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Figure 1: Visual analysis of a moving average routine applied to multivariate time series (here: 2 dimensions). The uncertainty information
over time introduced by the pre-processing routine is fed back into the approach (heat map) and can be related to the individual dimensions.
Visual comparison of multiple parameterizations (encoded with color) allows the effective optimization of steering parameters.

Abstract
Pre-processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre-processing pipelines often
require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction
and the refinement of pre-processing pipelines, human-in-the-loop approaches are highly beneficial. This particularly applies
to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this
domain, it has not been subject to in-depth research in visual analytics. We present a visual-interactive approach for pre-
processing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core
analysis tasks related to pre-processing of multivariate time series. To support these tasks, we identify requirements to baseline
toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty-aware
pre-processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and
uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support
for data pre-processing in general and for uncertainty-aware pre-processing of multivariate time series in particular.

CCS Concepts
•Mathematics of computing → Time series analysis; • Human-centered computing → Visual analytics;

1. Introduction

Data pre-processing (PP) is the single most time-consuming phase
in the entire data analysis pipeline. However, the characterization of
this phase is enigmatic in most publications that address informa-
tion visualization, visual analytics (VA), data mining, or machine
learning. Many research projects use artificially clean data sources
or focus on the parts of the pipeline that come after PP. At the same
time, it seems obvious that the acceptance of data analysis tech-
nologies for the industry or practitioners is strongly influenced by
the support of data PP, since this is where companies spend most of
the time and cost. In essence, real-world data for solving real-world
problems has to be pre-processed before decision making can start.

There are tools that specifically focus on data PP. Trifacta Wran-
gler is a service that supports the PP of typical business-related data
sources that are fed to business analytics tools like Tableau, SAS,
or Qlikview [BSS∗18]. Although time series require adequate
processing approaches, these tools lack a considerable support for

time-oriented data, and even more so the PP of such. This paper
further focuses on multivariate time series data (MVTS), which
is even less supported with visualization and analysis techniques
compared to univariate time series [AMST11]. Through their
added complexity, MVTS exacerbate the users’ problems related
to data PP and analysis. Information visualization and VA can be
excellent vehicles for data PP. To leverage the possibilities here,
users need an effective pipeline to assemble and compare different
PP routines using different parameters and yielding different
uncertainty measures. But when using heterogeneous tools for
PP, machine learning, and visualization, the VA process cannot
adequately be supported. Our approach supports analysts and
practitioners without extensive programming skills. This group
of users benefit the most from interactive approaches and a direct
visual reflection of changes to the PP parameters.

The rationale of this research effort is to systematically support
the visual analysis of changes made to MVTS data by PP algo-
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rithms. We assume that every change to the data implies a poten-
tial drift-away from an original phenomenon encoded in the raw
data. Ideally, analysts are easily able to identify the sweet spot be-
tween the degree of change made to the data and the preservation
of relevant information. Just as well, many PP routines will explic-
itly accomplish the reduction of less important information in data
to a more compact representation that still covers a targeted phe-
nomenon in a meaningful way. We postulate that the uncertainty
introduced with PP routines is a valuable source of information.
In an optimal case, uncertainty information can be re-played into
the analysis process to better support analysts with their tasks. In
general, it would be desirable that PP pipelines for MVTS can be
defined, validated, and refined in a human-centered, transparent,
and trust-building way, similar to general VA principles [SSK∗16].

However, PP MVTS has not yet been subject to VA research.
First, there is a gap between the rich set of routines for PP MVTS
(applied in data mining, machine learning, and information re-
trieval communities [Fu11]) and interactive tools for the creation
of pipelines for data PP. In particular, there is a lack of approaches
that exploit such routines with VA principles. A second challenge
is the dimensionality of the value domain, which makes MVTS
particularly difficult to process, visualize, and analyze [AMST11].
With an increasing dimensionality, it becomes difficult for ana-
lysts to assess and compare the effects of routines on individual
dimensions. The third challenge relates to the time-oriented uncer-
tainty information that is introduced by the routines of PP pipelines.
Even though many approaches leverage uncertainty information
for informed decision making [WYM12], it is rarely considered a
part of the data cleansing or wrangling process. Finally, analysts
are confronted with the general challenge of model parameteri-
zation [SHB∗14]: Many routines have at least one parameter that
needs to be tuned, but the comparison of multiple results processed
with different parameterizations amplifies the challenge of compar-
ing multiple MVTS visually.

We adopt VA principles for PP MVTS with assessment of un-
certainty information in the process, which has not been subject
to systematic research in the VA community so far. With this work,
we want to bridge the gap between existing algorithmic PP routines
and capabilities for the interactive construction of data processing
pipelines. The four primary contributions are as follows:

• We discuss the design space for VA solutions for PP MVTS.
For that purpose, we follow a task-based approach to address
primary challenges associated with six core analysis tasks.
• We present design solutions for visual interfaces to address chal-

lenges associated with PP MVTS. These design solutions are
based on the task characterization and result from discussions
of alternative visual representation and layout design choices.
• We identify task-based requirements of toolkits for the interac-

tive creation of PP pipelines for MVTS and briefly outline the
applicability of existing baseline frameworks. The characteriza-
tion supports designers and analysts in choosing or designing
a toolkit, and in the interactive creation of PP pipelines, respec-
tively. Finally, we present our approach that builds upon a toolkit
that addresses all requirements.
• We demonstrate the applicability of the VA approach and justify

the visualization designs in two usage scenarios that apply the
toolkit to the visual-interactive PP of MVTS.

2. Related Work

After a review of concepts and techniques related to PP, we focus
on approaches facilitating the visual-interactive analysis of MVTS.
Finally, we briefly outline recent advances in uncertainty analysis.

2.1. Pre-Processing of Time Series Data

In general, PP data becomes necessary whenever the data does not
match the requirements of downstream steps of analytical work-
flows. In the data mining, machine learning, and information re-
trieval, these downstream steps include content-based information
retrieval [LSDJ06], indexing [Mül07], tracking [MHK06], similar-
ity search [KTWZ10], feature analysis [Mör06], descriptor analy-
sis [KK03], motif discovery [Fu11], anomaly detection [SMF15],
rule discovery [Mör06], classification [MR06], clustering [WL05]
segmentation [BBB∗18], labeling [BDV∗17], prediction [EA12],
monitoring [LKL∗04], or exploratory search [Ber15]. In visual-
ization approaches these downstream steps are additionally con-
flated with the goal to support users with effective visualiza-
tions [AMST11] requiring meaningful data preparation [SAAF18].

PP is considered the first fundamental step within the KDD
reference workflow [FPS96] as well as for time series data min-
ing and analysis [AA13, Ber15]. The special characteristics of
time-oriented data [AMST11] require the individual treatment of
the temporal and the value domain. Several surveys for time se-
ries PP exist, some of which elaborate taxonomies of PP algo-
rithms [KK03, LKL∗04, Mör06, Fu11, Ber15]. We briefly review
relevant classes of PP techniques, subdivided into cleansing and
reduction, before we highlight visual-interactive PP approaches.

