identification.

Data Quality Dimensions

Both Dasu [Das13] and Batini et al. [BCFM09] describe stages or phases where a notion
of quality is to be defined prior to being able to assess the quality of a dataset. Initial work
by Wang and Strong [WS96] described different dimensions of DQ. Batini et al. condensed
a basic set of DQ dimensions from previous literature, accuracy, completeness, consistency,
timeliness. According to Redman [Red12], DQ dimensions help find a tangible, formal
specification which can be associated with the data model, values, and recording. A
DQ dimension captures a specific aspect of quality, it refers to properties of data and
their attributes [BS16]. However, such dimension is not intended to be a quantitative
measure, but more a qualitative one to describe DQ. Within the thesis I will use the
following definitions of DQ dimensions, based on [Das13, BCFM09, BS16, PLW02], and
are concerned mostly with data values, as opposed to presenting the data or the conceptual
data structure:
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Completeness [BCFM09, BS16, Das13]: Completeness defines the degree to which the
data values correspond to the real world object, in terms of values, tuples, attributes,
or relation. Missing data can correspond to lost values or tuples, due to issues in data
collection, processing, or storage.

Uniqueness [Das13, DJ03]: Uniqueness of an entry is violated if there are duplicate
key value vectors. The uniqueness constraints are highly context dependent, hence they
could be defined by duplicate, distinct, or non-unique values. Specifically, it is highly
likely that multiple constraints need to be defined to adequately ensure the uniqueness
of a tuple.

Consistency [BCFM09, Das13, TZHH18]: This notion of quality covers violations of
pre-defined semantic rules for data values or tuples. If data are created or entered
incorrectly, such rules could prevent spurious tuples that would otherwise not be detected.
It can be distinguished between intra-relation constraints cover valid ranges for value
specific requirements, while inter-relation constraints use information across the data
tuple/entry for validation.

Accuracy [BCFM09, TZHH18]: In early publications, accuracy corresponded to the
notion of data quality as a whole, e.g., “the extent to which data are correct, reliable,
and certified free of error” [WS96, p. 14, Table 1]. In this thesis the quality dimension
accuracy is a data value oriented definition, distinguishing between semantic accuracy,
i.e., the closeness of value v to the true value v0, and syntactic accuracy, i.e. the
closeness of value v to the corresponding value domain’s specific format requirements.

Some other DQ dimensions are specifically defined for certain data domains, which makes
them difficult to generalize [BS16]. As a result, it is necessary to not only look at notions
or dimensions of quality, but also more generally look at how errors in the data affect
these dimensions.

Data Quality Errors – Glitches and Issues

As with different notions, different terms for DQ errors are used throughout literature
interchangeably: data glitches [Das13, DJ03], data errors [KCH+03, GGAM12, WS96,
BCFM09], and (data or information) quality issues [Red12, BS16], data quality prob-
lems [ORH05, BG05]. For the remainder of this thesis I will use the term DQ error.
According to Dasu and Johnson [DJ03, p. 103], “a data glitch is any change introduced
in the data by causes external to the process that generates the data and is different
from the usual random noise present in most data sets.” Opposed to random noise, errors
introduce systematic changes. According to Kim et al. [KCH+03], an error causes a
wrong result or does not allow deriving any result due to inherent problems in the data.

Figure 2.1 shows an example of how a an error can occur in the data, and illustrates that
we need to make a distinction between the cause of an error and the manifestation of an
error in the data (detected in different notion of DQ). What can be seen is that the error
was likely caused by the polling interval that had one record being pushed to the next
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Figure 2.1: Illustration of a quality error that creates a missing record, and a duplicate
record in the data, affecting different notions of quality, i.e., completeness and uniqueness.

Figure 2.2: Classification of DQ problems based on error source and cause [RD00]
(obtained from Gschwandtner et al. [GGAM12]).

interval. An analyst might not know this, and only see the effects in the data, but the
goal is not to treat the effects in the data but to gain insights into how to react to the
data error appropriately. In this case, the analyst could impute the missing value with
the duplicate value stored in the successive polling interval.

There have been considerable efforts for categorizing the types of DQ errors. Rahm
and Do [RD00] classified data quality problems based on their sources and their causes
(compare Figure 2.2) While some errors are observable easily, others can only be noticed
through comprehensive analysis because they might be concealed in local data phenomena.
Kim et al. [KCH+03] and Li et al. [LPK10] presented general non-formal taxonomies of
dirty data to facilitate the correct identification of errors (compare Figure 2.3). Based
on a formal definition of DQ errors, Oliveira et al.’s [ORH05] also presented a taxonomy
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Figure 2.3: Classification of dirty data by type of error [KCH+03] (courtesy of Gschwandt-
ner et al. [GGAM12]).

of DQ problems, described partly with definitions and partly through natural language.
The taxonomy characterizes DQ errors according to levels of the hierarchical data model
(compare Figure 2.5). The problem categories distinguish between DQ errors at the lowest
(1) attribute/tuple level, including (1a) single attribute of a single tuple, (1b) single
attribute in multiple tuples, and (1c) multiple attributes of a single tuple, (2) the level of
a single relation, (3) the level of multiple relations, (4) the level of multiple data sources.
In other works, Müller and Freytag [MF03] classified quality criteria, i.e., DQ dimensions
according to our notion, and associated potential data anomalies, i.e., DQ errors. Li et
al. [LPK10] juxtaposed the taxonomy of DQ problems by Oliveira et al. [ORH05] with
established DQ rules [AMA05] (see Table 2.1b) and dimensions (see Table 2.1a).

Gschwandtner et al. [GGAM12] made an effort to compare the various DQ error tax-
onomies for completeness and error specificity. Figure 2.4 shows the comprehensiveness
of the taxonomies, grouped by source and type. It shows that the taxonomies cover the
problem space extensively, but all taxonomies fall short of encompassing all DQ errors.
In their paper, Gschwandtner et al. furthermore extensively characterized different types
of time-oriented data (extending definitions from Aigner et al. [AMST11]) and present a
taxonomy for dirty data for time-oriented data, which accounts for the specificity of this
data and application domain.
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Figure 2.4: Comparison of taxonomies of general data quality problems by Gschwandtner
et al. [GGAM12] (• . . . included in taxonomy, ◦ . . . further refinement covered in parent
problem).

Data Quality Metrics

So far, we have defined DQ dimensions to be a qualitative measure of quality and DQ
errors to be the cause of undesired effects in the data. However, the dimensions only
serve as guidelines to what kinds of error are relevant to be detected in a particular
dataset. As to how the quality is interpreted for a specific use case depends on context
and domain knowledge for correctly identifying errors [DJ03, BCFM09]. For tabular
and structured datasets, metrics are used as probes that validate properties of a DQ
dimension to provide a quantitative measure of particular error characteristics [BS16].
As such, they allow measuring the quality of a dataset. Dasu [Das13] distinguishes DQ
metrics between constraint-based metrics, i.e., validation schemata based on data
properties and functional dependencies, and quantitative metrics, based on statistical
measures and data mining methods. Pipino et al. [PLW02] also differentiate between
task-independent and task-dependent metrics: (1) task-independent metrics reflect
data quality without contextual specificity and can be applied to any datasets, (2) task-
dependent metrics include specific application contexts and domain constraints, to ensure
format rules or other conventions. Particularly for tabular datasets, metrics can be
calculated column-wise, tuple-wise, and entry-wise.

How a metric is measured, depends on the application scenario they are used in. First
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Rule No. Dirty data type No.
R1.1 N/A
R1.2 DT.21
R1.3 N/A
R1.4 DT.1, DT.15
R2.1 DT.4
R2.2 DT.5
R2.3 DT.11, DT.14, DT.17,

DT.20, DT.26, DT.35
R2.4 N/A
R2.5 DT.19, DT.34
R3.1 DT.16, DT.24, DT.25
R3.2 DT.3, DT.22
R4.1 DT.8

(a) Adelman et al.’s DQ rules associated with
DQ problem taxonomy from Oliveira et al.

DQ dimension Dirty data type No.
Accuracy DT.2, DT.4~DT.9,

DT.11, DT.14, DT.16,
DT.17, DT.19, DT.20,
DT.23~DT.26, DT.34,
DT.35

Completeness DT.1, DT.15, DT.21
Currentness DT.3, DT.22
Consistency DT.10, DT.13, DT.23,

DT.27~DT.32
Uniqueness DT.12, DT.18, DT.33

(b) DQ dimensions associated with
Oliveira et al.’s DQ problem taxonomy.

DQ dimension Rule No.
Accuracy R2.1~R2.5, R3.1,

R4.1 R4.5
Completeness R1.2, R1.4
Currentness R3.2
Consistency R5.5, R6.1, R6.2
Uniqueness R5.1, R5.2

(c) Adelman et al.’s DQ rules associated with
DQ dimensions.

Table 2.1: Li et al.’s [LPK10] taxonomy of dirty data associated DQ rules [AMA05],
DQ problems [ORH05] and DQ dimensions. The rules are constituted of: R1 business
entity rules, R2 business attribute rules, R3 data dependency rules, and R4 data validity
rules, R5 duplicate record validity. The used DQ dimensions are accuracy, completeness,
currentness, consistency, and uniqueness.

and foremost, generic measures that are independent of dataset dimensions help develop
comparable results for assessing quality across datasets. Pipino et al. [PLW02] proposed
different measures for quality metrics: (1) Simple Ratio, the number of undesirable
outcomes divided by total outcomes subtracted from 1. An undesirable outcome is defined
by a set of defined criteria or validation functions to accurately describe a DQ dimension.
(2) Min or max operators, a measure for aggregating multiple dimensions, e.g., using
a minimum or maximum measure to represent the best or worst DQ metric from a group
of metrics representing a DQ dimension. (3) Weighted average measure, i.e., adding
weighting factors to DQ metrics.
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Figure 2.5: Organizational data model that illustrates the different sources of DQ errors,
according to Oliveira et al. [ORH05].

Developing task-dependent DQ metrics requires awareness of multiple characteristics
and domain-specific properties of the data. Analysts can refer to various DQ error
taxonomies, with formal or semi-formal definitions of such errors could be formalized to
serve as DQ metric validation functions. These taxonomies help determining appropriate
types of metrics for identifying specific DQ error patterns. Developing metrics for such
specific error types requires knowledge of the application domain. Li et al.’s [LPK10]
juxtaposition of DQ errors, dimensions, and rules can help build a set of compound
metrics to have an accurate qualitative measure of a DQ dimension. Data quality checks
can be added to metrics to integrate constraints. Knowing (1) which DQ rules need to
be satisfied, (2) which errors occur and need to be accounted for in downstream analysis,
(3) which quantification method to use for the employed metrics, and (4) which DQ
dimension they adhere to, lets the analyst develop a comprehensive set of DQ dimensions
to assess quality.

In the following section, I will investigate how the classifications of DQ dimensions, errors,
and metrics can be used for identifying, correcting and annotating data.

2.1.2 Data Cleansing, Profiling, and Wrangling

Initially, efforts for improving DQ were coined under the term of data cleansing/cleansing.
Rahm and Do described data cleansing as “detecting and removing errors and inconsis-
tencies from data in order to improve the quality of data. (. . . ) to provide access to
accurate and consistent data (. . . )” [RD00, p. 1]. Müller and Freytag [MF03] described
problems, methods, and challenges in data cleansing, which was founded on many impor-
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Figure 2.6: Steps of building a data warehouse: the ETL process.

tant preliminary works [Red98, RH01, GFSS00]. These early approaches were mainly
concerned with data warehousing and database management, and attempted to provide
integration of DQ assessment into the entire data processing workflow. Figure 2.6 exhibits
Rahm and Do’s ETL workflow, i.e., extraction, transformation, loading. In the extraction
and integration stage, DQ assessment is performed, in the data staging area in between
the integration and aggregation stages correspond to the process where data cleansing
is performed. Van den Broeck et al. [BCEH05] defined data cleansing as the iterative
process of screening, diagnosing, and editing data. Dasu and Johnson’s separated these
processes and described the notions of exploratory data mining and data cleansing as
automated methods to help understand the data, by applying exploratory data mining,
and help ensure DQ, by conducting automatic data cleansing and DQ metric computation.
They propose multiple techniques and algorithms for cleansing data on an entry level
(compare Figure 2.5) e.g., missing value imputation, outlier detection, and on the data
source level for relational databases, e.g., approximate matching, functional dependencies,
field value classification.

A first overview of DQ applications was conducted by Barateiro and Galhardas [BG05],
who identified six different categories of tools: (i) data profiling; (ii) data analysis;
(iii) data transformation; (iv) data cleansing; (v) duplicate elimination and (vi) data
enrichment. These categories were further condensed to represent the troika of DQ
assessment: (i) Data Cleansing, (ii) Data Profiling, and (iii) Data Wrangling.

Data cleansing, profiling, and wrangling are iterative processes, with the intention to
produce a usable dataset without exacerbating the time spent on pre-processing. In the
past sections I have extensively grounded DQ assessment in the fields of data warehousing
and database management. However, in this section we can see that interest has increased
to develop visual and interactive methods for assessing DQ. This especially holds true

25



2. Related Work

for data cleansing, profiling, and wrangling. However, it is first necessary to define and
clearly distinguish these disciplines:

Data Cleansing [MF03, GAM+14, RD00, BCEH05, Hel08] is the process of identify-
ing and correcting DQ errors in data. Often, domain specific algorithms and methods are
developed to improve DQ. Cleansing is performed on different levels of the organizational
data model to identify and resolve errors on single-source and multi-source data instances,
as well as on a schema/metadata level.

Data Profiling [Das13, ORH05, BG05, SNHS17] describes the identification and com-
munication of DQ errors. Means of measuring DQ can be used to get a conceptual model
of quality. On the one hand, DQ metrics can be utilized to detect errors (compare 2.1.1).
Descriptive statistics or other means of overview allow users to identify errors in the
data, or assess the overall usability of a dataset, e.g., using a measure of confidence in
the data [Gol13]. It is particularly important in conjunction with cleansing, to validate
if errors could be resolved, and if DQ improved. On the other hand, DQ metrics are
employed as overview measures that give analysts simple measures of quality without
requiring detailed inspection.

Data Wrangling [KHP+11, KPHH11, BG05] – often only referred to as data trans-
formation – is defined as an iterative data exploration and transformation process to
enable analysis. Wrangling represents the effort to make sure the data are credible,
usable, and useful [KHP+11]. While in data cleansing processes the analyst ensures that
DQ is improved, the emphasis during data wrangling is that entries can be used in a
meaningful way in downstream analysis. This usually consists of a continuous refinement
loop of transforming data and using analytical methods (e.g., data profiling) to ensure
the data has not been skewed and the data is still representative after wrangling has
been performed.

These processes are clearly distinct in their defined goals and the methods used. How-
ever, in real-world scenarios, analysts often find it necessary to swap between tools to
perform dedicated operations (compare Figure 2.7). The result is that tools start to
intermingle functionality from data cleansing, profiling, and wrangling for particular
application domains, to form a general DQ assessment workflow, e.g., Ajax by Galhardas
et al. [GFSS00], TimeCleanser from Gschwandtner et al. [GAM+14]. What can be
observed from these works is that already in early stages of research interactive methods
were used to facilitate detecting and cleansing errors and inconsistencies.

2.1.3 Uncertainty

Despite the rapid growth of data generated and new means for generating data, uncertainty
is still prevalent in multiple fields, e.g., medical imaging, geo-sciences, weather and climate
research, due to measurement inaccuracy, or sensor deficiencies. Generally, uncertainty
is defined as the lack of information [BHJ+14], more specifically the “degree to which
the lack of knowledge about the amount of error is responsible for hesitancy in accepting
results and observations without caution” [HGR94, p. 368]. Data analysis is influenced
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Figure 2.7: Data wrangling and analysis is seen as an iterative process. Feedback loops can
lead analysts back and forth between analysis and wrangling. This illustration shows the
close connection between data wrangling, data profiling, and actual analysis. [KHP+11]

by uncertainty, albeit implicitly, i.e., there is no uncertainty encoded in the data, but it
cannot be assumed that the data are absolutely true, or explicitly, i.e., uncertainty is
explicitly considered in the analysis scenario in any form. Analysts have to consider the
confidence and trust in the available information, their own judgment, and experience
for subsequent decision-making. We can distinguish different phenomena that cause that
concrete lack of information [BHJ+14, AK06]: (1) aleatoric/aleatory and (2) epistemic
causes of uncertainty. Aleatoric/aleatory uncertainty describes results being created by
change due to actual real-world phenomena. These results can never be measured more
accurately and can be modeled using probabilistic approaches. Epistemic uncertainty
describes that in principle could be known, but in practice is not. Such results are affected
by errors that cannot be controlled and as such can be described by non-probabilistic
modeling. Measures of uncertainty can be represented in different ways, ranging from
single numeric values annotating the original data, or being an integral descriptive
function of the data. These aspects will be discussed in the upcoming section.

Independently, uncertainty is often specific to application domains, hence, the usefulness of
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uncertainty for analysis and correspondingly the measures of uncertainty vary depending
on the goal of analysis. For example, in geospatial data analysis, the uncertainty is traced
back to communicate issues in DQ. Uncertainty can also be utilized for risk analysis,
e.g., prediction models [AK06]. In the following, I will demonstrate different sources of
uncertainty.

Sources of Uncertainty

It is necessary to distinguish between uncertainty associated with information/data
and uncertainty associated with the analysis process itself [THM+05], because analysts
need to respond to uncertainty they can or cannot control differently. Within the
context of visualization and VA, uncertainty introduced during the analytical process
itself needs to be communicated accordingly. To accomplish that, we need a typology
of uncertainty sources. Griethe and Schumann [GS06a] described that uncertainty is
influenced by errors, imprecisions, accuracy (e.g., size of interval containing values),
lineage, subjectivity, non-specificity, and noise in the data. Similarly, Thomson et
al. [THM+05] presented a typology categories of uncertainty for geospatial data. Their
quantitative representations of uncertainty show the close relation between uncertainty and
DQ. Bonneau et al. [BHJ+14] consolidated these different typologies and classifications
into the following sources:

1. Uncertainty inherent in the sampled data. Similar to what was described
in [GS06a], collecting or sampling data can introduce insufficient, superfluous, or spurious
information. By applying imputation, or other estimation techniques, the margin of
potential error can be quantified, to measure the confidence of a data value. Here we
can see that uncertainty from data sampling is closely related to data quality assessment
(also noted by [Che13]), which can be leveraged to minimized the error introduced.
Additionally, knowing the data source, and associated metadata, could lead the analyst
to also assert a certain amount of uncertainty to the data.

2. Uncertainty generated by models or simulations alongside the data. Em-
ploying computational models in an analysis workflow is another source of uncertainty.
This uncertainty is associated with the variability of the modeling, being caused by
variability from simplifying abstractions, in mechanism or magnitude of causality and
relationships, potential error in model inputs, incorrect model parameters, and imprecision
in tacit knowledge incorporated in the model. As such, the output of a model can include
the estimated error or accuracy of the result, or the confidence in a qualitative/categorical
prediction.

3. Uncertainty introduced by the analysis and visualization process. In down-
stream analysis processes, uncertainty affects propagation, magnification, perception,
and overall analysis of data. As a result, uncertainty needs to be carefully explored and
adequately integrated using appropriate analysis methods and visualization techniques.

These sources of uncertainty require adequate methods to be adequately measured. I
will discuss means of quantifying uncertainty in the upcoming section.
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Figure 2.8: Sources of uncertainty and how they affect each other subsequently. [BHJ+14]

Quantifying and Measuring Uncertainty

Modeling uncertainty is the basis of identifying uncertainty associated with data. It is
necessary to estimate the influence randomness and how it influences the data. Knowing
the system and the associated uncertainties, allows analysts to model the effects more
appropriately. As such, Ayyub and Klir [AK06] classified uncertainty theories used for
modeling: (1) classical probability theory, (2) probability theory based on fuzzy events,
(3) classical possibility theory, (4) theory of graded possibilities, (5) Dempster–Shafer
theory (DST) of evidence, (6) fuzzified Dempster–Shafer theory of evidence, (7) theory
based on feasible interval-valued probability distributions (FIPDs), (8) fuzzified FIPD,
and (9) Other uncertainty theories They argue that some theories can be more appropriate
for modeling particular uncertainty properties, e.g., set theory can deal with ambiguity,
probability and statistical theories can be used for modeling randomness and sampling
uncertainty. Furthermore, they define a measure of uncertainty as a function (u) that
assigns to each representation of evidence measured as a classical measure C (C is
a nonempty family of subsets of the universal set of observations X) in the theory
a nonnegative real number. Their definition of an uncertainty measure is a function
mapping the set U of all uncertainty functions µ to a number R+:

u : U(µ)→ R+

with
µ : C → R+ = [0,∞]

Thus, if multiple uncertainty measures are employed for a system, the uncertainty of
the combined set of uncertainty measures should still calculate a real number. This is
only true for functions that satisfy the following requirements, according to informa-
tion theory [KS01]: subadditivity, additivity, range, continuity, expansibility, branch-
ing/consistency, and for some theories of uncertainty monotonocity and coordinate
invariance.

29



2. Related Work

Within the extent of this thesis, the uncertainties that will be investigated originate from
data quality issues and data pre-processing algorithms. Both these uncertainties can be
modeled by classical probability theory. Hence, I adopt the formalization of uncertainty
in probability theory from [BHJ+14]:. Uncertainty and randomness is examined in the
probability space (Ω, F, P ). The probability event space Ω is comprised of all possible
outcomes of a random event A. F is the represents all possible outcomes. The definition
of uncertainty is based on the probability measure P with the following principles:

1. 0 ≤ P (A) ≤ 1, for any A ∈ F , i.e., the probability of an event A is between 0 and
1,

2. P (Ω) = 1, i.e., the probability of all possible events adds up to 1,
3. For A1, A2, . . . ∈ F and Ai ∩Aj = ∅, for any i 6= j i.e.,

P (
∞⋃

i=1
Ai) =

∞∑
i=1

P (Ai).

The resulting uncertainty measure can be represented as a probability density func-
tion (PDF), as multi-value data, as bounded data [BAL12]. Potter et al. [PRJ12]
investigated the use of uncertainty measures in visualization and classified them based on
the uncertainty dimensionality, differentiating between scalar, vector, or tensor field
representations. For visualization and VA the dimensions of the uncertainty represen-
tations are combined with the data dimensions. The information encoded in different
field types can be conveyed in various ways, depending on the uncertainty measure at
hand, and might need to be abstracted further to be effectively combined with the data
dimension:

Uncertainty as a PDF can be expressed with multiple characteristics (e.g., mean, skew,
tail, compare Figure 2.9), to most accurately describe the distribution, or only with
single values (statistically grounded like averages and standard deviation, or ungrounded
like estimates) that are visually represented.Other usages include changing data values
for downstream visualization, e.g., modulating information properties. Bounded data
represent data values that represent possible intervals instead of actual values in the
data dimension, which can be described with means of ambiguation. PDFs can be also
aggregated to map uncertainty to the data dimension. Multivariate data and uncertainty
dimensions can be mapped accordingly, mapping individual uncertainty (e.g., a PDF) to
the corresponding data dimension.

2.1.4 Provenance

With computing and data analysis often being enabled by data pre-processing and
applying workflow pipelines, data management is vital to make the steps taken and
operations applied reproducible. By generating and recording analytic provenance
(subsequently referred to as provenance), the analyst is able to maintain the ability to
revisit previous stages of the analysis and determine ownership, modification history,
applied processes, and their impact thereof [DF08].
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Figure 2.9: Summary plot: Different PDF characteristics are used to describe the
distribution [PKRJ10].

Definition of Provenance There are multiple definitions of provenance, depending
on the data domain and on the application scenario it is used in. Freire et al. [FKSS08]
defined computational provenance as a sequence of steps that led to a result including
the chain of reasoning used in its production. It is stored to verify that the sequence of
steps used acceptable procedures, inspect the used inputs and parameters, and possibly
reproduce the result. I will more closely specify two types of provenance that will be
investigated in this thesis: (I) data provenance and (II) analytic provenance. Data
provenance is defined as the “description of the origins of a piece of data and the process
by which it arrived in a database.” [BKT01, p. 1] Analytic provenance captures user’s
interactions with a visual interface to retrieve user’s reasoning processes [NCE+11]. I use
the following general definition from Ragan et al.: Provenance “includes consideration
for the history of changes and advances throughout the analysis process” [RESC16, p. 1].

Provenance Types

Provenance is used in different domains and for different purposes that I will go into
detail about within the context of visualization and VA research in the upcoming section.
Simmhan et al. [SPG05] first created a taxonomy of data provenance in computational
science and discussed early methods of visualizing provenance. They investigated the
specific uses of data provenance, classifying applications for: Data quality, audit trails,
replication recipes, attribution, and general information and context. These early
approaches resort to self-developed protocols and solutions for storing and managing
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provenance. First popular uses of provenance in visualization and VA research tackled
workflow management [CFS+06] with VisTrails, proposing a general system for storing
such provenance, and interaction histories [GS06b]. For workflow management provenance,
Freire et al. [FKSS08] distinguished between prospective provenance, i.e., capturing
computational tasks’ specifications, and retrospective provenance, i.e., steps executed
and used objects and actors of the system. These leverage terminologies closely related
to data provenance. Glavic et al. [GDK+07] differentiate between the transformation
data provenance, i.e. provenance of a data item and the processes that lead to its creation,
and source data provenance, i.e., provenance of the source from which the data item is
derived from.

Ragan et al. [RESC16] presented an organizational framework to characterize different
types and purposes of provenance. Figure 2.10 shows this framework, differentiating
types of provenance between (i) data, (ii) visualization, (iii) interaction, (iv) insight,
and (v) rationale. The purposes of how provenance is used are (i) recall, (ii) replica-
tion, (iii) action recovery, (iv) collaborative communication, (v) presentation,
(vi) meta-analysis. I will describe these types of provenance in more detail.

Data provenance describes the history of data changes, which includes how the data
was captured or sampled, which formats were used, what transformations were applied to
them, or if they were derived from other data, which introduces versioning and ownership
characteristics. It is also often associated with uncertainty and data quality aspects.

Visualization provenance traces how graphical representations were achieved, which
is closely related to data provenance [SSK+16]. However, here also the use of visual
encodings and interactions is relevant to achieve reconstruction as close as possible.

Interaction provenance records the actions and commands performed by a user, which
can be captured on different levels of granularity [GZ09]. It can be distinguished between
implicit and explicit interactions.

Insight provenance captures users’ hypotheses, insights and analytic findings during
exploration and inference. For now, it must be captured outside the grasp of systems
because it only observable by prompting users to give extra information.

Rationale provenance describes the reasoning behind decisions, hypotheses, and in-
teractions. It goes beyond intents and its goal is to determine the complete record of
reasoning elucidated by user behavior.

Capturing and Storing Provenance

It is necessary to determine how these different types of provenance are captured and
stored. As previously mentioned, early works on computational provenance research
resorted to proprietary capturing methods and storage models. No open systems were
available for using external, generic tools for collecting, representing, storing, and querying
provenance. Simmhan et al. [SPG05] motivated efforts to standardize provenance capture
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Figure 2.10: Types and purposes of provenance information, according to Ragan et
al. [RESC16]

and storage benefiting interoperability, allowing provenance collection in a centralized
way or through middle-ware. Glavic et al. [GDK+07] made an effort to generalize a
provenance model (compare Figure 2.11) and models for provenance storage, recording,
and querying. The model describes functionalities to be supported by provenance
systems, and how provenance capture and storage can be achieved. In the model
they also include the world model, describing closed or open world provenance, which
defines if the system itself controls provenance capture, i.e., closed world model, or if the
provenance stored is externally generated, i.e., open world model. Furthermore, Glavic et
al. described strategies for storage and recording (compare Figure 2.12), with the storage
strategy describing no-coupling, tight-coupling, and loose-coupling relationships between
the provenance data and the source data. The recording strategy also specifies the timing
dependency provenance is recorded at: user controlled recording, eager recording, no
recording and system controlled recording

Moreau et al. [MFF+08, MCF+11] proposed a standardized provenance storage model,
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Figure 2.11: The provenance model by Glavic et al. [RESC16] differentiates transformation
and data provenance. The world model defines if the provenance system controls the
transformation and data items, or if they are externally generated and there is an
uncertainty associated if all actions were actually recorded.

Figure 2.12: Provenance storage and recording model by Glavic et al. [RESC16]

34



2.1. Foundation and Definitions

the Open Provenance Model. Their intention was to design a model that (1) allows
provenance exchange between systems, based on a shared model, (2) can be used to
operate tools based on the model, (3) is technology agnostic, (4) can be presented in a
generic way, (5) supports multiple layers of information abstraction, and (6) serve as
a basis for valid provenance inferences.What can be observed in this model is that the
model describes dependencies between artifacts, processes, and agents. Artifacts and
processes can be interpreted as transformation and data provenance types from Glavic
et al. [GDK+07], which shows that both types are necessary to adequately describe
provenance of a system. Hartig [Har09] proposed a provenance vocabulary that exhibits
a profile of the generic provenance model, which serves as an example descriptor of
provenance for linked data in the web.

In Ragan et al.’s [RESC16] characterization of provenance in visualization and data
analysis, they also classify which information is captured in the different types of prove-
nance: Data provenance capture is complex, it is supposed to log information on data
creation and actions applied to the data (e.g., processing workflows). Visualization
provenance can be recorded by storing screen shots of the output visualization intermit-
tently, or the states and parameters/settings that led to a particular visual representation.
Interaction provenance captures user actions taken through system logs. A challenge
in capturing interactions is at with granularity the provenance is recorded to most appro-
priately represent the interactions. Insight provenance is often generated by letting
users input their experiences while working/interacting with a system. This can be done
by annotating different aspects of the system. Another way could be using external
protocoling (e.g., thinking-aloud protocols, eye-tracking software). To capture rationale
provenance, the system designers need to compile different types of provenance to infer
the reasoning behind certain actions (e.g., inferring reasoning from interaction logs).

2.1.5 Time and Time-Oriented Data

When capturing and analyzing time and time-oriented data, it is important to appro-
priately model time depending on the particular task and the problem at hand. Aigner
et al. [AMST11] presented important considerations for modeling time (compare Fig-
ure 2.13). They distinguish between modeling time, the data, and the relation of data
and time. The design aspects of modeling time are scope, scale, arrangement, and
viewpoint. For appropriate modeling, abstractions of granularity (and calendars),
time primitives, and determinacy must be specified. Granularities of time are
mappings of time values to larger or smaller conceptual units. If multiple granularities
are formed in a hierarchical dependency, they can be categorized into a calendar. This
includes mapping between pairs of granularities. Aigner et al. describe time primitives
as an intermediary layer between data elements and the time domain. They distinguish
between anchored and unanchored primitives. Combined with instant, interval, and span
types, different characteristics of time can be modeled. Lastly, determinacy dictates if
uncertainty needs to be accounted for. For example, if there is no complete knowledge of
all temporal aspects available, e.g., imprecise events, indeterminacy is introduced and
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Figure 2.13: Design aspects of modeling time in time-oriented data by Aigner et
al. [AMST11]

must be addressed when modeling time. In Figures 2.14, the aspects of data modeling
and relating data and time are shown that span the design space available for mapping
time to data.

In another effort to defining time similar to time primitives, Gschwandtner et al. [GAM+14,
GGAM12] added various notions to further describe time. Rasters being “a fragmenta-
tion of time without gaps consisting of raster intervals,” [GGAM12, p. 65]. Intervals
are denoted by two points in time, the beginning and end. They classified types of
time-oriented data as: (i) Non-rastered points in time, (ii) non-rastered intervals,
(iii) rastered points in time, and (iv) rastered intervals.

So far, I have discussed definitions and characterizations of the main topics of this thesis:
data quality, uncertainty, provenance, and time-oriented data. In the upcoming
sections, I will deliberate on approaches and research of these fields of research with a
particular focus on visualization and VA.
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Figure 2.14: Design aspects for modeling data, and time in time-oriented data by Aigner
et al. [AMST11].

Visual Analytics Methods for Data Quality and
Assessment

In Section 2.1.1 I have mentioned that assessing and improving DQ is an iterative process
that requires cleansing, profiling and wrangling new data sets. Ultimately, deciding on
the usability of a data set at hand is up to the analyst’s judgment. The proposition is
that (I) visual methods and interactive interfaces can help combining automated methods
with analysts’ expertise [KHP+11]. However, visualization and VA methods often assume
that the input data used in the system is pristine and in a perfect condition to perform
analysis. It is necessary to (II) communicate to users that potential issues persist in the
data, because otherwise they might be conducting analysis and making decisions based
on dirty data. Ward et al. [WXYR11] proposed a design methodology for quality-aware
visualization, which involves (1) designing and implementing DQ metrics, (2) developing
customized display techniques for conveying quality, (3) compare the measures to analysts’
perceived quality, (4) allow interactively changing quality aspects, and (5) developing
automatic methods for enhancing DQ. In the upcoming sections I will present works on
how to present DQ, interactive methods for data cleansing, profiling, and wrangling, and
analytic methods for DQ assessment.
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2.2 Visual Encodings of Data Quality

Visualizing DQ varies greatly on the task and the data domain. Correll et al. [CLKS18]
proposed visual methods as means for sanity checks of univariate data. Visual-interactive
data profiling methods leverage summary visualizations to support assessing detected data
anomalies [KPP+12]. The used visualization is dictated by the type of data that is subject
of analysis. To profile data and assess DQ, raw, aggregated or transformed data,
DQ measures, or a combination thereof can be utilized. Visualization methods used
for visualizing DQ are predominantly based on simple data representations. Approaches
vary in how inspection of DQ is modeled for users, ranging from visualizing raw data
and annotating the raw or aggregated data visualization with DQ information to
visualizing DQ information. Visual encodings of DQ could also be differentiated by
type of error: Incomplete data, Outlying data, and Erroneous and anomalous
data.

