

Technische Universität Wien

DIPLOMARBEIT

Extracting Process Information from Clinical Practice Guidelines

ausgeführt am Institut für

Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Anleitung von

a. o. Univ. Prof. Dr. Silvia Miksch und Mag. Katharina Kaiser

durch

Cem Akkaya, 0026749

in der Studienrichtung

Diplomstudium Informatik , 881

Wien, Mai 2005

 2

Abstract

Each day, more and more text data is made available in electronic form generating huge
repositories of knowledge. To efficiently process such a huge amount of information needs
special information management techniques and tools. Especially, the medical domain offers
many application areas for these techniques. One of these is the creation of computerized
medical guidelines which offers many advantages in patient management by allowing
computer-supported execution of clinical guidelines. Unfortunately, available tools for this
task are restricted in the way that they only allow a manual computerization process. This
feature makes generation of computerized medical guidelines a cumbersome task even though
by the presence of sophisticated modelling frameworks. Therefore, there is a need for
automation of this process. Information Extraction techniques can meet this need.

Along with this thesis, an Information Extraction framework (CPGPro) based on knowledge
engineering approach is implemented. CPGPro extracts relevant clinical actions and relations
among them from otolaryngology guidelines automatically for subsequent processing by other
tools. Processing is done in subsequent stages based on handcrafted lexical resources and
extraction rules, which are implemented as heuristics derived from linguistic patterns
encountered in otolaryngology guidelines. The documents of interest are XHTML-conform.
Therefore CPGPro makes use of delimiters by defining extraction patterns not only on
syntactic/semantic constraints as it is common in conventional Information Extraction
systems but also on delimiters that bound the text. The fact that XHTML-conform guidelines
consist of both structured- and free text made CPGPro a hybrid between conventional
Information Extraction systems and wrapper tools.

The results show that it is possible to extract relevant actions by very simple natural language
analysis methods like heuristics used in CPGPro. This phenomenon can be explained by the
fact that actions in these documents are usually expressed in small number of forms with
common attributes, but identifying relations among actions needs more sophisticated natural
language analysis like syntactic- and coreference analysis.

 3

Kurzfassung

Die Menge an Textdaten in elektronischer Form vergrößert sich von Tag zu Tag. Diese Daten
erzeugen sehr große Mengen an Wissen. Die wirksame Verarbeitung solch einer großen
Menge von Information setzt spezielle Verwaltungstechniken und Werkzeuge voraus.
Besonders der Bereich der Medizin bietet viele Verwendungsgebiete für diese Techniken an.
Eine davon ist die Erstellung von rechnergestützten medizinischen Leitlinien, die viele
Vorteile zur Verwaltung von Patienten anbietet, indem es die computerunterstützte
Ausführung der medizinischen Leitlinien erlaubt. Zu diesem Zweck entwickelte Werkzeuge
erlauben allerdings nur einen manuellen Modellierungsvorgang. Trotz hoch entwickelter
Modellierungsframeworks erschwert diese Einschränkung die Erzeugung rechnergestützter
medizinischer Leitlinien. Methoden der Informationsextraktion können diesen Mangel
beseitigen.

Im Rahmen dieser Arbeit wird ein Informationsextraktion Framework (CPGPro) eingeführt,
das auf Heuristiken basiert. CPGPro extrahiert automatisch relevante klinische Prozesse und
Relationen aus Leitlinien der Hals-Nasen-Ohren-Heilkunde für die nachfolgende
Verarbeitung durch andere Werkzeuge. Die Verarbeitung wird in den autonomen und
nachfolgenden Stadien durchgeführt, die auf ein handgefertigtes Lexicon und handgefertigte
Extraktionsregeln basieren, die als Heuristiken eingeführt werden. Die Heuristiken werden
von den linguistischen Mustern abgeleitet, die in den HNO-Leitlinien gefunden wurden. Die
Dokumente, die verarbeitet werden, sind XHTML-konform. Deshalb verwendet CPGPro auch
Auszeichnungsmarkierungen, indem es Extraktionregeln nicht nur mittels syntaktischen und
semantischen Einschränkungen definiert, wie es in den herkömmlichen
Informationsextraktionsystemen üblich ist. Die Tatsache, dass XHTML-konforme Leitlinien
sowohl strukturierten als auch freien Text aufweisen, macht den maßgeschneiderten CPGPro
zu einem Hybriden zwischen herkömmlichen Informationsextraktionsystemen und Wrapper-
werkzeugen.

Die Resultate zeigen, dass relevante medizinische Tätigkeiten durch sehr einfache
Analysenmethoden der natürlichen Sprache, wie es beim CPGPro der Fall ist, extrahiert
werden können. Dieses Phänomen kann durch die Tatsache erklärt werden, dass Prozesse in
diesen Dokumenten normalerweise durch eine geringe Anzahl von Formen mit allgemeinen
Attributen ausgedrückt werden. Das Extrahieren von Relationen zwischen Prozessen benötigt
aber fortgeschrittene Analysemethoden der natürlichen Sprache, wie syntaktische Analyse
oder Coreference Analyse.

 4

Acknowledgement

First of all, I would like to express my gratitude to my direct supervisor Mag.
Katharina Kaiser whose help, tips and encouragement helped me in all the time of
writing of this thesis. Especially, her effort in reading, correcting and providing
me with valuable comments on earlier versions of this thesis is of great
importance.

I am also deeply indebted to Univ. Prof. Dr. Silvia Miksch for her positive attitude
and understanding. I thank her a lot.

Finally, I would like to thank to my family, especially to my parents Emine and
Ahmet Akkaya who supported me and made it possible for me to reach these
days.

 5

1 INTRODUCTION/MOTIVATION ... 9

2 INFORMATION EXTRACTION... 10

2.1 Introduction .. 10

2.2 History ... 13
2.2.1 MUC .. 14
2.2.2 MUC Metrics ... 16
2.2.3 TIPSTER.. 17

2.3 Approaches.. 18

2.4 The Architecture of Information Extraction Systems ... 19
2.4.1 Tokenization .. 20
2.4.2 Lexical and Morphological Analysis ... 21
2.4.3 Syntactic Analysis.. 22
2.4.4 Coreference Analysis ... 24
2.4.5 Domain Analysis.. 25
2.4.6 Inferencing and Merging.. 27

2.5 Elements Influencing Design Issues .. 27

2.6 Template Design.. 28
2.6.1 Basic Entities ... 29
2.6.2 Relations .. 30
2.6.3 Events... 31
2.6.4 Slot filling .. 32

3 APPLICATIONS.. 34

3.1 FASTUS... 34

3.2 WHISK .. 34

3.3 UMass (University of Massachusetts) System .. 35

3.4 NYU PROTEUS SYSTEM .. 35
3.4.1 Lexical Analysis... 36
3.4.2 Name Recognition ... 37
3.4.3 Partial Syntactic Analysis .. 37
3.4.4 Scenario Pattern Matching ... 38
3.4.5 Coreference Analysis ... 39
3.4.6 Inferencing and Event Merging ... 39

3.5 Portability of IE Systems.. 40

4 XML... 41

4.1 Introduction .. 41
4.1.1 Extensibility ... 41
4.1.2 Structuring ... 42
4.1.3 Self-description .. 42
4.1.4 Layout Independency... 42
4.1.5 Validation... 42

 6

4.2 Range of Use.. 42
4.2.1 Data Transfer ... 42
4.2.2 Data Storage... 42
4.2.3 Multi Delivery.. 43

4.3 Schema languages ... 43

4.4 Architecture of XML documents... 43
4.4.1 Designing an XML Data Structure .. 45
4.4.2 Visibility .. 46
4.4.3 Container vs. Contents ... 46

4.5 Java & XML.. 46
4.5.1 XML Parser.. 47
4.5.2 Simple API for XML (SAX).. 49
4.5.3 Document Object Model (DOM) .. 49

5 CPGPRO... 51

5.1 Application Area... 51

5.2 The Task .. 51
5.2.1 Design of the Template .. 52

5.3 Extraction Patterns... 53
5.3.1 Phrase level patterns... 54
5.3.2 Sentence level patterns... 54
5.3.3 Discourse level patterns ... 58

5.4 Lexicon... 58

5.5 CPGPro Architecture... 58
5.5.1 Sentence Segmentation .. 59
5.5.2 Filter...60
5.5.3 Action Extraction ... 60
5.5.4 Action Merging and Grouping... 60
5.5.5 Template Generation.. 61

6 EVALUATION ... 62

7 CONCLUSION .. 66

8 REFERENCES.. 67

 7

List of Tables

Table 1 Some Extraction Patterns for the Sample Text Segment.. 12

Table 2 Entities in the Sample Text Segment.. 12

Table 3 Attributes for Extracted Entities... 12

Table 4 Facts about Entities... 13

Table 5 Events of Interest.. 13

Table 6 MUCs and Defined Tasks .. 15

Table 7 MUC Evaluations ... 17

Table 8 Examples of Hand-crafted Rules.. 22

Table 9 Entities after the First Stage of Syntactic Analysis .. 37

Table 10 Entities after Complete Syntactic Analysis .. 38

Table 11 Entities and Events after Scenario Pattern Matching ... 38

Table 12 Entities and Events after Coreference Analysis ...39

Table 13 Entities and Events after Inferencing and Event Merging.. 39

Table 14 Application Domains and Examples of XML Applications.................................... 42

Table 15 Design Issues .. 46

Table 16 Phrase Level Patterns ... 54

Table 17 Sentence Patterns for Both Grammatical and Telegraphic Text 55

Table 18 Occurences of Free-text Patterns in Used CPGs .. 56

Table 19 Patterns Only for Telegraphic Text .. 57

Table 20 Occurences of Telegraphic-text Patterns in Used CPGs .. 57

Table 21 CPGs from Training Corpus... 62

Table 22 Results from the First Stage ... 63

Table 23 Results from the Second Stage ... 64

 8

List of Figures

Figure 1 The General Structure of an IE System [Appelt & Israel, 1999].............................. 20

Figure 2 The Corresponding Template [Appelt, 1999]... 26

Figure 3 Activities and Processing Levels [Cowie & Lehnert, 1996]..................................... 28

Figure 4 Temporal Scope [Hobbs & Israel, 1994] .. 29

Figure 5 Entity Representations .. 30

Figure 6 Relation Representations .. 30

Figure 7 Typical Event Structure [Hobbs & Israel, 1994] .. 31

Figure 8 MUC Template for Microelectronics Task [Cowie & Wilks, 2000] 33

Figure 9 Architecture of NYU Proteus [Grishman, 1999] .. 36

Figure 10 A DTD Document... 44

Figure 11 An XML Documet .. 45

Figure 12: XML Parser [BIG, 2004b] ... 48

Figure 13 Template for Clinical Actions... 52

Figure 14 CPGProArchitecture ... 59

 9

1 Introduction/Motivation

Clinical Practice Guidelines (CPGs) are referred by [Field, 1990] as

"systematically developed statements to assist practitioners and patient decisions
about appropriate health care for specific circumstances."

Recently, they have gained much interest because they offer many advantages in patient
management like defining appropriate care based on the best available scientific evidence,
reducing inappropriate variation in practice (standardization) and avoiding additional costs
caused by incorrect clinical decisions. CPGs have been applied to many tasks like clinical
decision support, workflow management, quality assurance, and resource-requirement
estimates [Warren, 1998]. The benefits expected from the appliance of CPGs provoked many
medical guidelines to be created by diverse institutes.

Like in many other domains, computerization is seen as a means to facilitate the effective use
of CPGs. Therefore, transforming CPGs in a machine-readable and executable format has
been the gist of research. Consequently, many guideline representation languages are
developed (for a comprehensive overview see [Peleg et. al., 2003]) and systems are designed
which convert CPGs in their corresponding models defined in these guideline representation
languages [Kaiser, 2005]. A common drawback of these tools is that the process of converting
is done manually. Because of the complexity of the underlying representation language, the
task can be very cumbersome and time-consuming.

Facing problems motivated us to find a way to extract relevant information automatically. The
objective of this thesis is building an Information Extraction (IE) framework (CPGPro), which
is based on heuristics to extract relevant information of clinical processes and their relations
from semi-structured CPGs to implement it in "Java". The framework works on totally hand-
crafted lexical resources and extraction rules, which are based both on syntactical and
semantical evidence – for the most part on syntactical – and follow an atomic approach. The
ultimate goal of the designed system is filling designed templates which use "XML" as the
low-level syntax with high precision and recall values in the test phase.

The output of the designed system can serve as input to other systems, which process the
acquired information further for different purposes like helping for formalization of CPGs or
classification of documents for Information Retrieval (IR). There are many possibilities to
utilize the output of this system with appropriate post-processing.

This thesis consists of two main parts, a theoretical and a practical part. In the theoretical part
of the thesis, the technologies used for generating the system and their interaction are
described. In the practical part, we will concentrate on the design decisions and heuristics
based on the information investigated on the theoretical part.

 10

2 Information Extraction

2.1 Introduction

Today’s post-industrial society is marked by an increase in the amount of information
technology which led to the "Information Age" where movement of information is faster than
physical movement and characterized by the shift from property or political criteria to
knowledge as the base of power. In the presence of these facts it is not surprising that there is
more text data in electronic form than ever before. It is impossible for a human to process so
much information and to use it systematically. Therefore, many information management
techniques are explored by researchers. Information Extraction is one of these techniques. In
[Riloff, 1999] IE is described as followed.

"Information extraction (IE) is a form of natural language processing in which
certain types of information must be recognized and extracted from text."

Especially information end-user industries like finance companies, banks, publishers and
governments are interested in IE, because the vast amount of information which they need to
process is sometimes infeasible to be processed manually and even if it is feasible, IE may
offer great economic benefits when compared to purely manual extraction.

Finding management changes of diverse companies in magazines or determining victims of
terrorist attacks reported in news articles are good examples for a typical IE task. For
example, a task in the third Message Understanding Conference (MUC) involving terrorist
events was to determine the incident type, date, location, perpetrator, physical or human
target, effect on targets, and instrument from corpus.

Information Extraction Systems (IE systems) extract specified types of information from
natural language text. The task of IE systems can vary from relatively simple problems like
Named Entity Recognition to more complex tasks like identifying relationships among
entities and events. Ultimately, the system records the extracted information in data structures
called templates. It reduces the whole text to a predefined structure which holds only relevant
information.
The task of an IE system, which carries out the IE, can be defined in two different forms
[Appelt, 1999]:

• A short description of the kind of information being sought

• A database schema or template

Whereby, a template is a tabular output format of extracted information. It constitutes of
attribute-slots, which are filled in the process of IE, so that instantiated templates consist of
attribute-value pairs. Each template field may be filled by a string extracted from the text or
by appropriate elements from a controlled vocabulary.

IE is not Natural Language Understanding (NLU). Its distinct characteristics separate it from
NLU and other Natural Language Processing technologies [Appelt, 1999].

• A fixed and limited domain

• A fixed and limited representational format

• Precise metrics of success

 11

IE tasks are defined for a limited domain. Therefore, the objects of interest (i.e., entities) are
circumscribed, too. Moreover, an IE task is usually interested in a predefined particular
scenario (e.g., joint ventures) in a general predefined domain (e.g., financial news). Thus, the
events and relations of interest are restricted, too. IE has precise metrics of success which will
be described later. Limited and simple to evaluate character of IE makes it simpler than NLU.

Furthermore, IE tasks are defined to process lots of text, which can show informal,
ungrammatical structures. Lots of text means much processing time and ungrammatical
structures mean more mistakes by processing. To overcome this obstacle, IE uses simple
finite-state methods which can process large amount of texts relatively fast and robust
methods which can analyze these texts in a reliable way even in the face of spelling and
grammar errors. Because of such design issues, IE is defined as "compromise natural
language processing" in [Appelt, 1999]. Another fact, which supports this definition, is its
domain-specific character. Indeed, IE systems need a lot of world-knowledge to accomplish
their tasks. This world knowledge can be gained manually (e.g., by hand-crafted rules) or by
training on a corpus of domain-relevant texts.