2.1.1. Data Cleansing (Data Wrangling)

The determination of when data is clean is challenging since there
is not one definition of clean data [KHP∗11]. One possible way
to structure data cleansing is to differentiate between the problem
space and solution space. Similarly, concrete techniques often con-
sist of an error detection and handling component. In the following,
we adhere to characterizations and taxonomies of dirty data that
help analysts to structure the problem space [KHP∗11,GGAM12].

An important class of techniques is the detection and handling
of missing values [SS18]. Imputing missing values is an approach
that can involve linear and adaptive interpolation or regression
techniques [BFG∗15]. Other error types include implausible, am-
biguous, or simply wrong values. A related PP step is dealing
with outliers and anomalies; in contrast to implausible values, out-
liers are considered plausible but may require special treatment.
For the reduction of noise, solutions often employ moving aver-
age techniques with parameters for the kernel function [Mör06].
Normalization routines [KK03] help to make time series compara-
ble and applicable for both analysis and visualization techniques.
Cleansing the temporal domain often includes equidistance of time
stamps, e.g., to foster data reduction approaches [BBGM17].

2.1.2. Data Reduction

Most data reduction techniques eliminate irrelevant parts of the data
while preserving relevant information. Compact data representa-
tions help to improve the performance and scalability of the subse-
quent analysis steps as well as visualization approaches [SAAF18].
Important classes of techniques include sampling and filtering, with
the overall idea to reduce information with respect to a pre-defined
criterion [Fu11]. As an alternative, descriptors can be applied to
revive compact representations of the data [KK03, EA12].
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2.1.3. Visual-Interactive Pre-Processing of Time Series

Several approaches advocate visual-interactive PP, building upon
the human-centered challenge to assess data quality [LK06], the
ability for visual inspection and direct manipulation [KHP∗11], or
judgment in combination with automated computation [BAF∗13].
In this work, we apply these principles to PP MVTS. Inspiring
was an approach for the visual-interactive PP of univariate time se-
ries [BRG∗12]. We borrow the idea to compare the input and output
of PP routines as well as different outputs with varying parame-
ters, as a basis for interactive navigation strategies and parameter
space analysis [SHB∗14]. Beyond that, our approach includes a
systematic characterization of design alternatives as well as uncer-
tainty support. With the focus on visual-interactive techniques for
the exploratory analysis of time series, the ChronoLenses approach
is inspiring for this work as well [ZCPB11]. We adopt the juxta-
posed and superimposed visualization of time series, and apply it to
PP tasks. The Visplause [ASMP17] design study is one of the few
VA approaches that also supports PP time series data, exhibiting
inspiring visualization designs for MVTS and uncertainty assess-
ment. Related to the latter is the “Know your enemy” tool [GE18],
enabling users to identify and assess quality problems.

2.2. Visual Analysis of Multivariate Time Series

We review techniques for the visual analysis of MVTS. Accord-
ing to surveys and evaluations on visual comparison [EMJ10,
GAW∗11], we divide relevant techniques into two categories.

Small multiples visualizations juxtapose individual dimensions
to a list of charts with a shared x-axis (time). The value domains are
either represented with position encodings (line charts, area charts,
bar charts, symmetric area charts) [EMJ10, AMST11, CLKS19,
LYK∗12,CLKS19] or encoded with color, opacity, shape, or stroke
size (heat map approaches) [GTPB19, CLKS19], or both position
and color in case of the horizon graph [Rei08]. The vertical display
space often limits the number of dimensions that can be shown si-
multaneously [EMJ10]. The required y-space and four other factors
build the basis for our characterization of the applicability of small
multiples charts to encode PP uncertainty over time.

Shared-space or large singles visualizations build the second cat-
egory. Line chart bundles and braided graphs [EMJ10, AMST11]
use superposition to include multiple dimensions. Presumed that
the span of the y-axis is small, this comparison technique is ben-
eficial compared to small multiples [EMJ10]. With stacked line
charts or stacked area charts [BW08, HHN00], we use a class of
shared-space visualizations whenever the sum of individual value
domains is of interest. Dimensionality reduction builds the basis for
a shared-space variant with the principle to map high-dimensional
data to a 2D path of time stamps [HWX∗10, BWS∗12, BSH∗16].
The technique scales for many dimensions and time stamps, and
allows the visual exploration, comparison, and summarization of
complex phenomena such as anomalies [BWS∗12], frequent pat-
terns [BWK∗13], and periodicities [WVZ∗15]. Drawbacks of di-
mensionality reduction are the introduction of errors caused by the
mapping, overplotting of similar time stamps, and axes which can-
not be interpreted easily [SZS∗16].

2.3. Quantification and Visualization of Uncertainty

We ground our understanding of uncertainty in MVTS on proba-
bilistic uncertainty modeling [BHJ∗14]. We employ a quantitative
estimation of the uncertainty of each time stamp [WYM12, LS18]

Figure 2: Two requirements for PP MVTS: adding “visual sen-
sors” everywhere in the pipeline, to conduct Single-Routine As-
sessment (I), or Multi-Routine Assessment (II). Both interactions
enable all five analysis tasks, except TO, which requires (II).

from data processing routines. To support uncertainty-aware PP
down to the finest granularity, our visualization designs require one
quantitative uncertainty value for every timestamp t, dimension d,
MVTS X , parameterization p, and PP routine r. To accomplish this,
we apply a strategy for the quantification of uncertainty, which de-
termines a normalized relative difference value for each timestamp

and dimension urel(x(t,d)) =
abs(x(t,v,r)−x(t,v,r−1))−µz

σz
, where µz is the

mean difference, and σz is the deviation [BBB∗19].

The incorporation, characterization, and evaluation of uncer-
tainty in visualization methodlogies and applications [BHJ∗14,
Mac15, SSK∗16, BPHE17, HQC∗18] is a widely accepted subject
to research. However, the analysis of uncertainty produced by pro-
cessing algorithms along a pipeline is considered an open chal-
lenge [vLFR17]. Methodlogies for multiple types of uncertainties
for processing steps exist [WYM12], just like uncertainty visualiza-
tion approaches for PP and quality assessment [BBB∗18,BBGM17,
CCM09]. However, visual support for temporal uncertainty for PP
is still rather univestigated. User evaluations and design studies on
temporal uncertainty visualizations exist [GBFM16,WBFL17], but
focus on changes in event states, rather than uncertainty time series
over time. Our solutions depict uncertainty as an additional dimen-
sion for every dimension of the MVTS, similar to general visualiza-
tion techniques for time series (cf. Section 2.2). For the aggregation
of many uncertainty time series leading to (statistical) distributions
over time, we employ bundles of line charts, quartile trend charts, as
well as box plots over time [PWB∗09,AMST11,BHJ∗14,RBS∗18].
Finally, we derived valuable insights for characterization of visual-
izations from a user experiment on graphical perception of multiple
time series [EMJ10], which we adopt for PP MVTS.