2.2.1 Visualizing Data Quality

The visual encodings are used to amplify outlying or anomalous data, e.g., using
color [XHWR06], or using interactive methods for highlighting DQ errors. Closely
related to inspecting DQ is visual data mining. Keim [Kei02] proposed visual data
exploration to be a central element for getting an overview of the data and analyzing
patterns, allowing analysts to identify interesting subsets, which could be data of low or
high quality. Keim classified visual data mining techniques into the types of data to be
visualized, the visualization techniques, and the interaction and distortion techniques
used. When visualizing DQ, we can distinguish between visualizing different types of
data: (1) the raw data, (2) data annotated with DQ information, and (3) DQ information.
Using these three types of data used, we can visualize particular types of DQ errors: (1)
incomplete or missing data, (2) outlying data, or (3) anomalous data.

Visualizing raw data: Due to the potentially large size and high dimensionality of
datasets during data pre-processing and data quality assessment, techniques employed for
visualizing these data require a more sophisticated use of basic visualization principles to
maintain the ability to explore large sets of data. The raw data is represented objectively
to the analyst, hence he/she must use domain expertise and prior knowledge to identify
anomalous data, the visualization will communicate this information implicitly, if the
visual encoding is chosen appropriately. Keim [Kei02] describes geometrically-transformed
displays, iconic displays, dense pixel displays (see Figure 2.15), and stacked displays,
e.g., dimensional stacking (see Figure 2.16). For specific data formats, visualizations
are used tho amplify particular characteristics of the data and allow the identification
of poor DQ. Time series data we can employ multiple methods to inspect individual
dimensions (for MVTS), or observe patterns over time. For example, in TimeCleanser
by Gschwandtner et al. [GAM+14] employed heatmaps (see Figure 2.17) or lineplot
visualizations of raw and transformed data (see Figure 2.18). In tabular or multivariate
data, parallel coordinates views can be used to determine outlying and anomalous entries
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Figure 2.15: Dense Pixel display using a recursive pattern technique [Kei02].

Figure 2.16: Dimensional stacking technique, using oil drilling data to map longitude
and latitude onto the outer x- and y- axis, and ore grade and depth to the inner x- and
y-axes [Kei02].
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(a) Working hour intervals visualized in a heatmap [GAM+14].

(b) Different color mappings of a heatmap visualization of time series data to identify
potential DQ errors (compare red rectangles) [GE18]. Figures (a), (b), (c) show
different dimensions of a dataset across multiple measuring stations over the course of
one year, the color-coding maps (a) the amount of quality problems, (b) the tuple
count, and (c) the mean temperature.

Figure 2.17: Heatmap visualizations for exploring time series data. Figures (a) & (b)
show different usage of heatmap encodings of periodic time series data.

(e.g., entries deviating from the remaining data). For node-link data, different visual
representations and arrangement methods can be used to assess validity (see Figure 2.19).
Other issues with scalability of large data can be addressed by using binning, e.g.,
for scatter plots [CLNL87]. Furthermore, high dimensional data can be reduced in
complexity by applying dimensionality reduction, and visualizing the representative
dataset. Multivariate data are often represented as tables, With large collections, it is
not possible to adequately show them as such. However, visual abstractions of numerical,
ordinal, or categorical data allow visualizing an overview of these tabular data, to allow
swift exploration [RC94]. Sopan et al. [SFTM+13] iterate further on the concept of Table
Lens [RC94] to show summary distributions of the column data.

Annotating data visualizations with DQ information: Predominantly, raw data
visualizations presented above are adopted for showing data annotated with DQ infor-
mation. Ward et al. [WXYR11] presented embedded display and quality space display
(compare Visualizing DQ information) of quality. Embedded display should use visual
encodings for DQ based on perception theory to convey quality effectively (compare Fig-
ure 2.20b). Similar to raw data visualization, parallel coordinates can be used to show
multivariate data annotated with DQ measures (see Figure 2.20), and dimensionality
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Figure 2.18: Small multiple lineplots showing the raw time series data, the difference of
subsequent values, and the aggregated interval length of the recorded values [GAM+14].

reduction can be used to give a visual summary of the data, annotated by DQ mea-
sures (see Figure 2.21 [CCM09]). Sulo et al. [SEG05] show abstracted tabular data
views with highlighting only incomplete, invalid, or duplicate data. Gschwandtner et
al. [GE18] employ quality checks to highlight entries in raw tabular data views, using
cell highlighting, and scrollbar annotation. Xie et al. [XWRH07] also employ a brushing
technique highlighting entries of low or high quality, for example in multivariate parallel
coordinate views. As with only displaying raw or aggregated data, annotating data with
visual encodings of DQ information adds further complexity to the visualization. So it
is important to consider how much information is encoded and communicated to the
analyst. Correll et al. [CGOG11] proposed a Confidence Fog technique for indicating the
confidence in a color value based on one or multiple measures of data quality or uncer-
tainty. They encoded additional channels in lineplot charts to indicate quality/confidence
of virus mutation values with blue and purple runners (lines) above and below the rows,
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Figure 2.19: Different graph visualizations of the same social network, exemplifying
that visual representations often affect how information can be perceived [KHP+11].
Figure (a) shows a node-link diagram of the network, Figure (b) shows the same network
represented in an adjacency matrix with default sorting, while (c) shows the matrix
sorted by ID, which gives insights that the latter portion of the data is missing.
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(a) Parallel coordinate view enhanced with
DQ metrics.

(b) Parallel coordinate views with three visual
encoding channels representing quality: value
quality – line width, record quality – line hue,
and dimension quality – column line width.

(c) Parallel coordinate views showing only DQ
metrics for individual data records.

Figure 2.20: Parallel coordinate visualizations for assessing multivariate data [XHWR06].
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Figure 2.21: Scatterplot visualization showing a principle component representation of
the BNHP dataset. The x-axis shows the variable LSTAT, the y-axes shows the principle
component PCA-2. Colors denote different clusters, the lower view is annotated with a
PCA sensitivity measure [CCM09].

Figure 2.22: ‘Confidence Fog’ on a sample subset of virus mutation dynamics
data [CGOG11]. The top purple and bottom blue runners fade based on confidence
measures.

as can be seen in Figure 2.22. An employed color palette would fade colors more or less
rapidly as a measure of uncertainty or ambiguity. Ward et al. [WXYR11] proposed to
quality measures to assist analysts with selecting, transforming, and mapping data to
improve quality and ultimately generate high quality visualizations.

Visualizing DQ information: Another group of visually representing quality is only
encoding DQ information. DQ metrics or other quality measures are used to show overall
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Figure 2.23: Composite view of spatio-temporal data showing bus trajectories. Ele-
ments (d) to (f) show different DQ metric views, giving overview of different quality
characteristics in the data [TZHH18].

quality as single or multiple DQ metric values [TZHH18], inspect DQ error distribu-
tions [XWRH07], or locate DQ errors within a dataset, mapping DQ metrics to data
value dimensions [TZHH18]. Xie et al. [XWRH07] encoded data value quality as a Stripe
Quality Map and a Histogram Quality Map, showing quality distribution histograms, and
aggregating quality measures across dimensions. Triana et al. [TZHH18] employ dedicated
DQ metric views to investigate the quality of a dataset on different levels of granularity.
The metrics are shown in line charts, mapping the values against the temporal domain of
the original time series to find local phenomena (see Figure 2.23(d). Aggregated values
of DQ metrics give analysts insight into the overall quality (compare Figure 2.23(e,f)).

I have discussed three ways of visualizing data in order to assess quality. However, for
visually exploring and inspecting different types of DQ errors, it is necessary to employ
appropriate visual encoding techniques. Correll et al. [CLKS18] conducted a study about
commonly used summary visualization techniques for data distributions, comparing
density plots, histograms and dot plot visualizations. They concluded that density plots
are robust to find missing data, outliers, and anomalous data. However, participant
performance varied based on the bandwidth of these plots, and that participants would
would generally perform better with adequate histogram bin sizes and mark opacities.
However, it is also necessary to investigate more means for visualizing DQ errors and
will go into detail about various data domains.

(1) Visualizing Incomplete and Missing Data: There are two approaches to ac-
count for missingness in data: removing entries with missing values or imputing missing
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(a) Missingness impacting visualization: (1)
missing values are perceivable, (2) missing val-
ues are invisible, (3) missing values introduce
a bias.

(b) Patterns of missingness sketched in a tabular
dataset as parallel coordinates: Missing values
are highlighted in purple.

Figure 2.24: Different views for analyzing missingness in data by Fernandes et
al. [FWM+18].

values with estimations. Fernstad [Fer18] emphasized the importance of methods for
visualizing missing data, where she first identified sources of missing data, how they can
be identified, and how analysts can deal with them. Eaton et al. [EPD05] defined at
which levels missingness can impact visualizations (compare Figure 2.24a): (1) being
perceivable in the visualization, (2) missing values being invisible in the visualization, (3)
biasing the visualization. Fernstad furthermore classified patterns of missingness into
amount missing, joint missingness, conditional missingness (see Figure 2.24b). The user
study she performed indicated that a Matrix Plot, a heatmap that highlights missing
data with color, is the most appropriate for amount missingness and joint missingness
value identification tasks, and parallel coordinate views are most appropriate for tasks
related to conditional missingness (see Figure 2.25). Song and Szafir [SS18] evaluated
methods for visualizing missing values in line graphs and bar charts, they chose different
representations of missingness: removing points, highlighting missing points, visually
downplaying missing points, and annotating missing points. The results showed that
“the ways systems impute and visualize missing data can also manipulate perceived
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(a) Matrix plot displaying a dataset with four variables: (a), (b), (c), (d). Numeric
values are represented by a grey scale, with missing values being represented in red.

(b) The user study indicated parallel coordinates to be well suited for identifying
conditional missingness.

Figure 2.25: Visualizations suited for visualizing missing data, as evaluated in a user study
by Fernstad [FWM+18]. The user study indicated (non-significant result) that the Matrix
Plot (Figure (a)) is most appropriate for amount missingness and joint missingness.

data quality and confidence in results” [SS18, p. 9]. This also means that perception of
quality depends on the data, problem, and domain and needs to be taken into considera-
tion. In time series analysis, missing data is often imputed through statistical methods.
Such methods inevitably introduce uncertainty into the data: Single value imputation
methods neglect uncertainty altogether, while repeated sampling methods concretely
compute imputation uncertainty. These uncertainties can be visualized using uncertainty
visualization techniques shown in Section 2.4.

(2) Visualizing Outlying Data: Famously, the Anscombe Quartett [Ans73] shows
the same statistical profile, while exhibiting vastly different distributions in a scatter plot
representation, partly also due to outliers (see Figure 2.26). Visual data inspection allows
users to perform summary statistics estimation and ultimately outlier identification. The
most basic technique for visualizing outliers is the boxplot [PHKD06] and summary
plots [PKRJ10] for one or two-dimensional data. Highlighting is the most prevalent
method to emphasize potential outliers, for example using color through appropriate color
maps [CAFG12, SNHS17], or by explicitly flagging outlying values (e.g., prediction-based
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I II III IV
x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

(a) Four distributions with the same statistical profile.

Figure 2.26: Anscombe’s quartet exhibits four different point distributions with the same
statistical properties, but different representations when visualized [Ans73].
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Figure 2.27: Automatically generated interactive summary visualizations show the his-
togram of numeric values, ordinal data are aggregated. Integrated in these visualizations,
the orange bars show the distribution of quality problems in the respective columns, like
missing values or outliers [KPP+12].

and clustering-based anomaly score [JSMK14]). Such methods utilize the underlying
statistical distribution to calculate the outlier score. For example, Kandel et al. [KPP+12]
use a summary visualization showing a histogram or barchart visualizations raw nu-
meric data (compare Figure 2.27). This allows identification of outlying values in the
distribution. In time series analysis and bivariate scatter plot visualizations, Correll
and Heer [CH17] examined the use of regression information and how it aids users with
trend estimation. They concluded that if outliers are important to analysis, designers
should visualize the outlier sensitive models accordingly. A plethora of outlier and
anomaly detection techniques can be employed that all come with particular strengths
and weaknesses [CBK09], specifically high-dimensional methods, e.g., clustering- and
classification-based techniques. Schulz et al. [SNHS17] introduce data descriptors among
which also record descriptors can be used to detect outliers or duplicates.

2.3 Interactive Methods for Data Quality Assessment

Kandel et al. [KHP+11] described data wrangling as an iterative exploratory process.
I propose that this holds true for DQ assessment. Interactive methods for exploring
and improving DQ significantly improve and support analysts when conducting DQ
assessment. Erroneous values can be hidden in plain sight if available visualizations are
not appropriate for analysts to detect particular error types. For example, Figure 2.19
shows different representations of a graph. It demonstrates that the missingness fea-
tures in visualizations can be different depending on the chosen visualization [KHP+11]:
Figure 2.19(a) apparently shows a regular social network graph in the node-link represen-
tation. Figure 2.19(b) shows a matrix diagram showing connections between nodes, with
automatic permutations to highlight clusters. Figure 2.19(c) shows the matrix diagram
with its raw sorting, which makes it apparent that a significant part of the connections
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seems to be missing. This raises the question how users can best be supported in their
DQ assessment tasks. Interactively changing representation can help exploring view
points. Interaction is an integral part of exploratory data analysis and exploratory visual
analysis and helps achieving the goal of finding new insights [BH19], in the case of DQ
assessment finding DQ errors or confirming that quality is sufficient for downstream
analysis. Interaction techniques can facilitate exploration and inspection of local phe-
nomena, like Focus+Context (F+C) and distortion techniques to allow exploration of
details while maintaining the overview of the entire data. This is possible for multiple
types of data, for example interactive lenses [TGK+17] for time series [Kin10, ZCPB11],
geospatial data, flow data, volume data, multivariate data [RC94], node-link data, or text
and document data. Rahm and Do [RD00] gave an overview of existing DQ assessment
tools and differentiated between data analysis and re-engineering, specialized cleansing,
and extraction, transformation, loading tools However, they already motivated early
on that such tools must support multiple aspects due to limitations in interoperability,
which has been mainly addressed by commercial tools, to extend the palette of available
functionality.

VA systems have been developed early on to help analysts with data cleansing, profiling,
and wrangling, and continue to be developed, extended, and turned into commercial tools
and systems. For profiling tabular datasets, Rao and Card introduced TableLens [RC94],
a F+C method for getting an overview of a tabular dataset. It could be used to
explore relationships and interesting patterns in the data. Sopan et al. [SFTM+13]
extensively added interactivity and responsiveness to Rao and Card’s TableLens by
introducing sorting, brushing, interactive tooltips, and configurable heatmap overviews
(see Figure 2.28). They use histogram, heatmap, or boxplot encodings and show two
different representations for either single cell values or a compact row-based overview,
which allows for inspecting individual rows, but also exploring the entirety of the dataset
and discover interesting patterns. To support data profiling, brushing and linking methods
were introduced to explore value distributions across dimensions [XHWR06, XWRH07].
Xie et al. [XWRH07] furthermore introduced interactive methods for highlighting data
based on quality measures in parallel coordinate views, e.g., quality measure based
brushing to allow inspection of values with low/high quality. To assess the level of
preservation of the original data, Ward et al. [WXYR11] introduced abstraction quality
measures – Statistical Measure, Histogram Difference Measure, and Nearest Neighbor
Measure – that can be used to explore different visual representations of the data. Cao
et al. [CWR14] introduced an Outlier Workbench called LEAP to detect outliers in
sliding window streams and along with it an interactive visual exploration system called
VSOutlier. Using an interactive outlier type selection, analysts can inspect different
outlier detection parameters in a juxtaposed comparison view to determine the prevailing
type of outlier.

In an effort to facilitate data wrangling, Potter’s Wheel was developed to support interac-
tive transformations with ease of specification, ease of interactive application, and
undos and data lineage (which will be further discussed in Section 2.5.1). The transfor-
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Figure 2.28: Table overview interactions: the user can decide between different overview
representations for individual columns of the dataset [SFTM+13].

mations offered in the tool could be applied interactively, and overview histograms could
be used to see the distribution of transformed values. The concept of easy transformation
specification and execution was adapted in Wrangler [KPHH11, GKHH11] to provide a
mixed-initiative user interface for interactive data wrangling. The prototype suggests
applicable transformations and provides visual previews to show analysts the potential
outcome of the transformation. This was combined with a transformation history to undo
or redo actions. Basic interactive visualizations, like barcharts on top of columns showing
potential erroneous data, are used to suggest transformations based on these data subsets.
Transformations affect the data and potentially change the distribution, rendering the
transformed data non-representative. OpenRefine, formerly known as Google Refine, is an
open source tool, which has been under continuous development, to facilitate cleansing
and wrangling data. It provides an underlying coding environment for data wrangling
and cleansing, facilitated by a textual preview of the data. Small overview visualizations
and summary tables help users to identify outlying and anomalous data and apply filters
and transform the filtered data.

Kandel et al.’s [KPP+12] Profiler integrates the features from previously presented tools
(compare [KPHH11, XWRH07]), supporting different data types, featuring anomaly
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Figure 2.29: A visual-interactive pre-processing system for time series showing a toolbox
of algorithms, the workflow, a raw data and visualization view, as well as statistics
measures [BRG+12]: The system consists of (1) the Pre-processing Toolbox, (2) a
Workflow View, (3) Raw Data Selection View, (4) Detail View, and (5) the Statistics
View.

detection for common DQ errors and provides summary visualizations to facilitate DQ
assessment. This is done by using data type inferences and a data mining-based anomaly
detection engine to feed information into view recommendations and a view manager
providing interactive linked views.

In time series analysis, data wrangling and cleansing is mandatory to enable down-
stream analysis, often due to the high specificity of processing algorithms. Bernard et
al. [BRG+12] facilitated the pre-processing workflow of time series data by providing
analysts with a toolbox of algorithms to build custom workflows (see Figure 2.29). They
provided interactive views to preview inputs and outputs of the processing steps along
with statistical measures to estimate the impact of the transformation steps on the
data, and adjust parameters of operations accordingly. TimeCleanser by Gschwandtner
et al. [GAM+14] employs dedicated time series visualizations to help analysts identify
missing or outlying data. The dedicated visualizations emphasize on error discovery and
are supported by the use of automatic quality checks supporting analysts in finding and
correcting DQ errors, particularly in the time-oriented domain. Arbesser et al. [ASMP17]
approach DQ assessment by employing hierarchically structured plausibility checks to
guide data exploration with extensive drill-down features to let users identify erroneous
data (see Figure 2.30a).
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Figure 2.30: Visplause combines linked views: The central part is the DQ overview where
analysts can explore the data by plausibility classes. Various time-oriented visualizations
allow directed exploration of the data [ASMP17].

DQ assessment has continued to be an evolving field of research. Particularly with the
continued increase of data size and dimensionality, data cleansing, wrangling, and profiling
are vital tools for ensuring that the data is of adequate quality and still representative of
the original dataset, with the premise to allow detailed inspection of the (pre-)processing
workflow on demand [LMW+17]. Liu et al. [LAW+18] stated the importance of VA for
ensuring DQ in multiple loops of the analysis pipeline. Figure 2.31 shows a framework
of steering DQ with VA where user and system feedback are used to apply screening,
diagnosis, and correction of data with the help of visual-interactive methods and visual
summaries, two methods extensively used in VA.

Visual Analytics Methods for Uncertainty

Previously, I have discussed the definition, potential sources, and the quantification of
uncertainty. Uncertainty is a crucial part of visualization and VA: it can be inherent to
the data, generated along the processing workflow, or when generating visualizations
or insights [SSK+16]. Uncertainty is important in decision making, where a biases in
information can be assigned certain probabilities to determine the “better” or “more
optimal” solution. Early works in uncertainty visualization were conducted in spatial
data visualization and geo-information science, investigating visual representations of
uncertainty [BW88, Mac92, MRH+05]. MacEachren et al. [MRH+05] recognized the
importance of uncertainty in the process of analytical reasoning and how users cope with
the existence of uncertainty, which he further specified for the particular field of VA in
recent work, to address: “(1) understanding the basis for uncertainty; (2) understanding
levels of uncertainty; and (3) understanding the role of information and knowledge in
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Figure 2.31: Framework for steering DQ with VA [LAW+18].

relation to uncertainty” [Mac15, p. 2]. We must be aware of both how uncertainty is
communicated to the analyst, but also how it can be perceived and how it affects the
mental model. Griethe and Schumann [GS06a] described uncertainty to be integrable
into visualizations by (1) utilizing available graphical variables, using attributes as shown
in Figure 2.34a, (2) integrating additional geometrical objects, (3) using animation, (4)
using interactive representations, or (5) addressing other human senses. In the following
sections, I will discuss (1) visualization of uncertainty in information visualization, (2)
interactive methods for exploring uncertainty, and (3) the role and use of uncertainty in
VA.

2.4 Visualizing Uncertainty

As stated before, uncertainty visualizations were initially researched in geo-information
sciences [Mac92, MRH+05]. Hence, the used visual encodings of uncertainty were oriented
towards to 2d or 3d maps (see Figure 2.33). Thomson et al. [THM+05] presented a
typology for visualizing analytic uncertainty. Early on they stressed the importance of
aggregating and propagating uncertainty. MacEachren et al. [MRO+12] constructed a
typology of information uncertainty and constructed abstract and iconic visual variables
to point sets (see Figure 2.34a) to conduct an empirical study evaluating the abstract
and iconic intuitiveness and the subjectively assessed accuracy of visual encodings of
uncertainty. Figure 2.34b shows the results for abstract visual variable intuitiveness.
Among other results, the symbol sets fuzziness, location, and value received the highest
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Figure 2.32: Early methods for visualizing uncertainty using error bars or disambiguation
in various basic visualization techniques by Olston and Mackinlay [OM02].

Figure 2.33: Bivariate map of visual encodings for risk (block shading) and uncertainty
(block textures) [Mac92].
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(a) The designs show variables for encoding uncertainty in spatial applications.

(b) Measured results for intuitiveness of various abstract visual variables for describing general
uncertainty.

Figure 2.34: (a) Abstract visual variables for visualizing uncertainty in point symbol sets
by MacEachren et al. [MRO+12] and (b) the corresponding results for designs evaluated
towards their intuitiveness.

perceived intuitiveness for discrete ordinal uncertainty. They determined winning visual
encodings for data domains (space, time, or attribute) and types of uncertainty as most
appropriate recommendations for encoding uncertainty. Olston and Mackinlay [OM02]
started exploring the design space on visualizing abstract data with bounded uncertainty,
using error bars or disambiguation (see Figure 2.32). Griethe and Schumann [GS06a]
described integration of uncertainty in visualization to be possible by using free/available
graphical variables of the visual encodings, among others. Potter et al. [PKRJ10] used de-
scriptive statistics measures to merge statistical summary plots and combined histograms
and create a detailed uncertainty information glyph in datasets (compare Figure 2.35).
Brodlie et al. [BAL12] gave a review of uncertainty visualization techniques in data
visualization, using a typology by data dimensions ranging from 1D to multi-dimensional
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Figure 2.35: Visualizing uncertainty using joint histogram displays combined with
covariance (purple rectangles) and skew variance (orange triangles) measures (top
left) [PKRJ10].

and vector data uncertainty. Simultaneously, Bonneau et al. [BHJ+14] gave a more formal
view on the quantification of uncertainty, but also discussed the state of the art in uncer-
tainty visualization. They differentiated between traditional independent representations
of uncertainty and uncertainty functions and the integration of uncertainty in visualiza-
tion. They classified visualization techniques using uncertainty into (1) comparison
techniques: showing side-by-side views for easier comparison, overlaying information, or
producing difference representations, (2) attribute modification: mapping uncertainty
to free visual variables, (3) glyphs: signifying data through certain parameters, and
(4) image discontinuity: specifically utilizing humans’ ability to detect discontinuities
to communicate certain data characteristics. In another effort to classify the state of
the art in uncertainty visualization, Potter et al. [PRJ12] used both data dimensions
and uncertainty dimensions to distinguish different visualization techniques. In recent
years, visual encodings of uncertainty have been subject of extensive evaluation in mul-
tiple domains, e.g., time-oriented data [GBFM16, WBFL17], abstract data [OJS+11],
spatial data [MRO+12, OJS+11], medicine [AMTB05], model simulation, and weather
forecasting [LMK+15]. Other works construct uncertainty visualization design based
on uncertainty sources and generation. For example, Potter et al. [PWB+09] and Liu
et al. [LMK+15] created uncertainty visualizations from ensembles, to communicate
the average outcome of ensembles more appropriately to users. They use samples of
spatio-temporal paths to create a scalar field and construct an elliptical approximation of
storm path predictions, assigning uncertainty to the geospatial location (see Figure 2.36).

Efforts have been made to evaluate the effectiveness of color encodings [CMH18], anima-
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Figure 2.36: Minimum enclosing ellipses representing different levels of confidence for a
hurricane, the orthogonal axes correspond to hurricane bearing and speed [LMK+15].

Figure 2.37: Evaluation paths of studies evaluating uncertainty visualization along six
characterization properties [HQC+19].

tion [HRA15], and other alternative uncertainty displays [FWM+18]. These studies can
be used to draw a more general picture about humans’ perception and decision-making
ability based on uncertainty visualizations. Gschwandtner et al. [GBFM16] compared
uncertainty visualizations for uncertain start- and end-times of intervals, which resulted
in favor for error bars and ambiguation plots in case of determining start and end points,
as well as duration estimations. For mapping probability distributions, gradient plots
were recommended over accumulated or violin plots, even though personal preferences
differed. Hullman et al. [HQC+19] conducted a comprehensive survey of uncertainty
visualization evaluation, coming up with an overview of evaluation decision levels in
form of a Sankey diagram with evaluations being characterized along a path: (L1) Be-
havioral target, (L2) desired effect, (L3) evaluation goal, (L4) measure, (L5) elicitation,
and (L6) analysis. Figure 2.37 shows the 372 paths from 86 publications on evaluating
uncertainty visualization. They found that most evaluations focused on performance and
user experience comparing uncertainty visualization designs with confirmatory evidence,
as well as measuring accuracy and decision, suggesting to include confidence reports in
studies on uncertainty. The final remark I found notable was their future evaluation
suggestion to uncover strategies for completing particular tasks. This will be an important
aspect that I will discuss in detail when discussing approaches in the upcoming section.
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2.5 The Role of Uncertainty in Visualization and Visual
Analytics

Thomas and Cook postulated visualizations techniques for VA to “support the understand-
ing of uncertain, incomplete, and often misleading information” [TC06, p. 99]. Due to
the uncertainty inherent in data, the processes and methods for visualizing and analyzing
that data it is necessary to be aware of the extent of such uncertainties [CCM09]. Griethe
and Schumann [GS06a] described the basic process of uncertainty visualization. They
distinguish between uncertainty acquisition and visualization. Figure 2.38 shows these
separated loops and their interrelations, due to uncertainty being generated throughout
the visualization process as well. Correa et al. [CCM09] presented a framework for
propagating uncertainty from data sources to the analyst (see Figure 2.39). In partic-
ular, the process of uncertainty modeling and propagation is separated from data and
visual transformations. Furthermore, uncertainty is also generated from derived data,
feeding into visual mappings and views. MacEachren [Mac15] advocated for using VA
research to take the challenge of understanding the effect of uncertainty for decision-
making, or risk assessment, and ultimately investigate the uncertainty that is inherent
to reasoning and decision-making. Sacha et al. [SSK+16] extended their framework
with the role of uncertainty during knowledge generation and trust building. Their
model exhaustively describes how components of the VA process, on both the system
and the human side, influence uncertainty and components influencing uncertainty. It
shows the encompassing influence of uncertainty in VA, and serves as a basis for the
upcoming overview of interactive methods for supporting uncertainty analysis. Since an
exhaustive review of literature about different uses/roles of uncertainty in VA is out of
scope for this work, I will focus on the topics related to DQ assessment and provenance
capture and analysis (compare [SSK+16]). Out of the listed topics, the following topics
were selected as important for the scope of this thesis: (s2 ) uncertainty sources and
types, (s3 ) transforming data (s5, s6 ) model building, parametrization, and selection,
(s7 ) uncertainty in visualizing data caused by resolution or overplotting, (s9 ) perception
and uncertainty awareness, (h8 ) using uncertainty in systems, (g4 ) exploring uncertainty,
(h9, h6 ) awareness and trust of uncertainty in models and data, and (h4, h7 ) internalizing
knowledge and knowledge generation.

Along with their conceptual framework for analyzing uncertainty in VA, Correa et
al. [CCM09] also presented the means for modeling, propagating, aggregating, transform-
ing, and visualizing uncertainty of multivariate data. Initially, Zuk and Carpendale [ZC07]
proposed storing and communicating propagated/derived uncertainty. This is done to
enable both investigating the most reliable data by mapping uncertainty to transparency,
or investigating regions/values with associated high uncertainty to discover sources of
uncertainty. Uncertainty of variables is modeled using Gaussian Mixture Models, un-
certainty propagated by the PCA transformation is quantified using linear regression.
The analyst can explore the various measures of uncertainty, like variable sensitivity,
PCA projection uncertainty, and variance in clustering (see Figure 2.21). As such, it is
possible to evaluate how appropriately the data transformations have been applied and
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Figure 2.38: The process of visualizing uncertainty by Griethe and Schumann [GS06a].
Visualizing uncertainty is preceded by uncertainty flowing through the data model: (1)
data and uncertainty flowing from the raw data through the entire transformation process,
(2) in- and output of uncertainty data acquisition, (3) dependencies between the uncer-
tainty transformation process and the raw data transformation, and (4) parametrization
of the visualization pipeline.
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Figure 2.39: The uncertainty-aware VA process by Correa et al. [CCM09].

the uncertainty introduced during modeling itself. This shows the first approach towards
raising awareness of uncertainty being introduced during transforming data for visual
analysis.

Wu et al. used an uncertainty quantification measure to quantify uncertainty introduced
at every step alongside an analytic processing workflow [WYM12]. They showed the
importance of estimating the amount of uncertainty generated during analysis itself and
explicitly communicate this uncertainty to the analyst, who is empowered to select analysis
workflows that are least affected by uncertainty. The basis of their uncertainty propagation
and visualization workflow is an automated system collecting “history information and
estimating error ellipsoids of every data item, which are subsequently combined to obtain
an overall uncertainty level for drawing the uncertainty flow visualization” [WYM12,
p. 2528] They characterize the variations of uncertainty along the analytic workflow to
construct composite uncertainty ellipsoids, serving as overviews of introduced uncertainty,
and enabling the analyst to inspect the uncertainty in the value space. Von Landesberger
et al. [LFR17] motivated the “long-standing challenge” of allowing analysts to check
parameter settings and understand uncertainty “stack-up” over the course of a processing
workflow or pipeline. Bernard et al. [BHR+19] used uncertainty quantification methods to
construct graphs of overall uncertainty introduced along a MVTS pre-processing pipeline.

Using uncertainty in systems to have more informed insights into the qualitative aspects
of multivariate datasets is a powerful feature of uncertainty-aware VA. Uncertainty
information is often used to capture additional information on quality variations in
simulation and measurement data. For ensemble computation in forecasting, Chen
et al. [CZC+15] extended the usual descriptive statistics measures used for assessing
the mean of different ensembles by employing distributions. They can be used to
investigate patterns of uncertainty for individual data objects and variables. In addition,
uncertainty-aware similarity/dissimilarity projection to a 2-dimensional plane allows
visual identification of clusters.

Zuk and Carpendale [ZC07] proposed employing visual representations for reasoning to
address uncertainty in the analytical process to make it comprehensible by collaborating
users and enable exposing analytic gaps. Their typology of uncertainty to reasoning
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extends Thomson et al.’s [THM+05] typology for visualizing uncertainty. The influence
of uncertainty from the analytic process is based on analysts’ confirmatory evidence and
how they reason under the awareness of uncertainty [SSS+14].

In their review of uncertainty in data visualization, Brodlie et al. [BAL12] discussed
the uncertainty introduced when generating visualizations, since a certain error is intro-
duced into the visualization model even if we are certain about the data. Holzhüter et
al. [HLS+12] presented an approach for visualizing uncertainty in biological expression
data, addressing visual uncertainty. They identified uncertainties introduced by data
acquisition – due to signal to noise ratio –, data transformation – due to processing –, and
visualization – due to limited resolution and overplotting – to be relevant in their system.
An overview shows both the visualization and data uncertainty and lets analysts go
through multiple differently parameterized sets of expressions, and allowing exploration
of the associated uncertainties. In their detail view, the uncertainty information comple-
ments the actual data and lets analysts assess the sources of uncertainty for individual
results. This allows detailed exploration of the sources of uncertainty.

In an effort to understand how data workers cope with uncertainty, Boukhelifa et
al. [BPHE17] analyzed workflows of study participants describing their interactions
and encounters with uncertainty. One of the findings was the close relation between
uncertainty characterization and data manipulation. Participants’ coping mechanisms
differentiate between active strategies – understand, minimize, exploit, and ignore under-
lying uncertainties – and tacit strategies which reflect domain practices and perceptions.
These strategies could be found in the above mentioned works, where the active coping
mechanism was supposedly supported to solve visual analysis tasks.

2.5.1 Decision-Making under Uncertainty

Sacha et al. [SSK+16] extensively covered the human factors in the knowledge genera-
tion process and related uncertainty directly to trust building. This was formulated in
guidelines and, among others, included support for uncertainty-aware sensemaking, and
leveraging human behavior to derive bias or trust-issues. Efforts to give insights into trust
and knowledge generation have been pursued recently where Dasgupta et al. [DLW+17]
evaluated trust in their analysis comparing a specific VA tool to conventional analysis
methods, with the goal to allow analysts perform high-level sensemaking and interpre-
tation tasks in a mixed-initiative system design. Similar to Hullman et al. [HQC+19],
Kinkeldey et al. [KMRS17] provided a categorical overview of of uncertainty visualiza-
tion, with an emphasis on decision-making. They differentiated between the type of
uncertainty, visualizations, methodology, participant expertise, tasks, and effects. They
give recommendations regarding study focus and design, evaluation methodology, ef-
fects under evaluation, the choice of appropriate tasks, the role of expertise, as well as
decision-making theory. Fernandes et al. [FWM+18] explored decision-making for transit
using uncertainty displays, where they found that uncertainty informed decision-making
produced higher quality decisions. What they also found was that decision quality can
improve over time.
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Figure 2.40: Provenance collected from an iso-surface visualization workflow [FKSS08].