Before discussing IE system deeply, some technical terms will be explained and introduced
by an example from National Institute of Standards (NIST)1.

• Entity is an object of interest such as a person or organization

• Attribute is a property of an entity such as its name, alias, descriptor, or type

• Fact is a relationship held between two or more entities

• Event is an activity or occurrence of interest such as a terrorist act or an airline crash

• Named entity is a named object of interest such as a person, organization, or location

• Annotation is a mark-up of a text span in a specific format that indicates a feature or
features of the text within the span

• Evaluation is the assessment of performance according to agreed upon measures

• Training is a process by which a system learns about a dataset

The following text passage and tables [Table 2, Table 3, Table 4, and Table 5] show what an
IE system should extract along two example extraction patterns defined by terms of syntactic
constituents and basic entities [Table 1]

"Fletcher Maddox, former Dean of the UCSD Business School, announced the
formation of La Jolla Genomatics together with his two sons. La Jolla Genomatics
will release its product Geninfo in June 1999. Geninfo is a turnkey system to assist
biotechnology researchers in keeping up with the voluminous literature in all aspects
of their field."

"Dr. Maddox will be the firm's CEO. His son, Oliver, is the Chief Scientist and holds
patents on many of the algorithms used in Geninfo. Oliver's brother, Ambrose,
follows more in his father's footsteps and will be the CFO of L.J.G. headquartered in
the Maddox family's hometown of La Jolla, CA."

1 http://www.itl.nist.gov/iaui/894.02/related_projects/muc/

 12

Sample Extraction Patterns

<subject>(person) <noun,dean> <prep_phrase,of>(organization)

<subject>(organization) <verb, release> <object>(artifact) <adv_phrase>(date)

Table 1 Some Extraction Patterns for the Sample Text Segment

Entities

Persons Organizations Locations Artifacts Dates

"Fletcher Maddox" "UCSD Business
School"

"La Jolla" "Geninfo" "June 1999"

"Dr. Maddox" "La Jolla Genomatics" "CA" "Geninfo"

"Oliver" "La Jolla Genomatics"

"Oliver" "L.J.G."

"Ambrose"

"Maddox"

Table 2 Entities in the Sample Text Segment

Attributes

Name Descriptor Category

"Fletcher Maddox"

"Maddox"

"former Dean of the UCSD
Business School"

"his father"

"the firm's CEO"

PERSON

"Oliver" "His son"

"Chief Scientist"

PERSON

"Ambrose" "Oliver's brother"

"the CFO of L.J.G."

PERSON

"UCSD Business School" ORGANIZATION

"La Jolla Genomatics"

"L.J.G."

 ORGANIZATION

"Geninfo" "its product" ARTIFACT

"La Jolla" "the Maddox family's hometown" LOCATION

"CA" LOCATION

Table 3 Attributes for Extracted Entities

 13

PERSON Employee_of ORGANIZATION

"Fletcher Maddox"

"Fletcher Maddox"

"Oliver"

"Ambrose"

Employee_of

Employee_of

Employee_of

Employee_of

"UCSD Business School"

"La Jolla Genomatics"

"La Jolla Genomatics"

"La Jolla Genomatics"

ARTIFACT Product_of ORGANIZATION

"Geninfo" Product_of "La Jolla Genomatics"

LOCATION Location_of ORGANIZATION

"La Jolla" Location_of "La Jolla Genomatics"

F
acts

"CA" Location_of "La Jolla Genomatics"

Table 4 Facts about Entities

Events

COMPANY-FORMATION_EVENT RELEASE-EVENT

COMPANY "La Jolla Genomatics" COMPANY "La Jolla Genomatics"

PRINCIPALS "Fletcher Maddox"

"Oliver"

"Ambrose"

PRODUCT "Geninfo"

DATE DATE "June 1999"

CAPITAL COST

Table 5 Events of Interest

The most appropriate kind of text for an IE task is the one with factual like mentioned news
about terrorist or management domain or technical information like scientific journals or
hospital reports, so that the text can be reduced in a structured form with individual facts.
Especially, medical domain is interested in such a technology because of the need of
analysing reports in natural language. On the other hand, IE systems may not be well suited
for texts in which nearly every sentence is relevant.

2.2 History

IE is a new technology not a new idea: as long as 1964 can be found papers with titles like
"Text searching with templates" [Wilks, 1987], but these were ideas not backed by any
computational power capable of carrying them out."[Wilks, 1997] The earliest effective IE
project was "the Linguistic String Project" of Naomi Sager at New York University. The
project belonged to the medical domain and aimed to convert patient discharge summaries to
a form for subsequent use. He basically concentrated on a computerized representation of
English grammar [Sager, 1981].

In the early 1980s, many projects were established. The project of DaSilva and Dwiggins was
one of them [DaSilva, 1980]. They built a system to extract satellite-flight information from

 14

reports all around the world. The system used a prolog text grammar. In 1981 Cowie
developed a system that extracted canonical structures from field-guide descriptions of plants
and animals [Cowie, 1983]. Jong’s FRUMP system is another project from early 1980s
[DeJong, 1982]. It aimed to extract terrorist events from AP newswires. It was used both for
routing and extraction. Another system from this period was built by Zarri [Zarri, 1983]. The
system intended to extract relationships and meetings of French historical figures.

Beginning from late 1980s IE research was fostered and shaped by the competitive and
objective environment created by Message Understanding Conferences (MUCs) and
TIPSTER IE project.

2.2.1 MUC

MUCs were organized by NOSC - The Naval Ocean Systems Center – with the assistance of
DARPA – The Defense Advanced Research Projects Agency – which is an agency of the
United States Department of Defense and responsible for the development of new technology
for use by the military. Because of this, the subject domain of these conferences was defense-
oriented like analysing military messages and searching newspapers for terrorist activities to
replace human analysts.

Each MUC, except for MUC-1, provided a prepared training-corpus (documents and
templates) and a task definition. Each Participant should then adapt its system to the new
scenario by using the training corpus. Shortly before the conference, participants got a test-
corpus and used their systems to fill provided templates. The results then sent to the MUC
organizer, which had created templates with right information (answer-key) manually and
evaluated against answer key. MUC evaluations were subsequently represented on the
conference, in order to share findings and approaches. Below, each MUC is described in
detail [Grishman & Sundheim, 1996].

MUC-1 was organized in 1987. There was neither a predefined output format nor a formal
evaluation. Each participant had its own format to represent its results. Therefore, it was not
possible to compare single systems. The domain of interest was naval operations. Template
formats were developed during MUC-1.

MUC-2 was organized in 1989. Output format was defined as template with 10 slots for
attributes – concrete information about events in the text. Using shared output format allowed
comparing individual systems. In MUC-2, the domain of interest was also messages about
naval operations.

MUC-3 [MUC3] was organized in 1991. The analysed texts were news articles about terrorist
activities in Central and South America. This time, template consisted of 18 slots.

MUC-4 [MUC4] was organized in 1992. The analysed texts were again news articles about
terrorist activities, but this time with a more complex template, namely 24 slots.

MUC-5 [MUC5] was organized in 1993. Two kinds of texts were processed in MUC-5.
These were news articles about

• Microelectronics

• Joint venture

in English and Japanese. In MUC-5, the analysed events were more complicated, so the
template too. For the first time, nested templates had been used and had a total of 47 slots. In
the previous MUCs, only one template had been used. But this form was not enough flexible
to represent events with many participants with their own attributes to be recorded. So one

 15

main template to record information about events which refers to other templates in which
information about participants are recorded was more appropriate. Just to show the difficulty
of the task, it should be stated that even the task definition was more than 40 pages long.

MUC-6 [MUC6] was organized in 1995. The analysed texts were news articles about
management changes. Before MUC-6, new goals and new tasks had defined. These goals
were set as a reaction to the trends in previous MUCs. These goals were

• Building task-independent and reusable components for IE systems

• Building more portable IE systems

• Deeper understanding of text

For these purposes, new tasks had been defined. In the previous MUCs, there had been only
one task, the "Scenario Template Task" (ST), which consisted of extracting pre-specified
event information with involved entities. The participants could subscribe themselves for any
subset of these tasks and this time they got less time to adapt their systems. The mentioned
new tasks are [Marsh, 1998].

• Named Entity Task (NE). Identifying each constituent in the text, which represents a
person, an organization, a location name, a date, a currency or percentage figure.

• Template Element Task. (TE) Identifying descriptions of entities. For example, Bill
Gates-the most richest man in the world.

• Coreference Task (CO). Identifying coreferring constituents, thus all mentions of a
given entity. Coreference task used identified constituents from NE and TE tasks.

Templates for this conference were called "mini MUCs". They were simple due to portability
reasons more like MUC-2 than MUC-5, but they kept the nested design of MUC-5 templates.

MUC-7 [MUC7] was organized in 1997. Analysed texts were news articles about space
vehicle and missile launches. MUC-7 included two new tasks, which were

• Multi-lingual Entity Task (MEN) NE task for Chinese and Japanese

• Template Relation Task (TR) Identifying relational information between entities.
For example, employee_of, manufacture_of, and location_of relations

Table 6 presents an overview of MUCs and their defined tasks

 Scenario
Template
Task

Named
Entity
Task

Template
Element
Task

Coreference
Task

Template
Relation
Task

Multilingu
al Entity
Task

MUC-2 X

MUC-3 X

MUC-4 X

MUC-5 X

MUC-6 X X X X

MUC-7 X X X X X X

Table 6 MUCs and Defined Tasks

 16

MUCs fostered and shaped IE technology. They defined goals and subtasks for IE. Thus, it
was possible through evaluations to see which subtasks needed improving and which tasks
were satisfied. They helped to determine weak points of existing systems and to highlight
differences between different NLP methods and set new trends in IE technology [Cowie
2000].

Data Sets (i.e., training and test corpus, task definitions, answer keys) and automated scoring
software, which were prepared for MUCs, have been helping for progress in this science by
allowing developers evaluating their systems on the basis of these examples and tasks.
Actually, the effort to create these data sets makes the main difference between the systems
build in 1980s and 1990s.

At the beginning, MUCs evaluated systems, which processed text corpora from military
domain, but in the course of time the conference changed in such a way that increasingly
civilian texts were used, because of the huge potential of IE systems in scientific (e.g.,
medicine) and economic domains.

2.2.2 MUC Metrics

MUC evaluations developed metrics to evaluate participating systems, which acquired a
broad acceptance. These metrics are precision and recall [Grishman, 1997]. The formulas for
these metrics look as follows

Precision (P) =
Nresponse

Ncorrect

Recall (R) =
Nkey

Ncorrect

Thereby,

• Nkey is the total number of filled slots in the answer key

• Nresponse is the total number of filled slots in the system response

• Ncorrect is the total number of correctly filled slots in the system response

Precision provides information about the percentage of correct slots in the response of the
system. It can be enhanced by avoiding "false positives", which are filled slots that are
incorrect. Whereas, Recall shows how much percent of the right answers (i.e., slots from
answer key) found by the system. It can be enhanced by avoiding "false negatives" which are
not extracted relevant information.

F-score is another metric used to measure the performance of IE systems. It is a weighted
combination of recall and precision. If precision is more important, F-score will be calculated
with a parameter value which weights precision, otherwise with a parameter value which
weights recall. The formula for F-score looks as follows

F =
()

RP

PR

+
+

2

2 1

β
β

 ; P:Precision, R:Recall, β:Weighting

 17

Table 7 presents maxima of achieved scores from MUCs [Sundheim, 1995; Appelt, 1999;
Marsch, 1998; Grishman, 2000].

 Scenario
Template
Task

Named
Entity
Task

Template
Element
Task

Coreference
Task

Template
Relation
Task

MUC-3 R<52%

P<58%

F<46%

MUC-4 R<59%

P<59%

F<56%

MUC-5 R<59%

P<60%

F<52%

MUC-6 R<59%

P<72%

F<57%

R<96%

P<97%

F<97%

R<77%

P<88%

F<80%

R<63%

P<72%

F<65%

MUC-7 R<50%

P<69%

F>51%

R<92%

P<95%

F<94%

R<87%

P<87%

F<87%

R<79

P<59

F<62

R<67

P<87

F<76

HUMAN
F-Score

(MUC-7)

85.15%-
96.64%

96.95%-
97.60%

Table 7 MUC Evaluations

2.2.3 TIPSTER

"The TIPSTER Text Program2 was a Defense Advanced Research Projects Agency (DARPA)
led government effort to advance the state of the art in text processing technologies through
the cooperation of researchers and developers in government, industry, and
academia."[TIPSTER]

The actual contribution of TIPSTER TEXT Program to IE was its attention to the creation of
a common software architecture for NLP, in order to standardize the technology components
and thus provide reusability in multi-component IE systems. CRL’s Temple machine
translation system [Zajac & Vanni, 1996], Oleada language training system [Ogden &
Bernick, 1996] and the Sheffield GATE system3 are some of the systems, which followed this
software architecture [Cowie & Wilks, 2000].

2 http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/overv.htm
3 http://gate.ac.uk/

 18

2.3 Approaches

With the lead of MUCs numerous IE system have been designed and implemented. Although
they use diverse methods, these approaches can be arranged into two basic groups, one using
a Knowledge Engineering approach the other using learning approach or automatic training
approach [Appelt, 1999].

In the Knowledge Engineering (KE) approach a professional, who is familiar with the
application domain and the function of the designed IE system, is fundamental. She/he is
concerned with the definition of rules used to extract the sought-after information. A corpus
of domain-relevant texts will be available to the knowledge engineer for this task. Because the
general knowledge and intuitions of the knowledge engineer also flow in the process of
writing rules, the skills of the knowledge engineer are crucial in this type of systems.

The KE approach is an iterative process. Within each iteration rules are modified as a result of
the output of the system on a training corpus. Therefore, the KE approach demands a lot of
effort.

On the other hand, in the automatic training approach an annotated corpus of domain-relevant
texts is fundamental. Because of this, there is no need for system expertise. There should be
only someone who has enough knowledge about the domain and the tasks of the system to
annotate the (underlying) corpus of texts appropriately. After the generation of the annotated
corpus, a training algorithm is run on it. Then the system can use the knowledge gained from
the annotated corpus on new texts from the same domain to extract the desired information.

For some types of tasks like Named Entity Recognition the process of annotation is simple.
But in case of complex tasks, annotation of texts could be cumbersome. The difficulty of the
annotation process increases with the complexity of the task which should be accomplished
by the IE system. At the extreme it can excess the difficulty of manually creating rules in the
KE approach.

It is not possible to say that one approach is superior to the other. Both approaches have their
strengths and limitations. Before choosing one of them the application domain and resources
available should be taken in consideration.

Handcrafted systems tend to achieve higher performances than automatically trained systems.
But the iterative character (test-debug cycle) is most of the time laborious. Furthermore, the
knowledge engineer needs access to resources like lexicons for the application domain.

Automatically trained systems depend on training data. It is an advantage that annotators
usually can be found easily. Moreover, domain portability is less complicated, because
usually domain-specific constituents of the IE system are customized faster and without
system expertise. However, dependency on training data could cause some problems, if
training data is expensive or difficult to obtain.

The mentioned advantages and disadvantages lead to a list of points, which should be
considered before designing an IE system [Appelt & Israel, 1999]:

• Availability of rule writers is the most important prerequisite for the handcrafted
systems. If there is not any skilled knowledge engineer, the automatic training
approach should be chosen.

• Availability of resources is another important prerequisite for the handcrafted
systems. Lexicons and name lists are examples for these required resources. In case of
their lack an automatic training approach should be taken.

 19

• Availability of training data is the most important prerequisite for automatically
trained systems. For simple tasks, like Name Recognition, it is easy to obtain training
data. The annotation process will be rapid and the quantity of the annotated text will
be satisfactory. For some domains it may be difficult to find enough text and for some
tasks it may be slow, difficult, and expensive to annotate texts for the sought-after
information. In these cases, where training data is scarce and expensive to obtain, it is
not a good idea to use an automatic training approach.