3. Approach

We present a VA approach for visual-interactive PP MVTS. Ana-
lysts, as well as practitioners without programming skills can in-
teractively assemble and combine routines into a pipeline that can
be customized and executed. We provide visual interfaces to sup-
port the analysis of the pipeline including intermediate results, and
uncertainties at different levels of granularity. With the approach,
analysts have means to exploit the rich set of existing PP rou-
tines [Fu11] to solve data quality problems and transform MVTS
into useful forms for effective downstream analysis.

Our rationale was to follow a task-oriented design approach.
Based on six primary analysis tasks (Section 3.1), we designed vi-
sual interfaces that support analysts to execute these tasks (Sec-
tions 3.2 - 3.7). To let readers benefit from the huge space of vi-
sualization designs, we characterize the visualization design space,
evaluate alternative designs, and justify our design solutions.

3.1. Task Characterization

At a glance, we support analysts in the creation of pipelines, as well
as in the interactive analysis of the output [vLFR17]. With the order

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

403



Bernard et al. / Visual-Interactive Preprocessing of Multivariate Time Series Data

Figure 3: Visual-interactive tool for the creation of PP pipelines for MVTS (Usage Scenario 1). The left window shows the tool for the creation
and modification of the pipeline (TC, TO): The tree view at the left contains a structured overview of the input- processing- and visualization
modules. The center of the window shows the processing flow, in this case consisting of one module for loading, six PP routines as well as two
“visual sensors” to interactively couple the pipeline with visualizations (TR). The visualization module in the window at the right window
shows an intermediate result of the pipeline: The juxtaposed and the dimensionality-reduced visual representation for seven dimensions of the
MVTS are shown side-by-side. Both techniques enable the visual comparison of input (dark gray) and output (light gray) MVTS (TR). In both
cases, color facilitates the visual comparison of three different parameterizations (blue, light gray, orange) (TP). Juxtaposition is preferable
for the detail-rich visualizations of few dimensions whereas dimensionality reduction helps to validate changes made to all dimensions at a
glance. The uncertainty visualization at the bottom (TU) uses boxplot charts over time to scale for both: dimensions and time stamps.

of tasks, we adhere to the natural way of creating pipelines: from
single routines to complex pipelines. The final overview task may
then induce global-to-local navigation strategies [SHB∗14].

• TC Creation: Interactive construction and execution of a pipeline
• TR Routine: Assessment of effects of a single routine
• TP Parameters: Effects of alternative parameter values
• TD Dimensions: Output analysis for individual dimensions
• TU Uncertainty: Relate uncertainty of routine with MVTS
• TO Overview: Assessment of effects of routines in the pipeline

3.2. Interactive Creation of Pre-Processing Pipelines (TC)

We define requirements of the baseline toolkit that should allow
the construction of PP pipelines as well as the analysis of MVTS
and discuss the applicability of a selection of well-known toolkits.
Finally, we show a prototypical toolkit that meets all requirements.

Requirements met by existing Toolkits We adopt impor-
tant basic requirements from previous conceptual works and sur-
veys [SHB∗14, vLFR17, BSS∗18]. Toolkits should allow analysts
to combine different processing steps, build branches of data flows,
and steer parameter values in order to explore the underlying data
set and processing options. Our focus here is on MVTS, and there
already exist libraries with dedicated data structures and PP rou-
tines for MVTS. The toolkit should therefore make routines from
third-party libraries available and easily usable in the working en-
vironment. Due to the importance of visualization, it is crucial that
this also refers to custom visualization components. Finally, we aim
for a large user group being able to use the toolkit.

Alternative Preprocessing Toolkits These requirements are
met, to various degrees, by several well-known toolkits for
data mining, machine learning, and visualization. For exam-
ple, WEKA [HFH∗09] offers rich sets of data mining and ma-
chine learning functionalities. KNIME [BCD∗07] is an analyt-
ics platform for data science and workflow creation. The Or-
ange [DCE∗13] toolkit is a Python environment with a focus on
data mining and visualization. RapidMiner [Rap] is an integrated
machine learning workflow creation environment. In particular, a

common task that is already well supported by existing data anal-
ysis toolkits is the construction of a pipeline. The same is true for
offline parameter steering and general visualization support.

Requirements not yet met by existing Toolkits There are task-
oriented requirements for PP MVTS that go beyond what is cur-
rently offered by the well-known toolkits. These requirements,
which have been generalized from related works (cf. Section 2.1.3
and previous projects in the areas of climate research and medical
data analysis (cf. Section 4), are important for all of the charac-
terized tasks (TR,TP,TD,TU, and TO). The task-oriented require-
ments endorse a closer coupling of the pipeline construction and
visualization. This implies a form of interaction that goes beyond
the pure construction and structural modification of the pipeline –
namely, an interaction with the pipeline that supports the analysis
of the effects of individual processing steps. To achieve this, the
analyst should be able to interactively add “visual sensors” at any
point within the pipeline, to achieve a whitebox nature of the entire
workflow (see Figure 2). One requirement is to visually compare
the input and output data of individual processing steps (TR, TD

– Single-Routine Assessment). Another requirement is to use vi-
sual sensors to assess the input and output MVTS of any arbitrary
subsequence of the pipeline (TO – Multi-Routine Assessment). Ad-
ditionally, the coupling of the PP steps with visualizations should
support analysts in gaining an understanding for the effects of dif-
ferent parameterizations (TP), as well as for the uncertainty of in-
volved routines (TU). This is crucial to allow analysts to relate pa-
rameterizations and uncertainties with the corresponding routine,
so that she can steer routines and interactively select the most suit-
able parametrization for the downstream processing pipeline.

Our Approach For the purpose of a conceptual presentation of
the potential benefits of these interaction possibilities, we used a
very simple open source library called javagl-flow [jav]. Although
it does not offer a rich feature set like the toolkits mentioned above,
it meets all requirements necessary for PP MVTS. It has a simple
plugin concept for custom processing steps. It also supports a sim-
ple integration of our visualization design solutions for the visual
comparison of MVTS and different parameterizations at different
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Figure 4: Three classes of techniques for the visual input-output
comparison of MVTS. A: small multiples for every juxtaposed di-
mension show input (gray) and output (black). B: superposition of
multiple dimensions. The approach requires color-coding, thus, it
is limited to 7± 2 dimensions. Input-output comparison requires
another visual encoding. C: dimensionality reduction of MVTS re-
veals a path metaphor in 2D, allowing the visual input-output com-
parison of all dimensions in a large-singles display.

points in the pipeline. Figure 3 shows one example PP workflow
and a visualization that was created with the toolkit.

For the coordination of views, the interface offers the standard
functionality of common workflow construction toolkits, namely to
drag-and-drop processing modules into the workspace and connect-
ing their outputs to the inputs of subsequent modules (TC). In addi-
tion, analysts can add uncertainty-aware visualization modules that
may either show a current state of the MVTS within the pipeline,
compare input and output MVTS of a routine, or compare input and
output at different points in the pipeline.