It could be observed that VA systems were predominantly evaluated in qualitative
studies, which may be more suited to capture more detailed insights and get results
based on informed participants due to the ability to give them extensive introductions
into the evaluated system. In particular decision-making and trust in data, knowledge
generated, and insights is difficult to be quantified in study design, while it is important
to understand how participants comprehend uncertainty and use it to refine their mental
model of the data and analysis.

Visual Analytics Methods for Data and Interaction
Provenance

In Section 2.1.4, provenance in data analysis has been a relevant topic of research
in the fields of database management and scientific computation in the form of data
provenance or data lineage. In early works, provenance of scientific and computational
workflows [CFS+06, FKSS08] and interaction [GS06b] was used to support exploration.
Using visualization and interactive exploration techniques, they served the purpose to
share insights analysts gained, and facilitate the understanding of visual exploration
processes and analysis workflows. Recently, in the field of VA, approaches have adopted
provenance capture for more than just data lineage and the history of changes to data.
Provenance is generated from visualization, interaction, insight, and rationale [RESC16].
Andrienko et al. [ALA+18] proposed use of provenance to not only map the VA process
but to use it to externalize the mental model of the analyst in the form of prior knowledge.
In visual-interactive systems, provenance can be integrated in different ways. Caching
systems can observe operations and actions in a system to derive provenance [FSC+06],
or operations self-invoking provenance storage. In the upcoming sections I will give an
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Figure 2.41: Workflow provenance graph. Each node corresponds to a different
parametrization or changes in modules and differs from the others [CFS+06].

overview of methods for visualizing types of provenance, VA approaches for analyzing
provenance, as well as how provenance can be used to enhance visual analysis, for example
in the form of graphical histories [HMSA08].

2.6 Methods for Visualizing Provenance

Due to the network-like nature of provenance, the most common methods for visualizing
it is using network and graph visualizations. For example, the generic open provenance
model (OPM) [MFF+08] is used to store provenance and use the underlying graph
structure to construct node-link diagrams. For example, in Orbiter system interaction
logs are visualized in a graph overview [MS11]. Summary nodes bundle data and control
flow and reduce clutter. In Del Rio’s and Da Silva’s ProbeIt! [DRdS07] provenance from
inference engines and workflows is visualized in a flow-like node link diagram. Provenance
modeling itself is a quite complex task, with designers and developers often sharing the
characterization of information captured by the provenance engines [WSD+13].

Borkin et al. [BYB+13] further characterized the node-link diagrams to enhance nodes
with glyphs to encode additional information [SLSG16], edges often being directed to
signal the workflow (e.g., flow diagrams [BCC+05]), and summarizing or collapsing nodes
(compare [MS11]). In other work [FSC+06], the VisTrails environment, provenance is also
used to build a workflow version tree view (compare 2.41). All steps captured to build the
visualization workflow are stored and the lineage of how parameters and components were
altered is retained to reconstruct the tree structure. The InProv Browser [BYB+13] uses a
hierarchical graph tree visualization, represented by arrows for connecting parent and child
nodes in a radial layout. Figure 2.42 shows two groupings of file operations. Glyph-based
techniques can help gaining overview of employed operations, perform visual search and
compare workflows in the exploration environment [MRSS+12]. Other alternative designs
to classic node-link diagrams use Sankey diagrams to trace provenance flow [HG15]. The
node height/size is based on the information flow in the provenance graph. One aspect that
strongly directs the type of visualization used to display provenance is the type captured.
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Figure 2.42: Radial provenance layout of file system browsing [BYB+13]: (a) shows the
file system and bash commands grouped by their sub-nodes allows inspecting connections,
(b) shows the file system grouped by time, filtering unassociated nodes for a particular
command.

Figure 2.43: Provenance trace, capturing file usage and extracting inherent provenance if
available. Particular activities within the provenance can be selected to only show the
sub-graph for this activity [HG15].
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Figure 2.44: Taxonomy of provenance system characteristics [dCCM09].

Figure 2.45: Graphical summary of a bookmark including meta-information about visual
encodings, filtering, and other metrics [WSD+13].

Due to the directed flow of operations through workflows or processing, directed layouts
are used. However, also other characteristics of provenance and provenance systems
require consideration. The taxonomy of provenance by Cruz et al. [dCCM09] shows these
system characteristics for scientific workflows (see Figure. 2.44). On-demand, contextual
information can be displayed to the analyst, showing meta-information at fine granularity,
retaining the overview of the entire graph while still giving in-depth information [HSN13].
Stitz et al. [SLSG16] employed aggregation methods for summarizing redundant or
recurring operations, time-based filtering or de-emphasis of nodes based on less or more
recent actions.

Summary graphics are used to share the development of data and visualizations through-
out the analysis process [WSD+13]. Using such visual summaries (compare 2.45) allows
analysts to revisit previously conducted processes and verify past interpretations (poten-
tially made by others) and conduct visual analysis of previous graphical representations.
GraphTrail allows analysis of visual exploration workflows [DHRL+12]. The visualization
states are retained, small graph representations and interactions show user traces and

66



2.7. Visual Analytics Methods Leveraging and Analyzing Provenance

Figure 2.46: Linked views used in SenseMap: (a) The History Map shows user actions
combined with data provenance to capture and visualize the sensemaking process, (b)
The Knowledge Map allows curating information sources to use in the user’s analysis
task [NXB+16].

paths of analyses. Summary graphics can be put into visual histories to represent the
actual states of the data and visualizations as visual provenance aid at different levels of
detail [RGT15]. This can be important if large sets of data are used during processing,
which makes it necessary to perform an abstraction in order to maintain history to
conduct analysis. Analytic provenance is used to support and facilitate collaboration and
visualization design, using detailed breakdown of user actions, for example, querying, fil-
tering, and transforming data for visualization [LWPL11, GZ09]. Brown et al. [BLBC12]
use interaction provenance to construct a view that signals the analyst’s progress towards
finding an appropriate distance function in point distributions. Changes are directly
highlighted in the point distribution scatterplot. Nguyen et al. [NXB+16] capture and
visualize the sensemaking process in SenseMap (see Figure 2.46), a tool that visualizes
analytic provenance from and shows it in a history or knowledge map. The visualizations
are composed by the analyst to construct a cohesive narrative, consisting of analysis
results, analyst notes, visualizations used, and raw data. Hence, glyphs and icons are
used to differentiate between the different sources and types of provenance.

2.7 Visual Analytics Methods Leveraging and Analyzing
Provenance

The comprehensive characterization of provenance in visualization and data analy-
sis [RESC16] gives a sensible classification between purposes for provenance, which
showed that provenance is most prominently utilized for recall and replication. However,
tools also use provenance for presentation, collaboration, meta-analysis, and action re-
covery. Within the context of VA, I want to elaborate the use of provenance w.r.t. two
aspects: (I) using provenance to support VA applications and systems, and (II) using VA
systems to facilitate provenance analysis. Nguyen et al. [NXW14] presented a survey on
analytic provenance, and classified the uses of analytic provenance for (1) supporting

67



2. Related Work

Figure 2.47: Analytic behavior can be captured at different semantic levels of granularity,
based on events, actions, sub-tasks, and tasks [GZ09].

the analytical reasoning process by recalling the analytical process, reusing performed
analyses, and using it as supportive evidence in constructing the reasoning process and
(2) supporting collaboration through dissemination, discussion, and presentation.

Using Provenance to Support VA Applications Pirolli presented the iterative
sensemaking loop [Pir05], which has since been a central element to support analysts in
their analysis tasks. In an effort to aid sensemaking using interaction provenance, Endert
et al. [EFN12] leveraged semantic interactions performed by the user to support the
sensemaking loop by updating the exploration space depicted as a force-directed graph
based on user interactions in an information foraging use case. Gotz and Zhou [GZ09]
characterized actions taken during visual analysis, determining the set of operations
necessary to capture visual interactive exploration using provenance. Analytic behavior
can be captured on different levels of granularity and are associated to higher or lower
levels of semantic actions. Such a hierarchical structure allows deriving semantically
higher tasks from lower-level actions and events (see Figure 2.47). They validated their
approach by implementing a visual analysis platform incorporating semantic interactions,
and logging the trail of actions performed by the analyst. However, they also noted that
only from actions logged it is not possible to derive insight provenance from the analyst.
Analytic trails are rarely linear, analysts chain and accumulate insight from multiple
trails to satisfy sub-tasks. Provenance can also be used to characterize users of VA
systems, Brown et al. [BOZ+14] recorded mouse interactions to derive characteristics of
the users and derive user groups with different traits, like personality. Captured analytic
provenance can also be used to differentiate between different phases of the sensemaking
model, e.g., analysts iterating between the exploration and verification phase [SBFK16].
This could be used to employ personalization, determine the level of domain expertise,
and further support the analyst to make an appropriate level of tools available. In large
collaborative visualization environments, visualization and interaction provenance can
be captured to build a retrieval system for searching visualizations created by other
users (see Figure 2.48), with certain properties, or finding similar views based on similar
search criteria [SGP+18]. Nguyen [NXB+16] used analytic provenance in a sensemaking
tool, capturing user’s actions to construct a history map of the sensemaking process.
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Figure 2.48: Building a retrieval system based on visualization and interactivity prove-
nance: States are assigned with a similarity score based on visualization properties, a
graphical summary (f) gives a preview on the best scored node. On the left-hand side
the node is highlighted in the vertically aligned provenance graph [SGP+18].

Figure 2.49: A graphical history built from thumbnails of the previous visualization
states and short descriptions of the performed actions/operations [HMSA08].

Users could curate relevant information, use it to organize information sources, and
communicate their insights and sensemaking map to collaborators. However, effectiveness
of the tool varied based on what experience the users/participants had with the tool.

For interaction and visualization provenance, research focused on constructing graphical
histories of interactions to try and interpret insights. Heer et al. [HMSA08] enhanced
Tableau to add a history interface to support analysis and communication of insights (see
Figure 2.49). As with visual exploration systems, Tableau already featured an operation
history, however, this was extended using action-based logging. Each history item is
shown as a thumbnail of the operation and the corresponding view. With a large number
of actions performed, the history could become cluttered and unreadable. To mitigate
that, the analyst’s actions are reduced in complexity, related actions are chunked, and a
new action behavior called undo-as-delete serve as indicators for cleansing up the history.
Sacha et al. [SSK+16] identified data and analytic provenance to predict user intent based
on low-level interactions.

Provenance Analysis Using Visualization and VAMethods Carata et al. [CAB+14]
compared various tools for exploring provenance. ProvDMS was developed to pro-
vide a web-based data provenance capture system including a provenance storage
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Figure 2.50: The AVOCADO workflow provenance exploration interface [SLSG16].

database [HSN13]. Experiments can be created to store sensor data provenance, derive ex-
periments, and obtain the sensor status. The system uses force-directed graph layouts and
a hierarchical tree graph view to give contextual information. Visualization provenance
can be captured to support exploration and subsequently perform storytelling based
on exploration history [GLG+16]. Advanced layout, filtering, and aggregation methods
can be used to make provenance graphs more easily comprehensible. In AVOCADO,
Stitz et al. [SLSG16] employed visual-interactive methods to edit degree-of-interest (DoI)
functions and change provenance graph representations between node-type-specific views
and attribute mapping (see Figure 2.50). Multi-step analysis workflows is facilitated
using aggregation strategies, and time-based node coloring and filtering. Analysts can use
these methods for exploring graphs based on various scenarios. In other work, Schreiber
et al. [SS17] developed a comics-inspired method for generating self-explaining views of
data provenance, using a consistent visual language resembling comic figures (for actors in
the provenance graph) and panels (corresponding to different activities). In collaboration
or analysis comparison scenarios, interaction and visualization provenance can be used
to assess behavior. The graphical histories and classified actions presented by Heer
et al. [HMSA08] can be used to compare analysis sessions of various users, and allows
analysis of which commands and worksheets have been used and if there are noticeable
patterns across users (see Figure 2.51).

2.8 Connecting Data Quality, Uncertainty, and
Provenance

Early on, Raman and Hellerstein motivated that tracking transformations and data lineage
is an important feature of their Potter’s Wheel application [RH01]. Sacha et al. [SSK+16]
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Figure 2.51: Scatterplot of provenance traces from multiple users over time shows patterns
of used actions and worksheets in Tableau [HMSA08].

postulated various relations between data quality, uncertainty, and provenance. I want
to elaborate the arguments and aspects described by them further to give a more specific
discourse on the interrelations between those fields of research and how they can be used
to amplify analysis.

Relating Data Quality and Uncertainty Different similarities between DQ and
uncertainty quantification and capture can be identified: Specifically the DQ metrics
presented in various forms [BS06, BS16] and types of uncertainty [MRH+05, THM+05]
seem to be closely related and similar. DQ cleansing and wrangling often has a significant
impact on the data. As a consequence the applied operations inevitably introduce
systematic uncertainty that can be quantified knowing the data input, output, and
influencing operation. That way, analysts can more closely associate the impact of
operations on the data and assess if they are necessary in the extent they were applied.
Domain experts who are unfamiliar with pre-processing algorithms can quantify the
impact of uncertainty on downstream analysis and react accordingly.

Relating Data Quality and Provenance Herschel et al. [HDL17] classified applica-
tions of provenance, and emphasized one use of provenance to maintain process and DQ.
They motivated that provenance may be used to improve quality or determine causes of
quality issues. However, DQ metrics or functional dependencies need to be captured to
adequately model data cleansing, profiling, and wrangling processes. To capture data
lineage and provenance it is necessary to employ DQ mechanisms that allow analysts to
not only draw quantitative conclusions from the data but also infer qualitative character-
istics and how they have changed over the course time or during analysis. It was briefly
discussed that different methods can be employed to capture provenance, either using an
active approach and monitoring if operations and processes affected data, or by having
processes generate provenance metadata themselves. Both ways are biased techniques if
not applied comprehensively, if not all processes are monitored the captured provenance
may not be complete and hence could lead to analysts drawing wrong conclusions. If
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applied correctly, provenance systems can aid analysts conducting DQ assessment in
capturing data cleansing, profiling, or wrangling traces across applications and systems.
That way, it is less likely that operations performed are not tracked along the workflow
and give a more complete representation of the entire DQ assessment workflow. Similar
to predicting data transformations based on DQ characteristics [HHK15] and mixed-
initiative wrangling [GKHH11], we can leverage insights from previously applied data
operations and processed that have been stored as provenance and combine them with
DQ metrics to facilitate quality improvement. Analytic and interaction provenance are
both means for comprehending, understanding, and revisiting analytical processes, that
should be stored and verified. It can help applying existing workflows to new datasets or
scenarios by only requiring necessary changes in some steps instead of altering the entire
workflow or building it up from scratch. Sharing processes could educate inexperienced
collaborators, or serve as visual validation to intrigued customers.

Relating Uncertainty and Provenance Uncertainty can be observed during data
generation/sampling, be generated by models or simulations, or be introduced during
data processing, for example, DQ assessment [BHJ+14]. However, without adequate
provenance capture and storage it is uncommon that uncertainty is actually retained in
the data, due to potentially massive data overhead, or downstream inconveniences for
handling uncertainty in the data. As a consequence, uncertainty is rarely communicated
to the user unless explicitly requested by the analyst, which skews perception of the
data. Adding uncertainty properties to data provenance models could allow designers
and developers to leverage uncertainty in their visualization and VA approaches and can
greatly improve analysts’ awareness of uncertainty.

2.8.1 Summary and Conclusion

Between these fields of research I identified many parallels and mutual influences. Uncer-
tainty is inevitably influenced by DQ assessment and pre-processing, and consequently
analysts should be aware of the consequences of inadequate pre-processing. However,
there is a lack of VA solutions available that associate these influences appropriately.
Furthermore, the topic of data provenance has been extensively researched in the field
of scientific computation and visualization, but only few approaches addressed data
provenance with DQ or uncertainty aspects in mind. With my review of visualization
and VA solutions in these fields, it can be seen that these methods can be beneficial to
exploring and making sense of data using a VA solution that combines these similar, but
yet still disconnected fields of DQ assessment, uncertainty, and provenance. The formal
characteristics of time series makes time series data a good candidate for performing
statistical analysis and DQ assessment. These characteristics have already been exploited
in different ways for conducting quality- and uncertainty-aware analysis. However, most
approaches fall short of seeing pre-processing as sources of uncertainty itself. This must be
addressed in future work to make analysts more aware of the influences of pre-processing
on the analysis outcome.
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CHAPTER 3
Conceptualizations

In this chapter, I will lay the theoretical foundation for the VA approaches presented in the
upcoming chapters, leveraging data quality metrics, uncertainty measures, and provenance
concepts. Describing these concepts extends theories and principles presented in the
Related Work chapter and are used as a basis for the further developed VA solutions. The
concepts are used to generate information beneficial to understanding data quality and
associated uncertainty, and store the provenance of developments of a dataset throughout
pre-processing and DQ assessment. The conceptualizations in this chapter are elaborations
of previously published works [BBGM17, BGK+18, BBB+19, BGM19, BHR+19].

3.1 Defining Data Quality Metrics

These conceptualizations were published in [BGK+18].

In Section 2.1.1 I showed existing DQ taxonomies that cover both task-dependent and
task-independent metrics, and often discuss generic or domain-specific effects of DQ
errors manifesting in the dataset. Task-independent DQ metrics can cover commonly
occurring errors, like entry and tuple completeness [BS16], or invalid entries, violating
type constraints [ORH05]. Oliveira et al. present an organizational data model and
aptly illustrate the potential sources of DQ errors (compare Figure 2.5). This shows
the broad scope where DQ metrics have to be employed to ensure adequate coverage
of error detection. Within the extent of this thesis a DQ metric is defined to be the
quantified measure of a DQ dimension (compare Section 2.1.1) that gives quantitative
information about the lack of quality w.r.t. a certain data property. Generic data quality
models [DDG+16] allow for flexible implementation and metric data types, for example,
Boolean values if requirements have been met, or numeric values if a metric expresses a
quantitative measure. Hence, how the lack of quality is measured or determined can be
subject to the specific DQ dimension and implementation.
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Figure 3.1: Conceptual structure of annotated quality measures for tabular data. (a)
shows the column and row structure of the original dataset, (b) shows calculated quality
for individual cells of the data and subsequently aggregate column and tuple quality
measures [XHWR06].

The data type predominantly analyzed for DQ assessment is tabular (or relational)
and time-oriented data, hence the metrics presented in this section will cover quality
dimensions of these types. We calculate a DQ metric across entries of tabular datasets
according to Xie et al. [XHWR06].

For column-wise metric computation, we follow the quality measure notation used in
Figure 3.1, i.e., Di, a quality metric QD of a quality dimension D and a column j ∈ S
accumulates the measures of quality Vi,j for each value Ai,j of the dataset S.

QD(j) =
n∑

i=0
Vi,j

Specifically, I define the measure of quality Vi,j , also referred to as the dirtiness of an
entry (compare [GGAM12]), to be determined by validation function calls vf, evaluating
a value Ai,j against a specific quality criterium c.

V c
i,j = vfc(Ai,j)

DQmetrics potentially have multiple validation criteria associated with them (vfc1 . . .vfcm),
so multiple functions can be logically concatenated. As previously mentioned, these
functions can return any dirtiness value. The aggregation function VF is specified to
return a proportional value between 0 (not dirty) and 1 (dirty).

VFi,j(Ai,j) =
M⋃

m=0
vfcm(Ai,j) ∈ [0, 1], for

⋃
∈ [∧,∨,¬,⊕]
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[VF1,1,1, . . . ,VF1,1,k] [VF1,2,1, . . . ,VF1,2,k] [VF1,3,1, . . . ,VF1,3,k] . . . [VF1,j,1, . . . ,VF1,j,k]
[VF2,1,1, . . . ,VF2,1,k] [VF2,2,1, . . . ,VF2,2,k] [VF2,3,1, . . . ,VF2,3,k] . . . [VF2,j,1, . . . ,VF2,j,k]

. . . . . . . . . . . . . . .
[VFi,1,1, . . . ,VFi,1,k] [VFi,2,1, . . . ,VFi,2,k] [VFi,3,1, . . . ,VFi,3,k] . . . [VFi,j,1, . . . ,VFi,j,k]

Q1,1 Q2,1 Q3,1 . . . Qj,1
Q1,2 Q2,2 Q3,2 . . . Qj,2
. . . . . . . . . . . . . . .
Q1,k Q2,k Q3,k . . . Qj,k

(a) DQ metrics create a matrix of quality validation function arrays for each value Ai,j ∈ S.
VF1,c1,1 . . . VF1,cj ,1 . . . VF1,c1,1 . . . VF1,cj ,1
VF2,c1,1 . . . VF2,cj ,1 . . . VF2,c1,1 . . . VF2,cj ,1
. . . . . . . . . . . . . . . . . . . . .

VFi,c1,1 . . . VFi,cj ,1 . . . VFi,c1,1 . . . VFi,cj ,1
QD1,C . . . QDk,C

(b) Spanning DQ metrics create an array of validation function matrices spanning multiple
columns C = [c1, . . . , cj ].

Table 3.1: Tables showing arrays of quality validation functions for single column and
spanning column DQ metrics: (a) describes the structure of single column DQ metrics,
(b) extends this structure to create spanning DQ metrics.

Subsequently, the value of a DQ metric QD is the normalized measure of all validation
criteria VFc with c ∈ 1, . . . ,m for all values Ai,j of column j.

QD(j) =
N∑

i=1

M⋃
m=0

vfm(Ai,j) ∈ [0, 1], for
⋃
∈ [∧,∨,¬,⊕]

This gives us an array matrix of quality validation functions VFi,j,k for values Ai,j ∈ S
and DQ metrics Qj,k (see Table 3.1a). It is also possible to construct a DQ metric
employing validation functions across columns C = [c1, . . . , cj ] resulting in an array of
validation function matrices (see Table 3.1b).

Revisiting the definitions in Sections 2.1.1 and 2.1.1, I stated DQ metrics represent
concrete implementations of DQ dimensions, mapping measures of quality related to
concrete use cases and domain-specific context. It is often not possible to account for
specific manifestations of DQ errors in a generic way. In the upcoming sections I will
describe conceptual methods for determining the quality of tabular and time-oriented
data.

3.1.1 Metrics and Data Quality Dimensions of Tabular Data

Tabular data has particular characteristics that allow for providing generic DQ metrics
to quality certain DQ dimensions. For example, information on column data types and
empty data indicators will allow generalized validation functions to be implemented.
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Figure 3.2: Types of completeness in tabular and relational data.

Leveraging this information will allow us to develop different types of column-wise
metrics for the following DQ dimensions: completeness, validity, and plausibility. A
generic tuple-wise DQ metric across multiple columns can evaluate the uniqueness of
entries.

Completeness/Missingness. The completeness of a dataset defines the degree to
which data values represent the real world, as far as it can be matched in the data
structure. In DQ research it mainly refers to missing values, hence the term missingness
can be used in analogy. The following definitions are based on Batini et al.’s [BS06]
definitions of completeness of relational data. For tabular data we can compute different
types of completeness: Value completeness, tuple completeness, column completeness, and
relation completeness.

Value Completeness identifies an entry Ai as dirty if it is either empty (missing) or
marked as empty through a syntactic identifier, e.g., NaN in R or matlab.

Compv(Ai) =
{

0 if Ai = null or Ai = {NaN, -,. . . }
1 else

Tuple Completeness characterizes the completeness of a tuple T for all its respective
values Ai ∈ T . It quantifies the ratio of complete values and the total number of attributes
m.

Compt(T ) =
∑m

i=1 Compv(Ai)
m

Column Completeness (or attribute completeness [BS06]) characterizes the completeness
of a single column Cj for all values Ai,j ∈ Cj . Again, the completeness is quantified as
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the ratio of complete values to the total number of values n in Cj .

Compc(Cj) =
∑n

i=1 Compv(Ai,j)
n

Relation Completeness quantifies column completeness across all attributesm of a dataset
S.

Compr(S) =
∑m

j=1 Compc(Ai,j)
m

=
∑m

j=1
∑n

i=1 Compv(Ai,j)
m · n

Identifier Completeness characterizes a more holistic view of missingness in data. Identi-
fiers available outside the relational and tabular dataset can act as indicators of missing
tuples. For that, an array of identifiers I =< i1 . . . ik > is used to compute the ratio of
completeness, where I are attributes of S and K is the size of the array of identifiers.

VFcompi(ik, C) =
{

1 if ik ∈ C = [A1,c, . . . , Ai,c]
0 else

Compi(I, C) =
∑K

k=1 VFcompi(ik, C)
k

Validity. Invalid entries might impede calculations or skew statistical evaluations.
The reasons for data being invalid are highly diverse and context-dependent [BG05].
Identifying values as invalid is a task that demands comprehensive domain knowledge,
which can rarely be performed automatically but must be done by the user. However, it
is possible to perform initial general validation in the form of data types. Such a general
validity metric includes a check to evaluate if a value Ai,j complies with the automatically
detected, or manually specified data type of the column.

VFvalid(Ai,j, type) =
{
0 if typeOf(Ai,j) = type, for type ∈ {numeric, string, date, . . . }
1 else

Similar to the completeness metric, it is possible to quantify this metric for individual
values VFvalid, tuples Validt, columns Validc, or relations Validr, i.e., across all
attributes of the dataset.

Validt(T ) =
∑m

i=1 VFvalid(Ai)
m

Validc(Cj) =
∑n

i=1 Validv(Ai,j)
n

Validr(S) =
∑m

j=1 Validc(Ai,j)
m

=
∑m

j=1
∑n

i=1 Validv(Ai,j)
m · n
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Format compliance can also be extended into value compliance for specific data types. For
example, ensuring that numeric values are only positive, or validating string characters
are valid according to a particular coding, like UTF-8. But such context-specific validity
constraints should be integrated by domain experts if necessary.

Plausibility. Statistical measures make it possible to gather distribution information
about numeric attributes in tabular and relational datasets and subsequently get insights
of implausible and extreme entries. Such entries might manifest in datasets due to
erroneous data generation (e.g., human-created values) or inconsistent sources (e.g.,
different sensor calibration) [GGAM12]. A plausibility metric could detect outlying
entries by using non-robust (statistical mean xcol, and standard deviation std(Xcol))
or robust statistics measures (median x̃col, and a robust inter-quartile range estimator
sIQR = IQR

1.35 ) to determine extreme values.

Uniqueness. Relational and tabular data often contain unique key attributes or at-
tribute pairs, which should not be duplicate. If these key attribute columns C1, . . . , Cj

are specified, it is possible to check for potentially duplicate tuples.

Uniqt(C1, . . . , Cj) =


true if ∀x ∈M : M(x) = 1, for

M = {{Ai,j |Ai,j = (Ai,C1 , . . . , Ai,Cj ) for i = 1 . . . n}}
false else

Time Interval Metrics. When analyzing time-oriented data, the validation of intervals
usually requires prior transformation steps to explicitly determine the interval duration.
The interval metric evaluates a specified interval without making changes to the data
necessary. It allows for checking if the interval vcolb,row − vcola,row is smaller than, larger
than, or equal to a given duration value, or both larger than and smaller than a duration
d. Additionally, a second metric allows performing outlier detection on interval lengths.

VFinterval(Ai,cola , Ai,cola , d, .) =
{
true if (Ai,cola −Ai,cola) . d, for . ∈ {<,≤, >,≥,=}
false else

Temporal and Value Outlier Detection. With robust outlier detection measures,
outliers can be automatically identified and highlighted. However, judging if these outliers
– either in the temporal domain or in the data domain – represent anomalies requires
additional contextual information. Thus, it takes the user’s domain knowledge to reason
about the identified outliers. As such, marking outliers as well as rasters which contain
outliers and saving this meta information for subsequent analysis is advisable and allows
more informed decisions.
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Missing Timestamps and Temporal Values. Similar to tabular and relational
data, empty intervals can signal quality issues, and more specifically for rastering tasks
could imply inappropriate raster window size. The distribution and amount of empty
rasters can be visually inspected for finding a suitable rastering.

3.2 Uncertainty in Time Series Pre-Processing

These conceptualizations were published in [BBB+19].

The conceptualization of uncertainty in MVTS presented in this section is based on
probabilistic uncertainty modeling presented by Bonneau et al. [BHJ+14]. Even though
pre-processing inevitably introduces uncertainty by altering the original data, these
routines are rarely analyzed towards their impact on uncertainty. When analyzing MVTS,
pre-processing is an integral part to enable further analysis.

3.2.1 Sources of Uncertainty

How uncertainty was introduced into the data is distinguished by the different sources
of uncertainty (compare Section 2.1.3), including observations inherent to the data,
generated by models or simulations, or introduced by the processing or visualization
processes [PRJ12, BHJ+14]. Several approaches analyze uncertainty introduced by
pre-processing [CCM09, WYM12], aggregating uncertainty for individual processing
steps. When assessing the influence of uncertainty on MVTS, inappropriate aggrega-
tion could omit temporal characteristics that can also be affected by processing (e.g.,
rastering [BBGM17], or sampling).

In the previous section, I defined measures of quality for time series based on domain-
specific characteristics, specifically for intervals and rastering transformations. To assess
quality and the impact of pre-processing and transformations on time series in a more
general application, a generic model can ensure that quality assessment is enabled for
more types of time series processing operations. To allow this I define a model of
uncertainty quantification for MVTS data. The model is based on three dimensions
of a Quantification Cube, shown in Figure 3.4a: time and variables of a MVTS, and
pre-processing steps. One aspect that becomes apparent from the previous example of
rastering is that frequently aggregation is occurring during pre-processing, which also
needs to be considered during quantifying changes as uncertainty. The measures of
uncertainty are stored as additional dimensions for every attribute/dimension of the
MVTS, similar to the previously defined DQ metrics.

3.2.2 Quantifying Uncertainties

I refer to a p-dimensional time series by X = {x(t1,v), . . . ,x(tn,v)} measured at time point
t1, . . . , tn with variables v = 1, . . . , p (compare Figure 3.4b). A pre-processing pipeline
for MVTS consists of m pre-processing steps that modify the MVTS and introduce
uncertainty. Each pre-processing step s takes a MVTS Xs−1 = {x(t1,v,s−1), . . . ,x(tn,v,s−1)}
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Figure 3.3: The time and variables (also referred to as data dimensions) of the MVTS,
and the pre-processing steps span a cube of dimensions influencing uncertainty introduced
by MVTS pre-processing.

as input and generates a modified MVTS Xs = {x(t1,v,s), . . . ,x(tn,v,s)} which is the input
of the next step. X0 is the MVTS as input to the whole pre-processing pipeline, Xm

the resulting MVTS, and Xs with s = 1, . . . ,m − 1 the MVTS between the single
pre-processing steps. The natural atomic representation of uncertainty for such a
processing step is determined by the quantification function u(Xs,Xs−1) that computes
the uncertainty per timestamp and variable u(x(t,v,s), x(t,v,s−1)). However, depending
on the pre-processing operation, the uncertainty quantification can only be done on a
specific level of granularity, if the temporal domain or the dimensionality of the MVTS
are affected. In the following I discuss the different cube dimensions’ dependencies on
quantification.

Dependency on Variables. If MVTS variables are individually analyzed, it is suffi-
cient to determine the absolute value difference between the input and output time series
of a pre-processing step: uabs(abs(z(t,v))), where

z(t,v) = x(t,v,s) − x(t,v,s−1)

denotes the value difference. This results in an uncertainty value that is value domain
dependent, as it needs to be considered in the context of the respective scale of the
value domain. Thus, if uncertainties of variables with different value domains are to
be compared or assessed simultaneously, normalized relative differences need to be
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determined instead
urel(z(t,v)) =

z(t,v) − µz

σz

where µz is the mean difference and σz the deviation.

This way, the influence of multiple variables on the uncertainty at time x(t,s) is comparable
for any v. If the uncertainty of each variable cannot be quantified for single time
points, the uncertainty needs to be computed for single variables across all time points
ut(x(v,s), x(v,s−1)). This is for example the case, if the temporal space is modified, like
temporal sampling or rastering (only uv is applicable).

Dependency on Time. The quantification of uncertainty over single time points and
dimensions u(x(t,v,s), x(t,v,s−1)) allows to identify time points or time ranges that have a
high, low, or normal level of uncertainty in the value domain. If the uncertainty of time
points cannot be quantified for single variables, the uncertainty needs to be computed
for single time points across all variables uv(x(t,s), x(t,s−1)). This is for example the case,
if the time series dimensionality is altered, e.g., by dimensionality reduction routines
(only ut is applicable). In the case of aggregating over time (see Section 3.2.3), e.g., for
rastering or sampling a time series to a coarser temporal granularity, the uncertainty
introduced in the temporal domain needs to be considered in the quantification. This
can be done by computing the relative or absolute temporal differences ∆t of all time
points that are merged in the raster intervals of the coarser granularity level, similarly to
computing relative value differences formalized for variables, but in the temporal domain.

Dependency on Pre-Processing Steps. Each pre-processing method has different
effects on the introduced uncertainty. However, these effects can be derived when taking
into account the error that is introduced by the specific method and its parametrization.
Moreover, this on average introduced error can be estimated (e.g., moving average changes
the value domain consistently). We formalize the introduced uncertainty accordingly:
uerr(x(t,s)) = ferr(x(t,s),k), where ferr is an error function for quantifying uncertainty,
and k = {k1, . . . , kl} is the current parameter vector of the pre-processing method.