• The instability of extraction specification affects both approaches in a different
manner. It is common that specifications of a task change with the progress. Some
changes may force the re-annotation of the training data and retraining, though they
can be handled in the handcrafted systems with a few new extraction rules or
omission of them. To be concrete, a task in the knowledge engineering approach with
the aim of extracting mountain names can be modified easily to extract river names
additionally. In this case, the modification of an automatically trained system will be
a cumbersome process. The whole training data must be re-annotated and the system
must be retrained from the updated training corpus. However, some changes can be
handled in an automatically trained system more easily. For example, for a Name
Recognition task the system is designed to process mixed lower and upper case text,
but after some time it is decided that the system should process uppercase text only.
In this case, automatically trained system needs only the training data to be mapped to
uppercase and to be retrained. But extraction rules of a handcrafted system need to be
rewritten.

• Importance of highest possible performance is another determining factor. MUCs
show, that performances of automatically trained systems converge the performances
of handcrafted systems. However, the highest possible performance is always
achieved by the handcrafted systems.

2.4 The Architecture of Information Extraction Systems

IE system have a modular design. It resembles the "pipe-and-filter style" in the software
architecture terminology. Each module in the IE system works as a transducer. It filters and
restructures the input text by applying pattern-based rules, which can be created manually or
automatically, and adds new features to its input. The output of each module becomes input to
the next module and the following module makes use of the new structure and features, which
are added by the preceding module. Besides, each module can be constructed independently
from other modules after either of the mentioned approaches. The various modules in an IE
system work together – in a sequential fashion – to extract the sought-after facts in the
analysed text and integrate them in new or larger facts. Ultimately, the templates are created
from these facts. Some systems may be interested only in extracting entities and their
attributes, but usually users are interested in the facts and events connected with these entities.
To extract entities, attributes, facts, and events, patterns are created. A pattern is described as
a set of rules, which can be used to generate the linguistic realizations of the facts (or events
or attributes or entities). This process is called Pattern Recognition. These patterns cannot be
defined as natural word sequences because of the complexity of natural language. Instead,
linguistic constituents are abstracted to components and relations. Then patterns are defined in
terms of these components and relations.

Figure 1 shows the general structure of an IE system as described in [Appelt & Israel, 1999].

 20

Figure 1 The General Structure of an IE System [Appelt & Israel, 1999]

There are four essential modules, which are implemented by most IE systems. These are
modules for tokenization, lexical and morphological analysis, syntactic analysis, and domain
analysis. Some application domains may need additional modules. Adding optional modules
means extra processing. Because of this, if additional modules do not bring notable
performance improvements, they shall not be used.

2.4.1 Tokenization

The Tokenization module is responsible for splitting the input text into sentences and tokens,
so that they can be looked up in the lexicon in the subsequent stage of processing – the
Lexical Analysis. Tokenization is a trivial task for English and some languages with clear

 21

word borders, which is accomplished with the help of orthographic clues. Some languages
like Japanese, which do not fulfil the mentioned requirement, need an amendatory Word
Segmentation module [Appelt & Israel, 1999].

2.4.2 Lexical and Morphological Analysis

Morphology is a sub discipline of linguistics and is interested in the structure of word forms.
For the morphological point of view words are created from morphemes, which are combined
by word formation rules. In English, morphological concepts like inflection, derivation, and
compounding do not generate a complexity. Inflectional variants and compound nouns can be
listed in the lexicon. Therefore, most IE systems processing English texts do not use a
Morphological Analysis module. Unlike weakly inflected languages like English, highly
inflected language families and agglutinative languages like German, which tend to create
very long words (i.e., compound nouns) with derivational morphemes, are challenging to
process. Because of this, processing of such languages require morphological analysis.

In the lexical analysis the tokens, which are determined by the Tokenization module, are
looked up in the dictionary to determine their possible parts-of-speech and other lexical
features, which are required by subsequent stages of processing. The most important job of
lexical analysis is recognizing named (i.e., proper names) and numeric entities. Entities are
objects of interest such as persons or organizations. Actually, the sought-after information is
events, facts, or properties linked with these entities [Appelt & Israel, 1999].

Named Entities:

• People names

• Company names

• Organization names

• Acronyms

• Product names

• Location names

• etc.

Numeric Entities:

• Dates

• Times

• Phone numbers

• etc.

Proper names and numeric entities can be recognized by a set of rules. As mentioned before,
there are two approaches: (1) hand-crafted rules and (2) automatically trained rules derived
from an annotated corpus. The rules make use of parts-of-speech, internal structure,
orthographic features, and name lists. In Table 8 there are some elementary examples for such
handcrafted rules [Callan 2004].

 22

Company names
A sequence of words beginning with
uppercase letters and ending with the
word "Inc."

<Word>+ <"Inc.">

People names

A sequence of words beginning with
uppercase letters which are listed in the
available name list for common person
names and possibly beginning with a
academic title "Prof."

<"Prof.">? <Name>+

Dates
 <Day>"/"<Month>"/"<Year>

<Day>"."<Month>"."<Year>

Table 8 Examples of Hand-crafted Rules

In most instances, the existence of words beginning with an upper case letter is an evidence
for proper names. In one-case text the lack of the orthographic evidence can cause
ambiguities, because of the overlap in proper names and normal nouns.

An exhaustive approach to recognize proper names is not adequate, because it is not possible
to enumerate all person or company names in a list. Furthermore, new companies are being
established. This means that there will be always new company names and in the same way
new product names which do not appear in an exhaustive name list. Another point, which can
cause trouble, is the existence of foreign names.

It was mentioned that lexical features of tokens are looked up in a lexicon. Another possibility
is using automatic taggers, like a parts-of-speech tagger [Appelt, 1999]. A parts-of-speech
tagger can avoid incorrect analysis based on ambiguities, which are caused by rare-word
senses in an elaborate lexicon. The cost of using parts-of-speech tagger is the processing time
for it and the need of training corpus.

Another possibility for word sense disambiguation is the application of word sense taggers.
There are three major considerations, which are used by word sense taggers [Wilks &
Stevenson, 1996]:

1. Syntactic context, which is usually determined by the window of words in which a
token occurs.

2. Relevance to subject matter.

3. Overlap of word occurrences within the definitions of the senses to be distinguished.

2.4.3 Syntactic Analysis

Syntactic Analysis has the aim to identify syntactic structure of the analysed document.
Syntactic relations (syntactic roles) in a text correspond to semantic relations (conceptual
roles) between entities. Therefore, better syntactic analysis means simpler and more accurate
pattern matching in the phase of domain analysis.

The detail of syntactic analysis has varied in different systems. Some systems tried to build a
complete parse tree for each sentence in a text (full-parsing) [Grishman et al., 1991;
Montgomery et al., 1991]. Others chose to use partial-parsing techniques. There have been
even IE systems which totally skip the phase of syntactic analysis [Dolan et al., 1991]. Since
MUC-3 [MUC3] there has been a trend towards partial-parsing techniques.

 23

Today, the systems tend to prefer partial-parsing (shallow parsing) techniques, because
systems, which use full-parsing techniques, do not seem to enjoy a significant advantage over
systems, which do not, and moreover, full parsing is very expensive of computer time
[Appelt, 1999].

The triumph of partial parsing is due to the nature of the IE task, which is only interested in
specific types of information in a text, and the difficulties in full parsing. IE systems ignore
portions of text, which are not relevant for their task. Therefore, parsing these portions –
sentences or parts of sentences – and finding irrelevant grammatical relationships will be a
waste of time. The sought-after information can often be identified by searching a single
clause or phrase. I will demonstrate an example from [Riloff, 1999]. The sentence below
originates from a MUC-3 text.

"In an action that is unprecedented in Colombia's history of violence, unidentified
persons kidnapped 31 people in the strife-torn bananagrowing region of Uraba, the
Antioquia Governor's Office reported today.'

The relevant information in this sentence is the perpetrators, victims, and locations, so the
system shall distinguish that unidentified persons kidnapped 31 people in the region of Uraba.
The following scenario pattern from domain analysis

X kidnapped Y in Z

will distinguish the relevant information. The other constituents of the sentence can be
ignored. Therefore, full parsing will cause unnecessary overhead.

Moreover, creating complete parse trees is a complicated task. Defining conjunction scopes
and modifiers is very difficult. Full-sentence parsers can make things worse, if they prevent
by making an incorrect parsing simple predicate-argument structure, which holds the desired
semantic relationships from being observed. This phenomenon is accounted in [Grishman,
1997]:

"In principle, full sentence analyzers should be able to use global constraints to
resolve local ambiguities. In fact, however, because of the inevitable gaps in
grammatical and lexical coverage, full sentence parsers may end up making poor
decisions about structures in their quest to create a parse spanning the entire
sentence. In effect, global constraints may make things worse."

Partial-parsing systems build partial syntactic structures, which can be built with high
confidence and using local information [Grishman, 1997]. Generally, they try to define the
predicate-core argument structure. Simple noun groups and verb groups are reliably
distinguished by local information. For such constituents, it is possible to write unambiguous
finite state grammars. Modifiers and ad positional phrases, which make parsing a
cumbersome task, are ignored for all except a set of domain relevant words.

An example from [Appelt, 1999] describes how a MUC-5 joint venture text looks after being
analyzed by such a finite state grammar.

"[Bridgestone Sports CO.]NG [said]VG [Friday]NG [it]NG [has set up]VG [a joint
venture]NG [in]P [Taiwan]NG [with]P [a local concern]NG [and]P [a Japanese
trading house]NG [to produce]VG [golf clubs]NG [to be shipped]VG [to]P
[Japan]NG"

Subsequent analysis can help to build larger constituents – attaching right modifiers,
conjunctions – with rules based on the properties of the head of the constituents. Usually,
these rules contain semantic constraints and because of this they are domain-specific unlike

 24

rules building noun and verb groups. It is common that IE systems combine the noun groups
separated with a conjunction in the subsequent analysis. The preceding sentence will look as
follows

"[Bridgestone Sports CO.]NG [said]VG [Friday]NG [it]NG [has set up]VG [a joint
venture]NG [in]P [Taiwan]NG [with]P [a local concern and a Japanese trading
house]NG [to produce]VG [golf clubs]NG [to be shipped]VG [to]P [Japan]NG"

Under these considerations we can say that partial parsing is more robust and faster than full
parsing. But it is not so domain-independent like full parsing, because of the use of domain
heuristics to get attachment decisions.

2.4.4 Coreference Analysis

Usually, relevant entities are referred throughout the analyzed text in different ways. For the
success of the system it is important to know which noun phrases refer to the same entity.
Therefore, before starting scenario pattern matching, anaphoric references shall be resolved.
For this purpose, an IE system needs a Coreference Analysis module. One system can omit it,
but a system with an adequate coreference analysis phase will produce better results due to
more accurate pattern matching.

Anaphora resolution is one such problem, which includes resolving [Riloff, 1999].

• Proper names

• Pronouns

• Definite noun phrases

Proper names and their variants (i.e., alias, acronym, abbreviation, etc.) should be
distinguished as coreferring. To be concrete, in the sentence

"After the police arrested Christopher Unger, Mr. Unger claimed to be innocent."

"Christopher Unger" and "Mr. Unger" refer to the same entity. Although identifying
coreferring names is very important, it can be handled by the Name Recognition module, too.
The discussed module mainly interests with pronoun-antecedent coreference and definite
description coreference.

Pronouns should be associated with their antecedents (i.e., named entities) by this module
correctly. After analyzing the same sentence with a pronoun

"After police arrested Christopher Unger, he claimed to be innocent."

"Christopher Unger" and "he" should be recognized as coreferring.

For resolving definite noun phrases the system needs world knowledge. For example, in this
passage

"Last Friday we went to Mont Blanc. The mountain was beautiful."

The system should know that "Mont Blanc" is a mountain to resolve the noun phrase "the
mountain". The world knowledge can be obtained from domain-dependent is-a hierarchies or
more general ontological resources like WordNet4 and CYC5,6 . One cannot expect the system

4 http://wordnet.princeton.edu/
5 http://www.cyc.com/

 25

to know every definite noun phrase's sort. Because of this dealing with domain relevant words
is more feasible.

Like every other module in an IE system, the module responsible for coreference analysis can
be designed by a KE or Machine Learning (ML) approach. A general KE approach, which is
implemented in FASTUS [Hobbs et al., 1996] is described in [Appelt, 1999] as follows
(1) marking each noun phrase with available sortal information (company, lake), number
(singular, plural), gender, and syntactic features (name, pronoun, definite/indefinite), other
grammatical features, and relations (2) for each of them determine accessible antecedents,
filter with semantic/sortal consistency check, and order with dynamic syntactic preferences.
The scope chosen determines the accessible antecedents. Names have usually a large scope. It
can consist the whole text. In contrast, definite noun phrases have a narrower scope and for
pronouns the scope is even smaller. By determining antecedents for pronouns it is feasible to
make use of paragraph restrictions. Usually pronoun references are valid in the same
paragraph as the pronoun itself, but for definite pronouns seem to be independent from the
paragraph structure.

Filtering takes number, gender, and sortal consistency into account. In the sentence

"Christopher eats their apple."

"Christopher" is first a candidate antecedent for pronoun "their", but after number filtering it
is eliminated. In the preceding example, "Mont Blanc" and "the mountain" will pass the
filtering, because of the sortal consistency.

After filtering the candidate antecedents, the module must find out which one is most likely
the antecedent. The best method to choose the right candidate to be the antecedent is using
relative locations in the text. First, the candidates in the same sentence as the referring phrase
are inspected from left to right, because it is more common that the subject of a sentence is
referred in the same sentence and in English the subject is often at the most leftward position.
If there is no candidate in the same sentence the immediately preceding sentence is searched
again in the left-to-right order. If no candidate is found again, the preceding sentences are
searched but this time in the right-to-left order.

In the automatic learning approach a corpus is annotated with coreference pairs and the
system is trained using this annotated corpus. Both probabilistic (e.g., Hidden Markov
Models) and non-probabilistic (e.g., decision trees) methods [McCarthy & Lehnert, 1995] are
applicable as learning technique.

2.4.5 Domain Analysis

Some IE systems are only interested in simple tasks like Named Entity Recognition, but most
of the time users want to obtain facts and events concerned with entities. Therefore, domain
analysis is the core of most IE systems. The preceding analyses prepare the text for the
domain analysis by adding semantic and syntactic features to it.

Domain analysis aims filling templates, which are in general constructed as attribute-value
pairs accurately. As a result, design of the templates is very important for the success of this
phase of processing. They can be filled either by elements of a controlled vocabulary or by
extracted text from the processed text.

6 http://www.opencyc.org/

 26

For extraction of facts and events, the system needs domain specific extraction patterns (i.e.,
extraction rules or case frames). These patterns can be generated manually (by means of KE)
or automatically (by means of –ML). The portion of text, which matches a defined linguistic
pattern is memorized and the information is extracted by the guidance of the extraction rule
from this portion of text to fill the template.

There are two approaches to define extraction rules manually [Appelt, 1999].

• Molecular Approach

• Atomic Approach

The Molecular approach is more common in the IE world. It "involves matching all or most
of the arguments to an event in a single pattern"[Appelt & Israel, 1999]. The following pattern

<Person> [kidnap-verb, passive] (Adverbial) by <Organization>

will match the text assumed that named entities "Carlos Ramon" and "FMLN" are recognized
by the preceding modules as a person and as an organization.

"Carlos Ramon, mayor of the small coastal village of Santo Domingo, was kidnapped
last Tuesday by suspected guerrillas of the FMLN"

The creation of a template structure follows matching. The following template in Figure 2 is
created from the sentence above [Appelt, 1999].