3.3. Assessment of Effect of a Single Routine (TR)

Assessing the effect of algorithmic models is a general task in many
VA environments [SSZ∗17]. Our line of approach is to superim-
pose the input and output MVTS to uncover these effects, allowing
the user to judge if the result of a routine satisfactory. An addi-
tional design challenge is that of visualizing the effects on multiple
dimensions simultaneously with only a limited amount of display
space.

Alternative Visualization Designs The review of related works
in Section 2.2 offers three classes of visualization approaches.
Figure 4 indicates the design space with tree prototypes, respec-
tively. One strategy is juxtaposition of individual dimensions of a
MVTS (left image). Visual comparison of input (gray) and output
(black) is easily feasible as long as the number of dimensions
is manageable with the available display space. Superposition
of multiple dimensions in a large singles display is the second
design strategy (center image). The number of distinguishable
colors (or shapes) needed to encode individual dimensions is
a limiting factor. A supplementary encoding (e.g., thickness or
dashing) enables the comparison of input and output time series.
Normalization of the value domains is necessary, with the price
of losing the absolute value domains. Dimensionality reduction
builds the basis for mapping all dimensions of the MVTS into 2D
(third approach, right image). With only one path metaphor (gray,
black) for all dimensions of the MVTS, the visualization technique
is agnostic to the dimensionality. This visualization is well-suited
for the exploration of phenomena represented in all dimensions of
the MVTS (e.g., frequent patterns, periodicities, cf. Section 2.2),
as well as for the observation of effects of operators that are
applied to all dimensions of the MVTS simultaneously (e.g.,
noise reduction, smoothing). However, the visualization suffers
from overplotting for many (similar) time stamps. In addition,
input-output comparison in this abstract representation of MVTS
lacks semantic interpretability and may require special expertise.

Our Approach We prefer the juxtaposed and the
dimensionality-reduced visual representation of MVTS as
they do not require color to discriminate individual dimensions
(preserved for parameter comparison). As a default, we use jux-
taposition as long as the number of (user-selected) dimensions is
manageable with respect to the vertical display space [EMJ10]. As
the dimensionality reduction approach is agnostic to the number
of dimensions, it may be an interesting complement for multiple
dimensions. In Figure 3 (right), a smoothing process is shown for
seven dimensions. The juxtaposition still works well, but would
run into scalability problems for considerably more dimensions.
The dimensionality reduction technique works almost unaffected
from dimensionality problems: analysts can easily infer a periodic
pattern in the MVTS that has effectively been smoothed.

3.4. Effects of Alternative Parameter Values (TP)

Many PP routines have at least one parameter that is steerable by
the analyst [SHB∗14]. Without any guidance component, it is dif-
ficult to assess the effect of changes in parameter values, or even
steer towards optimal parameter values.

Our Approach Our solution allows the visual comparison of mul-
tiple MVTS that are computed by a routine based on different pa-
rameterizations. The comparison of multiple results is hardly fea-
sible with the class of superimposed visualizations shown in Fig-
ure 4, where categorical colors encode multiple dimensions in a
joint value domain. Therefore, we enhanced our visual interfaces to
support the comparison of multiple processing outcomes based on
juxtaposition and dimensionality reduction. Figure 3 (right) shows
the two visual-interactive interfaces. In both cases the use of color
allows comparing the effects of different parameter values. We pro-
vide zooming and panning functionality for effective exploration,
for the eventuality that the available space needs to be scaled.

3.5. Output Analysis for Individual Dimensions (TD)

One particular challenge related to MVTS is the dimensionality
of the data. On the one hand, a visual interface is needed that al-
lows the detailed analysis of individual dimensions on demand. On
the other hand, analysts need to face the challenge to determine
which of the available dimensions require manual inspection. In
many cases, it is not effective to assess effects of routines for each
available dimension in detail. However, there is always the risk of
overlooking dimensions that may require manual inspection. An-
alysts may have different intents to conduct analysis of individual
dimensions. It can be important to validate whether a routine pro-
duces useful results down to singular dimensions, or that a routine
affects the individual dimensions appropriately. In some cases the
characteristics of MVTS dimensions can be similar, like the ECG
measurements used in Usage Scenario 2. Especially for heteroge-
neous dimensions such as the weather sensors used in Usage Sce-
nario 3, assessing the range of effects may be crucial. Finally, de-
pending on the dimension characteristics, routines can be applied
globally, or might be parametrized differently.

Our Approach We support analysts with a component that directs
the analysis towards interesting dimensions in the MVTS. Different
interestingness scores are calculated by a degree-of-interest func-
tion. While our set of interestingness measures is not exhaustive,
based on our insights into the application domain, we provide mea-
sures to evaluate dimensions by a) uncertainty, b) degree of change
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Line Chart Area Chart Horizon Gr. Heat Map Gray Scale Symm. Area Bar Chart

Required Y-Space – – ø + + ø –
Temporal Resolution + + + + + + –
Need for color + + – + + + +
Line Chart Conflict – ø + + + + +
Dimension Localization + + – + – + +

Table 1: Applicability of small multiples chart types to encode temporal uncertainty information for multiple dimensions. The ordinal scores
range from bad to good ( – , ø , + ) used to characterize the applicability for different design aspects.

to the value domains, c) variance of the time series, d) original or-
der, and e) the alphabetical order (to ease analyses addressing the
semantic meanings). The scores of the ranked degree-of-interest
functions are used as directive guidance [CGM∗17] to MVTS di-
mensions and allow the effective dimension selection. In the jux-
taposed visualization of dimensions in Figure 4, the variance cri-
terion was used for the dimension selection (high variances at the
top). It can be seen that the usefulness of the smoothing routine
differs between dimensions with high and low variance.

3.6. Relate Uncertainty of Routine with MVTS (TU)

We postulate that uncertainty stemming from PP is a valuable
source of information that can be replayed back into the analysis
process. Our uncertainty quantification strategy measures the un-
certainties introduced by PP routines [BHJ∗14], by calculating the
normalized relative difference uncertainty for every timestamp, di-
mension (TD), parameterization (TP), and routine (TR) [BBB∗19].
To enable analysts to assess the uncertainty for multiple dimensions
or parameterizations, we aggregate uncertainty into statistical dis-
tributions. Finally, summing up uncertainties of cascading routines
supports the uncertainty-aware overview of the pipeline (TO).

Alternative Visualization Designs From a methodological per-
spective, we support relation-seeking between the MVTS and the
uncertainty using the temporal domain as a shared primary key. An-
alysts will be able to identify uncertainty effects and link them to
the phenomena in the MVTS just like the other way around. The
design challenge at hand is the combined visualization of MVTS
and uncertainty: For every dimension of a MVTS, we provide an

Line Chart
Bundle

Quartile
Trend Cht.