3.2.3 Aggregating Uncertainties

Figure 3.4c illustrates the different types of aggregation of uncertainties over all processing
steps. As with quantifying uncertainty, aggregation can be applied on all of the cube’s
dimensions: time and variables of the MVTS, and pre-processing steps. Generally it is
advisable to quantify uncertainty at the finest granularity level and aggregate to coarser
granularities if necessary. A general aggn

i=1(·) function indicates a generic aggregation
function, because various aggregation methods could be applied, or interchangeably used.
More specifically this can be a simple summarization

∑n
i=1(·), a multiplication

∏n
i=1(·),

or other statistical aggregations of uncertainty, like the mean uncertainty µ(u), mean
squared uncertainty µ(u2), or root mean squared uncertainty

√
µ(u2). Figure 3.4c shows

different aggregation methodologies that prioritize aggregation (c1) by time, (c2) by
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a b c

c1
c2

c3

Figure 3.4: Illustration of quantification of uncertainties and aggregation on values and
uncertainties. (a) shows the three variables time, variables, and processing steps. (b)
represents a single processing step slice with the dimensions time and variables together
with the uncertainty aggregation, either across time or variables (shown as red boxes).
(c) indicates the different aggregation paths within single processing step slices (c1, c2)
and across all steps (c3).

variable, or (c3) by pre-processing step. Consecutively, other aggregation steps can be
added. In Figure 3.4c this is marked by the perpendicular arrows, where aggregation is
performed by time and variable (c1), and by variable and time (c2), respectively.

Aggregating by Time. Quantifying uncertainty on timestamp (or entry level Ai,p)
granularity is not always beneficial. Analogous to visualization of large MVTS, aggregating
uncertainty to a coarser temporal granularity allows maintaining a representative dataset
if the scale of the original data is too large. Aggregating uncertainty can be done on
different levels of temporal granularity.To remove the temporal dimension from the
quantified uncertainty, we can aggregate over the entire time dimension u(x(v,s)) =
aggn

t=1(u(xt,v,s, xt,v,s−1)). This allows an abstract representation of uncertainty without
time, e.g., a single value of uncertainty for an entire time series variable v, and pre-
processing step s.

Aggregating by Variables. Analyzing uncertainty of individual variables allows
detailed inspection of effects on the value domain. However, variables can be affected
differently by pre-processing. Uncertainty can be aggregated by variables u(x(t,s)) =
aggp

v=1(u(xt,v,s, xt,v,s−1)) to determine a single value of uncertainty for these variables,
e.g., µ(u(x(t,s))).

Aggregating by Pre-Processing Steps. To obtain an overview of uncertainties for
one step s of the pre-processing, we compute the uncertainty of each pre-processing step
u(xs). Comparison of different steps can be done on different levels of aggregation, by
variable:

u(x(t,s)) = aggp
v=1(u(xt,v,s, xt,v,s−1))

84



3.3. Data and Insight Provenance from Data Quality

or time:
u(x(v,s)) = aggn

t=1(u(xt,v,s, xt,v,s−1))

However, it is also possible to aggregate over a whole pre-processing pipeline, to assess
the introduced uncertainty of a sequence of pre-processing steps:

u(x(t,v)) = aggm
s=1(u(xt,v,s, xt,v,s−1))

To enable more distinct assessment, aggregation can be nested consecutively. Aggregating
by variables allows comparison over time:

u(x(t)) = aggp
v=1agg

m
s=1(u(xv,t,s, xv,t,s−1)

This allows more detailed inspection if the time series was affected by pre-processing
uniformly. Conversely, aggregating by time allows comparison over variables:

u(x(v)) = aggn
t=1agg

m
s=1(u(xv,t,s, xv,t,s−1))

Ultimately, aggregating over time, variables, and pre-processing steps produces a single
value of uncertainty for the entire pre-processing pipeline (compare Figure 3.4c3):

u(x) = aggn
t=1agg

p
v=1agg

m
s=1(u(xv,t,s, xv,t,s−1))

3.3 Data and Insight Provenance from Data Quality

These conceptualizations were published in [BGM19].

Implementing data quality metrics (compare Section 3.1) allows for detecting quality
issues in a dataset. They can serve as a measure of overall quality for a dataset. However,
to understand the impact data transformations and pre-processing operations have on
data quality, it is necessary to capture the state of data quality for multiple points
in time. Descriptive information of the data’s quality is required to audit wrangling
operations and assess if they were applied appropriately. By logging what actions were
used alongside the wrangling process (e.g., data profiling, filtering, cleansing), it is
possible to gain understanding of employed transformations, and make sense of the DQ
assessment process. I propose to employ measures of quality throughout each processing
step to allow judgment if quality was affected throughout the wrangling process. To store
these types of information, I present a generic model of provenance generation for data
wrangling (see Figure 3.5).

The different entities incorporate different types of provenance (according to [SPG05]).
The main entities involved are the data, and correspondingly data revisions, generating
data provenance, being generated by transformations, generating workflow provenance.
The data can be filtered by a condition into a working dataset. We store the information
on each revision, capture which filters were applied, and derive data descriptions to
annotate the corresponding revision.
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Transformation

Working Dataset

creates

uses
Data Revision

Condition filters

Data 
Description

derive

annotate
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Figure 3.5: Model for storing data provenance from data wrangling. The base data is
stored as a data revision (i.e., revision 0). A transformation uses a data revision or a
filtered working dataset to create a new data revision. Additional data descriptions are
derived from every data revision and are used to annotate it subsequently.

Data Transformations Information on data wrangling transformations is provided
as a log, with the ability to undo/redo. The transformations are stored as workflow
provenance, showing the actions taken by the user. Utilizing this logging information, we
can construct a provenance graph from these transformations. From each operation we
derive parameters and affected rows and columns.

Applied Data Filters Data filters are employed to process subsets of the data, this
can be done to transform a specific selection. Utilizing this information can give users
implications whether the analysis was only conducted on a particular subset of the data.
This information is stored as row-level data provenance.

Data Descriptions Interactive profiling of data can be employed during data wrangling
to determine data characteristics of the data, e.g., data distributions, anomaly detection.
The overall meta-information about the dataset and column characteristics can help to
further validate or identify data rows. Descriptive statistical figures of a dataset are often
used by data analysts to determine if a dataset is appropriately processed and fit for
use. Leveraging these descriptive features for estimating and validating datasets, we can
annotate the information extracted from the transformation and filtering operations to
make them more meaningful and comprehensible to the user. The data descriptions are
stored as row-level or column-level data provenance, depending on the information type.

Visual Analytics Approaches

In the upcoming chapters, I will present various VA approaches specifically designed
and developed to address the challenges and white-spots identified in my comprehensive
problem statement (see Part I). The goal of these approaches is to develop methods that
aid users with their data cleansing and wrangling tasks, as well as provide interactive

86



3.3. Data and Insight Provenance from Data Quality

means for exploring pre-processing workflows and pipelines. According to the paradigms
of using VA and human-centered design in the form of the data-users-tasks design
triangle [MA14], I developed these approaches to allow users to explore visualizations
and interact with data and annotated information derived from the data. The designs
are based on requirements and tasks analyses that preceded prototype development, and
the working prototypes are also evaluated in user studies respectively. The evaluation of
the VA approaches will be presented in Part III alongside results that will be further
condensed and wrapped up in Part IV.
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CHAPTER 4
Visual-Interactive Customization

of Data Quality Metrics

The design and implementation was published in [BGK+18].

When working with data, analysts require some form of probing for assessing the ap-
propriateness of a dataset. For example, a regulatory government institution concerned
with monitoring and releasing data on an open data portal needs to quickly assess the
quality of the data and ensure its usability. Quality of provided datasets can be highly
variable and data providers need to be notified if the quality needs to be improved to
maintain the quality standards on the platform. Moreover, datasets may be frequently
updated and thus, analysts working at the government institution who are responsible
for qualitatively evaluating submitted datasets need to assess them in a timely manner,
validate changes in the structure of the dataset, and ultimately evaluate its quality. It is
a difficult task to quickly evaluate datasets that are either unknown to the user or to
detect changes in quality and structure of frequently updated data. One approach at
assessing the quality of a dataset is providing summary visualizations [KPP+12] to get a
sense of the data distribution and anomalies. Summary visualizations lack flexibility to
accentuate different aspects of DQ. I argue that automatically computed DQ metrics
can facilitate quality assessment and expedite validation. The conceptualization of DQ
metrics in Section 3.1 show means for determining the overall quality of a dataset, as well
as for defining, measuring, and managing the quality of information and data [Das13].
In contrast to isolated quality checks (compare [GE18, GAM+14], DQ metrics can be
used to validate various data characteristics and properties simultaneously. However, the
general measures presented (compare 3.1) are often not sufficient for determining quality
issues specific to a certain data domain. Context-dependent and intrinsic properties of a
dataset, along with domain knowledge, require adaption and customization of employed
metrics. To support analysts in effectively adapting data DQ metrics, they need to be
able (1) to customize DQ metrics interactively to specific datasets and domains, (2)
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validate the appropriateness of the newly customized metrics, and (3) to assess quality
easily and quickly.

4.1 Requirements Analysis

Before starting the development and design of MetricDoc, an environment for the visual-
interactive customization of DQ metrics, I recapitulated requirements that should be met
by our approach. The requirements were derived from (i) literature research and identified
shortcomings in other DQ projects (e.g., [KHP+11]), (ii) our long lasting experience
with visual-interactive DQ projects [GAM+14, GGAM12, KPS14a, KPS+14b], as well as
from (iii) our collaborations with various company partners: in multiple discussions with
the target users of such a system, i.e. data analysts dealing with DQ. Human-computer
interaction (HCI) experts were actively involved in the design process (see Figure 8.1)
giving feedback to requirements regarding visual elements and general user experience.

Moreover, Miksch and Aigner’s [MA14] design principle of data, users, and tasks was
pursued: (1) The users are DQ analysts with expertise in data profiling and comprehensive
knowledge in their respective working domains. (2) The data consist of a tabular dataset
subject to analysis, with quantitative, qualitative, and time-oriented data supported for
analysis. (3) The tasks for assessing DQ are split into:

T1. performing a first assessment of the quality of a dataset (using general DQ metrics),
T2. adding custom quality checks and customizing DQ metrics to fit the dataset,
T3. exploring the dataset and inspecting detected dirty entries, and
T4. reviewing the overall quality of the dataset for a downstream analysis.

To successfully implement an environment that supports those tasks, I defined the
following requirements:

R1 Customizable DQ Metrics. DQ metrics should appropriately reflect the quality
of the data at hand. To accomplish this, users should be able to adapt DQ metrics to
account for domain-specific contingencies or special cases. On the other hand, parameters
of predefined ready-to-use metrics should be easily adjustable to ensure flexibility of
usage.

R2 Data Quality Overview. A visual overview about a dataset’s quality should be
provided. It should specifically convey proportional information on potential errors
detected in the dataset.

R3 Error Information.Detailed information about potential dirty data should be
communicated to the user down to individual data entries. This information should
facilitate the identification of error sources.

R4 Error Distribution. Errors in a dataset rarely occur in an isolated way. Thus,
users should be able to view the distribution of errors within the dataset which may
reveal patterns. Furthermore, the tool should facilitate the detection of correlations of
errors across several data table columns.
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R5 Data Exploration. To facilitate the inspection of dirty data, the user should be
able to be directed to data table entries with detected quality issues.

Based on these requirements I determine design rationales that should be taken into
account during development. The design rationales should ensure that the functional
requirements are also reflected in the design. These rationales were adhered to during
the design and subsequent development of MetricDoc.

4.2 Design Rationales

The design on MetricDoc should comprise a tabular data representation enhanced by
visual elements for presentation and navigation of the dataset based on DQ information.
Interactive feedback should support the user during quality metric customization and
provide immediate computation results. Usually, these users – data analysts, data
scientists, or statisticians concerned with DQ and pre-processing – rely on scripting and
textual interfaces for profiling data and developing DQ metrics, hence they cannot easily
explore the raw data based on the results of the computed metrics. According to the
design methodology by Sedlmair et al. [SMM12], particular data abstractions, visual
encodings, and interaction techniques are required to develop effective visualizations.
This methodology was applied to our quality metric and error distribution data with an
emphasis on visual presentation and exploration. Our design was influenced by current
wrangling, profiling, and cleansing approaches [GAM+14, KPHH11, KPP+12], as well
as tabular-like overview visualization techniques [RC94, SFTM+13] with orientation
towards interactive exploration [Kei02]. Accordingly, the following design rationales were
distilled based on the requirements defined in Section 4.1.

D1 Providing Consistent, Informative Visual Encodings [R2–4]. Due to the
potentially large scale of the data, the analysts need to detect data problems efficiently.
Therefore, the visual encodings of quality and error information should be consistent
throughout the environment to avoid misinterpretation and to recognize certain infor-
mation that is – albeit in different granularities – displayed repeatedly. Alternatively, a
number of specific representations for different data types and quality dimensions could
be employed. Utilizing only basic visualization types keeps the learning threshold for
users low. Especially for large scale datasets, data aggregations are common means for
efficient visual representation. On the other hand, such aggregations could potentially
mask quality problems in the data, and are thus, not applicable for the task of data
profiling. For this reason, simple but intuitive elements are employed to show error
information, to support the user’s understanding, and to lower the barrier of entry for
inexperienced users.

D2 Employing Multiple Linked Data Perspectives and Views [R2–4]. Users’
data analysis workflows and tasks may differ considerably, requiring access to different
data aspects and visual representations, including DQ information. DQ analysts often
resort to raw data representations or statistical overviews of datasets, switching constantly
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between different representations. Showing exclusively detected errors without providing
context, prevents users from determining possible causes of errors. A comprehensive
overview requires knowledge of the errors persisting in the data, which is often not feasible.
Thus, our environment should provide an overview of the dataset and its quality, while
simultaneously maintaining detail information about the dirtiness in the data. Supporting
brushing and linking [Mun14] across visualizations and data views facilitates conducting
the quality assessment tasks. Leveraging effective exploration techniques on different
granularity levels is supposed to allow quickly identifying quality issues throughout the
dataset, by inferring location information and contextual information on surrounding
data.

D3 Interactively Supporting Quality Metric Customization [R1]. DQ metrics
are potentially complex measures (see Sections 2.1.1 and 3.1) and require domain-specific
adaptations [Das13]. Developing and tailoring quality checks to extend the effectiveness
of a quality metric in detecting dirty data, and to contextualize domain characteristics,
respectively, is important. Iteratively building and customizing metrics is difficult without
constant feedback on syntactical and semantic changes on calculations. If no feedback is
provided during metrics development, users have to resort to external tools for determining
the appropriateness of the current metric, which disrupts the development process.
Supporting interactive customization also implies increased computation effort, which
could impede interactivity of the entire environment. However, immediate feedback allows
the user to verify if changes resulted in a more adequate domain mapping or improved
error detection of the metric. Such feedback should be provided through notifications and
the exploration environment accordingly. The aim is to encourage analysts to continuously
refine the DQ metrics and model the data domain most adequately to identify quality
issues and reduce the classification of false positives.

D4 Guiding Users during Data Exploration [R5]. DQ metrics evaluate the quality
with respect to specific characteristics or aspects of the data. The user should be informed
of such aspects when exploring data, and be able to comprehend the evaluation schemata
of metrics, especially if they are complex. However, varying types of users follow different
workflows when exploring dirty data, assessing DQ, and developing DQ metrics. By
offering a workflow to be adhered to throughout analysis, expert users are likely to be
put off by feeling too constrained. Without any visual assistance, on the other hand,
novice users are likely to be lost in a complex exploration environment. Thus, used visual
encodings should quickly communicate where investigation is required, e.g., highlighting
problematic data entries. Users should also be notified of changes in quality – as a result
of metric recalculation or changes to the original data. Visual cues are used to point the
analyst to DQ problems, while the absence of such visual cues signifies high DQ and no
need for intervention.

With these design rationales defined I proceeded with prototyping the MetricDoc en-
vironment. Chapter 8 describes how visual encodings and interactions were subject to
change during iteration cycles, with the core elements left widely unchanged.
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Figure 4.1: MetricDoc: An interactive visual exploration environment for creating and
customizing DQ metrics and assessing DQ (this is a composed view, which shows multiple
popups and tooltips at the same time). The environment consists of the Quality Metrics
Overview (a), the metric information view (b) and customization tabs (c), the Metric
Detail View (d), and the tabular Raw Data View enhanced with Error Distribution
Heatmaps (e). Mouseover tooltips provide detail information on metrics (f) and data
errors (g,h), Metric Distribution Heatmaps can be enabled and disabled individually
(j). Case Study (see Chapter 7.1) Task (1): Entries are highlighted that show test
devices performed with outdated client versions (row 1892). The labels (a-k) are used in
subsequent figures to retain reference to the rest of the environment.

4.3 Visualization Design

MetricDoc’s web user interface provides a visual exploration environment that features
both a raw dataset representation and an overview of DQ metrics along with a repre-
sentation of the distribution of dirty data entries within the dataset (see Figure 4.1).
Users can manage the deployment of DQ metrics and corresponding quality checks on
datasets. The interface emphasizes on visual support for dirty data exploration as well
as visual feedback during metric customization. In the following section I elaborate the
employed visual encodings to ensure that easily comprehensible exploration and metric
customization is provided to support DQ assessment.

4.3.1 Quality Metrics Overview

The metrics overview (see Figure 4.2) is one of the main components in MetricDoc. For
single source metrics, the representation resembles a tabular structure, column by column
indicating a DQ summary, while rows in this table correspond to different DQ metrics.
The tabular representation aims at inducing a relation to columns in the original data
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Figure 4.2: Quality Metrics Overview (a), including metric detail within a mouseover
tooltip (f). Single-Column and Multiple-Column Metrics are visually separated to
emphasize information disparity (compare Fig. 4.1a,f).

table by aligning the metrics overview with the tabular representation of the original
data which is positioned directly below. For each metric and each column the amount
of identified dirty entries is indicated by an error bar. Spanning metrics correspond to
multiple source columns and implicit information cannot be deducted from one singular
column. Hence, for these metrics positional alignment with the Raw Data View is omitted
and instead the columns to indicate which are evaluated by means of such a spanning
metric are labeled. The width of error bars representing spanning metrics is accordingly
spanning the whole data table width, to distinguish them from normal metrics. With
these features the design satisfies R2 and keep consistent with D1, by informing the
user about the general dirtiness of a dataset and providing an overview of any available
DQ metrics.

The error bar indicates the ratio of dirty entries discovered for the computed quality metric
by proportion to the entire metric cell width, orienting the user towards columns lacking
quality. Hence, an empty bar represents the absence of dirty data and implies cleanness.
The overview can be sorted by dirtiness per data column, combined for all metrics, to
guide users to columns that require inspection. Tooltips give on-demand information
(see R3) about the absolute amount of dirty entries, the actual error percentage, and
other metric details (e.g., Figure 4.1f). Upon selecting one or multiple DQ metrics the
Metric Detail View shows information for further inspection.

4.3.2 Metric Detail View

To represent detailed quality metric information, the prototype features a schematic
error view (see Figure 4.3) that shows error information for all entries in a dataset. The
result is a heatmap visualization showing the distribution of the errors in the dataset,
a representation adapted from distribution column overview heatmaps by Sopan et
al. [SFTM+13]. For large datasets that exceed pixel-wise entry representation, data are
aggregated with color intensity corresponding to the number of errors in the aggregated
data rows of the heatmap. Each quality check contained in a metric corresponds to
one vertical column in the detail view. As such, the view can be used for error type
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Figure 4.3: Metric Detail View (d) showing the error distribution throughout the dataset
of both the completeness metric of column long and the date interval metric for columns
time_utc, time_utc_next as can bee seen in the legend (i). Users can toggle
showing only dirty entries to facilitate comparison of such entries, or highlight dirty
entries to see them within the context of the entire dataset. The mouse is hovering over
the visualization, giving tooltip information about erroneous rows (h). Users can interact
with this view to interactively browse to regions of interest in the raw data table. This
allows for detailed inspection and swift exploration. By enabling selection of multiple
metrics at once, error correlations (like in this example the plausibility metrics of columns
upload_kbit and download_kbit) can be inspected and analyzed (compare Figure 4.1d,h).
Case Study (see Chapter 7.1) Task (3): The Metric Detail View shows test entries being
called within a 10 seconds time frame. The upload and download plausibility metrics
show a large number of outliers, implying that there are excessively low and high down-
and upload rates throughout the dataset. Some of which could be connected to a short
time between tests performed (column four dateInterval).
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exploration (by checking the errors for different checks individually, satisfying R3) and
navigation (satisfying R5). The analyst can determine patterns and increased error
occurrences directly from the view or – if necessary – adapt quality checks with respect
to the detected inconsistencies, depending on the situation that false positives or true
negatives are detected to improve error detection accuracy or comprehensiveness.

Annotations give analysts additional feedback about the location of an erroneous value
in the dataset. When multiple metrics are selected in the Quality Metrics Overview,
the view shows all metrics simultaneously. This allows for error reconciliation and
more sophisticated analysis, especially for errors that manifest in several aspects of the
data or different information channels (also across other columns). The analyst can
quickly jump to the row of detected dirty entries and inspect them in the raw data table,
having contextual information from neighboring columns and entries (D2). The view
can be toggled to either display all entries in the dataset, with optional highlighting,
or only dirty entries with respect to the currently selected metric/s, hence contextual
dependencies among erroneous data can be observed more easily. This is emphasized by
color-coding disabled rows in the view. The Metric Detail View is linked to the raw data
and Error Distribution Overview and infers the current position in the dataset, users can
interactively browse into subsets of the data.

4.3.3 Error Distribution Overview (Figure 4.1e)

In addition to the heatmap-like overview of error distributions given in the Metric Detail
View (see Figure 4.3d), the raw data table features heatmap-like elements to meet D1
(see Figure 4.1e). Each column of the raw data table is annotated with a scrollbar-like
visualization, representing the relative position of dirty entries of the respective column.
For large datasets the table representation is paginated to facilitate navigation and thus,
the Error Distribution Overview is showing only errors for the selected table page. In
combination with the error distribution in the Metric Detail View, the analyst has at
his/her disposal a twofold exploration system for either quick navigation of the overall
dataset or detailed inspection of the raw data. With the error distributions for all single
column metrics being juxtaposed, analysts can leverage their perceptive ability to discover
error patterns that spread across columns. Interactions are consistent across the Metric
Detail View and the Error Distribution Overview, featuring mouse-over tooltips on error
position and selection highlighting of raw data entries.

With the two ways available to navigate the dataset and detected errors, analysts are
able to explore and validate the data based on their preferences (either scrolling through
raw data entries or utilizing the detail view for jumping to points of interest). DQ
analysts could find the multitude of juxtaposed scroll elements distracting, hence the
Error Distribution Overview can be disabled for each metric and column individually.
In addition, only displaying the metrics that are currently of interest to analysis allows
putting the analytical focus on particular data columns. While initially only few DQ
metrics might be added to the dataset, this error distribution provides additional overview
information and hence directs the analyst towards adding new DQ metrics that fill the
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Figure 4.4: Metric information (b) and customization tab (c), with edit feedback notifica-
tion (j). In this case the third metric parameter is misspelled, the user is informed by an
alert. After editing a metric, a notification informs the user of changes in the amount of
detected errors. Quality checks can be disabled or removed entirely. Comments can be
added to checks to give contextual information (k). Concatenating checks gives additional
flexibility for the validation of data entries (compare Fig. 4.1b,c).

blank-spots the analyst discovered while skimming the data. The analyst can select a
column header to directly create a metric for the respective column, allowing a more
streamlined user experience and aiding the analyst in dataset orientation (D2). The
overview can be sorted by the amount of dirtiness detected per column for all metrics, if
necessary/desired.

4.3.4 Metric Customization

Based on R1 DQ metrics not only need to detect default errors specified by the data
analyst, but should also be customizable to account for domain-specific data constraints.
Therefore, our environment provides means for adding or customizing quality checks in
order to evaluate different domain-specific constraints and dependencies, increasing a
metric’s effectiveness and expressiveness for detecting errors in a dataset. A Quality Check
panel is provided (as can be seen in Chapter 4.1) that lets users edit DQ metrics, and gives
additional information about the metric type. In the checks tab (compare Figure 4.1),
quality checks can be scripted in OpenRefine’s GREL scripting language, which provides
the freedom to perform calculations and check if an entry satisfies or violates an arbitrary
condition. These scripts are dynamically evaluated for syntactical and semantic validity
(e.g., invalid function parameter) on the server side and users are dynamically notified.
Textual input offers enough flexibility for users. For further information, all available
custom metrics, quality checks, and helper functions can be accessed in a popup view,
giving information on functionality, parameter usage, and default configuration.

Furthermore, the Metric Customization panel allows disabling or deleting checks as well
as creating new checks. Changing a metric or quality check causes a re-validation of
the DQ which is immediately reflected in the metric visualizations (metric overview,
Metric Detail View, and Error Distribution Overview). Moreover, the user is notified
(see Figure 4.1k) about changes to error count and overall quality. Adding new metrics
prompts a creation form, that gives quick information about the data type distribution
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4. Visual-Interactive Customization of Data Quality Metrics

for selected columns, and which metrics can be created – depending on which metrics
are already being evaluated. The data type overview provides details about the column’s
type distribution to let users assess which metric is appropriate.

Disabling or enabling specific metrics or checks lets DQ analysts build up a backlog
of quality checks that can be enabled for quick validation. This potentially boosts
productivity, sophisticated checks do not have to be rebuilt from scratch but can be
reused and adapted to domain-specific circumstances. With support for multiple data
projects, users can more quickly assess quality and validate new projects and furthermore
discover errors in the data by reusing (custom) metrics from previous projects.
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CHAPTER 5
Capturing Provenance from Data

Wrangling

This design and implementation was published in [BGM19].

When analyzing data in any way, the initial step before actual analysis is preparing data
and ensuring that it is of adequate quality. Data quality management has developed to
be an integral part of almost any data processing workflow, to increase the reliability of
analysis results.

Data wrangling is often employed in order to improve the quality of a dataset. However,
the outcome should still be representative of the original dataset. The steps taken
pre-processing a dataset in order for it to be usable are often not documented, and hence
are seldom reproducible. When using large datasets and obtaining data from different
data sources, it is increasingly difficult to perform quality inspection on the raw data.
Transformation histories automatically generated by data wrangling tools are often not
available outside of the system, and thus, the history of data transformations can not be
audited when importing the data for subsequent data analysis (usually different tools are
used for data pre-processing and data analysis). Also, there is a lack of context if these
wrangling operations led to the desired outcome so that issues were actually resolved.

Data provenance is captured to allow retracing how it was created, from what data it
was derived, and how it was changed. This allows to retain sources of errors and allow re-
tracing of previously applied operations. Especially across multiple systems provenance
can allow tracing back to sources of changes. Simmhan et al. [SPG05] described a
graph structure to be adequate for storing data provenance, however provenance is
mostly captured in scientific workflow applications, and rarely logged in data quality
management. Storing the data states (also called as revisions) in the graph’s nodes and
the transformation processes in it’s edges gives an explorable overview of the provenance
structure. The inherent a-cyclical structure shows the data lineage and allows the

99



5. Capturing Provenance from Data Wrangling

identification of process sequences. When capturing provenance during data wrangling,
actions can be annotated with contextual information, to give more semantic meaning to
the wrangling operations and their impact on the data. So far, existing data wrangling
tools and solutions have not embraced data provenance proficiently enough to have
analysts benefit from their wrangling attempts. Context information is used in data
profiling to recommend data transformations (e.g., Wrangler [KPHH11], Trifacta Inc.,
etc.). Interactive methods for data profiling are often employed to analyze certain
characteristics and dimensions of the data, like specific columns of interest, or particular
data types, which can be leveraged to facilitate data wrangling. The MetricDoc VA
solution showed that annotating a dataset with data quality metrics allows for detecting
quality issues and serve as a measure of overall quality for a dataset (see Chapter 4).
The interactive approach allows exploration of metrics to assess the prevalence of certain
types of errors in the data and estimate the quality of a dataset in detail. I propose that
leveraging data quality metrics as data provenance can aid the user in understanding
the development of the dataset’s qualitative conditions. This builds confidence in the
reliability of a dataset.

By providing an approach for exploring data and workflow provenance captured from data
wrangling steps, I will illustrate how users are able to build trust in a wrangled dataset.
By logging what actions were used alongside the wrangling process (e.g., data profiling,
filtering, cleansing), it is possible to gain understanding of sequences of transformations,
and make sense of the entire process. Computing quality metrics continuously for each
state of the dataset is supposed to give users the ability to quickly assess the qualitative
condition of the data and determine if quality has changed throughout the wrangling
process. I found that current approaches for exploring provenance are lacking the ability
to annotate the data sufficiently to give contextual insights into the data wrangling
process. Furthermore, interactive exploration of preceding alternative branches is not
possible.

5.1 Provenance Model Implementation

In Section 3.3 I conceptualized a model for generating provenance from data wrangling
and annotate it with DQ information. The DQ metrics utilized in this model are based
on the MetricDoc approach. This approach annotated data with data quality metrics
to provide means for visually exploring the quality of tabular datasets. To implement
the enhanced provenance model, these metrics are used to save column- and row-level
data provenance to capture contextual information, allowing analysts to analyze the
development of quality over time.

Revisiting the definition from Section 3.1, a DQ metric is defined as ”the quantified
measure of a data quality dimension that gives proportional information about the lack of
quality regarding a certain information aspect“. For each employed metric, the dirtiness
of one or multiple columns is measured with respect to a certain quality dimension. The
overall measure is the inverted ratio between determined dirty tuples and the number of
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rows in the dataset. This yields a normalized measure between 0 and 1 for each metric,
which can also be interpreted as the percentage of dirty tuples detected by the respective
metric. The evaluation of a tuple is done through a validation function vfm(·), returning
a Boolean measure of dirtiness. However, the engine also retains information on the
position of the dirty tuple within the dataset so they can be located. This information
will be used as a data descriptor to annotate the data provenance.

The list of available DQ metrics stored as provenance are obtained from the MetricDoc
engine. The provenance model data structure is implemented as an extension to the open
source wrangling tool OpenRefine, to support the DQ framework [BGK+18]. The two
integral extensions of the existing data quality framework are the data quality engine
and the provenance model (compare Figure 5.1). The data quality engine automatically
recommends DQ metrics based on column type. To accomplish this the engine features
a heuristic validation schema that determines the predominant data type for each
column. Custom quality checks can be added in the separately available MetricDoc
environment [BGK+18] to detect domain-specific issues and hence improve the accuracy of
the issue detection. The provenance model implementation is integrated into MetricDoc’s
web front-end and allows the definition of custom quality checks that validate the data
with respect to domain-specific characteristics, if necessary (e.g., numeric constraints,
text validation). The second feature extending the OpenRefine tool is the addition of the
provenance annotation model. DQ metrics are automatically computed and annotated
for every data revision and are stored in a provenance graph structure that extends
the default data storage. Based on the data quality metric structure, the annotated
information stored as data provenance ranges from the overall dirtiness of a particular
column and metric, down to the individual indices of dirty tuples. The metrics calculation
and provenance annotation is automatically computed on server-internal engines, which
reduces the impact of performance during wrangling to a minimum. For a typical
wrangling scenario with multiple wrangling branches, the data structure size can be
fetched via http-access. Since the provenance model extends the default data structure,
additional data storage is minimal and only concerns workflow provenance and column-
and row-wise data provenance.

5.2 Requirements Analysis

In the Related Work Section 2.5.1 I gave an overview of VA research in provenance
generation and data quality management, and motivated the opportunities for com-
bining these fields. It can be seen that trends have developed towards interactively
inspecting data quality based on quality metrics [BGK+18], facilitating data wrangling
through recommending data transformations [KPHH11] and making the effects of such
transformations easily comprehensible [KPP+12]. To determine the tasks that should
be supported by a system that combines provenance and data quality analysis, I per-
formed a requirements analysis of different taxonomies and research directions: Kandel
et al. [KHP+11] motivated the development of means to (1) diagnosing data problems,
(2) editing and auditing transformations, (3) using provenance to track data lineage, and
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Data Transformations

Applied Filters

Project Metadata

Data

Data Quality Metrics

Metrics Recommendation

Revision
Revision

Provenance Structure

Annotated Information

Transformation Steps

Data Transformation

OpenRefine Server Provenance Graph

Data Quality Engine

Automatic Calculation - 
Provenance Annotation

Figure 5.1: Overview of our extension for capturing provenance from OpenRefine. Infor-
mation is propagated from the server to the data quality engine and provenance model.
For every data state and wrangling step, the extensions process information from the
project to store it as provenance. The result is an annotated provenance graph that can
be used for analyzing the outcome of the wrangling process.

(4) understanding why actions were performed. I elaborated these means further towards
the purpose for analyzing provenance, according to Ragan et al. [RESC16].

5.3 Task Considerations

I deem the following task considerations to be important to effectively support users
with analyzing provenance from data wrangling. Prior to defining the tasks, I applied
the Data-Users-Tasks design triangle by Miksch and Aigner [MA14] to first determine
the users of our approach – data analysts, software developers, and domain experts
concerned with data management –, and the data used – provenance captured during
the data wrangling process. The following tasks can be distinguished according to Ragan
et al.’s [RESC16] characterization of provenance purpose within the scope of assessing
data quality.I analyzed low-level events and actions within the context data wrangling
and cleansing domain to derive high-level actions that are pursued by users operating
applications with data quality context in mind.

Tact Action Recovery. The analyst wants to see the transformation sequences applied
to a dataset and the quality issues retained throughout the process at the level of individual
columns. This includes the types of operations, their parameter settings, and the subset
of data the operations were applied on.

Tpres Presentation. If multiple alternative operation sequences have been created,
the analyst wants to visually inspect the differences between different wrangling branches.
This includes information if an operation impacted the dataset, what part of the dataset
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(column- or row-wise changes), and more particularly, if quality was affected. Furthermore,
the analyst wants to inspect if subsets of the data exhibit more issues than others (e.g.,
the sensors of a weather station introduced more measurement artifacts than all others).

Tmeta Meta-Analysis. When inspecting a sequence of operations, the analyst wants
to audit the dataset if it can be trusted for further processing or analysis. To do this, the
analyst monitors the development of different quality problems over time to eventually
decide on the usability of a dataset. Also, the analyst wants to reconcile what operations
the different branches have in common. The analyst wants to use these insights to
determine how issues in the dataset were addressed and decide what operations solved
these issues most appropriately for downstream analysis.

Trec Recall. The analyst wants to compare the remaining issues in the dataset for two
branches (at a time) in order to determine if error patterns were addressed in a similar
way, or if different wrangling approaches were employed. By investigating the quality
metrics of the dataset over the course of multiple operations, the analyst wants to identify
if changes had qualitative impact and trace changes in quality back to the operations
that caused them. This includes validation, if either the entire dataset or a particular
subset of the data (that has been selected for further analysis) exhibits sufficient quality
(e.g., auditing the columns of a dataset).