INCIDENT-0001
 TYPE: KIDNAPPING
 STATUS: SUSPECTED
 DATE: 12-NOV-86
 PERPETRATOR: <ORG-0001>
 TARGET: <PERSON-0001>

PERSON-0001
 NAME: ”Carlos Ramon”
 TITLE: ”Mayor”

ORG-0001
 NAME:”FMLN”

Figure 2 The Corresponding Template [Appelt, 1999]

The Molecular approach is a sort of KE. Therefore, it is an iterative process. It starts with
common patterns to aim high precision. But recall value is at first iterations relatively low.
Recall will be improved with adding less common but relevant patterns in the following
iterations. Whereas, overgenerating due to the new rare patterns will cause an expense in
precision value. Consequently rule engineers should make a compromise between high
precision and low recall.

In contrast, atomic approach aims first high recall and low precision. Subsequent filtering
techniques should help to enhance the low precision value. Improving filters will improve the
precision value too. As described in [Appelt, 1999] the atomic approach

 27

"suggests going all the way, and building a domain module that recognizes the
arguments to an event (the atoms) and combines them into template structures strictly
on the basis of intelligent guesses rather than syntactic relationships."

The tasks, which are appropriate for the use of atomic approach, are characterized in [Appelt,
1999] by the two features

• The types of entities can be determined easily

• The structure of the templates should assure that few possible slots exist for an entity
of a given type and only certain types of entities can fill these slots.

The MUC-5 [MUC5] microelectronics domain is an example for such a domain.

2.4.6 Inferencing and Merging

Usually the sought-after information is spread among different sentences. In these cases
information should be combined before creating the ultimate templates. For this purpose some
IE systems use a Merging module. This module uses an algorithm to decide which templates
can be merged.

Some information exists implicitly in the text. If the system wants to make this information
explicit, it needs some production system rules like the ones, which are used in expert systems
[Grishman, 1997].

2.5 Elements Influencing Design Issues

After discussing all important modules for IE systems, the factors influencing design issues
summed up as follows

• Type of the text

• Type of the task

• Language of the text

The type of the text can make things easier or more complicated. A text with good
orthographic features is easier to analyze. To be concrete, mixed-case characters simplifies
the task of named entity recognition. Furthermore a formal text with correct grammatical
constructs is processed easier by Syntactic Analysis module.

The type of task can make some modules unnecessary. For instance, an IE system for Named
Entity Recognition does not need a module for syntactic and domain analysis.

As mentioned before, some languages need word segmentation and more complex
morphological analysis. Therefore, the processed language is an important factor in design
decisions.

In Figure 3, the activities of an IE system with the processing level on which they are carried
out are shown [Cowie & Lehnert, 1996].

 28

Figure 3 Activities and Processing Levels [Cowie & Lehnert, 1996]

2.6 Template Design

Template design is a major issue in IE research. It influences both the success of the IE
system and further processing. Even a perfect IE system without an appropriate output format
is not very useful.

Jerry Hobbs and David Israel made great contributions in the area of template design as part
of the Data Access for Situation Handling (DASH) research project. They described in
[Hobbs & Israel, 1994] template design issue as following:

"The problem of template design is a special case of the general problem of
knowledge representation. In particular, it is the problem of representing, within a
constrained formalism, essential facts about situations in a way that can mediate
between texts that describe those situations and a variety of applications that involve
reasoning about them."

Designing a template (i.e., output format) for an IE system requires three different, but
interacting considerations [Hobbs & Israel, 1994]:

 29

• The template as an representational device

• The template as generated from input

• The template as input to further processing, by humans or by programs or both

The first consideration is connected with an adequate representation of the analysed domain
within a constrained formalism in connection with the task of the IE system. For this purpose,
the essential facts should be determined. They can be derived considering requirements of the
given task from the semantic model of the domain, which is not necessarily dependent on a
concrete syntax of the template.

The second point goes hand in hand with the first one. It states that the output representation
of the extracted information should match the typical mode of expression of that information
in the text.

The last point covers thoughts about concrete syntax of the template for assuring readability
and appropriateness for the given further processing.

The representation of the output of an IE system usually consists of the following kinds of
domain elements [Hobbs & Israel, 1994]:

• Basic entities of interest and their significant attributes

• Relations of interest between these entities

• Momentous changes in attributes and relations (Events of interest)

2.6.1 Basic Entities

"Basic Entities should be things that endure throughout the temporal focus of the
task." [Hobbs & Israel, 1994]

Thereby, temporal focus is determined by an analysis of the kinds of changes, which are of
interest. Properties and relations, which may change within this temporal scope, are thought to
be transient. Whereas, properties and relations, which stay unchanged throughout this period,
are thought to be permanent. Temporal focus depends on the underlying task. As we will see
later, the concept of temporal scope is very important for template design. Figure 4 describes
the "temporal scope" [Hobbs & Israel, 1994].

Figure 4 Temporal Scope [Hobbs & Israel, 1994]

Basic entities can be represented as atomic elements or structured objects. For instance a
person entity can be represented as an atomic entity if it is not important to record its
properties other than its name, but if we need additional information like its age or sex, we

Permanent Properties

Focus of Task

Temporary
Properties

 30

should use a structured object with its own slots for attributes to represent that person. By
assigning an attribute to an entity, it is important to be sure, that the attribute really belongs to
that entity rather than to another related entity like a related relationship object. The
representation as a structured object implicates necessity of using pointers to refer to the
structured object. Therefore, readability suffers, because we should follow pointers to access
the information about the entity. Because of this it is better to use an atomic representation for
an entity, if there is no need to define more than one attribute for it.

As structured object As atomic element

<TEMPLATE>:=

 …….

 PERSON: "Christopher Unger"

 …..

<TEMPLATE>:=

 PERSON: <PERSON-1>

<PERSON-1>:=

 NAME:"Christopher Unger"

 AGE:22

 GENDER:MALE

Figure 5 Entity Representations

2.6.2 Relations

Relations can be represented as an attribute of one of the entities in this relationship or as a
separate relationship-object.

As an attribute As a separate object

<PERSON-1>:=

NAME:"Joseph Schumacher"

AGE:45

Father_Of: <PERSON-2>

<PERSON-2>:=

NAME:"Michael Schumacher"

AGE:22

FATHER_OF:

<Father_Of>:=

 FATHER:<PERSON-2>

 CHILD:<PERSON-1>

<PERSON-1>:=

 NAME:"Joseph Schumacher"

 AGE:45

<PERSON-2>:=

 NAME:"Michael Schumacher"

 AGE:22

Figure 6 Relation Representations

 31

There are some considerations, which can help to decide which variant to use [Hobbs &
Israel, 1994]:

• If the relation is of primary interest, it is better to model it as a separate object.

• If the relation has many attributes for recording some features of itself, it is better to
represent it as a separate object, but if it needs only two arguments for its participants
it is probably better to model it as an attribute

• If the relation is permanent in the mentioned sense, it is better to model it as an
attribute.

• If a relation depends on another relation for its existence, it is better to model the
dependant relation as an attribute of the other one.

2.6.3 Events

An event is an activity or occurrence of interest. Several entities can participate in an event
[Hobbs & Israel, 1994] classifies events in three groups.

1. Basic events

2. Purposive events

3. Communication events

Basic events provide information only about participant entities and the kind of event. For
instance, "Larry Hughes retired as executive vice president of Dona Inc." is a basic event.

Purposive events are like basic events, but with an additional purpose or aim definition. For
example, "Larry Hughes retired as executive vice president of Dona Inc., in order to establish
his own company." is a purposive event.

We speak from communication events if there is a communicative content in the activity of
interest, which is itself an event of one of the three kinds. Figure 7 shows a typical event
structure [Hobbs & Israel, 1994].

Figure 7 Typical Event Structure [Hobbs & Israel, 1994]

Communication-Event

Target-Ent Source-Ent Purposive-Event

Basic-Event Ent1 Ent2

Ent3 Ent4

 32

Relations do not only exist between entities but between events. Subevents and causality
relations are just two examples.

2.6.4 Slot filling

[Hobbs & Israel, 1994] recommend to keep the slot values as simple as possible, so there are
four basic alternative ways to fill these slots

• Simple data types, like strings, number

• Pointer to other objects

• Tuples of elements which can be both a simple data type or a pointer

• Sets of elements which can take any of the three mentioned types

Figure 8 shows a short part of a real MUC template for microelectronics task, which is
described by a formal grammar BNF (Backus-Naur Form) [Cowie & Wilks, 2000].

<MICROELECTRONICS_CAPABILITY> :=

PROCESS: (<LAYERING> | <LITHOGRAPHY> | <ETCHING> | <PACKAGING>) +

DEVELOPER: <ENTITY> *

MANUFACTURER: <ENTITY> *

DISTRIBUTOR: <ENTITY> *

PURCHASER_OR_USER: <ENTITY> *

COMMENT: ' '

<ENTITY> :=

NAME: [ENTITY NAME]

LOCATION: [LOCATION] *

NATIONALITY: [LOCATION_COUNTRY_ONLY] *

TYPE: {COMPANY, PERSON, GOVERNMENT,OTHER}

COMMENT: ' '

<PACKAGING> :=

TYPE: {{PACK_TYPE}} ^

PITCH: [NUMBER]

PITCH UNITS: {MIL, IN, MM}

PACKAGE_MATERIAL:{CERAMIC, PLASTIC, EPOXY, GLASS,

CERAMIC_GLASS, OTHER} *

P_L_COUNT: [NUMBER] *

UNITS_PER_PACKAGE:[NUMBER] *

 33

BONDING: {{BOND_TYPES}} *

DEVICE: <DEVICE> *

EQUIPMENT: <EQUIPMENT> *

COMMENT: ' '

Figure 8 MUC Template for Microelectronics Task [Cowie & Wilks, 2000]

 34

3 Applications

In this chapter we will exhibit some IE Systems, which achieved good results in MUCs and
contributed to the development of this field with different approaches.

One of these systems, PROTEUS7, will be explained in detail to simplify the understanding of
the mentioned steps in IE. PROTEUS resembles closely the discussed general architecture of
IE systems and serves as an introduction to my system, CPGPro, which uses knowledge
engineering approach like PROTEUS and has a similar architecture and features.

3.1 FASTUS

FASTUS is an acronym for Finite State Automata-based Text Understanding System. It
works essentially as a cascaded, nondeterministic finite-state automaton. There are five levels
of processing. Each level serves as an input to the next level, so that larger segments of text
are analyzed and structured. The mentioned levels are [Hobbs et al., 1996]:

• Level of complex words: recognition of multiwords and proper names.

• Level of basic phrases: recognition of noun groups, verb groups, and some other
particles.

• Level of complex phrases: recognition of complex noun groups and complex verb
groups.

• Level of domain events: recognition of patterns for events of interest to build event
structures.

• Level of merging structures: merging of event structures arising from different parts
of the text if they refer to the same event.

Decomposition of language processing avoids unnecessary domain-independent syntax
processing, so that domain-dependent semantic and pragmatic processing in the higher levels
can be applied to the right scale structures. MUCs have shown that FASTUS is an effective
system and very fast due to the finite-state approach.

3.2 WHISK

WHISK is a learning system that generates extraction rules for a wide variety of documents
ranging from formatted to free text. In contrast to CRYSTAL, WHISK applies a supervised
algorithm along with a top bottom approach [Soderland 1999].

The WHISK extraction patterns have two components: one that describes the context that
makes a phrase relevant, and one that specifies the exact delimiters of the phrase to be
extracted. Depending of the structure of the text, WHISK generates patterns that rely on either
of the components (i.e., context-based patterns for free text, and delimiter-based patterns for
structured text) or on both of them (i.e., for documents that lay in between structured and free
text).

7 http://nlp.cs.nyu.edu/index.shtml

 35

3.3 UMass (University of Massachusetts) System

UMass System is based on portable, trainable language processing components to eliminate
the knowledge engineering bottleneck. The most interesting components in UMass system are
[Fisher et al., 1995]:

• MARMOT is the text bracketing module. It is responsible for part-of-speech tagging
and splitting the text into annotated noun phrases, prepositional phrases, and verb
phrases.

• BADGER is the extraction module. It instantiates case frames based on a concept
node dictionary.

• CRYSTAL is the induction module. It generates concept node dictionary from
annotated training texts for the use of BADGER.

• WRAP-UP is the discourse analyzer module. It establishes relational links between
entities based on decision tree algorithms.

• RESOLVE is the coreference analyzer module. It handles merging decisions by using
nonprobabilistic decision trees, which are trained with annotated training texts.

BADGER is domain and task independent. Importing of BADGER to a new domain or task is
needs no adjustment provided that there is an appropriate concept node dictionary for the
target domain.

Concept nodes are simply case frames, which are activated by certain linguistic expressions to
extract sought-after information from surrounding text. Therefore, obtaining a domain
specific concept dictionary is very important, which is handled by CRYSTAL fully
automated.

3.4 NYU PROTEUS SYSTEM

Proteus was designed throughout New York Proteus Project, which focuses on the application
areas of IE and Machine Translation. Proteus used knowledge engineering techniques and did
well in the course of MUC evaluations.

Figure 9 shows the overall architecture of Proteus. The single units will be explained along a
simplified example from MUC-6 scenario involving executive succession. The information
represented here is originated from publications of Ralph Grishman [Grishman, 1995;
Grishman, 1999; Yangarber & Grishman, 1997; Yangarber & Grishman, 1998]. The
following tables consist of output of diverse Proteus processing stages for the following
sentence.

"Sam Schwartz retired as executive president of the famous hot dog manufacturer,
Hupplewhite Inc. He will be succeeded by Harry Himmelfarb."

In Proteus, most of the text analysis is performed by matching the text against a set of regular
expressions, which trigger associated actions. The matched parts are labelled and possibly get
some features. Furthermore, two semantic structures which are called entity and event are
associated with some of those matched text fragments. These structures are used to create
instantiated templates. describes the Proteus architecture

 36

Figure 9 Architecture of NYU Proteus [Grishman, 1999]

3.4.1 Lexical Analysis

This module is responsible for dividing the input text into single sentences and tokens. Each
token is looked up in the dictionary to decide its parts-of-speech and other features. The used
dictionary – the Comlex Syntax –, which is also developed by New York University, is a
broad-coverage dictionary of English. It provides syntactic features, but it does not define
proper names. Therefore, other specialized dictionary resources were utilized.

• A small gazetteer, which contains names of all countries and most major cities

• A company dictionary

• A government agency dictionary

• A dictionary of common first names

• A small dictionary of scenario specific words

 37

3.4.2 Name Recognition

This module identifies names (proper names) and numerical entities (dates, currency amount,
etc.). It uses a set of patterns (i.e., regular expressions), which are defined in terms of parts-of-
speech, syntactic and orthographic features. This stage also records for each name its type
(person, company, etc.) and subsequent mentions as aliases for it (some sort of coreference
analysis), if possible. For example, in the short part of text

"Larry Hughes goes into the shop…. Mr Hughes…"

"Larry Hughes" should be identified as a proper name with type person and "Mr Hughes" as
its alias.

3.4.3 Partial Syntactic Analysis

This module recognizes noun (a noun plus its left modifier) and verb groups. Both noun
groups and verb groups can be usually identified using just local information. In some cases,
it is required to know global dependencies to decide for a noun’s left modifier. In these cases,
modifiers left unattached.

For each of these matched phrases, features are recorded which are used by patterns in
subsequent stages. For example, a verb phrase has information about its tense, voice and root
form. A noun phrases has information about its head. Moreover, for each noun phrase, a
semantic structure (i.e., an entity) is created.