Boxplot
Chart

Visual Clutter – ø +
Required Y-Space – + +
Aggregation Loss + – –
Temp. Resolution + + –
Temp. Scalability – – +
Line Chart Conflict – ø +
Within-the-Bar-Bias ø ø –

Table 2: Applicability of shared-space chart types to encode a set
of uncertainty series over time. The ordinal scores range from bad
to good ( – , ø , + ) used to characterize the applicability for
different design aspects.

accompaning uncertainty time series. To account for design alter-
natives, we provide an overview of uncertainty visualizations for
single uncertainty time series in the sense of small multiples in
Table 1, i.e., Line Chart, Area Chart, Horizon Graph, Heat Map,
Gray Scale, Symmetric Area Chart, and Bar Chart (cf. Section 2.2).
For the overview of statistical distributions of uncertainty over time
(large singles techniques) in Table 2, we employ Line Chart Bun-
dles, Quartile Trend Charts, as well as Box Plot Charts (cf. Sec-
tions 2.2 and 2.3). Inspired by the empirical works of Elmqvist
et al. [EMJ10], Gschwandtner et al. [GBFM16], and Wunderlich
et al. [WBFL17], we characterize the applicability of the design
alternatives with respect to PP tasks, as well as visual scalability,
temporal resolution, and perceptual (within-the-bar-bias [NS12])
issues, which designers may deem important in the connection of
uncertainty-aware PP MVTS.

Our Approach We suggest the use of Symmetric Area Charts as a
default for small multiples techniques (cf. Figures 8 and 9). If the
span of the y-axis is small, Heat Map approaches are an effective
alternative, which in theory only need one pixel of height (cf. Fig-
ure 1). Both techniques do not show any weaknesses in our charac-
erization (see Table 1). For visualizing uncertainty distributions, we
prefer the Quartile Trend Chart (Figure 7) if the number of time
visualized stamps does not cause visal scalability problems. To ad-
dresse visual scalability issues, our default is the Boxplot Chart ag-
gregating both the value and the temporal domain. Both techniques
outperform the Line Chart Bundle technique (see Table 2).

3.7. Assessment of Effects of Routines in the Pipeline (TO)

With the baseline toolkit and the visual interfaces, analysts have the
means to add, analyze, optimize, and connect individual routines.
The visual-interactive nature of the toolkit also allows gaining an
overview of resulting pipelines as a whole. Complementary to the
routine overview is the overview of the impact of routines when
the pipeline is applied to MVTS. Analysts may want to assess and
compare the effects that individual routines of a pipeline have on the
MVTS. It may be particularly beneficial to identify routines that
cause the largest changes in the MVTS, or introduce the largest
uncertainty. With these insights gained from the global overview,
the baseline toolkit can then be used to navigate to routines that
require improvement.

Our Approach We use the introduced uncertainty of every rou-
tine (TU) in the pipeline. Figure 5 shows the visual interface that
provides an overview of effects of all routines (TO). We employ
stacked area charts for the visualization of uncertainty of routines
over time. This allows the assessment of both the overall amount
of uncertainty as well as the individual uncertainties of routines.
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Figure 5: Overview of temporal uncertainties introduced by five
routines of a pipeline (TO). Stacking of the uncertainties of the five
color-coded routines allows the uncertainty-aware analysis of indi-
vidual routines as well as the overall pipeline (TU). In the example,
the most uncertainty is introduced with the moving average (or-
ange), the sampling (pink), and the perceptually important points
(green). Large green areas of uncertainty in the lower dimension
indicate that there is room for improvement of the respective pa-
rameterization (TP).

Specifically, it can be determined if particular temporal regions
were affected more significantly than others and if this can be at-
tributed to a single routine. The green routine in Figure 5 added
a considerable amount of uncertainty for the lower dimension. It
may be advisable to investigate the routine in detail and improve
the steering parameters accordingly (TP).

4. Usage Scenarios

We demonstrate the applicability of our approach in two usage sce-
narios with different analysis goals. For the two scenarios, we use
photovoltaics data with solar-dependent sensors [BKS12] and a cli-
mate data set measured in Antarctica [RLKLI12].

4.1. Reduction of Photovoltaics Data for a Web System

Compact and faithful reductions of MVTS data are a prerequisite
for many algorithms and visualizations. In this usage scenario, we
demonstrate how a complex MVTS is pre-processed into a compact
representation that can be exchanged in a web-based client-server
architecture. The data at hand is from a photovoltaics database with
20 solar-dependent sensors including different types of radiation
measurements [BKS12]. Overall, 57 stations in the network mea-
sure these parameters all over the world allowing the assessment
where on Earth photovoltaics technology could be most effective.
With the temporal resolution (quantization) of 60 seconds every
station produces 1,000,000 values every month. For being useful
in a web-based data visualization context an effective data reduc-
tion strategy is necessary. This usage scenario reproduces a real-
world use case that was conducted 2013 [BDF∗15], without having
VA support. Overall, the creation, validation, and optimization of
the PP had taken about two years. The PP process was scattered
across multiple tools and systems, making parameter changes hard
to track, and data had to be re-loaded constantly. With the tool, this
is now resolved. Re-creating and validating the entire PP pipeline
required less than one hour.

Together with the analyst, we start an early visual analysis of all
dimensions. For that purpose, we add the data loader to the pine-
line (TC), followed by a component for the visualization of the raw
MVTS. One dimension only contains missing values, possibly be-
cause of a broken sensor. We remove this dimension and focus on
missing values of the 19 remaining dimensions (TD). The red dots
in Figure 6 disclose that the MVTS contains occasional missing
values. We apply a linear interpolation routine to the pipeline (TC)
to impute the missing values. An optional step may be to guarantee

Figure 6: Missing value replacement with an interpolation rou-
tine (TR). Zooming to an interval of 6 days for three dimensions
reveals a series of missing values (red dots). The uncertainty visu-
alization shows where missing values were imputed (TU).

the equal quantization after the chances made to the temporal do-
main. In such a case an equidistance routine with the natural quan-
tization of 60 seconds may be appropriate.

Figure 6 also shows that the MVTS has a natural periodicity.
The dimensions (TD) show regular increases and decreases as in
the interval of six days (daily patterns). However, the dimensions
contain a considerable amount of noise accompanying the periodic
phenomenon. The analyst explains that most of the noise can be
explained with varying cloud conditions which have an influence
on solar radiation. However, for the web-based photovoltaics sce-
nario it is more relevant to communicate the total amount of radia-
tion rather than the occurrence of noise. Together with the analyst,
we add a smoothing routine (TC,R) to make the data more useful.
By using the variance-based dimension selection for guidance (cf.
Section 3.5), we select 7 of the 19 dimensions with considerably
differing variances (cf. Figure 3). With the input-output compari-
son technique, we zoom to a time interval that reveals the strong
effect of the smoothing routine to the more variant dimensions at
the top (TR). The dimensionality reduction approach at the right
reveals the periodic phenomena in the data, which should be well-
preserved after smoothing. To check the introduced uncertainty, we
add an uncertainty view, where the analysts identifies significant
spikes, corresponding to the regions affected by smoothing. By di-
rect comparison, the orange parameterization introduces the most
uncertainty (TU).