Trep Replication. The analyst wants to be able to revert the current dataset to
previous transformation steps, to either use the dataset for downstream analysis, or as a
starting point for further data wrangling. If problems persist in a particular state, the
analyst wants to inspect them in detail.

Tcoll Collaborative Communication. The analyst wants to inspect a sequence of
previously applied operations and, in particular, their consequences in terms of quality.

5.4 Usability Inspection Study

Various approaches can be employed for data wrangling, depending on the methods for
exploration or evaluation. Individual analysts can have vastly different demands on the
quality of a dataset. I conducted a usability inspection study to receive feedback on
different design alternatives of an early paper design of our prototype (see Appendix 13).
The test subjects were all undergraduate computer science students, with basic knowledge
of information visualization. The reason these participants were selected is that they
are similarly trained in methodologically approaching data analysis as our target user
group. They were split up into two groups, where the first group (four participants) was
interviewed individually on the designs, and the other group (six participants) conducted
a focus group usability inspection. The collected positive and negative feedback served
as a basis to determine the important design requirements and refine them for the final
prototypical implementation.
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5. Capturing Provenance from Data Wrangling

(a) Overview of the paper prototype the partic-
ipants had to solve questions and task with.

(b) In the detail view the raw data is shown,
with the data showing the state directly before
and after an operation.

Figure 5.2: Initial design prototypes of the quality flow view used during the usability
inspection evaluation.

The evaluation was split into two study groups, interviews and a focus group. Both groups
received an introduction to the subject. The participants received paper prototypes and
had to solve questions and tasks, as well as give feedback on the usability in the end.
These questions and tasks involved validation if the design was intuitively comprehensible,
and finding improvements to the design. During evaluation, the investigator continuously
guided the participants through the experiment, asking questions for different tasks and
consecutive operations. Figures 5.2a and 5.2b show the design of some paper prototypes
used during the experiment, and participants could use pencils to add notes.

Feedback showed that people preferred and appreciated that (1) less colors indicated that
the dataset is cleaner, and that operations were shown prominently and pleasantly. (2)
The similarity to git’s commit graph and alternate graph branches were noted positively.
Participants also noted (3) highlighting of the operations and a visual representation of
structural changes in the dataset as beneficial. Lastly, participants commented that (4)
the overview of changes and the well understandable structure can guide users to follow
the effect of operations for most parts. Hence, I tried to integrate this feedback into new
iterations of the prototypical design.
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5.5 Design Rationales

In order to support analysts’ different approaches, the design is supposed to allow users
to navigate through the available quality information from different perspectives and
enable users to initiate exploration by investigating details, but also pursue a classical
overview-first analysis. In both cases, users should be able to progress towards their
specific goal of assessing the quality of the targeted data state, processing branch, or data
column or row. Finally, design rationales were established to ensure that they support
users in performing the tasks presented in Section 5.3.

R1 Allow analysts to navigate through the available quality information
from different perspectives. Enable exploration by investigating details, but
also by pursuing a classical overview-first approach. Analysts should be able to
navigate towards their specific goals (analyzing a specific branch, data revision or
column/row).

R2 The design should emphasize the impact of operations on quality. This
helps users to associate transformation steps with changes of quality.

R3 Cleanness of the dataset should be signaled by cleanness of the visual-
ization This should emphasize the analyst’s perception that no problems can be
observed any more.

R4 A graph of operations should show the different wrangling branches. The
branch of the currently selected wrangling operation sequence should be traceable.

R5 The overall size of the dataset and number of quality problems for every
data revision should be communicated. This should help analysts identify
what parts of the data are changed during a transformation.

R6 The detail view should give additional information on operations and
changes in quality. This should help to provide insights into how and why an
operation influenced the dataset.

During development, the task considerations and design rationales were consulted to
prevent inappropriate design or functionality. The upcoming section describes the core
features of our prototype, where single or multiple tasks identified were used as design
goals for individual components. At the initial design stage, applicability of the design
rationales to the components were determined. Throughout design and implementation,
the components continuously underwent inspection if design rationales were supported
and maintained.
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5. Capturing Provenance from Data Wrangling

Figure 5.3: Two linked views of DQProv Explorer: (a) The Provenance graph view allows
navigation of the individual data states. The height of the nodes and edges encodes the
row size of the data (R5). Bright yellow graph nodes indicate the currently selected
branch, icons indicate the type of operation. (b) On-demand mouseover information on
the nodes and vertices shows details on the operations and the dataset size: vertices
show information on the employed filtering and transformation parameters, nodes show
the number of rows in the dataset. (c) In the Quality Flow View users can observe the
development over time for a selected wrangling branch. The bar height indicates the
proportional amount of issues detected, color encodes different types of quality metrics.
On the horizontal axis, the data revision nodes are duplicated from the selected graph
branch to align with the stacked bars to facilitate relating operations to changes in quality.
(d) On-demand information on the Quality Flow View highlights the flow of the currently
inspected metric (validity metric in the Weight column) and shows additional provenance
information.
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5.6 Visualization Design

I present Data Quality Provenance Explorer (DQProv Explorer), a VA approach to
visualizing provenance that was captured by our data wrangling provenance model.
I employed Shneiderman’s visual information seeking mantra by giving overview of
wrangling provenance in a provenance graph view as well as details on quality in a
flow-like visualization. I provide three interactively linked components in our system, the
Provenance Graph View (see Fig. 5.3a), the Quality Flow View (see Fig. 5.3b), and the
Issue Distribution View (see Fig. 5.4), usually located to the right side of the Quality
Flow View). Provenance Graph View consists of a graph of provenance generated by
wrangling the current dataset. The Quality Flow View shows a selected wrangling branch
in detail, the Issue Distribution View shows how quality issues are distributed across the
dataset for the currently selected revision.

5.6.1 Provenance Graph View

The Provenance Graph View serves as the central (overview first, R1) navigation element
of DQProv Explorer (see Figure 5.3a), showing the captured wrangling provenance (R4).
Inspired by Wu et al.’s [WYM12] uncertainty flow visualization approach, it shows
an acyclic graph flow structure, representing transformation operations and data flow
between data states. Upon selection of a graph node (i.e., a revision state), the path of
transformations is highlighted as a bright yellow path (compare Figure 5.3a), and the
Quality Flow View is aligned respectively (see Figure 5.3b). The node heights encode the
relative number of rows (compared to the maximum number of rows) in the current data
state (R5). Icons show the operation types for each revision node (e.g. 6 indicates a text
transformation), and filter icons (s) along the graph vertices indicate if the dataset was
filtered before applying an operation. This overview lets analysts assess which operations
were applied at a glance. On demand, detailed information on the applied operations
and filters is available (compare Figure 5.3b, R6).

The Provenance Graph View can be used to analyze different aspects of the wrangling
provenance model. By following the flow of data along the graph’s vertices and the node
height, it is possible to see if operations were only applied to subsets of the dataset.
Together with the Quality Flow View, branching and branch lengths in the provenance
graph shows analysts the history of previous wrangling attempts: short paths or a large
number of branches could imply unsuccessful wrangling attempts; Long paths with the
same operation icons can indicate small, repetitious operations without significantly
changing the dataset (e.g., editing single cells) or impacting quality.

5.6.2 Quality Flow View

DQProv Explorer’s Quality Flow View (see Figure 5.3c) shows the overall development
of quality issues in a dataset over the course of a selected wrangling branch (R1). The
view shows the proportional amount of errors identified in the dataset by stacking bars
for each employed data quality metric (for applicable columns) in the data quality engine.
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Figure 5.4: The Issue Distribution View allows the inspection of issue patterns detected in
the current data state. In this particular case it can be observed that (among others) row
69 exhibits multiple errors. The view is linked to the Quality Flow View and mouseover
interaction highlights the respective metric flow (compare Figure 5.3d).

This results in a vertical column of quality issues for each data revision. Different colors
indicate different types of quality metrics, and correspondingly different types of issues.
By showing the development of these quality issues along a selected provenance branch and
the corresponding operations, the analyst can assess which wrangling operation changed
the dataset and resolved data quality issues (R3). The stacked bars are connected with a
flow-like encoding. The flows are de-saturated for metrics that remain unchanged between
revisions and are saturated to highlight a change of a quality metric measure between
two revisions. If all issues detected by a particular quality metric are resolved during a
wrangling operation, the corresponding flow bundles to zero (compare Figure 5.3c: the
metric value changes to zero, indicating that the detected validity issues of the column
Weight have been resolved by this operation). Because the Quality Flow View is aligned
with the Provenance Graph View, changes in quality can be traced back to the performed
transformation operations and the analyst can gain insights if wrangling operations
influenced quality (R2).

Mouseover interaction highlights the entire quality metric’s history in the current branch,
giving information on the quality metric values (R6). Figure 5.3 shows an example where
the initial actions did not affect quality. However, after the fourth operation, the number
of quality issues continuously decreases. Inspecting the saturated flows with mouseover
interactions shows the name of the affected column and metric type(compare Figure 5.3d).

5.6.3 Issue Distribution View

The third component in the DQProv Explorer is the Issue Distribution View, which can
be used for detailed inspection of the distribution of quality issues within the dataset.
It shows the relative location of dirty rows within the tabular structure of the dataset.
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Figure 5.5: The comparison mode juxtaposes two wrangling branches. The first branch
runs from left to right, while the second branch is flipped to run from right to left. This
allows for direct matching of the end-states of the dataset of the selected branches. In
particular, differences in quality are more easily identifiable. In this image the first three
nodes are shared between both branches. It can be observed that different approaches to
improve quality have been employed, while in the left branch data elements were removed
(multiple Å-operations), in the right branch elements were edited or imputed (consecutive
6-operations). However, both approaches led to a reduction of quality problems (height
of bars).

Erroneous entries in the dataset are shown as heat bands, with color encoding the issue
type (corresponding to the quality metric identifying the issue). This visualization implies
the cleanness of the dataset, with a close to empty view signaling the absence of quality
issues (R3). Inspecting the Issue Distribution View helps discovering error patterns in
the dataset (compare Figure 7.3, Analysis Step 1). It is an extension of the schematic
error view presented in the MetricDoc environment [BGK+18]. If the number of rows
in the dataset exceeds the number of rows available in the visualization, the rows are
aggregated to accommodate for insufficient screen space, accumulated errors correspond
to higher saturation. That way, it is possible to display datasets exceeding 10,000 entries.
When entering into Comparison Mode (see Section 5.6.4), the difference of the two issue
is computed, which allows inspecting the differences in error distribution between these
two revisions.

5.6.4 Comparison Mode

To enable the comparison of the overall quality between two different wrangling branches
of the provenance graph, the Quality Flow View design was extended to oppose two
wrangling branches (see Figure 5.5). The view is displayed when two branches are selected,
mirroring the Quality Flow Views, allowing a direct quality comparison of the branches’
end points. This view lets analysts compare the flow of quality over time, but also inspect
the difference of employed wrangling operations. For example, if an analyst has to decide
to continue analyzing the data, and two wrangling attempts (branches) look similar, it
is possible to use the comparison mode to assess which sequence of operations yielded
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better quality, or used less wrangling steps but was equally as effective. To retain linking
to the transformation operations applied to the selected branches (R2), the branches
are duplicated and positioned below the Quality Flow View. The selected branches in
the Provenance Graph View are highlighted in clearly distinguishable colors, including
shared nodes that are bright yellow.
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CHAPTER 6
Quantifying Uncertainty in Time

Series Pre-Processing

In VA research and related fields, the awareness and need to incorporate uncertainty
information into the analysis has increased considerably. This holds true for both a
methodological, design, and implementation perspective. How uncertainty was introduced
into the data can be distinguished by the different sources of uncertainty, including
observations inherent to the data, generated by models or simulations, or introduced by
the processing or visualization processes [PRJ12, BHJ+14]. Even though pre-processing
inevitably introduces uncertainty by altering the original data, these routines are rarely
analyzed towards their impact on uncertainty. When analyzing time series and MVTS,
pre-processing is an integral part to enable further analysis. Several approaches analyze
uncertainty introduced by pre-processing [CCM09, WYM12], aggregating uncertainty
for individual processing steps. When assessing the influence of uncertainty on MVTS,
inappropriate aggregation would omit temporal characteristics that can also be affected
by processing.

The upcoming section will demonstrate a VA approach time series rastering that integrates
DQ metrics and uncertainty to provide essential information for the rastering process,
and to produce output metadata that gives insights into this pre-processing step. The
DQ metrics increase the awareness of the introduced uncertainties and quality issues for
further analysis. For discussing the critical rastering aspects below, I consider relevant
characteristics of time and time series data from the work by Aigner et al. [AMST11].

6.1 Quantifying Uncertainty from Rastering

These designs and conceptualization were published in [BBGM17].
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When rastering time series, unevenly distributed time points and their corresponding
values are being aggregated and binned into evenly spaced time intervals, while still
retaining the original data’s structure. Rastering transforms the original data for the
sake of (a) consistent value distribution, (b) smoother value curves, (c) and reduced data
size. However, to adequately transform a time series for subsequent analysis requires
extensive knowledge about the data domain as well as temporal data characteristics.

For illustrating the challenges and critical aspects in time series rastering I give an
example of unequally spaced time series sensor measurements from the environmental
domain. Such measurements contain various formats and are used in many application
domains. The Opensense Project in the city of Zurich [LFS+12] measures different
environmental variables, like meteorological data, air pollutants such as O3, NO2, NO,
SO2, VOC, and fine particles. The interval length, with measurements varying around 20
seconds (s), has the following properties: median of 20s, interquartile range (IQR) of 15s,
and median absolute deviation (MAD) of 1.4826s. Finding an adequate interval length
for the rastering transformation is context specific and depends on domain properties. In
this illustration, choosing a too short interval length, e.g., less than 20s in this example,
would generate many raster intervals with no data, and therefore introduce missing
values. On the other hand, too long intervals will mask interesting patterns in the time
series. Immediate visual feedback on the new raster aggregation and important quality
information are required to find an optimal configuration. This quality information
includes introduced missing values, value ambiguity, or reduced temporal granularity.

6.1.1 Critical Aspects for Rastering Time Series Data

In many cases, automatic methods for rastering time series data are not effective due
to mutually exclusive dependencies, e.g., reducing the amount of empty rasters and
minimizing loss of accuracy. During data transformation and aggregation uncertainty
information is likely to be introduced, as the data’s structure is altered and sampling
operations are applied. By sampling or aggregating values, the original measurement
accuracy is lost. Current data processing systems merely store this information indirectly
(i.e., provenance aware systems) if at all. By externalizing this uncertainty information,
users are made aware of the impact of different rastering operations.

DQ information can also be helpful to assess effects of rastering operations on datasets.
DQ metrics [PLW02] – proportional measures of data quality dimensions [Red12] –
quantify quality aspects to give expressive assertions to certain data properties. The
aim is to introducing DQ metrics that are specific to time-series data to allow informed
rastering. The following list discusses contingencies that need to be considered when
rastering different types of time-oriented data.

Characteristics of Time-oriented Data. Aigner et al. [AMST11] have extensively
characterized properties of time-oriented data. One characterization is distinguishing
time series data into either states or interval records. State changes occur either at
the exact time entries were recorded at, or have changed at any time since the last
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measurement. When converting information from individual timestamp values to equally
spaced intervals, there is an inherent loss of accuracy in the temporal domain, and
uncertainty is introduced in the value domain. When rastering a time series, the user needs
to be aware of this varying influence of uncertainty with respect to different input time
series and different rastering parametrizations. Consequently, the time series visualization
requires appropriate representation considering these influential factors and results.
When considering aggregating time series data containing intervals, original intervals are
potentially split if raster lengths are incompatible. The time series visualization should
represent the time intervals appropriately, and the rastering algorithm should feature
options to allow retaining the original intervals’ sizes or proportionally creating new
rasters from multiple intervals.

Temporal Granularity. If time series need to be rastered with finer granularity than
provided by the original data, data values of one interval need to be divided into smaller
intervals – this division must be done based on assumptions, e.g., by computing a time
series model based on the input data and super-sampling entries. Analogously, if the
time series is rastered into a coarser granularity, details can get obfuscated, e.g., masking
outliers by smoothing the time series through aggregation, and classical error margins
may get broader. Depending on the goal of the user this is undesirable and should be
indicated accordingly.

Ambiguity. It is implied that ambiguities might be introduced into the data during
rastering, specifically when dealing with qualitative or discrete data values. Aggregating or
sampling values during rastering often requires imputation from time series, or reducing
raster granularity. Introduced ambiguity should be marked as such and explicitly
communicated in further analysis steps. This information potentially influences analysis,
specifically if users are unaware of inherent ambiguities and assume the data as explicitly
correct.

Statistical Measures. How an optimal binning size is chosen can be inspected using
statistical measures to provide important domain independent quality information, for
example (a) mean range spread, i.e., the absolute difference how far values deviate
from the mean, spreadt =

∑n
i=0 abs(µA − Ai) for interval It and values Ai ∈ It,

(b) temporal deviation, i.e., how much a timestamp’s tAi temporal value is changed
during aggregation to the mean interval timestamp µT , tempDevt =

∑n
i=0 abs(µT − tAi)

(c) point density per interval, i.e., how many timestamps are aggregated into an interval,
tempDensti

=
∑n

i=0 ||Ai||, for all Ai ∈ ti. These measures give insights into the amount
of uncertainty introduced by different interval sizes and anchor points and should be
considered when trying to identify a suitable rastering of the time series at hand. To
construct more expressive measures, DQ metrics can be employed to aggregate this
information to different granularity levels. They can provide local information and allow
comparison of overall granularity measures.
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Temporal and Value Outlier Detection. With robust outlier detection measures,
outliers can be automatically identified and highlighted. However, judging if these outliers
– either in the temporal domain or in the data domain – represent anomalies requires
additional contextual information. Thus, it takes the user’s domain knowledge to reason
about the identified outliers. As such, marking outliers as well as rasters which contain
outliers and saving this meta information for subsequent analysis is advisable and allows
more informed decisions.

Missing Values. Similar to tabular and relational data, empty intervals can signal
quality issues, and more specifically for rastering tasks could imply inappropriate raster
window size. The distribution and amount of empty rasters can be visually inspected for
finding a suitable rastering.

6.1.2 Visual Analytics Approach

With these considerations and aspects laid out, in this section I conceptualize a workflow
for rastering unevenly spaced time series data and illustrate the application of these
principles in our VA approach. Figure 6.1 shows a mockup with a design that supports
the workflow discussed below. A description of the composed multiple-coordinated views
and their use can be found in the respective caption.

For the rastering transformation, an interval length needs to be determined that is
appropriate for the original dataset and the usage of the transformed data. The optimal
raster window size depends on the data domain, different data characteristics, the further
usage of the data, quality information, and introduced uncertainties. In the current
state, the user can interactively choose a raster window size (see Figure 6.1e). To
assist the user in supervising the rastering process and determining optimal rastering
results, our approach considers the special characteristics of time-oriented data to provide
important contextual information. The provided quality and uncertainty measures need
to be interpreted in the light of the users’ domain knowledge in order to draw correct
conclusions from the rastering result. Moreover, time’s inherent structure is used for
calculating statistical measures (see Figure 6.1c,d).

The time series Rastering Preview (see Figure 6.1a) is interactively browsable, showing
a superimposition of both the original time series and a preview of the results of the
current rastering configuration. This view also serves as input interface for defining
the raster length and initial raster anchor point. These parameters are selected via
drag&drop (see Figure 6.1e) in the Rastering Preview. During dragging, the raster values
are calculated and interactively updated based on the current configuration (grey dotted
line in Figure 6.1a). The multiple coordinated views are dynamically updated during
the dragging interaction to show the impact of the chosen configuration on the rastering
outcome, like raster length, distribution, and possible empty rasters.

I argue that knowledge about DQ and uncertainty facilitates the rastering and assessment
process for users. Contextual information on temporal characteristics in the form of DQ
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Figure 6.1: An overview of our interactive time series rastering approach. (a) The
interactive Rastering Preview allows defining the raster window size through drag&drop
interaction as well as comparing the current raster configuration to the original data.
Alternating consecutive raster backgrounds and original value point colors per raster
facilitates distinction. Empty raster intervals are highlighted by red segments. (b) In the
Result History View users can compare previous rastering results represented by small
multiple line charts. Selecting a quality indicator (in c) overlays the small multiples with a
heatmap of individual quality measures per raster. This view can be switched to the quality
overview which gives multivariate quality and uncertainty information on recent raster
configurations (see Figure 6.2). (c) The aggregated quality and uncertainty indicator view
features a sortable and customizable heatmap view representing the aggregated quality
and uncertainty measures for each raster configuration in the history view. Color intensity
corresponds to higher values (see Figure 6.2). (d) Overview information of rastering
results, including meta information, general uncertainty measures, and introduced quality
issues based on calculated DQ metrics. (e) Drag&Drop interactive selection of rastering
window length.
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Figure 6.2: Result quality overview (truncated): In this view the user can directly compare
quantified quality and uncertainty information of the raster result history for individual
rasters encoded in a colored heatmap. The context of the coloring corresponds to the
aggregated indicators in Figure 6.1c and helps to identify conspicuous entries.

metrics and uncertainty information allow the user to appropriately prioritize certain
characteristics and assess rastering results, e.g., minimizing the median spread but
consecutively disregarding the actual raster window size. These measures are shown in an
aggregation overview to allow comparison with previous configurations (see Figure 6.1c).

Aside from showing the global quality and uncertainty information, the Result History
View (see Figure 6.1b) shows a juxtaposition of previous rastering results as either small
multiple line charts (raster overview) showing the time series and single quality measures,
or as heat bands for displaying different quality and uncertainty measures at once (Quality
Overview, see Figure 6.2). The view is interactively browsable and helps users to visually
assess different rastering parametrizations. The Result History View furthermore allows
for comparison between the latest rastering results to determine an optimal configuration
where e.g., empty rasters are minimized without losing too much detail information due
to value aggregation. The view can be interactively browsed to facilitate the exploration
and validation of large time series.

To compare quality and uncertainty information, the quality overview (see Figure 6.2)
allows to analyze quality information for individual rasters. For example, if DQ metrics
indicate that ambiguities or missing values are less frequent in a particular raster
configuration, it could pose significant benefits over small decreases of accuracy. With
these analysis options at the user’s disposal, the awareness about the influence of rastering
transformations on the quality and uncertainty measures is increased. The approach
allows to compare alternative rastering configurations with respect to the critical aspects
outlined above and to the desired properties of the data for subsequent analysis tasks.
Figure 6.1d gives a comprehensive overview of different properties from the current raster
parametrization.

6.2 Quantifying Uncertainty from General Pre-Processing

In the previous section I illustrated one specific use case and VA design for addressing
the task of rastering time series. However, similar problems persist for various other
pre-processing algorithms. Specifically when pre-processing MVTS, a common processing
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pipeline would consist of multiple consecutive steps: (1) imputing missing values, (2)
performing linear interpolation, (3) smoothing the time series by applying a moving
average kernel, and (4) sampling the data to reduce the size. How these processes
influence uncertainty, but also how subsequent steps of downstream analysis are affected
needs to be externalized and communicated to the analyst in a generalizable manner. In
the Conceptualization Chapter (compare Chapter 3.2.2) I provided a formalization of
uncertainty from MVTS pre-processing routines. This allows inspection of individual
pre-processing routines. Consecutively executing pre-processing routines propagates
uncertainties throughout the processes, which makes it increasingly difficult to determine
the amount of uncertainty introduced at individual step. Applying the uncertainty quan-
tification concept allows for adequately monitoring uncertainty during pre-processing and
allow identifying individual steps that alter the value or temporal domain inappropriately.
I will show the application of the uncertainty quantification technique in a concrete case
study for pre-processing weather experiment data (compare Section 7.3)

6.2.1 Critical Aspects of Uncertainty Quantification for Visualization
Design

The Uncertainty Quantification Cube distinguished uncertainty on the timestamp level,
the data variable level, as well as uncertainty introduced at each step of a data pre-
processing pipeline. To allow for each of these levels of detail, uncertainty should be
quantified for the finest granularity level possible (i.e., for each timestamp, data variable,
and pre-processing step), as higher levels of aggregation are not sufficient for all analysis
tasks. If coarser uncertainty information is required to support effective analysis, this
fine-grained uncertainty can subsequently be aggregated. On the other hand, it is not
always possible to quantify uncertainty at the finest granularity level. Some pre-processing
methods transform the granularity of the MVTS, such as dimensionality reduction or
temporal sampling. The affected dimensions of the Quantification Cube need to be
accounted for in the employed quantification method, because heuristic comparison of
the pre-processing step’s input and output values might not be feasible.

While the visual representation of uncertainty information and the need to include
information about the uncertainty of the data that is visualized into VA environments
gains awareness, it is often assumed that the uncertainty information is given. Yet,
almost any data analysis is preceded by data pre-processing which also introduces
considerable uncertainty into the data. The Uncertainty Quantification Cube formalizes
the quantification and aggregation of uncertainty from MVTS pre-processing. Uncertainty
can be analyzed to wither evaluate the appropriateness of the pre-processing pipeline
as such, but also to propagate uncertainty into the final data representation to foster
informed reasoning. This formalization helps visualization designers to understand and
consider relevant aspects in this context. The upcoming section will describe how such
different sources of uncertainty can be integrated into different representations of MVTS,
and how different visualization techniques can affect the perception of uncertainty.
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CHAPTER 7
Case Studies

In this chapter, I demonstrate case studies and usage scenarios to exemplify their
application in real-world scenarios for the approaches presented in Chapters 4, 5, and 6.
Exhibiting of visualization designs and VA solutions in a common work practice allow
demonstrating and assessing their potential usefulness [IIC+13].

7.1 Case Study – Analyzing ISP Connectivity Data

This case study was published in [BGK+18].

In this case study, the MetricDoc environment is demonstrated in a real-world use case
that (1) elaborates the functionality of our environment, (2) describes possible insights
that would otherwise not be possible to obtain with existing approaches, and (3) shows
a concrete analysis scenario of a real-world sample that shows how errors in a dataset
can be discovered, and metrics can be customized based on the dataset at hand. By
employing immediate feedback as well as effective interaction and navigation techniques
analysts are able to iteratively develop DQ metrics and immediately incorporate them
in their analysis. With overview and detail visualizations, the analyst can evaluate
both new as well as updated datasets. As an example a DQ analyst explores a net-test
dataset, an open dataset from the Austrian Regulatory Authority for Broadcasting and
Telecommunications (RTR) to test Internet service quality (important data columns can
be found in Figures 4.1 and 4.2 in Section 4.2; for more information please be referred to
RTR’s NetTest Documentation1). The primary use of this dataset is to compare different
Internet Service Providers’ (ISP) service quality, logging information, like download and
upload speed (in kbit/s), latency (in ms), and signal strength (in dBm). Also, anonymous
meta information (device name, network information, unique identifiers, etc.) is collected,
in order to compare different ISPs. The following tasks should be completed: (1) checking

1https://www.netztest.at/en/OpenDataSpecification.html, accessed 02/11/2019
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if outdated client versions have been used in recent connectivity tests, (2) inspecting
implausible download and upload rates and ping latencies, and (3) developing a metric
that highlights entries where performance issues occur when multiple tests are performed
in a small time frame, to furthermore investigate if and how performance has an impact
on test results.

To validate if only the newest client versions are present (i.e., browser clients 0.3, iOS
devices 1.6, and Android devices 2.2.9) the validity metric of the versions column
is customized by adding checks for these constraints in the metric customization view
(see Figure 4.1c). Browsing the Metric Detail View (see Figure 4.1d) entries can be
identified in the data that validate negatively against the constraints. This reveals that
some devices are still operating outdated connectivity test versions (see Figure 4.1: The
highlighted row in (e) shows a test performed on a Galaxy S5 with an outdated client
version 2.2.5 instead of 2.2.9). After further browsing the dataset, three indications
can be distinguished: Tests by desktop devices were all using the current client. For
Apple devices, the analyst could not determine any consistent scenario when tests were
performed by outdated clients. For the Android client versions it can be traced that
mainly phones manufactured by Samsung (but not entirely) were still using outdated
versions. By adding a check for Android firmware and analyzing distribution versions, it
could be concluded that phones that have a firmware version older than 4.1 installed
are not executing the latest client version. To make the metric more expressive and
specifically determine how many iOS or Android devices were using outdated client
versions, the current metric is split up and a quality check is added to the validity metric
of the platform column. In the Quality Metrics Overview both metrics (validity metric of
platform and validity metric of client_version) are selected and merged them to create
an expressive metric across multiple columns.

For Task (2) the plausibility metric is leveraged for investigating implausible download
and upload rates, as well as latency. Extremely low values, as well as extraordinarily
high values might indicate DQ problems: unreasonably low download and upload rates
could be caused by client issues, rather than actual bad connectivity and low quality
Internet service. On the other hand, high download rates could be spurious entries that
boost ISPs’ ratings. The implausible values can be explored by simultaneously selecting
the plausibility metrics for the columns upload, download, and ping_ms. In Figure 7.1
entries that were identified implausible by all three metrics are highlighted. These three
plausibility metrics can be then merged into one custom metric. Logically concatenating
them detects entries which have been detected as implausible in all columns, which is
a strong indicator for erroneous entries. Showing only entries that violate the metric
through the Metric Detail View’s only show dirty entries button the dataset can be
explored focusing solely on potential erroneous entries. On the other hand, it is also
possible to highlight erroneous entries within the entirety of entries (preserving context
information), by toggling highlight dirty entries in the Metric Detail View. Some detected
entries implicitly indicate measurement errors, but naturally also positive outliers –
performance tests with significantly high results – it becomes apparent that not all
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Figure 7.1: Task (2): Extreme values can be observed, these might be subject to erroneous
generation skewing the ISP performance results.

entries detected by the plausibility metric directly correspond to outliers. The plausibility
metric’s parameters are adapted, switching from the default robust to standard outlier
detection, as well as from global to local outlier detection, which only includes the latest
entries for calculation. Hence, temporal server performance issues are not influencing
outlier detection, which benefits the detection of actual implausible values. That way the
plausibility metric gives contextual information only on significant changes in download
and upload size, indicating outliers as expected. Since all metrics are implemented as
functions, they can also be transferred to the OpenRefine wrangling tool to apply a filter
for the implausible performance test entries and remove such implausible values from the
dataset.

Lastly, for Task 3, performance drops are investigated on the assumption that they are
linked to multiple connectivity test runs performed in quick succession. A date interval
metric with columns from and to as parameters is added, highlighting entries lying within
10 seconds of the next, and checking them against plausibility metric defined for download,
upload, and latency in Task 2. It is suspected that the server could be overloaded with
connectivity test requests which leads to server bottleneck issues. A threshold check
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Figure 7.2: Filtered raw data view showing only data that have been detected as erroneous
in the currently selected metrics. Task (3): It can be observed that tests which had
a restricted number of threads (see column num_threads) predominantly had low
download and upload rates as well as high latency.

is added to determine if extremely low download and upload scores are present and is
validated against entries detected by the 10 second interval metric specified before (see
Figure 4.3). This leads to an unexpected insight: Not only entries with low download
and upload rates occur, but also some that reach high rates. The combined date interval
and plausibility metrics are able to highlight potential performance inconsistencies.

All customized metrics can be utilized for subsequent data exploration of newer connec-
tivity tests, since the dataset is updated in monthly intervals. The previously created
and customized metrics are readily available and can be re-computed within seconds for
new data. The updated data and metrics can immediately be explored for identifying
issues and validating changes. The newly calculated metrics can be directly compared
to the old ones to iteratively check if inconsistencies that have been discovered in old
datasets could be resolved in more up-to-date connectivity tests. Data columns can be
quickly sorted by their dirtiness to check dirty columns more effectively in the Quality
Metrics Overview.

7.2 Case Study – Analyzing Provenance from Wrangling
Operations

This case study was published in [BGM19].

I illustrate a use case that shows DQProv Explorer in a concrete wrangling scenario.
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Consider an analyst concerned with the task of wrangling a car dataset (see Appendix 12
for detail information): The analyst investigates the Issue Distribution View showing
the automatically computed data quality metrics (compare Figure 7.3 Analysis Step 1)
for three types of issues (invalid, incomplete, and implausible entries). It shows that 12
of the 33 total columns have issues that need to be taken care of. In the detail view
of the initial data state, we can see issue patterns which indicate that a few erroneous
rows are responsible for multiple detected issues (compare Figure 7.3 Analysis Step 1).
After identifying the dirty data rows in columns that contain the most errors – namely
the ‘weight’, ‘width’, ‘height’, ‘displacement’, and ‘miles per gallon’ (MPG) column –
and removing them in the data wrangling system, the analyst returns to the DQProv
Explorer to check how many issues still remain. The analyst finds that most issues have
been solved, but the ‘MPG’ column still retains implausible values (compare Figure 7.3
Analysis Step 2). Upon inspection the analyst determines that these are the result of
hybrid cars having better fuel efficiency and reasons that the metric shows false positives.

Upon further inspection of the raw data, the analyst notices that some entries represent
electric cars, that should not be removed from the dataset, because otherwise electric
cars would be omitted from the dataset. Hence the analyst reverts all operations and
restarts the wrangling process. Filtering for NA values in the fuel column brings up
multiple electric cars. The analyst proceeds to fill in missing cells (‘cylinders’ with 0,
‘displacement’ with 0, and ‘MPG’ with -1 because the column is not applicable and the
numeric value will not create issues in further analysis instead of NA) and removes five
data rows that exhibit missing values in multiple cells. For the remaining detected issues
in columns ‘width’, ‘height’, ‘weight’, and ‘displacement’, the analyst decides to impute
missing values with the column’s median value instead of removing the entries, like in the
first wrangling attempt. The analyst imputes all relevant columns’ missing values and
returns to DQProv Explorer for comparing the overall quality of the second wrangling
branch with the first one, where quality was improved mainly by removing data entries
(compare Figure 7.3 Analysis Step 3). Summary information on the provenance graph’s
nodes shows that the analyst could retain 293 rows in the second wrangling attempt
as opposed to 244 rows in the first wrangling attempt (compare Figure 7.3 Analysis
Step 4). The analyst continues with selecting two nodes for comparison and inspects the
differences in overall quality of the two end states of the branches. It reveals that s/he
could successfully remove the similar amounts of errors in the second attempt, but with
the benefit of retaining more information by not removing data entries.