"[np entity:e1 Sam Schwartz] [vg retired] as [np entity:e2 executive president] of [np entity:e3 the
famous hot dog manufacturer], [np entity:e4 Hupplewhite Inc.]. [np entity:e5 He] [vg will be
succeeded] by [np entity:e6 Harry Himmelfarb.]"

entity e1 type:person name:"Sam Schwartz"

entity e2 type:position value:"executive vice president"

entity e3 type: manufacturer

entity e4 type:company name:" Hupplewhite Inc. "

entity e5 type:person

entity e6 type:person name:"Harry Himmelfarb"

Table 9 Entities after the First Stage of Syntactic Analysis

After identifying basic noun and verb groups, Proteus can use additional analysis to attach
right modifiers, in order to build larger noun phrase structures. Because of the ambiguity of
right modifiers, system needs semantic constraints to decide if it should attach or not.
Therefore, rules for attaching right modifiers are domain-specific. For the example above, we
can define two such patterns

• <Company description>, <company name>,

• <position> of <company>

In the first pattern, <company description> represents a noun phrase of type company whose
head is a common noun. Further, <company name> represents also a noun phrase of type

 38

company, but with a head of type name. In the second pattern, <position> represents any noun
phrase of type position and <company> represents any noun phrase of type company. Besides
Proteus has a concept hierarchy which regarded by the process of pattern matching. In our
example manufacturer will be matched as a company because of this concept hierarchy.

"[np entity:e1 Sam Schwartz] [vg retired] as [np entity:e2 executive president of the famous
hot dog manufacturer Hupplewhite Inc.]. [np entity:e5 He] [vg will be succeeded] by [np

entity:e6 Harry Himmelfarb.]"

entity e1 type: person name:"Sam Schwartz"

entity e2 type: position value:"executive vice president" company:e3

entity e3 type: manufacturer name: "Hupplewhite Inc."

entity e5 type: person

entity e6 type: person name:"Harry Himmelfarb"

Table 10 Entities after Complete Syntactic Analysis

3.4.4 Scenario Pattern Matching

It is the last stage of pattern matching. It works on constituents identified in the preceding
stages of pattern matching (name recognition, syntactical analysis).

Each recognized clausal pattern in this stage turned into a semantic structure called "event".
Such extraction rules are based on syntactic and semantic constraints that help to identify the
relevant information within a document. For example, two such patterns for our example will
be

• <person> retires as <position> ; leave-job(person,position)

• <person1> is succeeded by <person2> ; succeed(person1,person2)

After matching these patterns to our example text, we get following results

"[clause event:e7 Sam Schwartz retired as executive president of the famous hot dog
manufacturer Hupplewhite Inc.]. [clause event:e8 He will be succeeded by Harry
Himmelfarb.]"

entity e1 type:person name:"Sam Schwartz"

entity e2 type:position value:"executive vice president" company:e3

entity e3 type: manufacturer name: "Hupplewhite Inc."

entity e5 type:person

entity e6 type:person name:"Harry Himmelfarb"

event e7 type:leave-job person:e1 position:e2

event e8 type:succeed person1:e6 person2:e5

Table 11 Entities and Events after Scenario Pattern Matching

 39

3.4.5 Coreference Analysis

This module is responsible for resolving anaphoric references by pronouns and definite noun
phrases. Indefinite noun phrases considered as new information. Conversely, when a definite
noun phrase or a pronoun is discovered, the preceding text is searched for antecedents. First,
the current sentence is searched from right to left, and then preceding sentences sequentially
from left to right. There are some constraints for accepting an antecedent

• The class of the anaphor in the mentioned concept hierarchy should be the same or
more general than that of the antecedent

• The anaphor and the antecedent should match in number and gender

In our example, the pronoun "he" will be resolved in "Sam Schwartz"

entity e1 type:person name:"Sam Schwartz"

entity e2 type:position value:"executive vice president" company:e3

entity e3 type: manufacturer name: "Hupplewhite Inc."

entity e6 type:person name:"Harry Himmelfarb"

event e7 type:leave-job person:e1 position:e2

event e8 type:succeed person1:e6 person2:e1

Table 12 Entities and Events after Coreference Analysis

3.4.6 Inferencing and Event Merging

Sometimes sought-after information is distributed over different sentences, so it should be
merged before instantiating templates. Moreover, some information is contained implicitly in
the text, so it should be made explicit by production rules. Consider, we need in our example
to extract start-job events. For this purpose we need production rules

Leave_job(Xperson,Yjob) & succeed(Zperson,Xperson) → start_job(Zperson,Yjob)

start_job(Xperson,Yjob) & succeed(Xperson,Zperson) → leave_job(Zperson,Yjob)

entity e1 type:person name:"Sam Schwartz"

entity e2 type:position value:"executive vice president" company:e3

entity e3 type: manufacturer name: "Hupplewhite Inc."

entity e6 type:person name:"Harry Himmelfarb"

event e7 type:leave-job person:e1 position:e2

event e8 type:succeed person1:e6 person2:e1

event e9 type:start-job person:e6 position:e2

Table 13 Entities and Events after Inferencing and Event Merging

 40

3.5 Portability of IE Systems

The term portability is used in the IE discipline as a feature of an IE system which is easy to
adapt to a new scenario or domain. The most significant bottleneck preventing more adaptable
systems to be built is domain-dependence in diverse sentence and discourse analyzing stages
[Riloff, 1999].

Implementing this domain-specific knowledge (extraction and inference rules, lexicon, etc.) in
a handcrafted fashion costs a lot of time and expertise. Therefore, such systems are not
portable and the market for them will be limited [Grishman, 2002].

The key to portability is automatic acquisition of domain-specific knowledge. This approach
is additionally in some degree a solution to the knowledge-engineering bottleneck by
obviating the significant-cost assumption [Cowie & Lehnert, 1996]. There are many
automated knowledge acquisition techniques which are applied to diverse stages of a IE
pipeline. For example, there are systems, which extract domain-specific patterns
automatically or semi-automatically [Huffman, 1995; Riloff, 1996a]. Some others try to apply
Machine Learning techniques for discourse analysis [Soderland & Lehnert, 1994; Aone &
Bennett, 1995] or lexical acquisition [Cardie, 1993; Hastings & Lytinen, 1994] or even for
parts-of speech tagging.

Trainable IE systems vary in their concrete implementation a lot. We can classify them as
[Appelt & Israel, 1999]

• Supervised or unsupervised

• Rule-based or stochastic

systems.

Supervised systems rely on a pre-tagged corpus. Conversely, unsupervised systems do not
need a pre-tagged corpus. They use computational methods to calculate probabilistic
information or context rules.Rule-based systems rely on extraction rules, which we have seen
most of the time. On the other hand, stochastic systems use frequency or probability
considerations. AutoSlog [Riloff, 1996b; Riloff 1999] is a good example to show benefits of a
trainable system. It is a supervised and rule-based system that generates conceptual
dictionaries for IE automatically. AutoSlog needed for the UMass/MUC-3 dictionary, which
took approximately 1500 person-hours to be built by hand only 5 person-hours. This shows
the flexibility of trainable systems, but as mentioned before this kind of systems needs a large
annotated corpus. To solve this problem unsupervised systems like AutoSlog-TS [Riloff,
1996b; Riloff 1999] are designed.

 41

4 XML

4.1 Introduction

The Extensible Markup Language (XML) is a text-based markup language for structuring of
documents. An XML document usually consists of elements, which are called tags, and their
attributes. The concept of tags should be familiar to persons interested in information
technologies, especially from HTML documents. Indeed HTML, which serves for the
description of hypertext documents, is a markup language and defines tags, which a web-
browser interprets, in order to represent the information in the document in its intended
layout. But one should confound XML in no case with HTML. Contrary to HTML, XML
defines not the layout but the structure and high-level semantics of a document.

XML is not a new concept, but forms a subset of Standard Generalized Markup Language
(SGML)8, which is a standard since 1986. XML is much simpler than SGML, but has 90 % of
the functionality of SGML. XML with its complementary specifications, like XSLT, XPath,
and Xlink, has been developed by the World Wide Web Consortium9 (W3C) since 1996.
XML is characterized by extensibility, structuring, self-description, layout independency, and
feasibility of validation [BIG, 2004a].

4.1.1 Extensibility

XML does restrict tags and their attributes, in contrast to HTML. Tags and attributes can be
redefined and designated arbitrarily. That makes XML a meta-language, with whose
assistance new markup languages (i.e., XML applications) can be developed. Each XML
application is formally described by a schema language such as DTD or XML pattern, which
we will mention afterwards. Table 14 lists some XML applications and their application
domains [BIG, 2004a].

Domain Application

Health Care 'HL7'

Literature 'Gutenberg'

Travel 'openTravel'

News 'NewsML'

Weather 'OMF'

Mathematics 'MathML'

Vector Graphics 'SVG'

Geo Applications 'ANZMETA'

Mobile Applications 'WML'

8 http://www.w3.org/MarkUp/SGML/
9 http://www.w3c.org

 42

EGovernment 'eGovML'

Electronic Commerce 'ebXML'

Bank 'MBA'

Advertisement 'adXML'

Table 14 Application Domains and Examples of XML Applications

4.1.2 Structuring

Tags can be nested arbitrarily to complex structures. At the same time tags can have non-
structured content.

4.1.3 Self-description

Tags in the XML document describe structure and semantic of its content. Tags are human-
legible. In addition, they are simple for the machine to generate and parse. XML documents
are generated and read by both humans and machines more easily than flat files, like tab or
line-delimited text. The complexity of described data can be adequately handled with XML.

"The more complex your data is, the more important it is to use a hierarchical format
like XML rather than a flat format like tab or line-delimited text." [Harold, 2002]

4.1.4 Layout Independency

XML separates the structure and semantics of content from its layout. The expert should not
worry during the creation of documents about its formatting.

4.1.5 Validation

XML documents may define a schema optionally, i.e., a formal description of their
vocabulary and their grammar rules (Document type definition (DTD), XML Schema (XSL),
etc.) that can be validated against it. Its hierarchical structure, human-legible character, and
feasibility to be validated make XML very robust.

4.2 Range of Use

4.2.1 Data Transfer

Data can be exchanged by means of XML as pure notation or additionally by means of
common schemata. XML is simply plain text and supports Unicode, so it is a portable format
and unencumbered by licenses or restrictions. Moreover it is an international standard and
there are many tools for diverse platforms to generate and process it. It is like mentioned self-
describing and extensible. All of these are reasons why XML is well suited for data transfer.

4.2.2 Data Storage

When it comes to store data, XML is a good candidate to be the format chosen. The
characteristics of XML, which are crucial for data transfer, are also important for data storage.

 43

In addition, its robustness and hierarchical structure, which is suitable for many types of
documents, are significant for data storage.

4.2.3 Multi Delivery

The same content can be differently presented on different terminals, because XML does not
define the layout of the document.

4.3 Schema languages

Schema languages define permitted elements, appendant attributes, and rules for nesting
hierarchy of XML applications. Briefly said, they define the structure of XML documents.
The most well-known schema languages are DTD, XML Schema, RELAX NG10,
Schematron11.

DTD is the oldest schema language. It was standardized along with XML. However, the DTD
cannot describe very strictly, how an XML file looks like due to a lack of expressivity and a
small set of data types. A further disadvantage is the fact that it uses custom non-XML syntax,
inherited from SGML, to describe the schema.(see Figure 10)

XML Schema is a novel technology. It uses XML syntax and has many pre-defined data
types. Moreover, it gives users the possibility to define own both simple and complex data
types as well as constraints for elements and attributes. Unfortunately, the specification is
complex and XML Schema instances (XSDs) are relatively hard to understand.

4.4 Architecture of XML documents

In principle, an XML document consists of elements and attributes. The elements may be
nested arbitrarily – provided that they are not overlapped. An element consists of one start-
tag < tag name > and one end-tag </tag name >. Empty elements may be noted more briefly
like < tag name/>. Each XML document must have only one root element, which contains all
other elements. Some elements may exhibit attributes. The attribute of an element is
integrated in its starting tag and consists of a keyword-value pair, whereby attribute values are
between quotation marks (attribut name = "attribute value"). One speaks of the well-
formedness of an XML document, if it conforms to all of XML’s native syntax rules – at least
one element per document, only one element as root, no overlapping of elements, each tag is
closed. In addition to elements and attributes, other constructs also exist in an XML
document. (see Figure 11)These are:

Entities are referable and named parts (text, markup, or files of arbitrary formats) of a XML
document or DTD. They serve for character replacement and modularity of documents.

A Prolog precedes the XML data and specifies the version of XML being used. It has
optional encoding and standalone attributes to define used character set and processibility
without a schema.

The Document Type Declaration is an optional part of the prolog. It is used to define
constraints on the logical structure and to support the use of predefined storage units. It serves
for binding of external DTDs (i.e., the DTD is described in another file) or internal DTDs
(i.e., the DTD is defined in the document) or both together.

10 http://relaxng.org/
11 http://xml.ascc.net/resource/schematron/

 44

Processing instructions are intended to be interpreted by specific applications. They can
appear at any position in the document outside other markup. They are used as follows:

(<target-name parameter ?>)

Comments in XML have the same function as usual comments in various programming
languages. They can appear at any position in the document outside other markup. They are
used as follows:

(<!-- comment-text -->)

Namespaces are represented by Uniform Resource Identifiers (URIs). Elements and attributes
are bound to namespaces. Thus, a global identification for elements and attributes is ensured.
Namespaces make it possible to join XML files without "collisions" occurring when markup
intended for both XML applications use the same element type or attribute name.

CDATA sections are used to escape blocks of text containing characters. They are used as
follows:

(<![CDATA[arbitrary text]]>)

Figure 10 A DTD Document

<?xml version='1.0' encoding='UTF-8'?>

<!-- DTD for data of employees of a department -->

<!ELEMENT Department (Employee*)>

<!ELEMENT Employee (Surname, Forename, Wage,
Address?)>

<!ELEMENT Surname (#PCDATA)>

<!ELEMENT Forename (#PCDATA)>

<!ELEMENT Wage (#PCDATA)>

<!ELEMENT Address (#PCDATA)>

<!ATTLIST Employee number ID #REQUIRED>

Element
Type

Attribute-list

 45

Figure 11 An XML Documet

4.4.1 Designing an XML Data Structure

For designing a schema for an application domain, knowledge and experience about this
domain should be collected, in order to decide in the main which elements and attributes are
necessary for the schema or an already existing schema should be used. Using an existing
schema is much more time sparing. Moreover using standard schemata will make interchange
possible [Phillips, 2001].

Most of the time, the existing schema will be more complex than required or not enough
strong to satisfy our needs. Even in these cases modifying the existing one is more
straightforward than designing a new one from scratch.

Many organizations provide industry-standard schemata. Moreover, there are online
repositories for standard schemata. One of them is to find at www.XML.org, which is created
by the Organization for the Advancement of Structured Information Standards (OASIS).
Another useful online repository is CommerceOne's XML Exchange12.

12 www.xmlx.com

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE Department SYSTEM 'Department.dtd'

[<!ENTITY w 'Wien/Östterreich'>]>

<Department>

 <Employee number='n1234'>

 <Surname>Schumacher</Surname>

 <Forename>Michael</Forename>

 <Wage>1300</Wage>

 <Address>Starkfriedgasse 12/14 1800 &w;</Address>

 </Employee>

 <Employee number='n1452'>

 <Surname>Schumacher</Surname>

 <Forename>Ralph</Forename>

 <Wage>1000<Wage>

 <Address>Forsthausgasse 8/12 2000 &w;</Address>

 </Employee>

 <!-- Beispiel -->

</Department>

prolog

document type declaration

entity declaration in internal
subset root element

attribute

entity reference

start-tag of employee

end-tag of employee

comment

 46

XML documents are ultimately processed by software at some point. Therefore, the document
structure effects how difficult the processing software will be to develop. The importance of
good structure resulted in effort for creating XML design patterns like design patterns in
software engineering. XMLPatterns.com13 is a good online resource to find XML-categorized
design patterns and external links to other design patterns.

A complexity factor of designing schemata is to decide, if a concept should be modelled as an
element or an attribute. Attributes should be simple and short and they cannot contain
substructures. On the other hand elements have exactly the opposite features. Table 15
exhibits the design choices in respect of the mentioned nature of both elements and attributes
[Armstrong et al., 2004].