Informed by the visualizations, the analyst aims for parameter
analysis to optimize the effect of the routine to the MVTS for the
web scenario (TP). The analyst selects two dimensions for a fine-
grained analysis of parameterizations (Direct Radiation and Station
Pressure) shown in Figure 1. Overall, results with seven different
parameter values can be compared (from 5 to 160 minutes, blue to
orange). Just as well, uncertainty information introduced by differ-
ent parameterizations can be assessed with the compact heat map
technique underneath (cf. Section 3.6). The analyst infers that the
averaging effect with orange parameter values is too coarse (TP)
and decides for a moving average kernel of 20 minutes. This poses
a good trade-off between signal preservation and noise reduction.

The smoothed MVTS is now in a state to apply data reduc-
tion (TC). The challenge at hand is adding a sampling routine (TC)
to remove a considerable number of time-value pairs without losing
too much information. With the dimension-selection support (TD),
we select six dimensions with high variations of uncertainty (very
high on top) and apply the sampling routine. In Figure 7 the dimen-
sions are shown via juxtaposition. At the bottom the Quartile Trend
Chart shows the aggregated uncertainty across all dimensions (TU).
The analyst decides for a temporal kernel of 10 minutes: the routine
then preserves the original phenomenon, while the temporal reso-
lution yields a considerably more compact representation (TP).
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Figure 7: Assessment of the effect of a sampling routine to six se-
lected dimensions (TR, TP, TD). The Quartile Trend Chart at the
bottom depicts the uncertainty for every parameterization (aggre-
gated over dimensions, cf. Table 2). The blue parameterization (5
minute kernel) almost introduces no uncertainty, in contrast to con-
siderable changes caused by the orange kernel (40 minutes) (TU).

With the goal to further compress the MVTS, the analyst adds
another data reduction technique: the perceptual important points
(PIP) algorithm [ZJGK10] preserves time-value pairs that are
standing out and removes non-descriptive time-value pairs. As
such, this technique is well-suited to prepare the data for the web-
based photovoltaics use case. Figure 8 demonstrates how our small-
multiples visualization supports the parameterization of the PIP
routine for a single dimension (TR, TP, TD). Zooming to a time
interval of four days reveals that 5,750 original time stamps could
be reduced to a representation with only 100 time stamps (98%
compression). With the result, we have achieved a representation
of the MVTS that can be used for the web-based analysis system
for the analysis of photovoltaics data.

The final PP pipeline is shown in Figure 3 (left). A data loader,
six PP routines, and several “visual sensors” have interactively been
added and combined. As a final task, the analyst wants to gain an
overview of the effects of the entire pipeline to validate the result
(TO). Figure 5 shows the input (gray) and output (white) time series
for two selected dimensions (TD), as well as uncertainties from all
employed routines. In addition to the visual comparison of the in-
put and output MVTS, the analyst uses the uncertainty visualization
to assess the effects of individual routines, as well as of the entire
pipeline. The analyst observes that the PIP routine (green) intro-
duced a significant amount of uncertainty for dimension at the bot-
tom. This is not acceptable and must be addressed by re-configuring
the PIP routine with a different parameterization (TR, P), followed
by a step for the repetitive validation of the pipeline (TO, U).

4.2. 30 Years of Climate Observation Data

The goal of this usage scenario is to make a longitudinal climate
data set usable for effective downstream analysis. Since March
1981, a meteorological observatory program has been carried out
at Neumayer Station (NM) (70◦37’S, 8◦22’W), located in Antarc-
tica. NM is an integral part of many international networks, e.g.,
the World Meteorological Organization (WMO). We use a data set
that was recorded at NM over 30 years [RLKLI12, BKS14]. The
data was recorded every three hours and includes four sensors (air
pressure, air temperature, wind direction and wind speed). In con-
trast to weather analysis, which usually focuses on time intervals of
several days or weeks, the analysis of climate data usually is at the
granularity of years. To support effective climate analysis, two chal-
lenges have to be faced with PP. First, the data needs to be cleaned
to guarantee that data is usable by downstream data analysis algo-
rithms. Second, data reduction is needed that will allow effective
analysis but preserves aspects relevant for climate analysis.

Figure 8: Calibration of the perceptual important points (PIP) al-
gorithm to achieve a compact and still representative data reduc-
tion (TR, TP, TU). A single dimension was selected to demonstrate
the parameter calibration. For the time interval of four days (5760
time-value pairs in the original data), the PIP algorithm requires
about 100 time-value pairs to represent the signal in a perceptually
similar way (overall compression of 98%).

The analyst uses the small-multiples visualization to gain an
overview of the raw weather data set with four dimensions (air pres-
sure, air temperature, wind direction and wind speed). All dimen-
sions contain fine-grained variation that can be omitted for long-
term climate analysis. As expected, the analyst identifies a yearly
pattern when investigating the air temperature dimension (TD).
However, the MVTS contains missing values distributed across the
temporal domain, which impede downstream data processing.

Hence, the analyst begins PP with the removal of missing the
values and adds two routines to the pipeline (TC): The first routine
simply removes missing values, whereas a second linear interpo-
lation routine fills the gaps which are scattered across the value
domain. Another step to achieve a certain level of data quality is to
guarantee an equal quantization. In this connection, the analyst also
aims at providing equidistance which is a pre-condition for many
data mining and machine learning algorithms (cf. Section 2.1.3).
For the parameterization of the equidistance routine, there is no
need to fall back to our visual interfaces, as knowledge of the ana-
lyst about her domain and the data set requires a fixed quantization
of 3 hours. In fact, using the uncertainty-aware small multiples vi-
sualization helps to validate that the routine did not cause any un-
expected and unwanted violations to the usefulness of the MVTS.

The next step particularly requires visual interfaces, not only for
validation but also parameterization purposes: The analyst wants
to treat outliers to further improve data quality. The analyst exper-
iments with a standard deviation-based routine, which crops the
value domain whenever the distance of values to the mean exceeds
a certain threshold. However, due to the natural periodicity of the
data, the routine always crops day and night peaks: the interface in
Figure 9 clearly demonstrates that the routine with the interval of
parameter values would cause harm to the MVTS (TR, D, P). It be-
comes apparent that the statistical outlier treatment algorithm does
not take the temporal progression into account appropriately, which
leads to sub-optimal results.

For climate analysis, the analyst wants to condense the fine-
grained temporal information to a more robust representation. With
the natural periodicity of one day, sampling the MVTS with a daily
granularity appears to be a sensible choice (TR,P). To achieve repre-
sentative sampling points the remaining challenge is smoothing the
MVTS as an intermediate step. The analyst tests a moving average
routine with parameterizations from three hours to eight days and
starts to fine-tune the parameterization. This process is similar to
the decision-making process in the first scenario, depicted in Fig-
ure 1. In this case, the parameterization of two days seems to be the
sweet spot between the coverage of short-term weather phenom-
ena and smoothing the data towards long-term climate analysis.
After smoothing, the MVTS is now applicable for data sampling
to receive a more compact data representation. The analyst adds
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Figure 9: Statistical outlier treatment routine working in terms of
distances of standard deviations to the mean. The routine cuts low
and high and peaks, regardless of the time-orientation of the data,
which may be very error-prone for time-oriented data.

a sampling routine to the pipeline (TC) and starts to fine-tune the
temporal kernel interval. After the analysis of alternative param-
eterizations and uncertainty effects, she decides to condense the
MVTS to one value per day.