7.2.1 Discussion

The examples employ quality metrics to detect issues of the types completeness, validity,
and plausibility. But our approach is extensible to different types of metrics: Using
performance metrics from machine learning algorithms and allowing users to explore the
results on different training data could lead to a better understanding of how influential
the datasets are on the final algorithmic outcome. Also, measuring introduced uncertainty
from wrangling processes could be quantified by quality metrics.
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Figure 7.3: Visual overview of the wrangling process on a car dataset. The four steps
show different stages of the analysis process and how the analyst can use the different
views and interactions to determine if the overall quality has improved.126



7.3. Usage Scenario – Quantifying Uncertainty from Pre-processing Weather Experiment Data

Figure 7.4: Analysis of a Moving Average pre-processing step. Multiple MVTS dimensions
are visualized with three different parameter settings (top), for each parameter uncertainty
is aggregated by dimensions and time to give three boxplots over time (bottom) [BHR+19].

7.3 Usage Scenario – Quantifying Uncertainty from
Pre-processing Weather Experiment Data

This usage scenario was published in [BBB+19].

The MVTS processed in the scenario contains weather experiment data measured in
Antarctica [RLKL+12] and used by our collaborator for downstream analysis. The two
primary analysis goals of our collaborator are to improve data quality and to make
the data more compact for a more efficient use. We exemplify the use of uncertainty
quantification in a visual analytics tool for pre-processing of MVTS presented by Bernard
et al. [BHR+19] to support analysis scenarios with uncertainty on different aggregation
levels (Please be referred to this work for a detailed description of the interactive VA
approach). Among others, it enables the assessment of (a) uncertainty introduced
by a pre-processing step (compare Figure 7.4), (b) uncertainty influencing individual
and multiple variables, and (c) uncertainty influenced by alternative pre-processing
parameter values (compare Figure 7.5). For all steps and parameters used in the following
examples, uncertainty is quantified as the normalized relative difference on a timestamp
and individual variable level, urel(z(t,v)).

First, we highlight how the collaborator applies a smoothing routine to remove noise
and reduce the effect of outliers, i.e., to improve data quality. Figure 7.4 shows how the
effect of the smoothing routine can be assessed for four dimensions and three different
parametrizations (gray, blue, orange lineplots). Using aggregation by variable allows
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Figure 7.5: Assessment of uncertainty introduced by a sampling routine for one dimension,
applied with two parameter values (purple, orange). The purple parametrization is too
coarse, introducing a considerable amount of uncertainty [BHR+19].

assessment of the average uncertainty across all selected dimensions, aggregation by
time allows analysis of the uncertainty introduced for cyclic patterns observed in the
first two dimensions. The orange boxplots on the bottom (compare Figure 7.4) indicate
a considerably higher uncertainty with this parametrization and removes the cyclic
patterns entirely. The collaborator proceeds by adding a sampling routine with two
sampling window sizes, aiming for a more compact MVTS. To grasp the effect of the
sampling routine at a fine-grained level, the collaborator inspects the sampling results
(compare Figure 7.5) of one individual dimension of the MVTS (top purple and orange
lineplots) and the corresponding uncertainties (bottom symmetric area charts), meaning
we don’t apply aggregation in the variable domain. It shows that the purple sampling
routine introduces excessive uncertainty, due to a too coarse sampling kernel. Finally,
the collaborator wants to validate the pipeline as a whole. Again, an adequate level
of aggregation is used to exhibit the uncertainty of several routines. The uncertainties
are aggregated over all variables, but shown for every pre-processing and timestamp
individually. That way, the collaborator can identify which routines introduced the
largest amount of uncertainty in comparison to the others.

7.3.1 Discussion

With the VA approach building upon the uncertainty quantification methodology, the
collaborator was able to conduct the uncertainty-aware pre-processing of MVTS. She
was able to make informed decisions in the creation as well as in the validation phase.
The insights that quantified uncertainty from pre-processing provides show the extent to
which MVTS were altered, if any signal was removed that was existing in the original
data, or vice versa, i.e., signals are artificially introduced. Being provided composite and
linked visualizations in an interactive environment lets the analyst assess these influences
on different levels of granularity and aggregation. These varying levels of aggregation can,
at first, give overview of the overall introduced level of uncertainty and signal intervals
of the data that require further detailed investigation (compare Figure 7.5). Without a
visual-interactive approach, selection adequate parameters would have required iterative
comparison of intermittent processing results.
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7.4 Lessons Learned

These case studies describe the usage of the developed VA solutions in real-world scenarios.
They serve as prime examples how they are intended for analysts to solve their problems
and in what way the implemented features facilitate common analysis. One drawback that
has to be addressed is the controlled nature of these case studies. Even with extensive
experience in their domain, analysts still face the challenge of getting familiar with the
developed VA solution. Thus, visualization and VA experts also must validate if the
employed visual encodings are appropriate for the tasks presented in these studies. It is
difficult to guarantee the applicability of a VA solution based solely on the presentation
of a concrete case study, so in the following chapters, I will also employ other evaluation
techniques that can be used to validate visualizations and VA solutions with more rigor.
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CHAPTER 8
Iterative Design Process and

Evaluation

The iterative design process was previously published in [BGK+18]. It was done in
close collaboration with Simone Kriglstein and Margit Pohl, from the Human Computer-
Interaction Group IGW at TU Wien.

Users’ acceptance of VA approaches often depends on how well the approach considers
users’ tasks and needs. Thus, the interest in strategies from HCI to provide an iterative
human-centered design process for VA approaches has increased over the last years
[FPS14, KEM06, KW13, KKUFW06, SMM12, TM04]. The development of MetricDoc
involved four iteration cycles (see Figure 8.1). This iterative process helped us to react
to users’ unexpected needs and expectations as well as to continually refine the design
of the visual exploration environment based on well-known evaluation methods from
HCI. The design and development of MetricDoc is based on the previously mentioned
requirements and design rationales (see Section 4.1 and Section 4.2). In the following, I
present the methods applied throughout the iterative design process and evaluation and
give a retrospective summary of the insights gained in each iteration. These iterative
design cycles were conducted and evaluated in collaboration with an HCI expert.

Methods

For the design and evaluation of our visual exploration environment, a combination of
the following methods was used for the different iteration cycles:

M1 Prototyping [Gal07, HP12, MB02]. Prototyping is a popular method in HCI
to collect feedback, to identify difficulties, and to refine the design already at a very early
stage without losing too much time or money. During the design process of MetricDoc
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varying fidelity levels of prototypes were prepared for heuristic evaluation and expert
review sessions, as well as for a focus group session.

M2 Heuristic Evaluation and Expert Review [FJ10, Nie94, TFB+14, ZSN+06].
To detect a large number of basic design problems and to generate ideas for improving
them, heuristic evaluation and expert reviews are advisable methods. For heuristic
evaluation sessions I applied the visualization-specific heuristics developed by Forsell
and Johansson [FJ10] and Tarrell et al. [TFB+14] which consider perception, cognition,
usability, and interaction aspects. Furthermore, I conducted expert review sessions
which were less formal than the heuristic evaluation sessions, focusing on the previously
mentioned requirements and design rationales. The combination of heuristic evaluation
and expert review sessions allowed us to get a holistic view in order to identify design
problems. It gave us the flexibility to concentrate on specific problems or to discuss
further design solutions.

M3 Focus Group [CB04, Kit95, MB02, PS96]. Focus groups are means to get a
quick understanding of users’ perception, experiences, expectations, impressions, and
opinions about a design from multiple points of view. Based on our previous work
(e.g., [KPS+14b]), I find that the dynamics and the open discussion in a group can
stimulate new ideas and foster conversation about interesting design-relevant issues which
would not happen in individual interviews. During the design process of MetricDoc, I
conducted a focus group session with experts in the field of DQ, VA, and HCI in order
to discuss and analyze the design from different points of view.

M4 MoSCoW Method [Bre09, CB94]. The heuristic evaluation, expert reviews,
and focus group session were very constructive and many interesting design ideas were
collected. To prioritize the findings I used the MoSCoW – Must have, Should have, Could
have, and Won’t have (but would like in future) – method. The benefit of the MoSCoW
method is that it uses human language for prioritizing and not a specific scale which helps
to quickly understand the concept of MoSCoW without prior knowledge or necessary
training. This helped us to prioritize important design changes and in what order these
changes should be implemented. It allowed us to pinpoint which features were missing
but essential for the usage of MetricDoc, and what was least-critical but may be included
in a future phase of the development.
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8.1. Iteration One – Conceptual Design

Figure 8.1: The different stages of the design process of MetricDoc.

8.1 Iteration One – Conceptual Design

In the first iteration cycle I concentrated on the creation of low-fidelity prototypes in
consideration of the defined requirements (see Section 4.1). The goal of the prototypes
was to explore different design ideas on how the DQ metrics for tabular datasets can
be visualized in order to (1) provide an overview about the overall quality of a dataset
and (2) offer detailed information about detected dirty entries and their position in the
dataset. The concepts mainly differed in their arrangement of information and in the
usage of different views (see Iteration 1 in Figure 8.1). For this purpose two different
low-fidelity design concepts were created that differed mainly in their arrangement of
information and in the usage of different views.

In an expert review session the different design concepts were analyzed and discussed by
two experts in the field of HCI and VA. The experts went through each design concept to
verify how well they support users in solving the tasks defined in Figure 4.1. Each of these
two design concepts had their strengths and weaknesses. In the next step, both concepts
were unified to have a foundation for the development of a high-fidelity prototype in the
next iteration cycle. For example, an original idea of one approach was that the users
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had to switch between the overview – showing the overall quality of a dataset – and the
Metric Detail View – showing the Error Distribution Overview with respect to specific
DQ metrics and self-defined checks. Thus, in this iteration I reached the following state:

• Features of the initial low-fidelity prototypes were carefully selected and consoli-
dated into a conceptual design to built the foundation of further high-fidelity
prototype design.

• Within this iteration cycle I had not yet prioritized metric customization as
an integral part of our functionality design.

8.2 Iteration Two – Design Evaluation

Based on the conceptual design developed in the first iteration cycle, a first interactive
prototype was developed. The focus of the first version of this prototype was to verify
the interplay of the multiple views in order to ensure a good overview of detected dirty
entries with respect to specific DQ metrics, the distribution of the detected dirty entries,
the corresponding tabular representation, detail information about the DQ metrics and
identified data types, and the creation of the quality checks. The prototype already
included basic functionality, e.g., to create custom quality checks, to evaluate a specific
quality metric, and to visualize the results of the checks.

In a two-round session, a heuristic evaluation and an expert review were conducted by
two experts in the field of HCI and VA. The session started with the expert review part,
which had the goal to analyze the funcionality of the prototype and the interplay of the
coordinated views. The prototype was furthermore reviewed in consideration of the tasks
defined in Section 4.1 and the design rationales in Section 4.2 respectively, just as in
the first iteration cycle. The second part of the session concentrated on the heuristic
evaluation. For this purpose both experts assessed the prototype against visualization-
specific heuristics [FJ10, TFB+14]. The output of the two-round session was twofold: On
the one hand, the expert review revealed different suggestions for refining the functionality
and the design of the Quality Metrics Overview, the Error Distribution Overview, and
the Metric Detail View (e.g., interaction conceptualization and view ratios). The Error
Distribution Overview visualization (see Section 4.3.3) in the tabular representation was
not considered in this early stage of the prototype. On the other hand, the heuristic
evaluation revealed a list of design and usability problems. For example, it revealed a
violation of D1: different colors were used for the same DQ metrics to show the number
of dirty entries and to visualize their distribution. In the next version of the prototype
(developed in the next iteration cycle), I assigned a unique color to each quality metric
to avoid confusion. This iteration led to the following outcomes:

• I conducted an expert evaluation according to established HCI heuristics, which
led to a number of suggestions how to improve the design.

• The Error Distribution Overview visualization was not yet considered in
the development of the environment.
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• These suggestions were prioritized with the help of the MoSCoW method to
identify which changes are essential and should thus be addressed in the next
iteration cycle.

• Concrete changes of the design were consolidated for the next iteration cycle.

8.3 Iteration Three – Focus Group Evaluation

The main focus in this iteration was to (1) resolve the discovered design and usability
problems and (2) implement the visualization of the distribution of dirty entries (with
respect to the corresponding DQ metrics) in combination with the tabular representation.
Since the developed prototype included sufficient basic functionality, a focus group
evaluation was conducted with the goal to learn more about target users’ opinions, their
satisfaction with the current design, and to identify further directions. In order to get
valuable discussions and ideas for the further development from multiple points of view,
three DQ experts, one HCI expert and one VA expert (both were familiar with data
profiling), and the developer of the prototype were invited. The focus group was held in
a room with a live presentation of the prototype on a beamer setup, its duration was
around two hours, and a skilled moderator, who was familiar with the domain, guided the
discussion. The focus group was aimed at covering tasks derived from our requirements
(Section 4.1):

(1) To check a specific column with the help of a specific quality metric and to identify
the resulting dirty entries in the tabular representation,

(2) To customize an additional check for a specific quality metric and to apply the
check to a specific column to identify which entities are affected,

(3) To compare two DQ metrics and to identify dirty entries with respect to one or
both DQ metrics.

Furthermore, a list of questions was prepared to find out participants’ opinion about the
design solutions.

The focus group session was free-flowing with interesting and valuable discussions about
the design and possible improvements of the prototype. The DQ experts highlighted that
the prototype was powerful for checking the different columns with respect to different
DQ metrics and for developing custom-made checks and customized metrics respectively.
Putting the Error Distribution Overview in a separate view was noted as helpful also
in combination with the tabular representation. The experts commented that it would
allow users to not only concentrate on the analysis of the distribution of dirty entries
but also see the distribution in context with the table. All participants agreed on the
benefits of retaining the Metric Detail View and Error Distribution Overview side-by-side
instead of combined isolated visualizations. Other suggestions on visual presentation and
design improvements included: avoiding the color green (see Figure 8.1 Iteration 2 & 3)
as it confuses users due to the color being associated with positive feedback (unanimous
among participants), adding a color legend, adding a heading to the Metric Detail View,
and providing zoom functionality in this view (VA expert). With growing understanding
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of the tool the DQ experts wished for more means to make changes to metrics, e.g.,
merging metrics, previewing customized metrics, saving and exporting metrics. Hence,
the focus group session led to the conclusion that providing a comprehensive metric
customization interface could enable DQ experts to develop metrics more efficiently.
After the focus group session, the developer and the moderator discussed their notes to
consolidate comments, improvements and design problems.

This list of suggestions was concluded and subsequently prioritized according to the
MoSCoW method:

• The core feature set of the MetricDoc environment was shifted from exclusively
exploring DQ issues with pre-defined metrics (with the ability to change param-
eters) to also developing metrics.

• Instead of implementing the suggested preview window for customizing metrics, I
chose to provide direct feedback to customizing metrics by validating them
syntactically during editing. Metric re-calculation is performed upon saving the
metric.

• DQ experts’ suggestions for more sophisticated validation methods were categorized
as Won’t have (they would be nice to have but could not be realized in the current
state of the prototype, due to development costs).

8.4 Iteration Four – Final Development and Inspection

The goal of this iteration was to gather feedback from DQ experts on the design of
the prototype (as in the second iteration, the revised prototype was analyzed by HCI
and VA experts). The HCI and VA experts verified how suggestions for improvement
brought up during the focus group discussion were realized. They checked if the noted
design issues were addressed adequately and if visualization-specific HCI heuristics
are satisfied [FJ10, TFB+14]. Furthermore, open questions which occurred during
development were settled. For example, they discussed design ideas how the metric
overview bar could be split into multiple rows, indicating not the overall quality but each
quality check separately. It was also discussed how linking and brushing can be improved
to emphasize the connection between Error Distribution Overview and the Metric Detail
View. The resulting list of improvements as well as of design and usability issues from
the heuristic evaluation and the expert review session were subsequently discussed and
prioritized. The following changes were applied to the final prototype:

• Visual clarity was criticized during the expert review, so the prototype was adapted
by adding separators between views and adequately aligning the environ-
ment components.

• It was hard to determine if the current data table was only showing filtered rows
(the data could be toggled to only show erroneous entries), this was improved by
adding a visual cue (grey background in the Metric Detail View) to indicate
non-dirty rows are hidden.
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• Linking and Brushing was improved by highlighting the currently hovered
row of the Metric Detail View in the raw data table. All dirty rows can
be highlighted on demand in the raw data table, to facilitate browsing and
exploration with context information about dirty entries.

• During the Focus Group evaluation I discovered that DQ experts – while appreci-
ating visual representations – also expected information on numeric values
of metrics. Thus, contextual information was added for metric customization:
number of checks, number of erroneous entries, and the actual quality metric
value. Additionally, notifications inform the user about how the last change
has influenced the metric (see Figure 4.1k).

8.5 Results

User preference is considered to be important to improve acceptance of MetricDoc among
DQ experts. Design and development was focused on providing diverse interaction and
exploration techniques to support users during data exploration based on DQ. Under this
premise our environment supports different workflows for metrics customization: Both the
creation of multiple simple metrics as well as the development of few highly sophisticated
metrics for validation are possible and similarly expressive for data exploration. Simple
metrics allow a more comprehensive overview and detailed information on syntactic issues.
Metrics that feature multiple complex quality checks allow for swift data profiling of
recurring datasets and determining semantic errors. I also note limitations in terms of the
complexity of metrics that can be developed in MetricDoc. Time-oriented DQ metrics
and checks are currently available with GREL scripts and probing functions. In order
for users to take advantage of the entire GREL function set and to properly integrate
these functions into sophisticated checks and metrics, a visual scripting engine would be
required.

Throughout development visual support for exploration and customization tasks has
been prioritized. Immediate visual feedback is provided when changes occur, e.g., due
to metric re-calculations. Both Metric Detail View and Error Distribution Overviews
were optimized to support exploration and comparison of errors: Mouseover tooltips give
contextual entry information, scrolling informs the user about the current position in
the dataset, and Error Distribution Overviews can be disabled separately, if the user
prefers a more classical exploration style without additional visual information. Moreover,
the heatmap columns supporting quality checks can be resized in width to facilitate
comparison of the results of two or more quality checks, e.g., to check for error correlations
between columns or between different metrics. There are potential scalability issues
with larger datasets (e.g., >100.000 rows), but they can be circumvented in the tool’s
current state: While the development and customization of metrics can be done on a
representative subset of the data, the resulting metrics can subsequently be used on
the full original dataset for quality assessment. Additionally, users can swiftly re-apply
existing metrics which have been created for older datasets to updated or new datasets –
with the same or similar structure. With structural changes in the data, the tool allows
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Iteration Cycles I II III IV
Environment Design
Visualization Design
Metrics Conceptualization
Functionality
Interaction Design

Iteration Cycles I II III IV
Metric Detail Views
Metric Overviews
Raw Data Table
Customization
Interaction
Brushing & Linking

Table 8.1: Distribution of development (orange) and design (cyan) efforts over the course
of the four iteration cycles and beyond. Color saturation corresponds to increased effort
of development or design during a specific iteration cycle. The proportionate efforts were
determined by qualitative content analysis [Sch12].

users to adapt metrics flexibly and assess the impact of the metrics on the dataset,
supported by the employed visual feedback and visualizations.

8.6 Discussion & Lessons Learned

An iterative design process with short cycles of development and testing had the benefit
that I was able to discuss and test different design ideas. Moreover, it allowed us to react
flexibly to design changes without losing time and investing unnecessary resources. Time
plays a very important role for companies and influences their decision to conduct an
iterative human-centered design process (compare [KPS+14b]). For evaluating MetricDoc
I intertwined iterative prototyping and development with heuristic evaluation, a focus
group, as well as expert review sessions. One benefit of this iterative prototyping and
development process is the possibility to quickly elaborate different design ideas and
dynamically evaluate them throughout the entire design process. This also allows shifting
design efforts to focus on specific issues which were discovered during evaluation and
reviewing. Table 8.1 shows a juxtaposition of changes in all development stages, indicating
shifts in development (see left table with orange highlighting) and design (see right table
with cyan highlighting) as a result of feedback that was gathered in the prior cycle.
This table was created retrospectively based on keywords gathered from notes, commits
(from git), and the MoSCoW prioritization list, that have been counted and categorized
to quantify development and design efforts throughout design. This method is named
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’Qualitative content analysis’ [Sch12]. It can be seen that after each of the design cycles
development shifted to different areas, which is likely due to the the implementation of
specific functionality (according to milestones specified for this iteration cycle), but it
can also be observed that areas that had already been targeted in earlier cycles were
re-visited, due to usability issues and suggestions by expert users.

In addition to the changes highlighted after each iteration cycle, I point out significant
revisions of the final prototype that were concluded from insights gathered during this
iterative design and evaluation process:

• To better support the comparison of dirty entries with respect to different DQ
metrics, the Quality Metrics Overview, Raw Data View, and Metric Detail View
were designed as multiple views, instead of the merged view that was initially
planned.

• DQ experts repeatedly stressed the importance of adding additional interaction
techniques to both metrics and exploration features (brushing and linking, high-
lighting, etc.) as well as contextual feedback during metric and quality checks
editing. This led to a shift towards better supporting metric customization, rather
than solely providing predefined metrics and checks. These predefined metrics and
checks now only serve as starting points for more complex data validation and
quality assessment indicators.

• I discovered scalability issues with the initial design of the Metric Detail View that
resulted in over-plotting when dealing with datasets of high row counts. During the
focus group this feature was overlooked due to the limited size of the demonstrated
test dataset.

Especially with early low-fidelity prototypes I could observe that the ideas were discussed
more critically and, therefore, it was possible to more easily identify interesting alternatives
as with high-fidelity prototypes. The course of the focus group including scenarios, tasks,
and questions was prepared before the session started. The structure was, however,
maintained to be flexible to allow for deviations from the predefined schedule. This
resulted in discussions about the prototype, unexpected suggestions for improvement,
and useful ideas for the further development (e.g., to integrate the possibility to show or
hide specific elements based on the user’s preference). From this relaxed atmosphere new
ideas sparked, also in terms of the environment’s potential usage in different application
fields: One expert noted that the prototype could be also valuable for developing a
powerful visual search environment in order to find specific data entries in tabular
datasets. This lead us to the conclusion that along with different application scenarios,
users expect different features that complement their own workflows, which results in
different functional requirements for MetricDoc.

8.6.1 Lessons Learned

Since I considered various perspectives from different domains of expertise during the
different iterations of MetricDoc I not only had the possibility to assess progress and
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get feedback from different points of view, but I could also identify differences in the
analysts’ background knowledge which resulted in diverse expectations regarding usage
and interactions. It confirmed our emphasis on offering different interaction techniques
to users based on the usage of the environment. However, I also encountered difficulties
regarding further evaluation. The variety of approaches of assessing DQ implies that
there are multiple valid practices towards determining quality issues, but also that experts
of varying domains are satisfied with different levels and types of dirtiness in the data.
Hence, designing a usage scenario that covers all functions of the environment, without
forcing users to follow a particular workflow, is challenging. The development of our
environment was focused on gaining insight into the state of a dataset’s quality. This also
poses a difficulty for evaluation, since the level of insights may vary greatly depending on
user behavior and how adequately the usage scenario matches a user’s personal approach
of determining DQ. To construct a comprehensive usage scenario that covers different
kinds of insights, usage, and customization of DQ metrics, as well as utilizing multiple
views for exploration, and evaluating them towards other data profiling and quality
metric tools, is out of scope of this paper and will be the subject of future work.
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CHAPTER 9
Qualitative User Experience

Evaluation

After finishing prototype implementation of DQProv Explorer, I conducted a user
experience study to determine if it enables users to analyzing provenance generated
from data wrangling workflows. I recruited 6 participants (4 male, 2 female; 1 Master
Student, 4 Doctoral Students, and 1 Post-Doctoral Researcher in Computer Science) with
varying degrees of experience in both data quality assessment and visual data analysis.
The self-assessed expertise (from (1) = novice to (5) = expert) of users ranged from
intermediate (3) to expert (5) in data wrangling. Expertise in visual data analysis ranged
from novice (1) to expert (5).

The goal of the study was to answer if the tasks defined in Section 5.3 are sufficiently sup-
ported by our prototype. I specifically formulated the questions: (1) 1. Can participants
determine if quality has changed, and can they decide if the data is usable for subsequent
analysis? 2. Are the participants able to compare branches to assess the difference in
operations applied to the data, and decide which of the branches poses the most useful
dataset for their analysis? 3. Does the prototype allow the users to derive which quality
issues were inherent in the dataset and how they were resolved?

9.1 Procedure

Due to limited time with participants, I gave an introduction into the visual encodings
and interaction features of the prototype. The investigator assigned them to complete
prepared tasks. The participants were encouraged to think aloud while conducting the
tasks. Important actions and comments during the tasks and participant feedback after
the session were noted. The sessions took between 75 and 90 minutes and were structured
as follows:
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Introduction Session (10-15 Minutes) If necessary, the participants received an
introduction into data wrangling and quality metrics to clarify the scope of analysis,
specifically because participants had different expectations of a usable dataset. The
investigator then exhibited the general functionality and visual encodings of the prototype.

Task Assignment (30-40 Minutes) Participants were instructed to conduct tasks
that were oriented around our requirements analysis (compare Section 5.3). Questions
were prepared for each task to guide iterative analysis. If the participant did not provide
enough information, the investigator would ask intermittent questions and to suggest
possible alternatives to exploring the provenance data. Specifically, questions were
intermittently asked to determine what type of provenance participants relied on when
conducting analysis.

Interview (10-20 Minutes) In the interview, the investigator asked for feedback
about their experiences with the prototype. The participant should reflect on the
usability and usefulness of DQProv Explorer. This was done to encourage participants
to express difficulties they encountered during analysis and to collect suggestions how
these could be resolved. The feedback was collected in an unstructured way, participants
could express their comments and suggestions in any way they preferred.

Questions During each separate task the investigator asked participants a series of
questions to stimulate iterative exploration and cover the tasks laid out in Section 5.3:

Tact & Tpres - Look at the first state of the dataset and identify the column with the
most issues (Column ‘weight’). Now look at the end node of one transformation branch
and determine how quality evolved for this column. You can see multiple transformation
branches: How different are the two branch end nodes in terms of quality, do similar
issues remain? Can you find out what transformation/operation impacted the quality of
this column the most?

Tmeta - If only the dataset of the second branch was available for analysis, what columns
would you use for analysis. If you look at the three different branches and compare remain-
ing quality issues, which one would you choose for analysis, and for what type of analysis?
(The ‘weight’ column was affected differently in different branches, compare Figure 7.2
Analysis Step 4)

Trec & Trep - How did a sequence of actions influence the data? Going back to the Weight
column, which of the branches would you use for analysis?

Tcoll - Can you determine the user’s objective in the sequence of transformations shown
in the branch at the bottom of the provenance graph?
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9.2 Results

I summarize the results and provide an overview of feedback that was given by multiple
participants (a detailed breakdown of the user study and summarized feedback from
participants on the different views can be found in Appendix 12). The questions were
solved by all participants, with the exception of one participant not being able to solve
questions for Tcoll (the participant had the lowest self-assessed experience with data
wrangling). In summary, two different methodologies could be observed for assessing
quality issues, based on the participants’ patterns of exploration. Two participants
iteratively navigated the provenance graph in an detail-first, overview later approach
(mainly exploring the Provenance Graph View, using the Quality Flow View for quality
inspection). The remaining four participants pursued an overview-first, details on demand
methodology (mainly using the Quality Flow View for exploration, and the Provenance
Graph View was used only for selecting different branches, and for on-demand context
information).

Furthermore, I could find implications that the trust in the employed data quality metrics
and the trust towards the wrangled dataset depends on the participant’s expertise in data
wrangling. While two participants simply accepted the metrics as being accurate and
subsequently found the Quality Flow View to be sufficient for determining the validity of
the dataset, two participants would refuse to make a final statement on the data’s quality
without exploring the raw data. Specifically participants with higher data wrangling
experience demanded for more brushing and linking features, which to us indicated
that familiarity with these tools makes users more confident to use complex interaction
techniques. Two users suggested to add filtering techniques and toggling techniques to
enable more focused exploration on particular types of changes.

Feedback from participants on the different views was mixed. While generally the Quality
Flow View and the Provenance Graph View have been well received, the usefulness of
the Issue Distribution View was questioned by the majority of participants. This view
extended the concept of a schematic error view presented in Section 4.3.2, which was
adapted to show the distribution of errors across all columns. Participants showed no
interest in this view. Two participants also noted that auditing the data wrangling process
of someone else by exploring the provenance graph increased their confidence in the
data. This implies the usefulness of DQProv Explorer for hand-off tasks in collaborative
settings.

9.3 Discussion & Lessons Learned

The study results show that DQProv Explorer was well received, even though some
features were not deemed as necessary by participants. Generalization of the feedback is
questionable due to the small number of participants (6), and inappropriate participant
expertise. This tool is unique in its ability to explore workflow and data provenance from
data wrangling, hence it was not possible to use comparable tools in the evaluation. In
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particular, the Quality Flow and Provenance Graph Views feature custom visualizations
to display data provenance specific to wrangling, which is not possible to appropriately
encode in general workflow provenance visualizations.

I can neither confirm nor deny the proposition that leveraging data quality metrics
aids the user in understanding the quality of the dataset. However, one interesting
observation from the user study was participants’ different perception of quality: While
some considered each entry of a dataset as valuable, preferring imputation of values
over removal of entries, others solely depended on the quality metrics to signal quality
issues and considered the absence of issues as sufficient. The participants’ comments
during task execution imply that DQProv Explorer supports users in making sense of
the wrangling history and in estimating the usefulness of the resulting data, based on
the user’s subjective perception of quality. Particularly when participants were asked
questions during executing the understanding task Tcoll. However, this means that data
quality metrics must be carefully developed and adequately used, because it could also
lead to perceiving low/high quality mistakenly.

9.3.1 Lessons Learned

Evaluating the DQProv Explorer in a qualitative user study could validate whether a
provenance-driven approach would appropriately communicate qualitative aspects of the
dataset to the users’ content. The interview-like character of the evaluation sessions
allowed providing feedback for the eventuality that participants ran into dead ends during
analysis. Only a brief textual introduction to the complex environment could not have
permitted participants to perform analysis without extensive practice. The study design
effort could be kept to a minimum: A use case was defined that covered all features of
the prototype, with the ability to lead the discussion to explore different features and
answer all defined questions. That way, the evaluation sessions could be used to evaluate
both analysis to simply convey general DQ to participants unexperienced with DQ
assessment, but also receive detailed feedback from participants that had extensive data
wrangling and cleansing experience. Participants’ behavior lead to desirable features was
not anticipated during design. In a controlled study, participants would have difficulty to
express their desires because pre-fabricated examples only evaluate existing features.
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CHAPTER 10
Visualizing Uncertainty of

Segmented Time Series

MVTS often are complex and high-dimensional, which renders inspection and comparison
of individual variables difficult. Analysts apply pre-processing techniques to reduce
dimensionality and segment the data in order to discover notable patterns that could
otherwise not be found without automated segmentation. These techniques take advantage
of inherent temporal characteristics to cope with the complexity of the data. Bernard
et al. [BDB+16, BBB+18, BHR+19] presented numerous approaches that employ pre-
processing and segmentation pipelines and workflows to facilitate the analysis of time
series in various domains. I stress the importance of uncertainty-aware processing
(compare Chapter 6). It is imperative to integrate uncertainty quantification techniques
into segmentation pipeline and result analysis. Chapter 6 showed a conceptualization
of uncertainty quantification techniques for pre-processing algorithms. Furthermore,
segmentation and labeling algorithms associate probability values to their results, which
allows designers to leverage these probabilities as uncertainty indicators in the result
visualization [BBB+18]. Bernard et al. [BBB+18] provide a segmentation pipeline that
allows running the workflow for multiple parameter settings, combining pre-processing and
segmenting algorithms to find an optimal segmentation result and determine influencing
parameters for such a successful segmentation. These methodologies yield different types
of uncertainties in MVTS that can subsequently be leveraged in subsequent visualization
and VA solutions.

Bögl et al. [BBGM18] characterized various types of uncertainty inevitably introduced
or generated over an entire processing, segmenting, and labeling pipeline. They distin-
guish value uncertainty, result uncertainty, aggregation uncertainty, and cause & effect
uncertainty. To assess the influence of these different sources of uncertainty in MVTS,
it is necessary to provide uncertainty-aware visualizations during exploration of the
results. Bernard et al. [BBB+18] presented initial designs for showing value and result

145



10. Visualizing Uncertainty of Segmented Time Series

Figure 10.1: Schematic illustration of the VA approach for analyzing activity recognition
algorithms by Röhlig et al. [RLK+15]. The central overview shows a large set of segmen-
tation results encoded as a pixel-based visualization showing one pixel per segmentation
result over time. The color encodes the assigned label for every timestamp. On the
left hand side, employed parameter values are encoded as color coded stripes. The top
view shows the ground truth of the current MVTS. In the bottom view, the currently
selected segmentation result is shown with the label probabilities for every timestamp
and a heatband denoting the probability of the dominating label.

uncertainties in different view modes. However, it is unclear if this design is scalable for
exploring a large number of results, for parameter selection and uncertainty assessment.
In the upcoming section I will discuss the requirements and design aspects a scalable
designs and evaluate it in a user study testing the effectiveness of different uncertainty
visualization techniques.

10.1 Design Goals

One challenge for analyzing VA is visualizing large sets of time series for segmenting and
labeling tasks. Röhlig et al. [RLK+15] defined appropriate visual encodings for exploring
large segmentation result sets (compare Figure 10.1), and Bernard et al. [BDB+16] identi-
fied obstacles for designing visualizations and VA solutions. Keeping these considerations
in mind, I define the following design goals that ensure the uncertainty-aware visualization
design does not interfere with current encodings but rather complements it.