The data contains substructures The data must be modelled as an element

The data contains multiple lines It makes sense to model the data as an element

Multiple occurrences are possible The data must be modelled as an element

The data is a small, simple string
that rarely if ever changes

The data can be modelled as an attribute

The data changes frequently It makes sense to model the data as an element

Table 15 Design Issues

These considerations can help us usually to find the adequate representation for our data, but
sometimes it is not clear how to model the data. In these cases a feeling of "XML style" will
be helpful. There are a few ways to approach it [Armstrong et al., 2004].

4.4.2 Visibility

The first design heuristic is based on the concept of visibility. If the data should be shown to
the end user, it should be modelled as an element. If the end user does not have any use for
the data it should be modelled as an attribute. For instance, a document for ordering shoes
should have shoe size as an element, but its manufacturer code as an attribute.

4.4.3 Container vs. Contents

Another design heuristic is thinking of an element as a container. The contents of the
container are modelled as elements and the characteristics of the container are be modelled as
attributes.

"Good XML style separates each container's contents from its characteristics in a
consistent way." [Armstrong et al., 2004]

4.5 Java & XML

XML documents are text files. Therefore, one needs a program, in order to manipulate and to
do something useful with it. Java has been the language of choice for such programs since the
emergence of the XML technology.

13 www.xmlpatterns.com

 47

The emergence of Java is very similar to it of XML. XML is a result of efforts to reduce
complexity of SGML and at the same time to maintain functionality as much as possible. The
developers of Java followed the same way. They limited unnecessary complexity con C++.
Therefore, both technologies are refinements of accepted concepts.

There has been a close relationship between Java & XML since early days of XML. The
major reasons for this phenomenon are concealed in the listed features of Java

• Unicode support

• Portability

• Powerful APIs

As mentioned before XML uses Unicode. Therefore, the realization of completely XML-
compliant applications requires that the used language and libraries support Unicode too. At
the first stages of XML effort, Java was the only popular language, which used Unicode from
the bottom up [Fuchs, 1999]. This helped Java to overcome other languages like Perl and
Python, which were traditionally used for text manipulation and did not support Unicode.

Another important factor for closeness of Java & XML is portability. Sun’s formulation
describes this complementary relationship very well [Ruby, 2002].

"Java brings portability to application behaviour, while XML brings portability to
data. Together they form a platform for standards-based, distributed computing on
the Web."

Java has many powerful APIs and tools for processing and creating XML documents. Some
of them will be introduced below.

4.5.1 XML Parser

An XML Parser (i.e., an XML processor) functions between the XML document and an
XML-based application like a broker. It parses an XML document to determine its content
and makes its content available for the application over an API. The processing of the
document contains different activities, for instance [BIG, 2004b]:

• Checking the document for well-formedness and optionally for validity

• Resolving references on entities

• Assigning attributes types

• Normalizing attribute values

Thus an XML Parser releases the programmer from low-level processing, so the programmer
can concentrate on the substantial task. Figure 12 exhibits the context in which a parser works
[BIG, 2004b].

There are various XML Parsers for Java, for instance [McLaughlin, 2001],

• Apache Xerces14

• IBM XML4J15

14 http://xml.apache.org
15 http://alphaworks.ibm.com/tech/xml4j

 48

• James Clark's XP16

• Oracle XML Parser17

• Sun Microsystems Crimson18

Each of them has different design and features. Thus, there are some criteria to be considered
before choosing a parser [Harold, 2002].

• Validating or non-validating

• Supported APIs

• License

• Correctness

• Efficiency in regard to memory and processor time consumption

Xerces and Crimson are the most popular parsers in the Java world. Both support SAX2,
DOM2 and JAXP APIs, which are described below. Crimson is a component of JDK after the
version 1.4. With respect to efficiency, there is no difference between the two parsers [Harold,
2002].

XML APIs make it for applications possible to access the parsed document content. There
are various standardized XML APIs such as SAX, DOM, JDOM, dom4j, ElectricXML. They
offer different access methods on XML documents. The standardization grants the user
additional flexibility, because thus a possibility exists to change the used parser without
changing the source code. SAX and DOM are mostly used parsers.

Figure 12: XML Parser [BIG, 2004b]

16 http://www.jclark.com/xml/xp
17 http://technet.oracle.com/tech/xml
18 http://xml.apache.org/crimson

DTD

XML
Document

XML Parser A
P

I Application Document
Content

 49

4.5.2 Simple API for XML (SAX)

SAX is an event-based and java native XML API. SAX converts a file stream into an event
stream. For example, occurrence of a start-tag or end-tag is such an event. Programs can
register themselves for individual events by callback interfaces. The processing style is
sequential. An advantage of SAX is that the entire XML file does not have to be in the
memory during its processing. That is, however, a disadvantage if there is a dependency in
processing between different parts of document, which are scattered over the whole document
instead of being sequentially ordered.

When using SAX, it is not possible to look back. Therefore one does not receive any
information about the context of an event. If context information of an event is needed, a
programmer should provide his own data structures to record the context information. These
data structures are filled gradually, while the document is analyzed. The principle is [Harold,
2002]

"The complexity of any SAX program is largely a function of the complexity of the
data structures you need to build."

Advantages

• SAX allows an application to process files before they are completely transferred.
This characteristic makes SAX suitable for streaming applications.

• SAX needs relatively little memory and processor time. Therefore SAX is suitable for
very large documents too.

Disadvantages

• SAX allows a programmer only serial access to the XML document. Therefore data
structures should be constructed, in order to access the context of an event.

4.5.3 Document Object Model (DOM)

The Document Object Model (DOM) was standardized by the World Wide Web Consortium
(W3C). It is defined in the Interface Definition Language (IDL) of the Object Management
Group (OMG). For this reason, DOM is independent of a programming language. For the
practical use one needs an implementation of the DOM interfaces. Such implementations are
contained with common XML parsers for Java such as Xerces or Crimson.

DOM represents the logical structure of a document in form of a parse tree. It allows reading,
as well as dynamic editing of the structure and content of an XML document. Therefore,
DOM is called a document-oriented API. The whole document is loaded into main storage for
processing. Afterwards the user can traverse the tree using DOM interfaces, access and
manipulate nodes, which represent XML constructs such as elements or comments in the
XML document.

Advantages

• With DOM one can manipulate XML documents electively. That is, one does not
have to process the document necessarily sequentially in contrast to SAX API.

• Programmers are used to the Pull model of DOM, where they traverse the document
tree and ask for the content of nodes by themselves. In contrast, the Push model –
through call-back interfaces – of SAX needs getting used to it.

 50

Disadvantages

• Because the XML document is loaded completely in the memory as a tree, it is
inefficient for its storage use. Consequently there is no possibility for streaming.

• The DOM API is relatively slow.

 51

5 CPGPro

CPGPro is a Java Framework with the intention to extract relevant medical actions and their
relations associated with the therapy plan in a clinical guideline for post-processing. "CPG"
stands for clinical practice guidelines and "Pro" indicates purpose so that "CPGPro" is
resolved to "for clinical practice guidelines".

CPGPro is a knowledge engineering approach based on heuristic methods with a multi-step
transformation process. The framework works on totally handcrafted lexical resources,
extraction rules and template merging rules, which are based both on syntactical and
semantical evidence – for the most part on syntactical. The ultimate goal of the designed
system is filling designed templates which use "XML" as the low-level syntax with high
precision and recall values in the test phase.

5.1 Application Area

Clinical Guidelines offer many advantages in patient management like defining appropriate
care based on the best available scientific evidence, reducing inappropriate variation in
practice (standardization) and avoiding additional costs caused by incorrect clinical decisions.
Therefore, they have been applied to many tasks like clinical decision support, workflow
management, quality assurance, and resource-requirement estimates [Warren, 1998].

As a means of effective use of CPGs, there have been efforts to formalize CPGs for computer-
supported authoring and execution. As a result of these efforts, many guideline representation
languages have been developed for modelling CPGs in a formal representation (for a
comprehensive overview see [Peleg et al., 2005]). Consequently systems are designed which
convert CPGs in their corresponding models defined in these guideline representation
languages [Kaiser, 2005]. A common drawback of these frameworks is the difficulty of the
manual conversion process due to the complexity of the underlying representation language,.
In this point, CPGPro can come into operation to support the process of formalization.

The medical actions and their relations, which are extracted by CPGPro, can be utilized by
subsequent processes like formalization tools. The application area is not restricted to pre-
processing for formalization tools. It can be used with appropriate processing for diverse
tasks. For example, the output may be of value for text classification or summarization tools.

5.2 The Task

CPGPro works on XHTML conforming clinical guidelines. The domain chosen is
otolaryngology specialty. The task includes determining relevant medical actions with their
properties and defining relations between detected actions. Actions are divided in two groups,
those which are recommended and those which should be avoided. A relation is defined
between two or more of following medical actions [Kaiser et al., 2005]:

• Sequential processes

• Processes without temporal dependencies

• Processes which exclude each other

• Processes containing subprocesses

• Recurring processes

 52

Figure 13 shows the template for this task. It also demonstrates the coverage of the task.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT treatment (actions, relations,dependencies)>
<!ELEMENT actions (action*)>
<!ELEMENT relations (group | selection)*>
<!ELEMENT dependencies (temporalD*)>
<!ELEMENT action (description, duration?, instrument*, dosage?, recurrence?,
condition?, annotation?,context?,cause?,medContext?)>
<!ELEMENT group (reference+,description?,condition?)>
<!ELEMENT selection (reference+,description?,condition?)>
<!ELEMENT condition (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT duration (#PCDATA)>
<!ELEMENT insrument (#PCDATA)>
<!ELEMENT dosage (#PCDATA)>
<!ELEMENT recurrence (#PCDATA)>
<!ELEMENT annotation EMPTY>
<!ELEMENT context (#PCDATA)>
<!ELEMENT cause (#PCDATA)>
<!ELEMENT reference EMPTY>
<!ELEMENT temporalD (offset?)>

<!ATTLIST action
 key ID #REQUIRED
 type (positiv | negative) #REQUIRED
>
<!ATTLIST annotation
IDREFS #REQUIRED
>
<!ATTLIST group
 key ID #REQUIRED
>
<!ATTLIST selection
ID #REQUIRED
>
<!ATTLIST temporalD
IDREFS #REQUIRED
(preceding | succeeding | concurrent) #REQUIRED
>
<!ATTLIST reference
ID #REQUIRED
>

Figure 13 Template for Clinical Actions

5.2.1 Design of the Template

The template is designed as an XML document. Therefore, attention is paid to both mentioned
design issues for templates of IE systems and for XML-templates. Under these considerations,
basic entities, relations and events are identified and modelled.

 53

For the defined task, basic entities are the main objects, which are relevant in a medical
action. It is considered that they should correspond to fairly natural and intuitive ways to
characterize a medical action and obey analytical demands of the task. Basic entities are
outlined as atomic elements, which are filled with linguistic expressions from the analysed
text. In the ultimate template, they do not exist as standalone attributes, but always as
subelements of actions. On the one hand, this approach causes redundancies by allowing more
than one action to declare the same entity, but on the other hand, it increases readability and
eases the post-processing.

Relations are restricted to actions. There is not any direct relation between the entities. The
relations are divided in two groups. One represents temporal dependencies. The other one
represents groupings among them. Both temporal dependencies and relations have unique
IDs, but they are implemented in the XML syntax differently, because it is common that
relatively more participants take part in a grouping relation, so that readability would suffer if
pointers to actions were implemented as attributes in XML template.

Relevant medical actions are the events of interest with unique IDs. They contain associated
entities and take part in relations with other actions. Each action is represented in the
underlying text at least with one sentence. Figure 13 shows DTD of the template for sought-
after information

5.3 Extraction Patterns

Guidelines processed by CPGPro are XHTML-conform. Therefore, they are semi-structured.
They consist of a mixture of grammatical and telegraphic text and have additional formatting
information (e.g., tags). Extraction patterns developed for analyzed guidelines take into
account these features. They are both based on syntactic/semantic constraints and delimiters
that bound the text to be extracted. These patterns are defined in three levels. These are:

• Phrase level

• Sentence level

• Discourse level

Extraction patterns defined at each level serve as concept classes in the preceding levels.
Phrase level extraction patterns are used for identifying basic entities. Sentence level patterns
use phrase level patterns as concept classes to identify medical actions and their linguistic
realizations as attributes of these actions. Discourse level patterns are used for action merging.

Patterns described here are linguistic constructs, which frequently occur in the otolaryngology
guidelines. Most of them are so general, that they can be probably used in other specialties,
too. They have a modular structure and are built up from various levels of constituents by
stringing them together. They are obtained in two steps:

• First, several CPGs are examined to find out frequent semantic categories
(constituents).

• Then their interaction in CPGs is analysed to find out, how relevant parts of CGPs are
built up from these constituents or distinguished by them.

Following three subsections describe each kind of extraction pattern in detail.

 54

5.3.1 Phrase level patterns

Phrase level patterns are syntactic rules, which describe string properties in the lowest
syntactic level. They are defined by means of regular expressions. The basic entities defined
by these patterns build the attributes of actions. Table 16 shows a list of phrase level patterns
with corresponding concept classes.

<context> \b(for|in)\b[^,.:]+(?<=(patient(s)?|child(ren)?|person(s)?|those|adult(s)
?))[^,.:]+

<condition> (in case|when|if|unless)[^,.:]+

<time> ([\d-]+|(to))+ (hour(s)*|day(s)*|week(s)*|month(s)*|minute(s)*)

<duration> (for|with)?[a-z]*<time>

<recurrence> \b(TID|BID|QD)\b

\bQ <time>

([\d-]+|(to))+[a-z]*(times|doses) (per|a) day

every <time>

<dosage> ([\d-]+|(to))+ mg ((tab(s)?)?

([\d-]+|(to))+ glass(es)?

double strength tab

<reason> because[^,.:]+

Table 16 Phrase Level Patterns

5.3.2 Sentence level patterns

Sentence level patterns are described by means of basic entities. Two major constituents of
sentence level patterns are medical terms and triggering words. Members of both of these
concept classes are obtained from a lexicon which is also created manually.

CPGPro lexicon holds agent medical terms (e.g. agents, surgical procedures), which are
medications usually used in medical actions for otolaryngology specialty. Besides, medical
terms are organized in a flat semantic hierarchy, which assign them into groups (e.g.
antibiotics, decongestants). Moreover it contains triggering words - mainly verbs - for these
medical terms, which indicate the use of an agent in free text and negative triggering words,
which indicate avoidance of an agent. A synonym list for some mentioned terms and disorder
names are also found in the lexicon (for examples, see section 5.4.).

The other concept classes (e.g., <context>, <condition>) for sentence level patterns are
derived from phrase level patterns. In contrast to phrase level patterns, sentence level patterns
are delimiter-based, which also use syntactic constraints. Table 17 and Table 19 show
sentence level patterns found in seven guidelines from NHC19, which are used for developing
CPGPro. The table of complete guideline names for acronyms (e.g., G1, G2) can be found in
the next chapter (see chapter 6)

19 http://www.guideline.gov/

 55

Name Pattern Example linguistic
realization

F-Action1 <agent> <trigger> TMP/SMX can be prescribed

F-Action2 <agent><trigger><duration>

Similar to F-ActionC2

F-ActionC1 <condition> <agent> <trigger>

Similar to F-ActionC2

F-ActionC2 <agent> <trigger> <condition> An antibiotic that covers
resistant bacteria
(amoxicillin-clavulanate)
should be used to treat
patients if amoxicillin fails
on 10 to 14 days.

F-ActionCN <condition><agent><n_trigger> Similar to F-ActionC2

F-ActionM1 <med_Context> <agent> <trigger> In PCN-allergic patients,
erythromycin ist the drug of
choice.

F-ActionM2 <agent> <trigger> <med_Context> Ampicillin and amoxicillin
are often used for treatment
of GABS pharyngitis

F-ActionM4 <med_Context> <trigger> <agent>
<condition>

Patients with this diagnosis
should be treated with
erythromycin if they are
allergic to penicillin.