As a whole, the original data set with about 90,000 time stamps
was condensed to a MVTS with about 11,000 time stamps (about
88% compression) and can now be used to conduct effective cli-
mate analysis. As a final step, the analyst wants to assess the po-
tential fail that would have been caused by the neglected outlier
treatment routine described earlier and described in Figure 9. For
that purpose, the analyst uses two “visual sensors” and attaches the
output of the neglected outlier routine with the final output (after
sampling). At the right of Figure 10, it can be seen that the analyst
was well-advised to neglect the outlier routine: It can be seen that
the outlier treatment routine (gray) would have cut considerable
parts of the valuable peak information. At the left of Figure 10,
the final pipeline can be seen, consisting of a data loader, four PP
routines, as well as several “visual sensors” that have successfully
been used for the validation of routines, and routine parameters.

5. Discussion and Future Work

We identified possible future research directions that aim at provid-
ing a fully integrated PP and analysis suite for MVTS.

Parameterizations for Individual Dimensions Our interfaces
allow visualizing individual effects that PP steps have on MVTS.
We specifically address the problems of visualizing the effects on
the individual dimensions of the MVTS, and on results of differ-
ent parameterizations of routines. For the analyst, this may bring
some important insights; namely, that the effect of a processing step
with a certain parameterization is as desired for one dimension, but
should be applied with a different parameterization for another di-
mension. The potential benefits and possible integration options for
steering the parameterization of PP steps for individual dimensions
still has to be investigated.

Facilitating Data Integrity Our contributions are one step to-
wards an analysis suite for MVTS that makes PP an integral part of
the VA workflow. But although PP often aims at ensuring certain
consistency and quality criteria for MVTS, they may also have the
opposite effect. For example, a downstream routine may require (or
worse: silently assume) equidistant MVTS. If some upstream step
only removes a single entry in a MVTS, this may cause this pre-
condition to be violated. Properly stating and formalizing the actual
requirements that certain analysis steps have for MVTS is difficult,
but is an interesting area of research for the information visualiza-
tion community in general. Therefore, describing, identifying, and
resolving inconsistencies as well as establishing or maintaining cer-
tain integrity criteria for MVTS is subject to future work.

Figure 10: Final pipeline applied on the longitudinal climate data
set. The analyst has put two “visual sensors” to the output of the
OutlierTreatment and Sampling routine to facilitate the visual com-
parison of different branches. Right: the comparison reveals that
the outlier routine (gray) would have cut considerable parts of the
peaks, which have been preserved with the final branch (white).

User Evaluations of Design Alternatives We have character-
ized the extent of the design space for uncertainty-aware PP of
MVTS and argued about particular design choices made when we
demonstrated our visualization techniques. This characterization
may also foster future user evaluation approaches to identify in-
teresting experiment factors. In the scope of evaluation endeavors,
we have a concrete agenda to conduct a field study with real-world
users to test the effectiveness and efficiency of alternative uncer-
tainty visualizations for different tasks. Also interesting is the as-
sessment of trade-offs between design alternatives with regard to
visual scalability to foster adaptivity (cf. Sections 3.3 and 3.6).

Dimensionality Reduction From the related work, we borrowed
the idea to map phenomena of MVTS into paths in 2D as an inter-
esting method for thinking about scalability. In addition, we con-
firm benefits for anomaly detection, noise reduction, and smoothing
routines (see. Figure 3, right). However, dimensionality reduction
suffers from a lack of interpretability, e.g., regarding the meaning
of display axes [SZS∗16]. It would be interesting to evaluate how
users interpret the dimensionally reduced plots.

6. Conclusion

We presented a novel VA approach that allows for the visual-
interactive and uncertainty-aware PP of MVTS for the first time.
For six analysis tasks, we discussed visualization design al-
ternatives, presented uncertainty-aware visualization techniques
and coupled these solutions with a visual-interactive prototypical
toolkit that meets all our requirements to PP MVTS in the sense of
a whitebox integration. With the approach, we aimed to bridge the
gap between existing PP routines and general toolkits for pipeline
creation. In two usage scenarios, we demonstrated that complex PP
pipelines for MVTS can now be created with VA principles by a
broader user group beyond data scientists. Future approaches may
benefit from the characterizations of design considerations. This re-
gards the selection or design of PP tools, visualization techniques
for MVTS, as well as uncertainty-aware analysis interfaces. Finally,
we have extended the space for user studies in connection with the
proposed analysis tasks and visualization designs for PP MVTS.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft
(DFG) and the Austrian Science Fund (FWF), Project No. I 2850
(-N31), Lead Agency Procedure (D-A-CH) “Visual Segmentation
and Labeling of Multivariate Time Series (VISSECT)”.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

409



Bernard et al. / Visual-Interactive Preprocessing of Multivariate Time Series Data

References

[AA13] ANDRIENKO N., ANDRIENKO G.: A visual analytics frame-
work for spatio-temporal analysis and modelling. Springer Data Min-
ing and Knowledge Discovery 27, 1 (2013), 55–83. doi:10.1007/
s10618-012-0285-7. 2

[AMST11] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI
C.: Visualization of Time-Oriented Data, 1st ed. Human-
Computer Interaction. Springer Verlag, 2011. doi:10.1007/
978-0-85729-079-3. 1, 2, 3

[ASMP17] ARBESSER C., SPECHTENHAUSER F., MÜHLBACHER T.,
PIRINGER H.: Visplause: Visual data quality assessment of many time
series using plausibility checks. IEEE Transactions on Visualization and
Computer Graphics (TVCG) 23, 1 (2017), 641–650. doi:10.1109/
TVCG.2016.2598592. 3

[BAF∗13] BÖGL M., AIGNER W., FILZMOSER P., LAMMARSCH T.,
MIKSCH S., RIND A.: Visual analytics for model selection in time se-
ries analysis. IEEE Transactions on Visualization and Computer Graph-
ics (TVCG) 19, 12 (2013), 2237–2246. doi:10.1109/TVCG.2013.
222. 3

[BBB∗18] BERNARD J., BORS C., BÖGL M., EICHNER C.,
GSCHWANDTNER T., MIKSCH S., SCHUMANN H., KOHLHAMMER J.:
Combining the Automated Segmentation and Visual Analysis of Multi-
variate Time Series. In EuroVis Workshop on Visual Analytics (EuroVA)
(2018), Eurographics. doi:10.2312/eurova.20181112. 2, 3