D1 Faithfully represent label encodings for segments. The visual encodings of
uncertainty should not interfere with colors of labels.

D2 De-/Emphasize segment or interval uncertainty (compare [OJS+11]). De-
pending on analysts’ goal, the visual encodings of the visualized segments should highlight
or de-emphasize regions of high uncertainty.
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Figure 10.2: Example visualization showing three segmentation results computed by the
same segmentation pipeline, with different parameters: The colors indicate differently
labeled segments, with each color corresponding to a certain label. The highlighted areas
(A, B, and C) show a very different segmentations of the same time interval. But how
certain are these different segmentations?

D3 Support uncertainties with varying dimensionality and scale. The dimen-
sionality of uncertainty depends on different factors (compare Section 3.2.2), hence, the
visualization techniques should accurately represent uncertainty at any aggregation level.

10.2 Visualization Design

Following the visual design from existing approaches [RLK+15, BDB+16], and based
on numerous studies of uncertainty visualization for time series [GBFM16, WBFL17,
FWM+18] I designed visualization designs for encoding uncertainty in a label-based
segmentation result visualization. These visualization designs satisfy design goals D1–D3,
while still supporting integration into the aforementioned visual exploration interface for
segmenting and labeling. Multiple types of uncertainty are inherent to the data or are
introduced at various steps in the pipeline. As a result, one single view is insufficient for
assessing the influence of uncertainty on the segmentation result or other uncertainties,
respectively. I distinguish between (1) the Overview and (2) the Detail View. The
Overview is designed to show the entire set of segmentation results and associated
uncertainties, allowing the analyst to explore patterns and local phenomena. On demand,
the Detail View shows multiple types of uncertainty juxtaposed, to allow comparison
and detailed inspection. One important goal of this study is to determine the most
appropriate visual encodings for value, aggregation and result uncertainty [BBGM18].
This is done by conducting a comparison task: The overall aim of our visualization
design is to make a qualitative comparison of the inherent uncertainties between results,
individual segments, or sequences of segments.

Comparison Task. The task for the analyst is to determine areas that exhibit either
high or low uncertainty. For example, Figure 10.2 shows three segmentation results.
The segments in the red frames (A, B, and C) show different results for the same time
interval, however each result segmented this interval differently. Without showing the
uncertainty associated with these segments, the analyst can not assess the trustworthiness
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of the results. Consequently, the visualization design should allow direct comparison to
determine the most certain/uncertain area.

Visualizing Probability-based Uncertainty. The design guidelines to develop al-
ternative overview visualization designs were obtained from the results presented by
Gschwandtner et al. [GBFM16]: The segmented time series’ result uncertainty is caused
by the classifier detecting a different segment to be more likely, causing a transitions
between segments. However, the end of one segment marks the start of the next (except
for the last segmented interval of a time series), which differs from a single temporal
interval being displayed. Due to the potentially large number of time series shown in
the Overview, a pixel-based visualization technique is required. Reviewing the designs
evaluated in [GBFM16], I found the gradient plot and the disambiguation plot to be
appropriate for displaying decreasing and increasing probabilities simultaneously, as
well as being used in a pixel-based visualization. In the Detail View, the remaining
visualization techniques (i.e., error bars, centered error bars, violin plots, and accumulated
probability plots) could be employed, but changing the visual encoding in different views
is not recommended and thus was avoided.

To provide points of reference to compare our visualization design against, we used two
additional visualization techniques for encoding uncertainty: an heatmap that encodes
uncertainty as grey values, omitting label colors, and a composite visualization showing
segments in the top view and result uncertainty as a line plot (compare Figure 10.3).

Composite view and Heatmap designs are expected to allow users to accurately determine
uncertainty values: The Composite view encodes uncertainty as location information in
line charts, which permits the most appropriate encoding of quantitative values [Mac86].
The Heatmap view encodes uncertainty as grey values, omitting label information, so
there is no additional comparison of colors to be made by the user. For the Gradient
Uncertainty plot I expect similar performance to the Heatmap view, but adding color
encoding for labels could lead to falsely perceived uncertainty. To mitigate for problems to
distinguish between two similarly looking color and saturation combinations, the view can
be interactively toggled between showing the Gradient Uncertainty plot, or a plot showing
only the segmentation result. Using a Threshold Uncertainty plot reduces information to
uncertainty of an interval being below or above a specified level of uncertainty. To make
it possible to analyze different thresholds of uncertainty, this view features a slider that
changes the disambiguation threshold.

Visualizing Distribution-based Uncertainty. Value uncertainty is quantified either
directly from the input data or is externalized from the employed pre-processing pipeline,
and usually stored alongside the time series. While some algorithms and procedures
may alter individual timestamps (e.g., outlier removal or imputation), others can also
affect the entire time series (e.g., sampling), it could be more appropriately treated, like
an additional dimension of the time series (compare Section 3.1). This difference in
dimensions and variables requires encoding such uncertainty in a separate view. As a
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(a) Composite segmentation result label and uncertainty lineplot view.

(b) Heatmap view only encoding uncertainty.

(c) Gradient plot showing segmentation result labels and encoding uncertainty as saturation.

(d) Disambiguation plot showing segmentation result labels only if uncertainty is below a specified
threshold (current threshold: 42% result uncertainty).

Figure 10.3: Visualization Designs for showing uncertainty in segmentation results.

(a) Area Uncertainty plot encoding value uncertainty.

(b) Uncertainty Heatmap view encoding value uncertainty.

Figure 10.4: Visualization Designs for showing value uncertainty.

result, the difference in uncertainty type should also be indicated by using a different
visual encoding. To encode distribution-based uncertainty we use Area Uncertainty plot
and Uncertainty Heatmap designs (compare Figure 10.4).

10.3 Study Design

The following subsections will give insights into how the visualization designs were gener-
ated, which hypotheses were formulated, and what study design was chosen, including a
rundown of the questions in the study.
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10.3.1 Data

The data used in the study has been generated using the segmentation pipeline from
Bernard et al. [BDB+16]. The employed pipeline consisted of a sequence of four pre-
processing steps, i.e., (1) missing value removal, (2) applying a moving average, (3) outlier
treatment, and (4) data sampling,followed by a k-means-based segmentation and similarity-
based labeling. The result uncertainties employed in the probability-based uncertainty
designs were obtained from the k-means-based segmentation. The value uncertainties
used for the distribution-based uncertainty designs were derived from the pre-processing
steps of the segmentation pipeline. The input dataset that generated the segmented
time series is a 120 seconds time series from the human MoCap database [MRC+07]. To
create different results based on different parameter settings, I varied moving average
window and sampling sizes to smooth out the data and remove notable patterns.

10.3.2 Hypotheses

Based on preceding findings, previous designs of segmented time series, and the defined
design goals, I formulate the following hypotheses for evaluating uncertainty visualization
designs for MVTS segmentation results:

H0 The Gradient Uncertainty plot does not perform worse than the Composite visu-
alization showing segmentation results as colored bars and probability-based uncertainty
as line plots.

H1 The Gradient Uncertainty plot does not perform worse than a Heatmap view
showing only probability-based uncertainty for comparing assessing uncertainties of
multiple segmented time series.

H2 The Gradient Uncertainty plot is more effective for assessing probability-based
uncertainties of multiple segmented time series than a Threshold Uncertainty plot, H2a
especially if vertical space is limited.

H3 The Uncertainty Heatmap view does not perform worse than the Area Uncer-
tainty plot showing distribution-based uncertainty of a time series.

10.3.3 Participants and Questionnaire

In total, the study consisted of 111 participants (30 female), with the participants being
undergraduate students, participating in a course in information design and visualization
which implies basic knowledge about visual representations. The user study was provided
in an online survey tool, SurveyJS [O1̈9], providing interactive visualizations for toggling
the Gradient Uncertainty plot and adjusting threshold uncertainty for the Uncertainty
Threshold plot. The study was designed as a within-subject study, meaning every
participant had to answer all questions for each visualization design. To eliminate
learning effects, all participants were distributed into groups, with each group receiving
differently permuted sequences of questions (e.g., group A: [design a, design b, design
c, design d], group B: [design d, design a, design b, design c], etc.). The participants
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Figure 10.5: Screenshot of a survey question evaluating the Gradient Uncertainty plot
(Frame B has been cropped for improved readability).

Figure 10.6: Screenshot of a survey question evaluating the Area Uncertainty plot (Frame
B has been cropped for improved readability).

received an overall introduction at the start of the study and another introduction to
each of the visualization designs, which described how to interpret the visualization.

Task 1 - Comparison of Probability-based Uncertainty. The first six questions
were designed to evaluate the Comparison task for probability-based uncertainty, which
resulted in a total of 666 answers for each of the four visualization designs. Each of the
questions showed one or more segmentation results with marked areas (compare Fig-
ure 10.5 – Questions 1 and 2 contained 2 marked areas, Questions 3 to 6 contained 3
marked areas), where the participant had to determine the most certain area (Questions
1 to 5), or sort from highest to lowest uncertainty (Question 6).

Task 2 - Comparison of Distribution-based Uncertainty. Another three ques-
tions were created to evaluated the Comparison task for distribution-based uncertainty,
resulting in 333 answers for each of the two visualization designs. Each of the questions
showed one or more segmentation results with marked areas (compare Figure 10.6 – 2
marked areas), where the participant had to determine the area with the least overall
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Figure 10.7: Participants’ error rates for each question.

uncertainty.

10.4 Results

From the 111 participants of the study, we received 111 sequences of results, missing
answers (14) were rated as wrong, instead of omitting the participant from the test
(complete block design requires equal answers for each group). For each design the
tested variables were participants’ error (right or wrong answer) and completion times
(in seconds).

10.4.1 Statistical Tests

After initial data pre-processing (converting from json to csv format, and determining
correctness of the answers), the results were loaded into the R statistical computing
environment [R C19]. To test for significance (compare Section 10.3.2, H2), we computed
a Friedman rank sum test [CI81] for the test error and completion times in an unreplicated
complete block design, i.e., the design has two variables, one group variable, and one
block variable: The groups were the various visualization designs and the block was each
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Figure 10.8: Participants’ completion times for each question.

153



10. Visualizing Uncertainty of Segmented Time Series

participant of the study. The significance was tested for Questions 1-6 combined, to test
for significance of H2, and for Questions 4-5 combined, to test for significance of H2a,
i.e., when vertical space is limited. Since the Friedman test result was significant for both
the error and the completion times, we ran a post-hoc Nemenyi all-pairs comparisons
test [Nem63] to determine design pairs that would be significantly different. The post-hoc
Nemenyi test showed that no pairs were significantly different for error, but all completion
time results were significantly different for questions 1-6, as well as questions 4-5 (compare
Figure 10.8.

To test the remaining hypotheses (compare Section 10.3.2, H0, H1, and H3), we tested
the results for equivalence and non-inferiority [WN11, Wel10], with a significance level
α = 0.05, and type II error probability β = 0.05. To achieve results across questions, the
tests were run on the combined results (Questions 1-6 for H0, H1, and Questions 7-9 for
H3), testing for non-inferiority pairs: H0 – Gradient Uncertainty plot and Composite
view, H1 – Gradient Uncertainty plot and Uncertainty Heatmap, and H3 – Uncertainty
Heatmap and Area Uncertainty plot. The non-inferiority tests confirmed H0, H1, and
H3, and, furthermore, showed that the Gradient Uncertainty plot error rate is lower
compared to the Composite view (H0), and that the Uncertainty Heatmap and Area
Uncertainty plot error rates are equivalent.

Questions Test Variable Friedman p-value
1-6 Error 0.00023
1-6 Completion Time <0.0001
4-5 Error 0.1705
4-5 Completion Time <0.0001

Table 10.1: Friedman Test results for comparison of probability-based uncertainty.

10.4.2 Problems

After extensively exploring and evaluating the results, I found some problems and notable
observations about both the results as well as the overall study and question design.

Inconsistent Question Difficulty. Two questions proved to be more difficult to solve
for participants, questions 1 and 5. The error rates were different from the rest and
increased the overall error rate for all questions. But surprisingly, these two questions
showed that for difficult cases, the Gradient Uncertainty plot seems to perform worse.
Compared to similar questions, error rates and completion times were higher.

• question 1: µerror = 27.70%, t̃completion = 29s, question 2: µerror = 10.36%,
t̃completion = 12s
• question 4: µerror = 23.87%, t̃completion = 18s, question 5: µerror = 67.79%,
t̃completion = 23s
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Questions 1-6 – Error (p-values)
Gradient Heatmap Composite

Heatmap 0.224
Composite 0.082 0.966
Threshold 0.974 0.446 0.206
Questions 1-6 – Completion Time (p-values)

Gradient Heatmap Composite
Heatmap <0.0001

Composite 0.04 <0.0001
Threshold <0.0001 <0.0001 <0.0001
Questions 4-5 – Completion Time (p-values)

Gradient Heatmap Composite
Heatmap <0.0001

Composite 0.0085 <0.0001
Threshold <0.0001 <0.0001 0.0035

Table 10.2: Post-hoc Nemenyi all pairs comparison test.

Due to the low number of overall questions, it could be that the increased error rates
of these two questions skewed the test results for all questions. For question 5, the
Uncertainty Threshold plot outperformed any other design (p-value – Threshold-Gradient:
0.007, Threshold-Heatmap: 0.001, Threshold-Composite: 0.1001). This shows that
specifically when uncertainty values are extremely similar, analysts could benefit using
an interactive Uncertainty Threshold plot.

Insufficient Testing of Hypothesis H2a. I could not determine a significant differ-
ence in error rates w.r.t. H2a, testing if the Uncertainty Gradient plot performs better
with limited vertical space available for visualizing segmentation results. In combination
with the problem of question difficulties, only two questions were included in the study
design that would evaluate this hypothesis. Question 4 showed significantly better error
rate for the Gradient Uncertainty plot. But in question 5 the Threshold Uncertainty plot
showed better results, which I attribute to the difficulty of the question, rather than the
issue of limited vertical space (compare Figure 10.9). With the evaluated questions, this
study cannot answer H2a because more diverse evaluation is necessary.

However, it had also the overall worst completion times because participants had to
adjust threshold values in order to solve the questions.

10.4.3 Outcome

H0 – Comparing Gradient Uncertainty vs. Composite visualization. Hypoth-
esis 0 can be confirmed. The non-equivalence test even showed superiority of the
Gradient Uncertainty plot for error rate (p-value lower bound: 0.340, p-value upper
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bound: <0.001), and equality for completion time (p-value lower bound: <0.001, p-value
upper bound: <0.001). The superiority of the Gradient Uncertainty plot is surprising,
because the Composite view encodes uncertainty in location information, which suppos-
edly outperforms the transparency encoding for quantitative data (according to Card et
al. [CMS99]).

H1 – Comparing Gradient Uncertainty vs. Uncertainty Heatmap. Hypothesis
1 can be confirmed, the Gradient Uncertainty plot is superior over the Uncertainty
Heatmap for error rate (p-value lower bound: 0.151, p-value upper bound: <0.001), how-
ever the Uncertainty Heatmapis superior to the Gradient uncertainty plot for completion
time (p-value lower bound: <0.001, p-value upper bound: 0.061). Again, the superiority
of the Gradient Uncertainty plot is surprising, because uncertainty is encoded in the same
visual channel, but the Uncertainty Heatmapdoes not encode additional label information
as color, which should allow participants to assess uncertainty more accurately.

H2 – Gradient vs. Threshold Uncertainty performance. Hypothesis 2 can not
be confirmed for error rates, there is no significant difference between both designs,
according to the Post-hoc Nemenyi test (p=0.974). However, it can be confirmed for
completion time (p<0.0001), but this is due to the fact that completion times with
the Threshold Uncertainty plot were the highest overall.

H2a – Limited vertical space. In use cases with limited vertical space, the hypothesis
can neither be confirmed nor denied. As discussed in the Problems Section, more
evaluation is required to validate this hypothesis. In detail, question 4 revealed a
significant difference: Gradient Uncertaintyplot error rates were better than for the
Threshold Uncertainty plot, which indicates that this could be confirmed in future
studies.

H3 – Distribution-based Uncertainty Heatmapperformance. Hypothesis 3 can
be confirmed. The non-equivalence evaluation tested equivalence of both visualization
designs for both error rate (p-value lower bound: <0.001, p-value upper bound: <0.001)
and completion times (p-value lower bound: <0.001, p-value upper bound: <0.001).

10.5 Discussion & Lessons Learned

I will now discuss the hypothesis outcomes and other implications that I discovered
from exploring the study results. In general, the study design evaluated performance
of uncertainty comparison using Gradient and Threshold Uncertainty plots. I found
the following results:(i) The hypotheses prove that segmentation results enhanced with
probability-based uncertainty do not perform worse than designs only encoding uncer-
tainty, which can be confirmed (H0, H1). (ii) However, the results did not confirm that
views with limited vertical space or showing a large number of segmentation results do
not benefit from using the Gradient Uncertainty plots (H2, H2a). (iii) There are no
disadvantages using Uncertainty Heatmap for visualizing distribution-based uncertainty
over Area Uncertainty plots (H3).
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Figure 10.9: Participants’ error rates, aggregated for questions 4 and 5 (limited vertical
space available) and questions 3, 4, 5, and 6 (vertical comparison examples).

H0 showed that the Gradient Uncertainty plot is superior to the Composite visualization,
which implies that uncertainty comparison in segmentation results is more difficult using
the Composite visualization design. One reason for this is the task of comparing uncer-
tainties distributed vertically. Questions 3 to 6 contained examples where comparison had
to be made across segmentation results, so participants had to perform comparison across
vertical space (compare Figure 10.9). Tests for these questions showed significant differ-
ences in error rates (Gradient Uncertainty- Uncertainty Heatmap, Gradient Uncertainty-
Composite, Threshold Uncertainty- Uncertainty Heatmap, Threshold Uncertainty- Com-
posite), with the Gradient Uncertaintyand Threshold Uncertaintyplots outperforming the
remaining two designs. This implies that when showing a large number of segmentation
results, vertical comparison must also be done across results, and analysts would not
benefit from views showing only uncertainty (e.g., Uncertainty Heatmap or Composite
visualization). Task completion times are highest for Threshold Uncertainty plots, so
for vertical comparison of uncertainties in large sets of segmentation results, Gradient
Uncertainty plots are recommended.

Distribution-based uncertainty can vary in dimensionality and aggregation, with the
finding that Area Uncertainty and Uncertainty Heatmap can be used interchangeably.
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This extends designers’ possibilities to more appropriately visualize this type of uncertainty.
For example, Area Uncertainty plots can be used for stacking uncertainties if the overall
level of uncertainty should be analyzed. Employing distribution-based uncertainty designs
in detail views allows for comparison between

The hypotheses I tested showed that composite visualizations using both disambiguation
and gradient uncertainty encodings work equally well as – and in some cases better than –
simple visualizations only encoding uncertainty. Designers can integrate these designs into
interactive views to allow analysts perform uncertainty-aware analysis and exploration
without increasing error rate and only slightly increasing completion time. However,
the study results also showed that for difficult scenarios with barely distinguishable
uncertainties, participants had problems to determine the areas with the lowest/highest
uncertainty, with the exception for the Threshold Uncertainty design. As a result, it is
recommendable to employ different visualization designs that can be toggled, to support
swift exploration using Gradient Uncertainty plots, and allow analysts to switch to
Threshold Uncertainty plots to determine small differences and determine the most
appropriate result. The difficulties in resolving barely distinguishable uncertainties
indicates that mentally aggregating uncertainty values is challenging and should be
supported with interactive techniques, for example, employing brushing techniques to
show the aggregated uncertainty on-demand.

10.5.1 Lessons Learned

Reflecting on the user study design methodology, it was already been discussed that some
aspects were not adequately evaluated due to the limited number of questions testing
H2a. However, in general the employed samples and examples have served the purpose of
finding the most appropriate visual encoding for conducting a comparison task in a MVTS
segmentation result. Another drawback for the overall evaluation was the influence of
difficult questions affecting the overall distribution of scores in an unpredicted way. The
latter issue could have been prevented with a more thoroughly tested set of questions
presented to the participants. Appropriate user study design should be accompanied
by extensive testing, most ideally with users that have little to no experience with the
tested topic.
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CHAPTER 11
Conclusions & Limitations

In this chapter, I summarize my contributions in the research areas of VA, DQ, provenance,
and uncertainty and how they influenced the answers to my research questions. I also list
my scientific dissemination in the form of publications, and give an outlook to possible
follow-up research and future work directions.

11.1 Summary of Contributions

From the previously presented visualization techniques and VA approaches I summarize
the following contributions from the proposed solutions in Part II and the evaluation
results shown in Part III. The contributions involved the conceptual design of visualization
techniques and VA approaches, the development of visual-interactive prototypes to support
data quality assessment and uncertainty analysis. I employed various evaluation types
to determine the appropriateness, effectiveness, and expressiveness of these designs and
prototypes.

Visual-Interactive Creation and Customization of Metrics. MetricDoc presents
a visual-interactive environment for assessing data quality. It provides customizable,
reusable DQ metrics in combination with immediate visual feedback, featuring an overview
visualization of employed metrics, and an error visualization that facilitates exploration
and navigation of quality issues present in the data. During the iterative design evaluation
of the MetricDoc environment (compare Chapter 4) experts reviewed the features to be
powerful for customizing DQ metrics in tabular datasets. There was general agreement
that MetricDoc is appropriate to interactively assess the data quality and identify dirty
entries. DQ experts also stated that supporting the creation and customization of metrics
with interactions and visual feedback allows discovering error patterns, data property
highlighting, and other contextual insights. This work laid the foundation to validate
Research Sub-Question 1.
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Capturing and Visualizing Provenance from Data Wrangling. DQProv Explorer
was developed to capture and visualize provenance from data wrangling operations. It
combines this provenance with descriptive annotations, like DQ metrics and summary
information, to enable users to comprehend how changes to the dataset affected DQ. To
accomplish that, the prototype features a provenance graph of operations and the data
stream, a Quality Flow View to analyze the development of quality over time, and a Issue
Distribution View to assess the distribution of DQ errors across the dataset. DQProv
Explorer helps analysts understand the development of quality throughout data wrangling
tasks, which makes it unique in its ability to explore workflow and data provenance from
data wrangling. In a case study, I demonstrated the practical application of the system
and discussed implications for extending the set of available quality metrics for more
general use. A user experience study on DQProv Explorer showed that participants
were capable of successfully completing various tasks associated with understanding and
tracing the development of DQ in a dataset over time. Most interactive features were
well understood and subjectively well received by participants, even though some features
were not deemed as necessary (i.e., the Issue Distribution View). The results from the
evaluation gave insights into analysts’ trust in the dataset based on the provided DQ
information and the personal data wrangling and cleansing experience. This was helpful
in finding answers to Research Sub-Question 3.

Quantifying Uncertainty from Time Series Pre-Processing. In both a concrete
(rastering) scenario (compare Section 6.1) and a more generalized approach (compare Sec-
tion 6.2), I identified important aspects towards deriving DQ and uncertainty measures
from time series pre-processing. While for the concrete case of time series rastering, I de-
fined measures for interactively assessing the appropriateness of the rastering parameters
in a VA approach. However, these measures were not generalizable to other pre-processing
algorithms and procedures. I presented a methodology to quantify uncertainty in a generic
way that enables designers visualize uncertainty more appropriately for the analysis of
pre-processing steps and entire pipelines, depending on the use case, available uncertainty,
and the task pursued by the analyst. This methodology helped to partly address Research
Sub-Question 2. The case study presented (see Section 7.3) various visualization designs
that enhanced existing analysis views with uncertainty information to derive insights on
the influence of uncertainty on downstream analysis.

Visualizing Uncertainty of Time Series Segmentation Results. These visual de-
signs were translated and further developed to be used for analyzing uncertainty of large
numbers of segmented time series. Different visualization designs were evaluated in a
quantitative user study to determine if a Gradient Uncertainty plot is appropriate for
encoding uncertainty complementing colored segmentation result view. I found that
the Gradient Uncertainty design is superior to using dedicated uncertainty visualization
designs and can be employed for segmentation result analysis. However, a threshold
uncertainty visualization should be available to identify subtle differences in uncertainty
values when comparing different segmentation results. These results allowed me to
determine further aspects for answering Research Sub-Question 2.

162



11.2. Answering My Research Questions

11.2 Answering My Research Questions

After shortly summarizing the work I presented in this thesis and describing the main
takeaways from the different results, I want to contextualize these results within my
research questions. The presented techniques and prototypical implementations have
been tested within a range of different validation scenarios, ranging from case studies and
expert reviews to qualitative and quantitative user studies, from which I derive empirical
answer to the following questions:

Sub-Question 1 Can DQ metrics be utilized in a data wrangling and cleansing applica-
tion as measures of quality for various types of data to give a visual overview of
the overall amount of issues as well as a detailed information about the errors in the
dataset? And how can VA methods be utilized to support identifying, understanding,
and correcting quality issues?

• The MetricDoc environment allows creation and customization of DQ metrics and using
them for gaining both overview information of DQ in datasets, as well as the detailed
inspection of errors in the dataset is useful. In expert reviews I found implications that
the interactive DQ metrics customization allows the discovery of error patterns and
gain insights into the properties of tabular data.
• By defining re-usable quality checks and adding them to DQ metrics in updated

datasets, analysts can swiftly search for errors and correct them accordingly based on
which checks identified the dirty entries.

Sub-Question 2 How can uncertainty be quantified from data wrangling and
cleansing and how can it be visualized to assess the influence of the pre-processing steps
on downstream analysis?

• To address how uncertainty can be quantified from data wrangling and cleansing, I
first used a concrete approach for deriving uncertainty and DQ metrics from rastering
univariate time series. Subsequently, I developed an uncertainty quantification method-
ology that allows developers to estimate the impact of a pre-processing algorithm on
the overall uncertainty in a MVTS.
• The uncertainty quantification cube is applied in two approaches for (1) pre-processing
MVTS [BHR+19] and (2) segmenting and labeling MVTS in a segmentation pipe-
line [BBB+18]. It substantiates the general applicability of this methodology to
communicate uncertainty inevitably introduced into the processed MVTS and allows
analysts to both assess the influence of individual operations on uncertainty and
perform uncertainty-aware analysis of the processed time series.
• To show how different dimensions of uncertainty could be communicated most appro-

priately to analysts, I conducted a quantitative study to evaluate various uncertainty
design alternatives.

Sub-Question 3 What kind of DQ information can be stored as data provenance
and used by analysts to comprehend the history of data wrangling and cleansing
steps and assess the qualitative condition of the dataset to judge the data’s usability?
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• The Data Quality Provenance Explorer was developed to store DQ metrics and data
summary information as provenance during data wrangling. It continuously captures
and visualizes provenance to allow users explore the provenance graph of operations,
the development of quality over time for available exploration paths.
• A user experience study showed implications that DQ metrics are a valid form of

meta-information for allowing analysts understand the development of quality. Study
participants were successfully able to complete tasks associated with comprehending
the quality of a dataset.
• Addressing the question if data is usable: If participants’ experience with data quality
assessment was low, users were more willing to accept DQ overview visualizations
as a form for validating the usability of a dataset. But with increasing experience,
participants demanded more comprehensive and detailed methods for assessing data
quality, and were not satisfied with one dedicated overview visualization.

The answers from my sub-questions can be summarized to provide a comprehensive
answer for our main question:

Main Question: Which VA methods can be found as appropriate to explore and
identify DQ issues in time-oriented data leveraging metrics, provenance, and uncertainty?

• By employing custom DQ metrics in tabular datasets and quantifying uncertainty
from pre-processing operations and capturing them as provenance during data
wrangling and cleansing, we can employ visualization techniques and VA systems
that provide both overview of the DQ issues in a data set, as well as allow the analyst
to further investigate the cause of errors using exploration of detail visualizations.

• Ultimately, analysts’ perceived usability of a dataset depends on user experience,
and the comprehensiveness of the employed DQ metrics depends on analysts’ domain
expertise and experience with data quality assessment. However, VA methods
facilitate navigating detected quality issues and the employed error detection and
quantification methods (DQ metrics and uncertainty quantification).

• In the domain of time series analysis, I investigated if uncertainty is beneficial to
determine the impact of individual pre-processing operations on data. In particular,
by employing interactive uncertainty-aware analysis and integrating visualizations
showing various types of uncertainty, analysts can make more informed decisions
to apply appropriate pre-processing operations in a processing and segmentation
workflow.

11.3 Publications and Dissemination

The main scientific results were contributed to the field of computer science, and more
specifically in visualization and VA research. However, research in data quality was first
fostered through applied research in collaboration with companies processing time series
data. These ventures resulted in interdisciplinary research in the fields of data quality
and provenance. In another basic research project on time series pre-processing and
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segmenting, further investigation was done into uncertainty quantification and analysis,
more specifically the analysis of parameter influence in machine learning processes.
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11.4 Future Directions

Based on the findings, results, but also shortcomings in the presented works, I identify the
following future directions that were beyond the scope of this thesis but could significantly
advance research for visual-interactive data quality assessment and uncertainty analysis
from data pre-processing.

DQ metric complexity. I shortly discussed in the results of the expert reviews in
MetricDoc that analysts’ expected application scenarios of DQ metrics ranged from
simplistic evaluation schemes to very complex validation scenarios containing multiple
quality checks. Modularity would allow this, however, constructing such complex val-
idation functions requires appropriate coding support. For example, employing visual
scripting to create checks and metrics could significantly empower analysts developing
new metrics. Another aspect is employing statistical and machine learning techniques to
recommend and create more expressive metrics automatically, and using external source
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validation, like linked or semantic data. Improving the expressiveness of DQ metrics
could also be beneficial for analysts using DQProv Explorer.

Scalability of DQProv Explorer. The provenance graph used in the case study (com-
pare Section 7.2) and the user experience study of the DQProv Explorer was average
in size. Both the Quality Flow View and Provenance Graph View showed no issues
w.r.t. scalability, also with provenance graph twice the size. However, either very large
provenance graphs, or a graphs with excessively long wrangling sequences could render
both views ineffective due to overplotting. To address this, merging similar branches and
sequential patterns in the provenance graph could resolve scalability issues. Additionally,
the currently statically drawn Provenance Graph View could be replaced by a dynamic
and interactive graph structure that allows panning, zooming, and disabling/hiding
uninteresting branches.

Combining uncertainty and DQ metrics. The uncertainty quantification and visu-
alization techniques presented in this thesis were specifically developed for time series
analysis. Analysts and developers alike could benefit from a general framework for
quantifying uncertainty from pre-processing operations. Such a general framework allows
more consistent integration of uncertainty in visualization design and makes the influence
of pre-processing on downstream analysis more explicit to the user.

Support collaboration With a continued increase of the amount of data we generate
and the necessity of data pre-processing and analysis to be comprehensive and compre-
hensible, the aspect of collaboration and sharing work between analysts is important.
Provenance can facilitate collaboration by allowing analysts to observe and review prior
work done by colleagues. The methods and VA solutions presented in this thesis could
be extended by collaborative features to allow analysts annotate the development of DQ
and uncertainty over time to explicitly introduce insight provenance into the provenance
graph, and make the changes they applied better understandable.
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CHAPTER 12
DQProv Explorer – Qualitative

User Study

12.1 Evaluation Structure

12.1.1 Introduction

• 5-10 Minutes of introduction into the field of Data Wrangling

• Introduction into OpenRefine transformations and filters

• Introduction into the Explorer prototype

– Overview of quality metrics used within the prototype (completeness, validity,
numeric plausibility)

– Used encodings

– General functions of the three different components

∗ Quality Flow View (QF)
∗ Issue Distribution View (ID)
∗ Provenance Graph View (PG)
∗ Comparison View/Mode (CV)

– Interactions available in the components (I)

• Introduction into the used data set, with short overview of particular data columns.
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Figure 12.1: Overview of the DQProv Explorer. In the Provenance Graph View, branch
2 of 4 major branches is selected for analysis of quality development over time (in the
quality flow view in the top left, and detailed analysis of remaining issues in the Issue
Distribution View (top right).

12.1.2 Dataset

The dataset used during the user study is a slightly modified version (purposefully removed
single cells) of the TopGear dataset obtained from the R-package robustHD [Alf08] 1.
The data quality metrics employed alongside the dataset were deliberately chosen to
be simplistic, so that participants need not to require further information on specific
quality checks and validation schemata. The dataset exhibited quality issues in terms of
validity (invalid data types), completeness (missing values), and plausibility (implausibly
high/low values).

12.1.3 Tasks

The following describes the tasks given to the study participants, to see if the design of
the prototype allowed conducting the tasks of confirming quality changes, discriminating
between different changes in quality, validating if a dataset is usable in its current state,
and understanding the sequence of transformations conducted by a different user.

Tact & Tpres - Look at the first state of the dataset and identify the column with the
most issues (Column ‘weight’). Now look at the end node of one transformation branch
and determine how quality evolved for this column. You can see multiple transformation

1https://www.rdocumentation.org/packages/robustHD/versions/0.5.1

172

https://www.rdocumentation.org/packages/robustHD/versions/0.5.1


12.2. Summarized Results

branches: How different are the two branch end nodes in terms of quality, do similar
issues remain? Can you find out what transformation/operation impacted the quality of
this column the most?

Tmeta - If only the dataset of the second branch was available for analysis, what columns
would you use for analysis. If you look at the three different branches and compare
remaining quality issues, which one would you choose for analysis, and for what type of
analysis?

Trec & Trep - How did a sequence of actions influence the data? Going back to the Weight
column, which of the branches would you use for analysis?

Tcoll & Tmeta - Can you determine the user’s objective in the sequence of transformations
shown in the branch at the bottom of the provenance graph?

12.1.4 Participant Expertise

Participants were asked about profession, and self-assessment of experiences in the fields
of:

Data Wrangling, Data Profiling, or Data Cleansing

If Experienced, on what type of data

Information Visualization, Visual Analytics

12.2 Summarized Results

We have summarized the feedback from participants by views and interactions of DQProv
Explorer. That way the usefulness of each part of the system could be assessed on its
own, and how the interactions combined them. We also note how many participants used
which view for which task.