F-ActionMN <med_Context> <n_trigger> <agent>

Similar to F-ActionM2

F-ActionMN2 <agent> <n_trigger> <medContext>

Similar to F-ActionM2

F-ActionN <agent> <n_trigger>

Particularly ampicillin
should be avoided.

F-Relation1 <time_Rel><action><action> After 10 to 14 days of failure
of first line antibiotic
(amoxicillin or TMP/SMX),
an antibiotic that covers
resistant bacteria should be
prescribed.

F-Relation1 <n_trigger><agent><med_Context>
<reason>

Do not use aspirin with
children and teenagers,
because it may increase the
risk of Reyes Syndrome.

Table 17 Sentence Patterns for Both Grammatical and Telegraphic Text

 56

Name G1 G2 G3 G4 G5 G6 G7

F-Action1 2 4 - - 1 2 -

F-Action2 - - - - 1 1 -

F-ActionC1 1 - - - - - -

F-ActionC2 2 1 - - - - 1

F-ActionCN1 - - - 1 - - -

F-ActionM1 2 2 - - - 1 -

F-ActionM2 4 1 2 - 1 - 1

F-ActionM3 1 - 1 - - - -

F-ActionMN1 - - - 1 - - -

F-ActionMN2 - - - - - - 1

F-ActionMN3 1 - - - - - -

F-ActionN1 - - - 1 1 - -

F-Relation1 - 1 - 1 - - -

Table 18 Occurrences of Free-text Patterns in Used CPGs

The patterns in the list above can be applied to free text with grammatical structures in CPGs
which are usually organized as paragraphs between <p> and </p> delimiters, but to
telegraphic text usually found as list entries or captions, too. These patterns show that, agents
(also surgical procedures) combined with trigger words (e.g. use, apply) define relevant
sentences for sought-after medical actions provided that they occur in the same clause of the
sentence and do not appear in semantic classes <med_Context> or <condition>. This
constraint ensures that agents in <med_Context> or <condition> do not interfere with for the
action relevant agents and that actions in relations can be separated. Concept classes like
<condition>, <med_Context>, <duration> and the others can be combined arbitrarily with
<agent> <trigger> pairs to build attributes of the associated medical action. <n_trigger>
indicates a negative action (an action which is not recommended). Words like "avoid",
"discontinue", "forbid" belong to this category.

Name Pattern Example linguistic
realization

L-Action1
<agent>

• Cephalexin

L-Action2 <agent><dosage><recurrence> <duration>

• TMP/SMX: one
double strength
tab BID x 10 to
14 days

L-Action3 <duration><agent><dosage><recurrence> Similar to L-Action2

L-ActionM1 <med_Context><agent><recurrence><duration> Similar to L-Action2

L-Action4 <agent><recurrence><duration> Similar to L-Action2

 57

L-ActionC1 <condition> <agent> <dosage><recurrence> Similar to L-Action2

L-Action5 <surgical procedure> Similar to L-Action1

L-ActionC2 <agent> <dosage> <condition> Similar to L-Action2

L-Action6 <agent><dosage><recurrence> Similar to L-Action2

L-Action7 <agent><duration> Similar to L-Action2

L-Measure <measure> <action>+ Home Self Care
Measures

a. Maintain
adequate
hydration

b. ….

Table 19 Patterns Only for Telegraphic Text

Name G1 G2 G3 G4 G5 G6 G7

L-Action1 4 1 - - 1 8 7

L-Action2 - 15 - - - - -

L-Action3 - 2 - - - - -

L-ActionM1 - 1 - - - - -

L-Action4 - - - - 1 - -

L-ActionC1 - - - 1 - - -

L-Action5 - - - 1 1 2 1

L-ActionC2 - - - - - 2 -

L-Action6 - - - - - 1 -

L-Action7 - - - - - 1 -

L-Measure 3 4 - - 2 2 -

Table 20 Occurrences of Telegraphic-text Patterns in Used CPGs

The patterns in the list above are only applicable to list entries and captions. In these regions
of text, there is usually telegraphic and ungrammatical text. Because of this there is no need to
search after trigger words. Patterns show that even only an agent name without a proper
trigger word in a list entry indicates relevant clinical actions. The last pattern in the list
indicates that list entries are accepted as actions even if they do not include an agent, when
some linguistic expressions (e.g. remedy, measure, activity) which are grouped under the
concept class <measure> are included in the context -captions under which the list exists – of
these list entries.

 58

5.3.3 Discourse level patterns

Discourse level patterns are common ways for merging and grouping clinical actions. In
contrast to sentence level patterns, they have also semantic constraints derived from a flat
semantic hierarchy. Discourse level patterns will be described later in the following section
(see section 5.5.).

5.4 Lexicon

CPGPro lexicon is implemented as a Foreground Lexicon (FL) [Cavaglia, 1999]. A
Background Lexicon (BL) is left out. CPGPro lexicon contains only those words that are
necessary for the application. These are:

• Medical terms

• Triggers

Medical terms contain medical agents (e.g., "amoxicillin", "cyproheptadine"), surgical
procedures (e.g., "tympanostomy", "plastic surgery") and diagnosis terms (e.g., "sore throat",
"otitis media"). Obtaining relevant medical terms is completed in two subsequent steps:

• Gathering a core lexicon of medical terms from the development corpus manually.

• Using WordNet to expand the core lexicon

With the application of WordNet, it was possible to find for each manually extracted medical
term its synonyms, hyponyms, hypernyms, and coordinate words (words which have the same
hypernym), so the core lexicon is expanded and the flat semantic hierarchy needed by
CPGPro is obtained.

Triggers are words, which activate a medical term (e.g. "use", "apply"). They are obtained
from the underlying corpus with help of a text analysis tool20 by finding medical term/trigger
collocations. Their purpose will be explained in the following sections.

5.5 CPGPro Architecture

CPGPro extracts clinical actions from CPGs in five steps. Therefore, it has a modular
architecture. Each module is responsible for one step and independent from other modules to
some degree – each module works on data that it gets from the preceding module -, so that it
was possible to develop and improve each module separately. Figure 14 exhibits the modular
architecture of CPGPro.

20 http://www.niederlandistik.fu-berlin.de/textstat/software-en.html

 59

Figure 14 CPGPro Architecture

5.5.1 Sentence Segmentation

First module is responsible for splitting the CPG document in individual sentences. Because
of the nature of CPGs, these segments should not always correspond to grammatical correct
sentences. For example, they can consist of telegraphic text in list entries. Moreover, this
module tags each sentence with additional information. The data recorded with each sentence
consists of its delimiter and if it is a complete sentence (grammatical text) or just a phrase
group (telegraphic). This information is important, because clinical actions are usually found
in telegraphic text and in list entries, which correspond to text between and tags in
XHTML documents. Moreover, each sentence is stored in such a way, that it is possible to
obtain its relative position in the XHTML tree structure.

 60

5.5.2 Filter

Like in every other IE systems, only small portions of the target document are of interest. The
task is limited to finding relevant medical actions and their relations. Therefore, it is needless
to process sections associated with diagnosis or symptoms. Moreover, processing these
sections could decrease the precision score of CPGPro because of the presence of "false
positives".

Filtering occurs in the section level. Sections of the CPG document with captions, which
indicate a diagnosis or symptom assertion, are left out. Key words like "history", "sign",
"assessment", "factor" are thought to be evidence for such sections provided that they appear
in the caption of a section, so all sentences with one of these key words in their context are
eliminated.

5.5.3 Action Extraction

This module makes use of both lexicon and regular expressions. Lexicon is used to search in
the text for medical terms (e.g., agents, surgical procedures) and their trigger words. Trigger
words are needed, because sentences with medical terms and without a trigger word tend to be
general information about these terms, in which the task is not interested.

Action Extraction module handles grammatical and telegraphic text differently. Grammatical
text, which is usually found in paragraphs (between <p> and </p> delimiters), can only be
selected as a medical action for further processing, if it has a medical term with a trigger or
negative trigger word in the same clause of the sentence, because of the mentioned reason. In
contrast, for a telegraphic it is enough only to have a medical term to be considered as a
sentence indicating a clinical action. The reason is that telegraphic text is usually found in
lists, which are used to register the recommended medical actions. Moreover, they occur in
paragraphs, too. In this context, they indicate the beginning of a list or they give information
about the content of the following paragraphs. Therefore, they could contain a medical action
and are very important for identifying sought-after information. Negative actions in the list
entries are distinguished, too. They are identified with help of negative trigger words in the
context or in the proceeding paragraph.

Some sentences in CPGs do not hold these constraints, although they indicate medical actions.
These are usually recommendations for self-care. Because they do not consist any medical
term, they are hard to find. They have in common, that they have specific key-words (e.g.
home, remedies, measures, changes, activities, modifications) in their context, in the
preceding paragraph, or list entry.

After identifying sentences, which indicate a medical action, they are processed further to
extract some additional attributes, besides medical terms. These attributes correspond to
entities, which have internal structure but too many to explicitly enumerate in the lexicon (e.g.
dosage, recurrence, duration). Because of this, appropriate regular expressions are used to
extract them. After this stage, all actions are identified with all their medical terms and
attributes (see Figure 12). Each extracted action is stored also in such a way that it is possible
to obtain the relative position of its corresponding sentence in the xhtml tree structure, which
will be helpful in the next step for extracting relations between the actions.

5.5.4 Action Merging and Grouping

Action Merging and Grouping works on topographic and semantic features of the extracted
actions. There are two needs for merging actions:

 61

• To discard a general action, if a more specific action is found later in the document

• To find annotations for an action later in the document.

General actions are actions with general medical terms (e.g. "antibiotics", "decongestant").
They are usually followed by more specific recommendations. To be concrete, consider there
is a sentence which recommends the use of antibiotics with no specific antibiotic agent and it
is identified as an action. If this sentence is followed by a sentence with a specific antibiotic
agent, it also identified as an action (specific action). In this case, storing the general action is
unnecessary, but its attributes. Its attributes are added to the specific action. To solve general-
specific medical term relation, CPGPro has a flat semantic hierarchy, which lists all medical
terms with their categories.

The second kind of merging is applied, if two actions with same medical terms are
encountered. The first action gets the second one as annotation and records attributes of the
second one in its attribute fields.

For both merging methods, a merging window is defined. It ensures that actions from
different contexts ("treatment"/"further treatment") are not merged. The window is defined so
that all actions can search the actions of the one higher level and all lower levels in its section
to find specific or annotation actions. Thereby, levels are created with help of taggers.
Occurrence of tag presents the start of a new lower level. In contrast, occurrence of
tag presents the end of the actual level and switching to the next higher level.

Grouping actions consists of:

• Combining actions in select-one-of relation which models actions excluding each
other

• Finding temporal relationships between medical actions

Clinical actions with medical terms from the same category and in the same context exclude
each other. To find these actions CPGPro searches in the mentioned window all actions with
medical terms from the same category and group them with select-one-of relation.

Temporal relations are really hard to extract. CPGPro detects relations between actions, which
are explicitly mentioned within the text. For this purpose, key words (e.g. after, when, until)
are used to separate sentences in clauses and actions in different clauses are combined with
appropriate relations (i.e., preceding, succeeding, concurrent). Moreover CPGPro uses the
context of the actions to derive temporal relations. For example, key word "further treatment"
in the context of an action indicates that it is a preceding action to actions in the document
before without this key word in their context.

5.5.5 Template Generation

Template generation is the last step in document processing. This module takes all actions and
their relations identified by preceding modules and fills the template (see Figure 12) with this
information.

 62

6 Evaluation

CPGs used along the implementation of CPGPro can be found on NGC Homepage, which is a
comprehensive database for evidence-based CPGs. These text resources are divided in two
parts

• CPGs for defining constituents and relations in terms of which patterns are stated and
consequently for developing heuristics based on these patterns (training corpus)

• CPGs for testing the accuracy of heuristics by means of CPGPro Framework (testing
corpus)

There are a total of 25 CPGs for clinical specialty of Otolaryngology intended for treatment.
Seven of these CPGs are used as the training corpus and 14 of them are used as the testing
corpus. A CPG for training corpus is not selected arbitrarily, but taking some considerations
into account which are listed below. The same considerations are also applicable for creating
the testing corpus.

• Owner organization of CPG

• Intended disease of CPG

• Hierarchical structure of CPG

Training corpus is created in such a way that it contains CPGs for different diseases. Thus it
was possible to create a set of extraction patterns and an extensive lexicon with a good
coverage of the otolaryngology specialty. Moreover, owner organization plays a role by
selecting training corpus, because CPGs offered by NGC are created by different
organizations and each organization has a widely different style for representing the CPG
content. Unfortunately it is not uncommon that an organization uses different formats for
different CPGs. Because of this, hierarchical structure of each document is also taken into
account, which is very important for the correct operation of heuristics, as it is seen in the
preceding chapter. The main idea is that CPGs for both training- and testing corpus should
show a lot of varieties in mentioned selection criteria. Table 21 shows a list of CPGs used as
the training corpus with their aliases as used in the preceding chapter.

Acute pharyngitis G1

Acute sinusitis in adults G2

Reduction of the influenza burden in children G3

Sore throat and tonsillitis G4

Diagnosis and treatment of obstructive sleep apnea G5

Diagnosis and treatment of otitis media in children G6

Allergic rhinitis G7

Table 21 CPGs from Training Corpus

Evaluation of CPGPro is carried out in two stages. First the accuracy of finding relevant
sentences (sentences, which indicate clinical actions) is tested and then the accuracy of

 63

extracting features out of actions and relations among them is tested. Table 22 and Table 23
show evaluation scores for each of these stages. Thereby, depending on the evaluation stage

• Nkey is either the number of relevant sentences or the number of extracted attributes
and relations in the answer key.

• Nresponse is either the number of sentences or the number of belonging attributes and
relations identified by the system as relevant.

• Ncorrect is either the number of extracted sentences or the number of extracted
attributes and relations, which agree with the answer key.

• P is the precision value (see section 2.2.2.).

• R is the recall value (see section 2.2.2.).

Title Ncorrect Nkey Nresponse R P

Evidence based clinical practice guideline for
medical management of acute otitis media in
children 2 months to 13 years of age"

20 26 27 0.77 0.74

Allergic rhinitis and its impact on asthma 62 77 65 0.81 0.95

Evidence based clinical practice guideline for
children with acute bacterial sinusitis in children 1 to
18 years of age

8 14 12 0.57 0.66

Diagnosis and management of acute otitis media 0 3 0 0 -

Otitis media 7 7 7 1 1

Management of obstructive sleep apnoea/ hypopnoea
syndrome in adults. A national clinical guideline

8 12 8 0.66 1

Diagnosis and management of childhood otitis media
in primary care. A national clinical guideline

7 13 7 0.54 1

Rhinitis 48 56 48 0.85 1

Acute rhinosinusitis in adults 11 17 11 0.65 1

Otitis media with effusion 4 6 4 0.66 1

Evidence based clinical practice guideline for
medical management of otitis media in children 2
months to 6 years of age

14 20 14 0.70 1

Symptomatic treatment of radiation-induced
xerostomia in head and neck cancer patients

3 3 4 1 0.75

Pneumococcal vaccination for cochlear implant
candidates and recipients: updated recommendations
of the Advisory Committee on Immunization
Practices

4 6 4 0.66 1

Management of sore throat and indications for
tonsillectomy. A national clinical guideline

0 20 0 0 -

Overall 196 280 211 0.70 0.92

Table 22 Results from the First Stage

 64

Title Ncorrect Nkey Nresponse R P

Evidence based clinical practice guideline for
medical management of acute otitis media in
children 2 months to 13 years of age.

110 132 155 0.83 0.71

Allergic rhinitis and its impact on asthma 271 329 308 0.82 0.88

Evidence based clinical practice guideline for
children with acute bacterial sinusitis in children 1 to
18 years of age.

37 55 73 0.67 0.51

Diagnosis and management of acute otitis media. 0 13 0 0 -

Otitis media. 29 33 38 0.88 0.76

Management of obstructive sleep apnoea/hypopnoea
syndrome in adults. A national clinical guideline

33 53 35 0.62 0.94

Diagnosis and management of childhood otitis
media in primary care. A national clinical guideline.