[BBB∗19] BORS C., BERNARD J., BÖGL M., GSCHWANDTNER
THERESIA KOHLHAMMER J., MIKSCH S.: Quantifying Uncertainty
in Multivariate Time Series Pre-Processing. In Review. EuroVis Work-
shop on Visual Analytics (EuroVA) (2019), Eurographics. submitted. 3,
6

[BBGM17] BORS C., BÖGL M., GSCHWANDTNER T., MIKSCH S.: Vi-
sual Support for Rastering of Unequally Spaced Time Series. In Vi-
sual Information Communication and Interaction (VINCI) (2017), ACM,
pp. 53–57. doi:10.1145/3105971.3105984. 2, 3

[BCD∗07] BERTHOLD M. R., CEBRON N., DILL F., GABRIEL T. R.,
KÖTTER T., MEINL T., OHL P., SIEB C., THIEL K., WISWEDEL B.:
KNIME: The Konstanz Information Miner. In Studies in Classifica-
tion, Data Analysis, and Knowledge Organization (GfKL 2007) (2007),
Springer. 4

[BDF∗15] BERNARD J., DABERKOW D., FELLNER D. W., FISCHER
K., KOEPLER O., KOHLHAMMER J., RUNNWERTH M., RUPPERT T.,
SCHRECK T., SENS I.: Visinfo: a digital library system for time series
research data based on exploratory search - a user-centered design ap-
proach. International Journal on Digital Libraries (IJoDL) 16, 1 (2015),
37–59. doi:10.1007/s00799-014-0134-y. 7

[BDV∗17] BERNARD J., DOBERMANN E., VÖGELE A., KRÜGER B.,
KOHLHAMMER J., FELLNER D.: Visual-interactive semi-supervised la-
beling of human motion capture data. In SPIE Visualization and Data
Analysis (VDA) (2017). doi:10.2352/ISSN.2470-1173.2017.
1.VDA-387. 2

[Ber15] BERNARD J.: Exploratory search in time-oriented primary
data. Dissertation, PhD, Technische Universität Darmstadt, Graphisch-
Interaktive Systeme (GRIS), Darmstadt, Germany, 2015. URL: http:
//tuprints.ulb.tu-darmstadt.de/5173/. 2

[BFG∗15] BÖGL M., FILZMOSER P., GSCHWANDTNER T., MIKSCH
S., AIGNER W., RIND A., LAMMARSCH T.: Visually and statistically
guided imputation of missing values in univariate seasonal time series. In
IEEE Visual Analytics Science and Technology (VAST) (2015), pp. 189–
190. doi:10.1109/VAST.2015.7347672. 2

[BHJ∗14] BONNEAU G.-P., HEGE H.-C., JOHNSON C. R.,
OLIVEIRA M. M., POTTER K., RHEINGANS P., SCHULTZ
T.: Overview and State-of-the-Art of Uncertainty Visualiza-
tion. In Scientific Visualization, Mathematics and Visualization.
Springer, 2014, pp. 3–27. URL: https://link.springer.
com/chapter/10.1007/978-1-4471-6497-5_1,
doi:10.1007/978-1-4471-6497-5_1. 3, 6

[BKS12] BERNARD J., KÖNIG-LANGLO G., SIEGER R.: Time-oriented
earth observation measurements from the Baseline Surface Radiation
Network (BSRN) in the years 1992 to 2012, reference list of 6813
datasets, 2012. doi:10.1594/PANGAEA.787726. 7

[BKS14] BERNARD J., KÖNIG-LANGLO G., SIEGER R.: 30 years of
synoptic observations from Neumayer Station with links to datasets,
2014. doi:10.1594/PANGAEA.150017. 8

[BPHE17] BOUKHELIFA N., PERRIN M.-E., HURON S., EAGAN J.:
How Data Workers Cope with Uncertainty: A Task Characterisation
Study. In Conference on Human Factors in Computing Systems (CHI)
(New York, NY, USA, 2017), ACM, pp. 3645–3656. doi:10.1145/
3025453.3025738. 3

[BRG∗12] BERNARD J., RUPPERT T., GOROLL O., MAY T.,
KOHLHAMMER J.: Visual-interactive preprocessing of time series
data. In SIGRAD, Swedish Chapter of Eurographics (2012), vol. 81,
Linköping University Electronic Press, pp. 39–48. 3

[BSH∗16] BACH B., SHI C., HEULOT N., MADHYASTHA T.,
GRABOWSKI T., DRAGICEVIC P.: Time curves: Folding time to vi-
sualize patterns of temporal evolution in data. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 22, 1 (2016), 559–568.
doi:10.1109/TVCG.2015.2467851. 3

[BSS∗18] BEHRISCH M., STREEB D., STOFFEL F., SEEBACHER D.,
MATEJEK B., WEBER S. H., MITTELSTAEDT S., PFISTER H., KEIM
D.: Commercial visual analytics systems-advances in the big data ana-
lytics field. IEEE Transactions on Visualization and Computer Graphics
(TVCG) (2018), 1–1. doi:10.1109/TVCG.2018.2859973. 1, 4

[BW08] BYRON L., WATTENBERG M.: Stacked graphs – geometry amp;
aesthetics. IEEE Transactions on Visualization and Computer Graph-
ics (TVCG) 14, 6 (2008), 1245–1252. doi:10.1109/TVCG.2008.
166. 3

[BWK∗13] BERNARD J., WILHELM N., KRÜGER B., MAY T.,
SCHRECK T., KOHLHAMMER J.: Motionexplorer: Exploratory search
in human motion capture data based on hierarchical aggregation. IEEE
Transactions on Visualization and Computer Graphics (TVCG) 19, 12
(2013), 2257–2266. doi:10.1109/TVCG.2013.178. 3

[BWS∗12] BERNARD J., WILHELM N., SCHERER M., MAY T.,
SCHRECK T.: TimeSeriesPaths: Projection-Based Explorative Analy-
sis of Multivariate Time Series Data. Journal of WSCG 20, 2 (2012),
97–106. URL: http://wscg.zcu.cz/wscg2012/Index.htm.
3

[CCM09] CORREA C. D., CHAN Y., MA K.: A framework for
uncertainty-aware visual analytics. In IEEE Visual Analytics Science and
Technology (VAST) (2009), pp. 51–58. doi:10.1109/VAST.2009.
5332611. 3

[CGM∗17] CENEDA D., GSCHWANDTNER T., MAY T., MIKSCH S.,
SCHULZ H., STREIT M., TOMINSKI C.: Characterizing Guidance in
Visual Analytics. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 23, 1 (2017), 111–120. doi:10.1109/TVCG.
2016.2598468. 6

[CLKS19] CORRELL M., LI M., KINDLMANN G., SCHEIDEGGER C.:
Looks good to me: Visualizations as sanity checks. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 25, 1 (2019), 830–839.
doi:10.1109/TVCG.2018.2864907. 3

[DCE∗13] DEMŠAR J., CURK T., ERJAVEC A., ČRT GORUP, HOČE-
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