12.2.1 Quality Flow View

This view was received well, 5 of 6 participants noted the usefulness for assessing the
development of quality. The view was used in all tasks by all participants.
Two users initially had issues mapping the stacked bars to columns.

12.2.2 Provenance Graph View

The Provenance Graph View was used in all tasks by all users. But in terms of usability,
the node size was deemed as not useful by 3 of 6 participants. 3 participants could not
understand the encoding of data flow along the edges, hence they wondered why edges
were seemingly bundled or disappeared (when the data was filtered to only very few
values, the edge would become very thin). 1 participant noted to add a filter function to
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highlight nodes that affected particular columns, and adding a delta function to more
effectively find changes in row size of the data. Participants explored the graph in different
ways: while 2 participants iteratively navigated each node of the graph, the remaining
participants were only interested in the end nodes (“I would like to have all end nodes
highlighted”).

12.2.3 Issue Distribution View

4 of 6 Participants questioned the usefulness of the Issue Distribution View, using them
as part to solve tasks Tmeta (2 of 6), Tcoll (2 of 6), which “takes up whitespace”, and
“I haven’t used the detail view, and for the current selection it does not even give me
useful information”. We attribute these critical comments to the application scenario
employed in our study design, and the assigned tasks not being specifically tailored to
assessing error distribution in the dataset. 3 of 6 Participants criticized that the change
of content in the difference view when switching to comparison mode is unclear and must
be signaled accordingly.

12.2.4 Comparison Mode

The comparison mode was appreciated to compare branches, participants used them in
tasks Trec& Trep (6 of 6) and Tcoll& Tmeta (3 of 6).
3 participants noted that the mirroring initially posed confusion. Even though the
participants were explicitly instructed about the mirroring, 2 participants still mixed
up the branches during detailed inspection. It was noted to signal the mirroring more
clearly (the colored nodes were not sufficiently indicative), and one participant suggested
to mirror the Provenance Flow View vertically to compare the selected data revisions.

12.2.5 Interactions

Other critical feedback could be traced back to limited interaction possibilities, and we
determined that some approaches pursued by participants during task execution would
have required a more extensive set of interactions, such as metric selection to brush nodes
affecting the metric in the Provenance Graph View, provenance graph node filtering, or
highlighting techniques.

Evaluation – Participant 1

Participant

• Gender: male.

• Profession: MA Student.

• Expertise:
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– Data Wrangling, Data Profiling, or Data Cleansing: Yes, No, Yes. Advanced.
Tools: LoD Refine2 (OpenRefine3).

– Data: Multiple data source harmonization.
– Information Visualization: Entry level, data analysis plots and statistics plots.

Performance on Tact & Tpres

- Could find the column with maximum error in the quality flow visualization (QF). But
only assessed validity metric as maximum, even though also a second metric (completeness)
signaled issues in this column.
- By selecting the last node of the top branch (PG), and observing the flow of the metric
developing over time (QF), he could find that one operation reduced quality.

Performance on Tmeta

- Comparing the two top branches (PG) lead the participant to the conclusion that the
top branch yielded more valid data, with the lower branch removing entries unnecessarily
(I).

Performance on Trec & Trep

- Looking at the second branch (CV, PG, I), quality was improved, but he found that
this corresponds to changes of other problems as well (QF) (this is due to rows being
removed, affecting the ratio of errors across all metrics.
- He would not use the dataset due to these transformations affecting all rows (CV, PG,
I) ([rows are being deleted]).

Performance on Tcoll & Tmeta

- The participant tried to focus on quality (QF) and try to comprehend what happened
when multiple entries were edited but could not due to [self-assessed] missing info (I)
([info is available on mouseover, but is limited that edit action was performed, but detailed
information is missing]).

Critical Feedback

- The participant could not see what impact an action had on the data (I), due to the
edges (PG) not being clearly recognizable to him. The visual encoding of edge width
corresponding to filtering rows of the dataset was not understood.
- More highlighting (I) was demanded, e.g., highlighting columns, searching for nodes
that were changed in the provenance graph.
- The QF when comparing two branches should be scrollable (I).

2https://sourceforge.net/projects/lodrefine/
3http://openrefine.org/
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- Raw data should be comparable on demand in the DV.
- differentiation in the CV between the two paths is unclear, a different linking should be
employed to show the differences in metrics between the two end-nodes.

Positive Feedback

- The visualization of quality across data transformations (QF) was marked as very useful,
especially when the scale of the dataset is larger.

Evaluation – Participant 2

Participant

• Gender: male.

• Profession: PhD Student.

• Expertise:

– Data Wrangling, Data Profiling, or Data Cleansing: Yes, Yes, Yes. Expert,
> 1 year. Tools: self developed tools.

– Data: Text data, retrieval data.
– Information Visualization: Expert, > 1 year.

Performance on Tact & Tpres

- Could successfully determine the column Weight (QF), but immediately noted that
height is sub-optimal encoding for lack of quality – he would rather prefer height maps
to high quality.
- He noted the necessity for mouse-over trial-and-error (I) for finding the column with
the highest number of issues.
- He did not understand alignment of nodes (PG) and QF bars at first, so searched
for nodes that affected column Weight individually (PG, I), and noted that it could be
beneficial to highlight nodes that affect column Weight on demand (I), to have insight
how this column changed across all branches.

Performance on Tmeta

- Participant wants to see the changes rather than the overall quality development (PG).
- Noted that the diff view (ID) is not very helpful in detecting the differences between
two views. Alternatively the overall number of rows and quality issues could give better
way of determining a difference. Also a link into the data could help.
- By highlighting what nodes were affecting certain selected columns, exploration would
be more easy, and to guide users towards relevant branches.
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Performance on Trec & Trep

- He used the provenance graph nodes to determine how many rows remain in the dataset
for the top two branches of the provenance graph, determined that the second contained
less data and that overall quality was not significantly lower, so preferred branch number
1 (from top).
- Within this process he noted that he would like to see all branches’ end-points highlighted.
- Also it was noted that the diff did not help enough, because both the overall number of
entries and the quality are key measures for high quality in the dataset.
- Validation would require inspecting the data – wants a link back into the data state.

Performance on Tcoll & Tmeta

- Understood the transformation operations, in which a subset of the data was selected
to conduct cleansing only on that data. But noted that the filter indication is not very
expressive without the possibility to observe the content of the column.
- Single cell operations do not tell any information what happened – needs to be addressed
to trace actions. - If overall error is increased, information without signaling the number
of rows is rather ambiguous and needs to be determine in a separate step.
- The participant understood that the decision what transformation path to choose
depends on the subsequent analysis, based on if high accuracy of the available data is
favoured, or if more entries with imputed values are beneficial (e.g., for model building)
[it should be added that the used dataset provides data without significant outliers, but
certain entries are incomplete]

Observations

The user mainly utilized the quality flow visualization for determining changes in the
data, and only used the provenance graph mouseover information if necessary.

Critical Feedback

- In the provenance graph, the filter analogy can be overlooked easily if filtering only
yields a small number of entries. A delta of changes, or numeric values for total size and
number of changes in the data (for each state of the dataset) would signal changes more
effectively. - Mirroring the second quality flow visualization should be signalized.

Positive Feedback

- The prototype provides the ability to conduct collaborative cleansing by allowing users
to see the branches that are created by different approaches.
- The quality flow visualization is very effective for signaling the overall quality.
- Linking of the prototype components is really smooth and helps with exploration.
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Evaluation – Participant 3

Participant

• Gender: male.

• Profession: PhD Student.

• Expertise:

– Data Wrangling, Data Profiling, or Data Cleansing: Yes, Yes, Yes. Entry to
advanced level, < 1 year. Tools: scripting.

– Data: Databases: relational/structured data.

– Information Visualization: Expert, > 1 year.

Performance on Tact & Tpres

- Easily found weight column by using mouseover (QFV), could determine the operation
responsible for the change. However the filter operation was not clearly understood at
first.

Performance on Tmeta

- Participant is iteratively navigating nodes in comparison view, and trying to understand
alternate path column changes.
- Could determine that second path solved quality issues at the same steps, but in a
different way. But determined that the second branch is more beneficial for solving
problems.
- Not clear that dark colored paths signal a change in metric (suggestion to use a different
texture).

Performance on Trec & Trep

- The participant noticed that branch two reduced the data size while branch one retained
the data and concluded that selecting between those branches came down to preference.
- First branch more complete, second branch removed data.
- To decide the user wants to know more information on what changed in the first branch
to reconstruct (missing information what was changed in the single cell operations).
- If the dataset is unknown, and operations are provided in detail: The user preferred
retaining information, under the assumption of knowing that issues were solved. This
requires trust in the dataset and the user conducting the wrangling process
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Performance on Tcoll & Tmeta

- Participant could find out that cars running fossil fuels were removed and found that
quality degraded.
- He concluded correctly by comparing two branches that the ratios of problems increased
due to the removal of more correct data, and retaining dirty ones.

Observations

The user used iterative selection of the PG nodes to exactly retrace changes done to
the dataset. Hence, the participant could understand the used wrangling workflow quite
effectively. Subsequently, the participant saw the need for improving graph interactions,
like a focus+context technique, or grouping operations. In contrast, the Issue Distribution
View was not used at all. For him it was difficult to distinguish changes of quality in
the quality flow visualization, color coding transitions like states added to this problem,
could be addressed by employing a different coloring schema.

Critical Feedback

- differentiation in the comparison view between the two paths is unclear, a different
linking should be employed to show the differences in metrics between the two end-nodes.
- Information on filters should be more intuitive and clear (range indicators, and condensing
information)
- Connection to the dataset should allow more detailed analysis.
- Issue Distribution View adds to much white space, and does not resolve the question
where the issues are, apart from position, but this is irrelevant for retrospective analysis.

Positive Feedback

- Adding signals to highlight nodes that have already been explored.
- The prototype allows for finding leaks and modifications more easily, if done in the tool.
- Use of icons for operations.
- Collaborative efforts can be explored.

Evaluation – Participant 4

Participant

• Gender: male.

• Profession: Post-doctoral researcher.

• Expertise:
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– Data Wrangling, Data Profiling, or Data Cleansing: Yes, Yes, No. Expert,
< 1 year. Tools: Alteryx4.

– Data: Text data, retrieval data.
– Information Visualization: Expert, > 1 year.

Performance on Tact & Tpres

- Participant could easily find column Weight. But noticed that it disappeared, by
attempting to click the transformations.

Performance on Tmeta

- Participant valued branches with less operations to accomplish similar quality, but still
determined branch one to be the best quality dataset, he also interpreted the completeness
metric as the most worrying.

Performance on Trec & Trep

- Inspection of individual changes in quality.
- Mostly focusing on filtering icons and mouse-over information, rather than filters and
operations
- Participant preferred dropping columns (what’s the least amount of columns to conduct
an analysis on the entire dataset?)
- Trust in imputed values is only accepted if knowledge about who conducted the
operations is available, otherwise dropping these entries is preferred.

Performance on Tcoll & Tmeta

- Participant noticed worse amount of errors based on the row removal

Critical Feedback

- Participant suggested the ability to filter for changes in specific columns, to find
transformations more quickly (T1)
- Single cell operations require more information.
- Operations icons should be encoded by a glyph.
- Quality flow should also encode information about number of rows/entries in the dataset.

Positive Feedback

- Quality flow was appreciated, but the participant suggested vertical mirroring instead
of horizontal.
- Using a different set of metrics for determining a dataset’s appropriateness for machine

4www.alteryx.com
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learning training.
- Usefulness is tied to the objective quality functions – the more expressive they are, the
better the analysis can be.

Evaluation – Participant 5

Participant

• Gender: female.

• Profession: PhD student.

• Expertise:

– Data Wrangling, Data Profiling, or Data Cleansing: Yes, Yes, No. Beginner.
– Data: Scientific data, spatial data
– Information Visualization: Expert, > 3 years.

Performance on Tact & Tpres

- Participant wanted to use click interaction (QF, I) to find column Weight. But after all
found out to use on demand mouseover information to find the column.
- Participant struggled to find context information to determine the corresponding
transformation, alignment could not help adequately.

Performance on Tmeta

- The participant did valued lower quality over availability of the data. Upon asking the
metrics were seen as trustworthy by the user.

Performance on Trec & Trep

- Upon inspection (CV) the participant expressed that the columns are rather unclear to
her. It did not help her to comprehend what happened in the data (the miles per gallon
column exhibited excessive amounts of implausible values), but she did not associate the
change with the transformation (PG, QF).

Performance on Tcoll & Tmeta

- Participant could not associate the changes in quality to the nodes/edges in the
provenance graph (PG).
- She did not find out for what purpose the sequence of actions/operations was executed,
hence a distinction between the branches was not achieved by her (CV).
- The inspection only led to single insights, that certain actions caused a decrease in
quality issues.
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Observations

The participant did not try to explore all different modes of interaction, and hence also
did not leverage them to determine the source of changes in quality or compare the
differences between two selected quality flows.

Critical Feedback

- Difficult to see where data are filtered, suggested to use different encoding, only show
filter information on demand.
- The number of data in a data state is not clearly visible, and rarely comparable.
- Data to ink ratio low.
- Change metric representation to resemble columns – vertical scaling of the visualization.

Positive Feedback

- Quality encoding makes sense intuitively.
- Comparison view works well.

Evaluation – Participant 6

Participant

• Gender: female.

• Profession: PhD student.

• Expertise:

– Data Wrangling, Data Profiling, or Data Cleansing: Yes, Yes, Yes. Advanced,
> 1 year. Tools: Excel.

– Data: tabular data, relational data.

– Information Visualization: Expert, > 3 years.

Performance on Tact & Tpres

- Participant could easily find column Weight. Attempted to click the metric paths.
- She could find minimal changes in quality for the selected branch and could determine
the operation responsible for the change, by iterating through all operations until she
found the change in the column.
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Performance on Tmeta

- For comparison the participant disabled the detail view.
- Noted that differences were not significant (for the selected branches).
- Using the comparison mode, she decided for the branch with higher quality/lower
amount of quality issues.
- Participant wanted to use node toggling to determine the changes in quality between
two changes.

Performance on Trec & Trep

- Would prefer the dataset with higher quality, when confronted with the branch that
removed rows, she preferred the other, valuing data size as well.
- Did not trust the dataset enough to decide on a branch, without ability to look into the
raw data.

Performance on Tcoll & Tmeta

- Participant noticed that operations had different implications, which came down to
the observation that she used an iterative approach towards understanding the wran-
gling/cleansing process.
- Could distinguish and understand differences in operation types and their impact on
quality.

Critical Feedback

- Demanded more interaction and linking abilities, in particular quality flow to provenance
graph.
- Path highlighting was not sufficient to link the branches to the flow views.
- Legend missing.
- Graph structure changes during exploration, makes navigating harder.
- Demanded column labeling.

Positive Feedback

- Liked use of whitespace
- Participant stressed the importance of the Issue Distribution View, and would only
provide a toggle to remove "empty" columns.
- Liked the use of color that make the elements distinguishable.
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DQProv Explorer – Usability

Inspection

13.1 Evaluation Structure

The evaluation was split into two different studies, interviews and a focus group. Both
groups got an introduction. The participants received paper prototypes and had to solve
questions and tasks, as well as give feedback on the usability in the end.

13.1.1 Introduction

• Introduction on course of interview

• General questions (age, experience, etc.)

13.1.2 Goal

The evaluation had the following goals:

• Validate if design an used symbols (add, delete, merge icons) are understandable
by participants.

• Discovery of possible improvements to the design.

The following questions were formulated to be used for determining tasks:

• Is the prototype intuitive?
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• Are the visualizations for (1) quality metrics, (2) detail view, (3) column edit
operations understandable?

• Can the individual steps be followed (e.g. change path, show detail view, . . . )

13.1.3 Questions

The subjects received questions and tasks to solve with the paper prototypes on the
topics:

• Quality metrics,

• Analysis of metric changes,

• Detail views,

• Alternate provenance graph paths,

• Column removal, creation, and merging, and

• Annotations

The investigator continuously guided the participants through the experiment, asking
questions for different tasks and consecutive operations. Below some exemplary figures
are shown, which were used as paper prototypes during the experiment, so participants
could use pencils to add notes.

13.1.4 Feedback

The participants were asked to give feedback on the three most and least favorite design
aspects, as well as general remarks.

• Less colors means the dataset is cleaner (also noted in focus group)

• Operations are shown prominently and pleasantly

• Clean, without aid lines

• Provenance graph also shows alternate paths

• Provenance graph is similar to git
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Figure 13.1: Overview of the paper prototype the participants had to solve questions
and task with.

Interview

• Parameters are highlighted in operations

• Delete, insert, and merge visualizations

• Effects of operations can be seen in the bar chart visualization

• Difference of data in detail view

• The plus symbol that shows the ability to open a detail view

• the quality bars can be compared easily

Focus Group

• It can be seen how the dataset looked before and after the operation,

• The detail view is helpful to follow changes,
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Figure 13.2: In the detail view the raw data is shown, with the data showing the state
directly before and after an operation.
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• Structure is well understandable,

• Overview of the changes,

• Effect of operations can be followed for the most parts.
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CHAPTER 14
Visualizing Uncertainty in Time

Series Processing

14.1 Questions and Results per Question

14.1.1 Questions

Questions 1 to 6 are used for testing hypotheses H0, H1, and H2. Questions 7 are used
for testing hypothesis H3.

Figure 14.1: Question 1: Out of the highlighted areas (red frames), which is the most
certain?

Figure 14.2: Question 2: Out of the highlighted segments (red frames), which is the most
certain?
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Figure 14.3: Question 3: Out of the highlighted areas (red frames), which is the most
certain?

Figure 14.4: Question 4: Out of the highlighted segments (red frames), which is the most
certain?

Figure 14.5: Question 5: Out of the highlighted areas (red frames), which is the most
certain?

Figure 14.6: Question 6: Please sort the following highlighted Segments from Most
Certain to Least Certain.

Figure 14.7: Question 7: Out of the highlighted areas (red frames), which has less
uncertainty (Area Chart Variant)?

192



14.1. Questions and Results per Question

Figure 14.8: Question 8: Out of the highlighted areas (red frames), which has less
uncertainty (Area Chart Variant)?

Figure 14.9: Question 9: Out of the highlighted areas (red frames), which area has the
least overall uncertainty (Area Chart Variant)?
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Figure 14.10: Results – Error Rates per question.
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Figure 14.11: Results – Completion times per question.
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14.2 User Study Results - Uncertainty in Time Series
Segmentation Results

14.2.1 Hypotheses

• H0 The Gradient Uncertainty Plot does not perform significantly worse than a Com-
posite Uncertainty and Segmentation Result Plot for showing segment probabilities
in segmented time series.

• H1 The Gradient Uncertainty Plot that can be toggled does not perform worse
when assessing uncertainties in segmented time series than an Uncertainty Heatmap
showing only uncertainty.

• H2 The Gradient Uncertainty Plot is more effective in conveying certainties of a
segmented time series than an interactive Threshold Uncertainty Plot, especially if
vertical space is insufficiently available
• H3 The Heatband Uncertainty Plot is not inferior to the Area Uncertainty Plot for

conveying uncertainty effectively over time.

Hypothesis Testing

H2 will be tested using a Friedman test to calculate statistical significance, and a post-hoc
Nemenyi test determining if the design pair in question, i.e., gradient - threshold, are
significantly different, followed by a superiority test.

H0, H0, and H0 will be tested using a non-inferiority test, evaluating if one used method
is not significantly inferior to another. Using an equivalence test and only observing
the lower bound will yield the test for non-inferiority (https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3019319/)

The bounds are calculated based on the statistical power of 0.95, the number of study
participants n = 111, and the Significance level α = 0.05, yielding the upper and lower
bounds, of which only the lower bound will be of interest:

14.2.2 Significance Tests

Tests for significant differences between designs. Here we try to find significance particu-
larly between the pair gradient and threshold, which would confirm H2 with a significant
pair Gradient Uncertainty plot - threshold plot.

Friedman Test - Error and Completion Time over all questions

Questions 1 to 6 error and Completion Time, including post-hoc Nemenyi test:

##
## Friedman rank sum test
##
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## data: u_scores_combined$question , u_scores_combined$design
## and u_scores_combined$id
## Friedman chi-squared = 19.341, df = 3, p-value = 0.0002324

##
## Friedman rank sum test
##
## data: u_scores_combined$time , u_scores_combined$design
## and u_scores_combined$id
## Friedman chi-squared = 286.03, df = 3, p-value < 2.2e-16

##
## Pairwise comparisons using Nemenyi multiple comparison test
## with q approximation for unreplicated blocked data
##
## data: question and design.f and id
##
## gradient heatmap line chart
## heatmap 0.224 - -
## line chart 0.082 0.966 -
## threshold 0.974 0.446 0.206
##
## P value adjustment method: none

##
## Pairwise comparisons using Nemenyi multiple comparison test
## with q approximation for unreplicated blocked data
##
## data: time and design.f and id
##
## gradient heatmap line chart
## heatmap 1.9e-12 - -
## line chart 0.04 3.4e-14 -
## threshold 2.9e-14 < 2e-16 2.8e-09
##
## P value adjustment method: none
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Plots for Error and Completion Time over All Questions
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Result

No significant pairs for scores, however, significance for Completion Time.

Friedman Test - Error and Completion Time for Questions 4 and 5

Error rate significantly lower especially for questions 4 and 5 would confirm thatGradient
Uncertainty plot performs better than threshold plot for use cases where vertical
space is limited.

##
## Friedman rank sum test
##
## data: u_scores_q45$question , u_scores_q45$design
## and u_scores_q45$id
## Friedman chi-squared = 5.0174, df = 3, p-value = 0.1705

##
## Friedman rank sum test
##
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## data: u_scores_q45$time , u_scores_q45$design
## and u_scores_q45$id
## Friedman chi-squared = 160.9, df = 3, p-value < 2.2e-16

##
## Pairwise comparisons using Nemenyi multiple comparison test
## with q approximation for unreplicated blocked data
##
## data: time and design.f and id
##
## gradient heatmap line chart
## heatmap 2.6e-07 - -
## line chart 0.0085 3.5e-14 -
## threshold 2.8e-10 < 2e-16 0.0035
##
## P value adjustment method: none

Plots for Error and Completion Time over Questions 4 and 5

Error

Error Rate: No Significance.

Completion Time Result: Significant differences between all designs. Order: 1.Uncertainty
Heatmap, 2.Gradient Uncertainty plot, 3.composite line chart, 4.threshold
plot.

Friedman Test - Error and Completion Time for Questions 3 - 6 (Vertical
Comparison)

Error rate significantly different especially for questions 3 - 6 would confirm thatGradient
Uncertainty plot performs better than threshold plot for use cases where vertical
space is limited.

##
## Friedman rank sum test
##
## data: u_scores_q3456$question , u_scores_q3456$design
## and u_scores_q3456$id
## Friedman chi-squared = 49.709, df = 3, p-value = 9.214e-11

##
## Friedman rank sum test
##
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## data: u_scores_q3456$time , u_scores_q3456$design
## and u_scores_q3456$id
## Friedman chi-squared = 243.87, df = 3, p-value < 2.2e-16

##
## Pairwise comparisons using Nemenyi multiple comparison test
## with q approximation for unreplicated blocked data
##
## data: question and design.f and id
##
## gradient heatmap line chart
## heatmap 0.0041 - -
## line chart 0.0069 0.9986 -
## threshold 0.9999 0.0034 0.0058
##
## P value adjustment method: none

##
## Pairwise comparisons using Nemenyi multiple comparison test
## with q approximation for unreplicated blocked data
##
## data: time and design.f and id
##
## gradient heatmap line chart
## heatmap 1.2e-10 - -
## line chart 0.009 3.9e-14 -
## threshold 4.1e-14 < 2e-16 9.1e-07
##
## P value adjustment method: none
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Plots for Error and Completion Time over Questions 3-6
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Results

Error Rate - Significance between pairs:

• Gradient Uncertainty plot and Uncertainty Heatmap (0.0041)

– Gradient Uncertainty plot performed significantly better

• Gradient Uncertainty plot and line plot (0.0069)

– Gradient Uncertainty plot performed significantly better

• threshold plot and Uncertainty Heatmap (0.0034)

– Threshold Uncertainty plot performed significantly better

• threshold plot and line plot (0.0058)

– Threshold Uncertainty plot performed significantly better

Completion Time Result: Significant differences between all designs. Order: 1.Uncertainty
Heatmap, 2.Gradient Uncertainty plot, 3.composite line chart, 4.Threshold
Uncertainty plot.
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14.2.3 Non-Equivalence Test of Gradient Uncertainty Plot vs
Composite Uncertainty and Segmentation Result Plot (H0)

Testing for non-inferiority (error is lower) of Error (q1 - q6) and completion times
(t_q1 - t_q6) between Gradient Uncertainty plot - line plot (H0).
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## Loading required namespace: jmvcore

##
## TOST INDEPENDENT SAMPLES T-TEST
##
## TOST Results
## ------------------------------------------------------
## t df p
## ------------------------------------------------------
## question t-test 3.192 1330 0.001
## TOST Upper -0.413 1330 0.340
## TOST Lower 6.80 1330 < .001
##
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## time t-test 0.228 1330 0.819
## TOST Upper -3.376 1330 < .001
## TOST Lower 3.83 1330 < .001
## ------------------------------------------------------
##
##
## Equivalence Bounds
## ------------------------------------------------------------------
## Low High Lower Upper
## ------------------------------------------------------------------
## question Cohen’s d -0.198 0.198
## Raw -0.0950 0.0950 0.0407 0.127
##
## time Cohen’s d -0.198 0.198
## Raw -11.0433 11.0433 -4.3428 5.742
## ------------------------------------------------------------------

Result

Score:

Completion Time:

14.2.4 Non-Equivalence Test of Gradient Uncertainty Plot vs
Uncertainty Heatmap (H1)

Testing for non-inferiority (error is lower) of Error (q1 - q6) and completion times (t_q1
- t_q6) between Gradient Uncertainty plot - Uncertainty Heatmap (H1).

##

202



14.2. User Study Results - Uncertainty in Time Series Segmentation Results

0.00

0.25

0.50

0.75

1.00

gradient heatmap
Design

%
 o

f P
ar

tic
ip

an
ts

Answer incorrect correct

Error Rates

10

100

1000

gradient heatmap
Design

T
im

e 
(s

)

Design gradient heatmap

Completion Time

##
## TOST INDEPENDENT SAMPLES T-TEST
##
## TOST Results
## -----------------------------------------------------
## t df p
## -----------------------------------------------------
## question t-test 2.57 1330 0.010
## TOST Upper -1.03 1330 0.151
## TOST Lower 6.18 1330 < .001
##
## time t-test 2.06 1330 0.040
## TOST Upper -1.55 1330 0.061
## TOST Lower 5.66 1330 < .001
## -----------------------------------------------------
##
##
## Equivalence Bounds
## ------------------------------------------------------------------
## Low High Lower Upper
## ------------------------------------------------------------------
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## question Cohen’s d -0.198 0.198
## Raw -0.0946 0.0946 0.0244 0.111
##
## time Cohen’s d -0.198 0.198
## Raw -13.1132 13.1132 1.5003 13.476
## ------------------------------------------------------------------

Result

Score:

Completion Time:

14.2.5 Non-Equivalence Test of Gradient Uncertainty Plot vs
Threshold Uncertainty Plot (H2)

Testing for non-inferiority (error is lower) of Error (q1 - q6) and completion times
(t_q1 - t_q6) between Gradient Uncertainty plot - threshold (H2)
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## TOST INDEPENDENT SAMPLES T-TEST
##
## TOST Results
## -----------------------------------------------------
## t df p
## -----------------------------------------------------
## question t-test 0.287 442 0.774
## TOST Upper -3.32 442 < .001
## TOST Lower 3.89 442 < .001
##
## time t-test -2.355 442 0.019
## TOST Upper -5.96 442 < .001
## TOST Lower 1.25 442 0.106
## -----------------------------------------------------
##
##
## Equivalence Bounds
## -------------------------------------------------------------------
## Low High Lower Upper
## -------------------------------------------------------------------
## question Cohen’s d -0.342 0.342
## Raw -0.170 0.170 -0.0641 0.0911
##
## time Cohen’s d -0.342 0.342
## Raw -22.510 22.510 -24.9997 -4.4147
## -------------------------------------------------------------------

Result

Score:

Completion Time:

14.2.6 Non-Equivalence Test of Area Plot vs. Heat Bands (H3)

Testing for non-inferiority (error is lower) of Error (q1 - q3) and completion times
(t_q1 - t_q3) between area plot - heat bands (H3).

##
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##
## TOST INDEPENDENT SAMPLES T-TEST
##
## TOST Results
## ----------------------------------------------------
## t df p
## ----------------------------------------------------
## question t-test 1.46 664 0.145
## TOST Upper -2.15 664 0.016
## TOST Lower 5.06 664 < .001
##
## time t-test -1.29 664 0.197
## TOST Upper -4.90 664 < .001
## TOST Lower 2.31 664 0.010
## ----------------------------------------------------
##
##
## Equivalence Bounds
## ------------------------------------------------------------------
## Low High Lower Upper
## ------------------------------------------------------------------
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## question Cohen’s d -0.279 0.279
## Raw -0.119 0.119 -0.00625 0.102
##
## time Cohen’s d -0.279 0.279
## Raw -21.581 21.581 -17.58762 2.134
## ------------------------------------------------------------------

error

• Non-inferiority confirmed in q1, q2, and q3.
• Equality confirmed in q2 and q3.
• Area plot is superior in q1.

Completion Time

• Equality (and subsequently non-inferiority) confirmed in q1, q2, and q3.

14.2.7 Hypotheses Tested

H0 Gradient Uncertainty Plot vs. Composite Uncertainty Visualization

Errors: Gradient Plot is superior to Composite Uncertainty Visualization

Completion Time: Equality confirmed.

H0 non-inferiority confirmed, even superiority of gradient plot for errors.

H1 Gradient Uncertainty Plot vs. Uncertainty Heatmap

Errors: Gradient Plot is superior to Uncertainty Heatmap

Completion Time: Heatmap is superior to Gradient Plot.

H1 non-inferiority confirmed.

H2 Gradient Uncertainty Plot vs. Threshold Uncertainty Plot

Errors: Gradient Plot is not significantly better than Threshold Uncertainty Plot, pairs
not significant according to post-hoc Nemenyi test (p=0.974).

Completion Time: Gradient Plot is significantly better than Threshold Uncertainty Plot.

H2 can only be confirmed for completion times.

H2a - Limited Vertical Space Errors: Friedman Test non-significant

Completion Time: Gradient Plot is significantly better than Threshold Uncertainty Plot.

H2a is not confirmed for errors, but can again be confirmed for completion times.
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H3 Difference between Heatband and Area Charts Uncertainty

Errors: Equivalence confirmed.

Completion Time: Equivalence confirmed.

H3 can be confirmed with equivalence.

14.2.8 Implications

For Question 1 and 2 comparisons had to be made between segments from one result,
meaning that horizontally comparisons could be made well using line charts or heatmaps.
However, in Questions 3 to 6, comparison had to be made across segmentation results
visualized as rows, which seems to be more difficult when using the Composite Visual-
ization: There were noticable differences in results for Question 3, 4, and 6 where the
Gradient Uncertainty Plot outperformed the Composite Visualization (H0), while times
employed using the Gradient Uncertainty Plot were not significantly longer.

Question 4 was aimed to test the effectiveness of uncertainty visualization designs for
limited vertical space, in which the Gradient Uncertainty Plot had significantly higher
error than the Composite (H0) and Threshold Uncertainty Visualization (H2) and
Completion Time not inferior to other designs, except for the Uncertainty Heatmap (H1).

Question 5 had the overall worst error rate, which we infer was due to the difficulty of
the question being two very similar segment uncertainties. In this case, the Threshold
Uncertainty Plot significantly outperformed the Gradient Uncertainty Plot (H2) and
Uncertainty Heatmap. However, the Completion Time was still significantly worse than
both of these designs. Error were also low for the Gradient Uncertainty Plot, which was
out of line with other questions with multiple segmentation results visualized (Question
3-6).

Two questions in the test were more difficult to answer (Q1, Q5): differences between
uncertainty in the segments and areas were smaller than in other questions. Participants
took longer to answer these questions, and had worse error compared to similar questions:

• Question 1 and 2 are similar, horizontal intervals must be compared:
– Mean Error Q1: 0.277027, Q2: 0.1036036
– Median Completion Time Q1: 29, Q2: 12

• Question 4 and 5 are similar, horizontal and vertical comparison with vertical space
available.
– Mean Error Q4: 0.2387387, Q5: 0.6779279
– Median Completion Time Q4: 18, Q5: 23

(Question 5 even had error rates above 50%, except for the Uncertainty Threshold Plot).

This implies that the aggregated uncertainty of an interval is hard to judge mentally and
without visual support. We suggest employing an aggregated uncertainty
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Glossary

DQProv Explorer Data Quality Provenance Explorer is a VA approach to visualizing
provenance that was captured by our data wrangling provenance model.. 107, 108,
124, 125, 141–144, 162, 167, 173

MetricDoc An environment for the visual-interactive customization of data quality
metrics. 14, 15, 90–93, 100, 101, 109, 121, 131–133, 136–139, 161, 163, 166
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Acronyms

DoI degree-of-interest. 70

DQ Data Quality. 3, 4, 12, 14, 17–26, 28, 37, 38, 40, 41, 43–45, 49, 50, 52–54, 59, 71, 72,
75–78, 81, 85, 89–94, 96–98, 100, 101, 111–116, 121, 122, 132–137, 139, 140, 144,
161–164, 166, 167

F+C Focus+Context. 50

MVTS multivariate time series. 15, 38, 61, 81–84, 111, 116, 117, 127, 128, 145, 146,
150, 158, 163

PDF probability density function. 30, 31

VA Visual Analytics. 4–14, 17, 28, 30–32, 36, 37, 50, 53, 54, 59, 61–64, 67–69, 72, 75,
86, 87, 100, 101, 111, 116, 121, 128, 129, 145, 146, 161–164, 167
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