26 44 31 0.59 0.83

Rhinitis 161 215 200 0.75 0.81

Acute rhinosinusitis in adults 47 59 51 0.79 0.87

Otitis media with effusion. 17 24 21 0.71 0.81

Evidence based clinical practice guideline for
medical management of otitis media in children 2
months to 6 years of age.

68 88 87 0.77 0.78

Symptomatic treatment of radiation-induced
xerostomia in head and neck cancer patients.

11 13 15 0.85 0.73

Pneumococcal vaccination for cochlear implant
candidates and recipients: updated recommendations
of the Advisory Committee on Immunization
Practices.

7 16 16 0.44 0.44

Management of sore throat and indications for
tonsillectomy. A national clinical guideline.

0 60 0 0 -

Overall 817 1134 1030 0.72 0.79

Table 23 Results from the Second Stage

At first sight, the results are a little bit surprising. Because of the used atomic approach, high
recall and low precision values were expected, but on the contrariwise CPGPro got higher
precision values than recall values. This phenomenon can be explained by constraints defined
on the context information of each sentence in the extraction process, but more with not
having an exhaustive lexicon. Indeed, test process showed that failure in recognition of
relevant sentences is usually justified by not having appropriate medical terms in the
underlying lexicon. The results show that CPGPro recognized 70% of all relevant sentences
and that 92% of all extracted sentences were actually relevant. Both of the values are
promising, especially the precision value. With the supply of a more appropriate lexicon,
which covers the otolaryngology domain better, much better results in the recall value will be
achieved, probably with a small decrease of the achieved precision value.

 65

A failure in the first stage automatically implies failure in the second stage. Not identified
sentences prevent more attributes and relations from being detected and "false positives"
cause detection of irrelevant attributes and non-existing relations. This means, a lexicon with
a better coverage will increase evaluation values in the second stage, too. Another factor,
which complicates the detection of attributes and relations, is the occurrence of coreferences.
Because of the absence of a coreference resolution module, CPGPro relies on intelligent
guesses to resolve these coreferences. Overall, CPGPro has good scores in the second stage.
Both of the evaluation values are satisfactory. It can be said, that CPGPro is a robust and
effective system considered the structural and phrasal diversity among CPGs.

 66

7 Conclusion

The object of this thesis was stated in the first chapter as building a framework to support the
automation of guideline formalization by means of heuristics. In the light of the demonstrated
results from otolaryngology specialty, it can be said that the task is for the most part
accomplished.

The evaluation values are satisfactory, but more important underlying heuristics, which are
implemented in an atomic approach, allow important performance improvements with the
appropriate change of the underlying lexicon. Moreover, the system is fast and robust.

CPGPro heuristics use simple natural language analysis methods. The success of such simple
rules is justified by delimiters made use of and the nature of guidelines that actions in these
documents are usually expressed in small number of forms with common attributes.
Unfortunately, the lack of a coreference module, which would need very complex natural
language analysis methods, limits the accuracy of relation extraction.

Besides supporting guideline formalization tools, there are many possibilities to utilize the
output of this system with appropriate post-processing. The evaluation shows that CPGPro
can be applied to the task of guideline summarization, too. Moreover, it can be applied with
appropriate modification to the task of guideline categorization for the sake of Information
Retrieval.

 67

8 References

[Aone & Bennett, 1995]: C. Aone and Scott W. Bennett. Applying Machine Learning
to Anaphora Resolution. In Working Notes of the IJCAI-95 Workshop on New
Approaches to Learning for Natural Language Processing, pages 151–157,
1995.

[Appelt & Israel, 1999]: D. Appelt, D. Israel: Introduction to Information Extraction
Technology. IJCAI-99 Tutorial, Stockholm, Sweden, 1999.

[Appelt, 1999]: D. Appelt. Introduction to Information Extraction. AI Communications
12(3), 1999.

[Armstrong et al., 2004]: E. Armstrong, J. Ball, S. Bodoff, Debbie B. Carson, I. Evans,
D. Green, K. Haase, E. Jendrock. The J2EE 1.4 Tutorial. http://java.sun.com
/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf, September 2004.

[BIG, 2004a]: Business Informatics Group TU Wien: XML Grundlagen. http://
www.big.tuwien.ac.at/teaching/offer/ss04/we_vo/weM4XMLGrundlagen.pdf,
April 2004.

[BIG, 2004b]: Business Informatics Group TU Wien : XML API-SAX http://www.big.
tuwien.ac.at/teaching/offer/ss04/we_vo/weM5SAX.pdf, April 2004.

[BIG, 2004c]: Business Informatics Group TU Wien : XML API-DOM http://www.
big.tuwien.ac.at/ teaching/offer/ss04/we_vo/weM6DOM.pdf, April 2004.

[Callan, 2004]: J. Callan. Information Extraction. In Human Language Technologies
Lectures, Carnegie Mellon University, November 2004.

[Cardie, 1993]: C. Cardie. A Case-Based Approach to Knowledge Acquisition for
Domain-Specific Sentence Analysis. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 798–803. AAAI Press/The MIT
Press, 1993.

[Cavaglia, 1999]: G. Cavaglia. The Development of Lexical Resources for Information
Extraction from Text Combining WordNet and Dewey Decimal Classification. In
Proceedings of the Ninth Conference on European Chapter of the Association
for Computational Linguistics, Association for Computational Linguistics,1999

[Cowie & Lehnert, 1996]: J. Cowie , W. Lehnert. Information Extraction.
Communications of the ACM, 39(1),1996.

[Cowie & Wilks, 2000]: J. Cowie, Y. Wilks. Information Extraction. Robert Dale,
Handbook of Natural Language Processing, Hermann Moisl and Harold
Sommers (Eds), Marcel Dekker, 2000.

[Cowie, 1983]: J. Cowie. J.R. Automatic Analysis of Descriptive Texts. In ACL
Proceedings, Conference on Applied Natural Language Processing, Santa
Monica, Calif, ACL, 1983.

 68

[DaSilva, 1980]: G. DaSilva, D. Dwiggins. Towards a Prolog Text Grammar. SIGART
72, 1980.

[DeJong, 1982]: G. DeJong. An Overview of the FRUMP System. In Strategies for
Natural Language Processing, W.G.Lehnert & M.H.Ringle (Eds), Lawrence
Erlbaum Associates, 1982,

[Dolan et al., 1991]: Charles P. Dolan, Seth R. Goldman, Thomas V. Cuda, Alan M.
Nakamura. Hughes Trainable Text Skimmer: Description of the TTS System as
Used for MUC-3. In Proceedings of the Third Message Understanding
Conference (MUC-3), Morgan Kaufmann, San Mateo, CA, 1991.

[Field, 1990]: M. Field, K. Lohr. Clinical Practice Guidelines: Directions for a New
Program. National Academy Press, Washington D.C., 1990.

[Fisher et al., 1995]: D. Fisher, S. Soderland, J. McCarthy, F. Feng, W. Lehnert.
Description of the UMass System as Used for MUC-6. In Proceedings of the
Sixth Message Understanding Conf. (MUC-6), Morgan Kaufmann, Columbia,
MD, 1995.

[Fuchs, 1999]: Matthew Fuchs. Why XML is Meant for Java? Web Techniques
Magazine, 1999

[Grishman & Sundheim, 1996]: R. Grishman, B. Sundheim. Message Understanding
Conference 6: A Brief History. In Proceedings of the 16th International
Conference on Computational Linguistics, Springer, 1996.

[Grishman et al., 1991]: R. Grishman, J. Sterling, C. Macleod. New York University:
Description of the Proteus System as Used for MUC-3. In Proceedings of the
Third Message Understanding Conference (MUC-3), Morgan Kaufmann, San
Mateo, CA, 1991.

[Grishman, 1995]: R. Grishman. The NYU System for MUC-6 or Where's the Syntax.
In Proceedings of the Sixth Message Understanding Conference (MUC-6),
Morgan Kaufmann, 1995.

[Grishman, 1997]: R. Grishman. Information Extraction: Techniques and Challenges.
In Information Extraction: A Multidisciplinary Approach to an Emerging
Information technology, M.T.Pazienza (Eds), International Summer School
(SCIE-97), Frascati, Italy, Springer (Lecture Notes in Artifical Intelligence 1299),
1997.

[Grishman, 2002]: R. Grishman. Information Extraction. The Oxford Handbook of
Computational Linguistics, Oxford University Press, New York, 2003

[Harold, 2002]: Elliotte R. Harold. Processing XML with Java: A Guide to SAX, DOM,
JDOM, JAXP, and TrAX. Addison-Wesley Professional, 2002

[Hastings & Lytinen, 1994]: P. Hastings and S. Lytinen. The Ups and Downs of
Lexical Acquisition. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 754–759. AAAI Press/The MIT Press, 1994.

 69

[Hobbs & Israel, 1994]: Jerry R. Hobbs, D. Israel. Principles of template design. In
Proceedings of the Human Language Technology Workshop, Morgan
Kaufmann, San Francisco, California, 1994

[Hobbs et al., 1996]: Jerry R. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, M.
Stickel, Mabry Tyson. FASTUS: Extracting Information from Natural-Language
Texts. In Finite State Devices for Natural Language Processing, E. Roche and
Y. Schabes (Eds.), MIT Press, 1996.

[Huffman, 1995]: Scott B. Huffman. Learning information extraction patterns from
examples. InWorking Notes of the IJCAI-95 Workshop on New Approaches to
Learning for Natural Language Processing, pages 127–134, 1995.

[Kaiser et al., 2005]: K. Kaiser, A. Cem, S. Miksch. Gaining Process Information from
Clinical Practice Guidelines Using Information Extraction.Vienna University of
Technology, Institute of Software Technology & Interactive Systems, Technical
Report Asgaard-TR-2005-4, April, 2005.

[Kaiser, 2005]: K. Kaiser. Modeling Computer-Supported Clinical Guidelines and
Protocols: A Survey. Vienna University of Technology, Institute of Software
Technology & Interactive Systems, Technical Report Asgaard-TR-2005-2,
March, 2005.

[Marsch, 1998]: E. Marsh, D. Perzanowski. MUC-7 Evaluation of IE Technology:
Overview of Results. 1998. http://www.itl.nist.gov/iaui/894.02/related_projects/
muc /proceedings /muc_7_proceedings/marsch_slides.pdf, March 2005

[McCarthy & Lehnert, 1995]: J. McCarthy, W. Lehnert. Using decision trees for
coreference resolution. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 1050-1055, 1995

[McLaughlin, 2001]: B. McLaughlin. Java & XML, 2nd Edition: Solutions to Real-
World Problems. O'Reilly, 2001.

[Miller, 1995]: George A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38(11), 1995.

[Montgomery et al.,1991]: Christine A. Montgomery., Bonnie G. Stalls, Robert S.
Belvin, Robert E. Stumberger. Language Systems, Inc.: Description of the DBG
System as Used for MUC-3. In Proceedings of the Third Message
Understanding Conference (MUC-3), Morgan Kaufmann, San Mateo, CA,
1991.

[MUC3, 1991]: Proceedings of the Third Message Understanding Conference
(MUC-3). Morgan Kaufmann, San Mateo, CA, 1991.

[MUC4, 1992]: Proceedings of the Fourth Message Understanding Conference
(MUC-4). Morgan Kaufmann, San Mateo, CA, 1992.

[MUC5, 1993]: Proceedings of the Fifth Message Understanding Conference
(MUC-5). Morgan Kaufmann, San Francisco, CA, 1993.

 70

[MUC6, 1995]: Proceedings of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann, San Francisco, CA,1995.

[MUC7, 1997]: Proceedings of the Seventh Message Understanding Conference
(MUC-7). National Institute of Standards (NIST), 1997. http://www.itl.nist.
gov/iaui/894.02/related_projects/muc/, January 2005

[Ogden & Bernick, 1996]: W. Ogden, P. Bernick. OLEADA: User-Centered TIPSTER
Technology for Language Instruction. In Proceedings of the Tipster Text Phase
II Workshop, 1996

[Peleg et al., 2003]: M. Peleg, S. W. Tu, J. Bury, P. Ciccarese, J. Fox, R. A. Greenes,
R. Hall, P. D. Johnson, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang,
E. H. Shortliffe, M. Stefanelli. Comparing Computer-Interpretable Guideline
Models: A Case-Study Approach. Journal of the American Medical Informatics
Association (JAMIA), 10(1), pages 52–68, 2003.

[Phillips, 2001]: Lee A. Phillips. XML-Kompendium: Modernes Daten- und
Dokumentmanagement, Markt+Technik, 2001

[Riloff, 1996a]: E. Riloff. An Empirical Study of Automated Dictionary Construction for
Information Extraction in Three Domains. Artificial Intelligence, 85, pages 101–
134, 1996.

[Riloff, 1996b]: E. Riloff. Automatically Generating Extraction Patterns from Untagged
Text. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, AAAI Press/The MIT Press, pages 1044-1049, 1996

[Riloff, 1999]: E. Riloff. Information Extraction as a Stepping Stone toward Story
Understanding. MIT press, Montreal, Canada, 1999.

[Ruby, 2002]: D. Ruby, Which Half is Which. XML Magazine, March 2002

[Sager, 1981]: N. Sager. Natural Language Information Processing: A Computer
Grammar of English and Its Applications. Addison-Wesley, Massachusetts,
USA, 1981

[Soderland & Lehnert, 1994]: S. Soderland and W. Lehnert. Wrap-Up: A Trainable
Discourse Module for Information Extraction. Journal of Artificial Intelligence
Research (JAIR), 2, pages 131–158, 1994.

[Soderland, 1999]: S. Soderland. Learning Information Extraction Rules for Semi
Structured and Free Text. Machine Learning: Special Issue on Natural
Language Learning, 34, pages 233-272, 1999.

[Sundheim, 1995]: B. Sundheim. Overview of Results of the MUC-6 Evaluation. In
Proceedings of the Sixth Message Understanding Conference (MUC-6),
Columbia, MD, Morgan Kaufmann Publishers, 1995

[TIPSTER]: TIPSTER Text Program Homepage http://www.itl.nist.gov/iaui/894.02/
related_projects/tipster/, March 2005

 71

[Warren, 1998]: Todd E. Warren. Clinical Practice Guidelines. Adis International,
1998

[Wilks & Stevenson 1996]: Y. Wilks, M. Stevenson. The Grammar of Sense: Is Word-
sense Tagging Much More than Part-of-speech Tagging? Technical Report CS-
96-05, University of Sheffield, UK, 1996

[Wilks, 1987]: W. Yorick. Text Searching with Templates. Technical Report ML 162,
Cambridge, Language Research Unit, 1987.

[Wilks, 1997]: W. Yorick. Information Extraction as a Core Language Technology. In
Information Extraction: A Multidisciplinary Approach to an Emerging Information
Technology, M.T.Pazienza (Eds), International Summer School (SCIE-97), ,
Springer (Lecture Notes in Artifical Intelligence 1299), 1997.

[Yangarber & Grishman, 1997]: R. Yangarber and R. Grishman. Customization of
Information Extraction Systems. In Proceedings of International Workshop on
Lexically Driven Information Extraction, Frascati, Italy, 1997

[Yangarber & Grishman, 1998]: R. Yangarber, R. Grishman. NYU: Description of the
Proteus/PET System as Used for MUC-7 ST. In Proceedings of the Seventh
Message Understanding Conference (MUC-7), Morgan Kaufmann, 1998.

[Zajac & Vanni, 1996]: R. Zajac, M. Vanni. The Temple Translator's Workstation
Project. In Proceedings of the Tipster Text Phase II Workshop, 1996

[Zarri, 1983]: G. P. Zarri. Automatic Representation of the Semantic Relationships
Corresponding to a French Surface Expression. In ACL Proceedings,
Conference on Applied Natural Language Processing, Santa Monica, Calif,
ACL, 1983.

